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We reportab initio calculations of magneto-optical Kerr effect in Fe, Co, and Ni. Both real and imaginary
parts of the interband optical response functions are calculated from self-consistent energy-band calculations in
the presence of both a magnetic moment and spin-orbit interaction. We draw particular attention to two ways
to obtain the real part of the response functions: first by direct calculation with the energy treated as a complex
variable, and second by Hilbert transformation of the imaginary part of the response functions. The calculated
magneto-optical Kerr effect for both the cubic metals Fe and Ni are in good agreement with measurements.
Fair agreement between the theory for Co with recent measurements on Co hcp and fcc multilayers is obtained.

I. INTRODUCTION

When plane polarized light is reflected from or transmit-
ted through a magnetic material its plane of polarization is
rotated. The effect is called the Faraday effect for transmitted
light and magneto-optical Kerr effect1 for reflected light,
where the angle of rotation is known as the Kerr angle. Re-
versing the bulk magnetism then reverses the angle of rota-
tion. There are now several good reviews of the state of
measurements of magneto-optical Kerr effect.2,3 The largest
magneto-optical Kerr effect found to date is for CeSb, with a
Kerr angle of 14°. This compares with a couple of degrees
for uranium compounds and less than 0.5° for Fe, Co, and
Ni.

While these effects have long been understood in terms of
classical optics, a microscopic theory in terms of the appli-
cation of quantum mechanics to solid-state physics is a more
recent development.4 An attempt to estimate the absorptive
part of the off-diagonal dielectric function by Argyres5

achieved the correct order of magnitude for Fe and Ni and
was followed by further work on the theory of magneto-
optical Kerr effect by Cooper6 and Bennet and Stern.7 The
inherent difficulty in performing sufficiently accurate band-
structure calculations limited these early attempts to a simple
perturbational approach and fitting to experimental data.
Subsequently, Wang and Callaway8 calculated the absorptive
part of the off-diagonal optical conductivity for Ni and
achieved fair agreement with experiment. Given the prob-
lems involved, these pioneering results were very encourag-
ing.

More recently, there have been several calculations of the
absorptive part of the off-diagonal dielectric function using
modern band-structure techniques. Ebert9 studied Fe and Ni
with poor and good agreement, respectively, for the off-
diagonal dielectric function. Cooperet al.10 calculated the
off-diagonal optical conductivity for Fe, achieving good

agreement with measurements, and various complex itinerant
f electron systems where agreement with experiment was
poor. Cooperet al.10 suggested that the deficiencies in the
latter case were due to many-body effects. Halilov and
Uspenskii11 have also calculated the off-diagonal optical
conductivity for Fe, Co, and Ni and achieved reasonable re-
sults for all three metals.

The above-mentioned papers addressed themselves to the
absorptive part of the off-diagonal dielectric function. The
response part is obtained, in principle, by a Kramers-Kronig
transformation, but the final step was not taken and the Kerr
angle itself—which is a function of both real and imaginary
parts of the off-diagonal optical conductivity—was not cal-
culated.

In a more recent paper, Halilov12 considered the effect of
different orientations upon the magneto-optical Kerr effect
~MOKE! for Ni. More specifically, he calculated the differ-
ence in light intensity change,d between the equatorial and
longitudinal Kerr configurations: Orientation MOKE5
dequat2d long. The equatorial~longitudinal! orientations are
given with the magnetization vector perpendicular to the sur-
face and normal~perpendicular! to the light incident plane.
Agreement with measurements was not outstanding but it
was difficult to draw any conclusions due to the complexity
of the evaluated formula.

Until recently, the only available calculations for the Kerr
angle were by Daalderopet al.13 for UNiSn and Oppeneer
et al.,14,15for Fe, Co, and Ni. The latter obtained good agree-
ment with measurements but there was no experimental data
for the former. This situation has now changed and, in the
last year, several groups have calculated the Kerr effect16,17

for various elements and compounds. Some of these papers
have gone beyond the simplest expression for the evaluation
of the matrix elements@Eq. ~11! of this paper#, including
relativistic effects in their calculation of the matrix elements.
However, as shown by Wang and Callaway,8 the effect of
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this is negligible for the cases studied here.
Halilov’s12 paper raises the problem of the different pos-

sible orientations of magnetic moment and incident wave
vector. In the following, we shall consider only the polar
Kerr effect, where both incident wave vector and magnetiza-
tion vector are perpendicular to the surface of the material,
lying along the@001# direction~referred to as thez axis!. For
Fe and Co this is not a problem as their easy axes lie in the
z axis. Ni has its easy axis in the@111# direction. Fortu-
nately, the magnetocrystalline anisotropy energy is small and
the magnetic moment may be aligned along the@001# direc-
tion relatively easily.18 This is not the case for actinide com-
pounds such as US,19,20which we have discussed in another
paper.21

