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Doping an optimized resonance-valence-bond state: A picture of spin-charge separation
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A systematic “loop-gas” formalism is developed for a general study of the resonance-valencéRuiid
states of a quantum antiferromagnet. At half-filling, we obtain analytic, parameter-free RVB amplitudes which
reproduce virtually exact ground-state energy and spin excitation spectrum. A doped hole is then modeled by
a holon-spinon pair moving on this optimized RVB background. Its energy is in excellent agreement with other
estimates on the finite lattice fofJ<1. Such a pair wave function shows a finite amplitude even at infinite
separation. Spin-charge separation and vanishing quasiparticle spectral weight are discussed in this framework.

I. INTRODUCTION We show that a doped hole may be accurately modeled by a
holon-spinon pair for at leagfJ<1. A static hole is in an
The idea that a resonance-valence-bdRWB) state of s-state relative to the background, in the sense that its
spin-liquid typé may be a precise picture of the two- counter part, the spin, carries completely the before-doping
dimensional quantum antiferromagnet was once the most aRVB phase. This is a peculiar two-body problem in which
tractive topic soon after the discovery of the highsuper-  spin states at different sites are not orthogonal. Now it is
conductivity. Despite numerous forms of wave functionsenergetically unfavorable for the spin to stay nearby the hole
were proposedsome of them are not quite RYBthere has in the absence of the binding force, i.e., the superexchange
always been a lack of systematic methods to carry out thenergy between them. It thus escapes to infinity, giving rise
analysis. In addition, subsequent numerical results have coie spin-charge separation. Hopping, on the other hand, is
cluded with the long-range magnetic orderiildRMO) for ~ found to induce additional short-rangewave component
the ground state of the Heisenberg model, contrary to théor the holon-spinon pair in order to gain coherent motion
naive short-range picture of the spin liquid. Neverthelesspver the lattice. The energy of such kind of states agrees well
what has been less emphasized in the literature is that evemth other accurate estimates on finite latti¢especially at
RVB states can possess LRMO if the bonds decay suffit/J<1). Both thes wave and thep wave lead to vanishing
ciently slow. The optimized states are in fact such kind, aspectral weight as the lattice size increases once the effect of
was first found on a square lattice by Liang, Doucot, andong-range spin-flip fluctuations is included. This means that
Andersor?. and recently found even on the triangular latticea perturbation starting with the undoped state cannot account
by one of the authors.Furthermore, a class of optimized correctly for the coherent motion of the hdle fact holon-
RVB amplitudes were derived which reproduce virtually ev-spinon pai). A rigorous proof of this point on a general basis
erything exactly* Not only its ground-state energy and the will be given elsewherg.
staggered magnetization are identical to the exact vdkes The outline of the paper is as follows. In the next section
cited by Ref. 5, the low-lying spin-flip spectrum also agrees we present the general formalism of using the loop gas as a
precisely with the best numerical result obtained bycomputational tool. Then we show in Sec. Ill how an ana-
supercomputet. These successes, we believe, should havéytic self-consistency approximation can be used to derive
strong impact on the original idea once a suitable generalithe optimized set of RVB amplitudes. Section IV explains
zation to the doped regime is found. the use of the Monte Carlo technique in details, along with
In this article, we sketch out an approach for a generathe main achievements at the half-filling limit. Section V
analysis of the RVB states in terms of a loop-gas formalism. applies the loop-gas formalism to the one-hole problem. The
It is based on the fact that an overlap between two givemuestion of phase separation and vanishing quasiparticle
(generally different realizations of the RVB bonds can be weight is finally explored in Sec. VI. Section VII concludes
mapped onto a configuration of a self-avoiding loop gasthe paper with some discussions and speculations on future
Various physical quantities may be then calculated in termsvork.
of the loop gas and Monte Carlo technique. We also develop
a simple but powerful way of deriving the best RVB state. It
is amazing that such a simple wave function gives a com- Il. GENERAL SCHEME
plete account of the whole energy.
Our main goal is to understand and provide a precise pic- We start with the so-callettJ model which is written as
ture of holes moving on the optimized RVB background. InH=H;+H;. In terms of the Schwinger bosods/ ,b;,}
fact, it turns out to be simple enough for general audiencesand slave fermion$f;r it
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Hi=—t > [fifjfrbi‘rabj(r+ H.cl, function of the loop gas. To illustrate the calculation, one can
(ijy.o decomposeYy at a givenjq into (all j,'s below are self-
1) avoiding

J
HJ:_§<2> AlA; N-1
: Yv=2 { 2 Yana{idxwdid)t.  (©)

where n=0 | {j k#0}

Aij=bi;b;, —b; bj;, The arguments.of(N_n._.l represgnt the sites excluded for
2) the (N—n—1)-site partition function.

It is then straightforward to evaluatel|S - Sj|¥). One
simply performs the operatio§ - S; at sitesi andj before
connecting them to other sites. The order of operations are
relevant here: a given operator actshfp’s (b;,'s) from the

andH, includes the reference term (J/4)2;;nin; . SOV- |eft (right) hand side. This results in modified transfer matri-
ing (1) in two dimensions is not yet possible. But the spin ceg ati and j: One inserts simultaneously to the Idepat

fini+ E biT(rbi(rzl
o=11

part of the Hamiltonian suggests thatrallf-filling one may  gjtes;j andj
look at the RVB type of trial wave function for the ground ’
state: o0+ ()i (o) + (o) (0o))]
N/2
(W)= I1 1w, AL, 110); i—j=odd:
3 H(0i(0);+3[(o)i(a )+ (0 )i(04)j]

Wij=—W;;. o
i—j=even.