This paper is organized as follows. We first outline the
theory of the magneto-optical Kerr effect for both cubic and
hcp structures. We then compare our results for bcc Fe and
fcc Ni with those of other authors and measurements to con-
firm the accuracy of the method. We focus upon hcp Co,
calculating the Kerr effect from first principles. This is of
special interest as many compounds with high Kerr values
form in hexagonal structures and not in the simpler cubic
structures. We also comment upon the relative merits of the
Kramers-Kronig transformation to obtain the real part of the
off-diagonal dielectric function and direct calculation of the
entire response function by treating the energy as a complex
variable.

II. THEORY

Our summary of the macroscopic theory of magneto-
optical Kerr effect, follows the paper by Kahnet al.22 and
our treatment of the microscopic theory of the optical con-
ductivity and dielectric constants follows the work of Calla-
way and collaborators.8,23

For a crystal with at least threefold rotational symmetry
~hexagonal, tetragonal, trigonal or cubic!, with a magnetic
field along thez axis, the dielectric tensor« reduces to

«5S «0 i«1 0

2 i«1 «0 0

0 0 «z
D , ~1!

where « is complex,«5«81 i«9. The coordinate axes lie
along the principle axes of the crystal which are thez axis
and two orthogonal axes perpendicular toz but otherwise
arbitrary, which we denote byx andy. The normal modes of
light propagation are the eigenvectors of«. The eigenvalues
of « are«65n6

2 5«06«1 , and the normal modes for light
propagating withqiz are circularly polarized

ŵ15
2 i

A2
~ x̂1 i ŷ!,

ŵ25
1

A2
~ x̂2 i ŷ!. ~2!

If the incoming beam is taken to be linearly polarized
at an angle,a, measured counterclockwise tox̂ then
Ein5E0( x̂ cosa1ŷ sina)5E0r̂a is expressed, in terms of

normal modes byEin5E1ŵ11E2ŵ2 , and the reflected
beam will beEout5r1E1ŵ11r2E2ŵ2 where r6 are the
reflection coefficients for left and right circularly polarized
light

r65
12A«6

11A«6

. ~3!

The direction of polarization perpendicular tor̂a is
r̂ ā52 x̂ sina1ŷ cosa in terms of which the reflected beam
is

Eout5
1

2
~r11r2!F r̂a1

i ~r12r2!

~r11r2!
r̂ āG . ~4!

The complex Kerr rotation is therefore

C5 i
~r12r2!

~r11r2!
5 i

~A«12A«2!

~A«1A«221!
, ~5!

where the complex Kerr rotationC is comprised of the Kerr
angleu and an ellipticity ic. For small rotations, we may
finally write

C5u1 ic'
i«1

A«0~«021!
, ~6!

which is the expression normally evaluated.
The macroscopic quantities entering Eqs.~5! and ~6! are

obtained from linear response of the microscopic current to
the applied field.24 An element of the conductivity tensor is

s i j ~q,w!5S iNe2mv D
1

1

\vE2`

0

dt^@ j j~q,0!, j j~2q,t !#&exp2 ivt

~7!

and, for optical properties, theq50 limit is appropriate. The
conductivity and dielectric tensors are related by

« i j ~w!5d i j1F4p is i j ~0,w!

v G . ~8!

When equation~8! is evaluated over the set of single-particle
energy band states, the diagonal elements of theinterband
dielectric function become

«0~v!512
2p

\v (
k

(
l

(
n

1

vnl~k!
@ u j1

nl~k!u21u j2
nl~k!u2#

3F 1

v2vnl~k!1 id
1

1

v1vnl~k!1 id G
3@ f l~k!2 f n~k!# ~9!

and the off-diagonal elements are
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where f n(k) is the Fermi distribution function andl andn
label initial and final energy band states, respectively. Here
the energies of transitions between energy band states are
\vnl(k)5\vn(k)2\v l(k) and ja

ln(k) is a matrix element
of the circularly polarized components of the current opera-
tor between the branchesn and l at the wave vectork

j a
nl~k!5

i\e

m
^fknu¹aufkl&, ~11!

wherea56 corresponds tox6 iy . The matrix elements of
the current operator are easily evaluated and factor to a prod-
uct of a radial component and an angular component.25 The
angular component is evaluated from the Wigner-Eckart
theorem, leading directly to the optical selection rules
D l561,Dml561. The radial component is evaluated by
direct differentiation of the radial wave functions followed
by integration.16

The imaginary part of Eq.~9! and the real part of Eq.~10!
may be evaluated directly from a normal band-structure cal-
culation. The real part of Eq.~9! and the imaginary part of
Eq. ~10! are normally then obtained by a Kramers-Kronig
transformation, required by causality. For example, the real
part of Eq.~9! is obtained from

«8~v!511
2

p
`E

0

` v8«9~v8!

v822v2 dv8, ~12!

if the imaginary part is known over a sufficient range with
sufficient accuracy. Measurements only stretch over a certain
energy window and they must be sensibly extrapolated to
allow a meaningful Kramers-Kronig transformation. Once
the bulk of the structure in the optical spectrum has been
passed, the form of extrapolation does not have a great effect
on the calculated peak positions or intensities. This Kramers-
Kronig transformation has then been used in many theoreti-
cal works on the diagonal part of the dielectric function, and
has been shown to work across the periodic table.26

The situation was different for the off-diagonal term, until
recently no theoretical Kramers-Kronig transformation had
been performed that could be compared to experiment. One
possible reason had been put forward. These calculations all
suffer from the same problem. The further a state lies from
the Fermi energy, the less accurately it is given and thus the
matrix elements, Eq.~11!, become less accurate with increas-
ing v. It could then be thought that«19 , which still has
appreciable character at 6 eV, is too inaccurate to allow the
Kramers-Kronig transformation to work. Furthermore, due to
its oscillatory nature it is difficult to give a good extrapola-
tion to higher energies, unlike the generally decreasing«0
and thus difficult to converge. In an attempt to circumvent
this problem, Oppeneeret al.14 evaluated Eqs.~9! and ~10!
directly, in the complex energy plane. They claim that this
then avoids the inaccuracies induced by performing the

Kramers-Kronig transformation on the~less accurate! high-
energy transitions to yield their contribution to the low en-
ergy «18 . However, a closer analysis of Eq.~10! shows that
the high-energy transitions contribute to«18 in the direct
~complex energy! evaluation. Various calculations have re-
cently used the Kramers-Kronig transformation to calculate
«18 , we have verified numerically that the two methods yield
identical results.16 The difficulty with the Kramers-Kronig
transformation is that it requires a dense mesh in the energy
grid. To achieve satisfactory convergence an energy mesh of
1 mRy is required for a double Kramers-Kronig transforma-
tion test.27 This test confirms the convergence of the
Kramers-Kronig transformation but not the accuracy of«18 .
Compared to this, the complex energy integration requires
much fewer points~50 mRy gives an acceptable graph! but
the time involved in the integration is much greater per en-
ergy point. We find that the results from the two methods are
identical but that the Kramers-Kronig transformation must be
checked for convergence and is therefore less pleasing from
a computational point of view. Further, evaluating Eqs.~9!
and ~10! directly allows a broadening to be included in a
physical manner. There are many prescriptions for such a
broadening function. We choose a broadening that corre-
sponds to many optical and photoemission experiments in
that it is proportional to the excitation energy squared, being
2 eV at 1 Ry energy.

III. RESULTS

We have calculated the band structure self-consistently for
Fe, Co, and Ni, using the linear muffin-tin orbital~LMTO!
method,28 with the von Barth and Hedin29 exchange-
correlation term in the local-spin-density approximation.30

The calculation was scalar relativistic for the wave functions
and spin-orbit interaction was added to the Hamiltonian ma-
trix. Both the orbital moment and the magneto-optical Kerr
effect were found to be zero with zero spin-orbit interaction,
as expected by general arguments~both are broken time-
reversal symmetry effects!. Spin-orbit coupling was also in-
cluded for thep states. Exclusion of the latter has the effect
of reducing the calculated Kerr effect by approximately
10%. A fuller discussion of these effects can be found in
Ref. 16.

As was pointed out by So¨derlind et al.,31 the calculated
orbital moments tend to be underestimated in this procedure,
akin to the much more serious underestimation that occurs
for actinide intermetallics.32A proposed solution to this is the
inclusion of an ‘‘orbital polarization’’ term; a shift in the
eigenvalues given by

Deml
52BLZ

sml , ~13!

whereB is the Racah parameter~for d states! andLZ
s is the

total orbital momentumper spin channel. A result of this is
that the splitting is different for spin-up and spin-down
states. Interestingly, this has a form similar to that required
by relativistic density-functional theory, that is that the en-
ergy functional has anL dependence~see the discussion by
Jansen33!, although the motivation for this shift is given by
an analysis of Hartree-Fock theory.34,35 With this shift,
Söderlind et al. found much improved agreement with ex-
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periment for the calculated moments. The exact implementa-
tion of such an orbital polarization scheme can be questioned
due to its nonab initio form but a more rigorous derivation
gives similar results for the transition metals.35 Clearly, an
accurate description of the ground-state properties is required
before we can attempt to calculate the optical spectra; we
have therefore included this term in our calculations in order
to illustrate its effects.

In Figs. 1–3 we present the calculated magneto-optical
Kerr rotation for Fe, Co, and Ni in their correct crystal struc-
ture. We have compared with other calculations, those of
Oppeneeret al.14,15 For Fe we have good agreement for the
spin-orbit coupling calculation except that the minimum oc-
curs at too low energy. Orbital polarization enhances the
magneto-optical Kerr rotation by approximately 20%. For
Co we have very good agreement from 0.5 to 3 eV, above
this the calculation diverges from experiment. At higher en-
ergies, the calculation of Oppeneer is in better agreement

with experiment than ours. Orbital polarization has a small
effect, increasing magneto-optical Kerr rotation by 30% at
1.5 eV, this decreases almost linearly to no enhancement at 5
eV. For Ni we have good agreement with experiment
whereas Oppeneer’s calculation deviates from experiment
above 3 eV. Orbital polarization has no effect at 1 eV, at 2 eV
and higher it tends to decrease the magneto-optical Kerr ef-
fect slightly. At low energy the calculation shows a strange
behavior, this is due to our choice of broadening function
which is only 0.01 Ry at 1 eV and our neglect of the intra-
band contribution to the optical conductivity.

Recently, a sample of fcc Co has been stabilized as a 1000
Å thick overlayer.36 Careful measurements of the Kerr effect
have been carried out on these ‘‘single-crystal’’ fcc and also
single-crystal hcp samples.37 Similar data has also presented
by Weller et al.38 The fcc lattice parameter was found to be
3.54 Å,39 which is the same atomic volume as hcp Co. In
Fig. 4 we present the calculated and experimental Kerr angle
for the fcc structure. The penetration depth is of the order of

FIG. 1. Calculated Kerr angle for Fe: calculated with spin-orbit
coupling~full line!, and orbital polarization~dotted line! compared
with Oppeneer’s calculation~Ref. 14! ~with points! and experiment
~Ref. 3! ~dashed line!.

FIG. 2. Calculated Kerr angle for Co: calculated with spin-orbit
coupling~full line!, and orbital polarization~dotted line! compared
with Oppeneer’s calculation~Ref. 15! and experiment~Ref. 37!
~with points!.

FIG. 3. Calculated Kerr angle for Ni: calculated with spin-orbit
coupling~full line!, and orbital polarization~dotted line! compared
with Oppeneer’s calculation~Ref. 14! ~dashed line! and experiment
~Ref. 3! ~with points!.

FIG. 4. Calculated Kerr angle for Co in the fcc structure: calcu-
lated with spin-orbit coupling~full line! and orbital polarization
~dotted line! compared with experiment~Ref. 37! ~with points!.
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100 Å and we therefore can apply bulk calculations directly.
The first peak, just over 1 eV is well reproduced but above 3
eV, the magnitude of the magneto-optical Kerr effect is not
reproduced. The second peak, at 4 eV, is not found, although
a trough can be discerned at 3.5 eV. By expanding the lattice
by 6% we find that this trough develops into a second peak
but that it shifts tolower energy.

The ellipticity for fcc and hcp Co is plotted in Fig. 5. As
for the Kerr angle, agreement with measurements is fair, the
peaks are reproduced but the intensity is out by up to a factor
of 2.

One of the reasons for theoretical research into the
magneto-optical Kerr effect is a wish to explain and then
predict these effects. The obvious starting point is the transi-
tion metals Fe, Co, and Ni. It is understood that spin-orbit
coupling is responsible for the magneto-optical Kerr effect
and yet the spin-orbit parameters are almost identical for
these three metals. This leads to the conclusion that the band
structure is important in determining the magneto-optical
Kerr effect as these three metals have different structures.
Now that measurements are available on fcc Co, we can
extend the analysis to look at the effect of changing structure
for the same element~Co! and changing element in the same
structure~Co, Ni in the fcc strcture!. Experimentally, both
fcc Co and Ni have a low-energy peak at 1.5 eV but their
high-energy behavior diverges. The difference in intensities
is well reproduced by theory. A major factor in the difference
between fcc Co and Ni is band filling which reduces the spin
splitting as more spin down bands are filled.

Comparing fcc and hcp Co, we find that theory repro-
duces the experimental curves well up to 3 eV, after which
agreement becomes worse. Both systems have a measured
second peak at 3 eV~hcp!, 4 eV ~fcc!, which is not well
reproduced in the calculation. The origin of the magnitude of
the Co fcc magneto-optical Kerr effect is still not explained.
Although the spin-orbit coupling is the same, the actual mo-
ment may vary in different structures. In Table I we present
the calculated moments for these two structures. The orbital
moment is'10% smaller for fcc than hcp, whereas the
magneto-optical Kerr effect is larger. Furthermore, the effect
of orbital polarization on the orbital moment is an increase of

50% while the effect on the magneto-optical Kerr effect var-
ies between an increase of 20% to adecreaseof 10%. Thus
neither the size of the orbital moment nor the effect of orbital
polarization can explain the difference in the two spectra.

The role of orbital polarization~OP! appears, at first sight,
a little strange. Although it gives an increase in the orbital
moment, it can yield a decrease in the Kerr angle. This dif-
ference in behavior may be explained by considering the
differences between the optical spectra and magnetic mo-
ments. The magnetic moments are integrated quantities,
given by an integral over all occupied states, whereas the
optical spectra are given by considering transitions from all
occupied to all unoccupied states. We would expect that an
increase in the splitting of the6ml degenerate bands around
the fermi level ~such that part of one of the bands were
forced above the fermi level! would result in an increase in
the orbital moment. This is what we observe; the increased
splitting @Eq. ~13!# yields a larger moment. It has previously
been shown that an increase~or decrease! in the spin-orbit
coupling gives a corresponding scaling of the Kerr effect.15

This scaling is not observed here as orbital polarization does
not give a uniform increase to the splitting. An easy, and
appealing, way to view the origin of«1 is to treat the prob-
lem in a pureu ls& basis set, with spin-orbit coupling treated
as a perturbation to the band structure only. Then,«1 is sim-
ply given as proportional to the difference between the ex-
pectation values of the step-up and step-down operators for
angular momentum~with the selection rulesDml561, re-
spectively! see Eqs.~10! and ~11!, also Ref. 16. The actual
value of«1 depends on the delicate cancellation between the
step-up (Dml511) and step-down (Dml521) transitions.
Using this idea we can now understand the reason for the
role of orbital polarization. OP tends to increase the splitting
between6ml states in one spin channel more than in the
other. This alters the cancellation effects and it is possible to
construct simple models where«1 would either increase or
decrease. Thus, although OP tends to increase the Kerr ef-
fect, its role is much more complicated than expected from
simple considerations of the orbital moment. The complexity
of the actual band structure makes it impossible to accurately
predict the effect of OP, and it is only a full calculation that
can actually yield the final result.

IV. CONCLUSIONS

We have presented first-principles calculations of the
magneto-optical Kerr effect for Fe, Co, and Ni in their
ground-state crystal structures and fcc Co. Our results are in
good agreement with measurements for Fe and Ni and fair
agreement for Co in both structures. These results, using the

FIG. 5. Calculated Kerr ellipticity for Co in hcp~dashed line!
and fcc~full line! structures: compared with experiment~Ref. 37!
~with points!.

TABLE I. Calculated spin and orbital moments for Co (mB /
atom!.

Spin-orbit coupling S-O1 orbital polarization

Spin Orbital Total Spin Orbital Total

Fcc 1.595 0.079 1.674 1.596 0.122 1.718
Hcp 1.567 0.086 1.655 1.571 0.132 1.703
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LMTO method, are very similar to those of Oppeneeret al.14

who also used density-functional theory but with the ASW
method.

The effect of orbital polarization on the optical spectra is
found to be much smaller than the effect on the magnetic
moments. For hcp Co it worsens agreement with experiment,
for fcc Co there is a slight improvement. There is no simple
correlation between either crystal structure or magnetic mo-
ment ~spin or orbital! and the size of the Kerr effect. Most
importantly, the magneto-optical Kerr effect is calculated
correctly for Fe and Ni and for Co up to 3 eV and we have

confirmed, similar to Refs. 14 and 17, that it is possible to
calculate the magneto-optical Kerr effect from first prin-
ciples.
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