Herei,j\ are not necessarily nearest neighbors and the sum-

mation is over all possible pair configurations with j ,, It turns out that there are nonzero matrix elements only when
andi,# i, for k#m. Note that the Marshall sign is built into i andj are on the same loops. More precisely,

Aj; . How precise this state is depends on how one chooses
the RVB amplitudedV;; . We shall see that using optimized )
bond amplitudes one could virtually describe the exact (§-§)= Y_NZ 4 {2} Yn-n-1({i})

ground state and the low-lying excitations within the RVB -t Tk

N—-1

context. n
To find the overlap between two sets of pair realizations, X > Tr[oszifmozG}:n)jo] 3ioSii( (D
say,(# | ¥R), let us start with sitg, from | ¢g), which could m=1
have eitheb! , orb! . Thisb! , is then annihilated off by
Jol =" "ol Jol ¢ =g* ...G. . G*.
a bond from(y|, and is transferred tb; | at a new site. Imio™ “imim-1 Il lado?
bjli is again transferred tbjTZT at a next site by a bond from (8
| ). ThiJ'rs procedure can be 90ntin_ue9 aﬁtesteps when it G2 =G. . ...G* . G .
reachesbjni, the latter is bonding W|tlh>j0T. That is, we end lolm™ “loln im+2imes  Imedm’

up with a loop weighted by the product ¥¥;’s along the  The twoe,’s in (7) simply transpose one of th@'s, leading
loop. The remaining part of the lattice can be similarlyig 5 minus sign for odd distance betweerand j. The

treated, thus forming a loop gas. The problem can be mogfround-state energy follows the simple rule: If the two sites
conveniently handled by using a<2 transfer matrix of the 55 5 randomly picked bond are found to be in the same loop,
form its energy is— (3/4)J, otherwise it is 0. Figure 1 presents a

0 W typical case of the above picture. Then one sums over all the
G = " (4) configurations.
I] _W” O '
which acts in the following way: l1l. OPTIMIZING THE AMPLITUDES
b: b bf b. Rigorous analytic evaluation of the RVB expectation val-
T Zgx| . "o T ues appears problematic. But a simple self-consistency ap-
b i\ pt ) bf I\ p, - . . .
il il i il proach yields surprising accuracy. One can first approximate,

in (6) and (7), Yn/Yn-_n_1—Y" 1. This replaces the com-
plicated “environment” of a loop of i+ 1) sites by a uni-
w({j)=TrG;; G, ---G;; G’ ]. (5  form weight 1y"*1. Let us try to ignore the self-avoiding
oln~Jnln-1 2117 ido restriction in the first place, and denote the corresponging
Note that the loop is direction dependent. Being definite, weby y,. The correcly is then obtained by properly identifying
always start loopsi.e., takej,) at even sites. Let us denote the overcounting. The matrix after summing over the paths
(¥|¥) of anN-site lattice byYy . It is simply the partition ~connecting to j reads[i+#]j; see(8)],

The weight of the loop is simply
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. » 0 It can be minimized via the method of Lagrangian multiplier.
For simplicity, we assume here réa’s. It is now a simple
exercise to find(picking up the right solution satisfying

IWi|<1)
dal'y
* W, = , (15
1+V(1+dyy)?—(doIy)?
with
di Sy (1-WP) 16
— ' d2 STWi/(1-Wp)]

andd, is the Lagrangian multiplier corresponding(tid). In

the present case, it is always possible to get a consistent
solution withd,=0. Note thatw,; so obtained connects be-
tween those sites with odd distances. Hese 1 in order to
satisfy (14) [still, a condensation ak= * (7, 7)/2 is re-
quired, related to LRMO of the stat§. Nevertheless,
d,<1 gives a set of amplitudes which all have quite low
energies but finite correlation lengths. In addition, findte
corresponds to having spiral twist on the RVB bonds. They
may be used as trivial wave functions at finite temperature or
finite doping where LRMO is absent.

FIG. 1. Atypical configuration of the loop gas on x4 lattice,
starting (—1,— 1) at the left-bottom corner. The sité0) and(1,0
happen to be on the same loop, thus contributing/4 to the
ground-state energy.

1 exp(—ik~ri,-)( 1 W2 Iy IV. MONTE CARLO SIMULATION

R, =—
VONE IS Wlyol® | -Welyo 1

kYol ) ©

Analytic approach is useful for finding the right ampli-
) ] - o tudes. In addition, the structure 6f) allows as well a direct
Yo is determined, fron6), by the total probability of finding  eyajuation via Monte Carlo simulation. It amounts to sam-
the paths, TR —1)=1 [see(14) below]. Now y can be pjing over the configurations of the loop gas. The rule to
recovered by grouping the extra winding at a given @8  cajculate the spin-spin correlations is particularly simple as

i) into 1} (recovering the self-avoiding loopwvhich gives,  mentioned in Sec. II. In the simulation, a common phase
approximately, exdiko- (ri—rj)], ko= (7,)/2 can be taken out, leading to
1 1 1 positive weights for all loops. Thus the standard Metropolis
y "=Tr(R;i/2) Xyo "= (3/2) Xy, ™. (10 algorithm applies.

. . . ) Our ground state has rotational invariance so that
For the spin-spin correlations, we now have one path start|ngq,|s|q,>:0 The statedd; ,)=S; V), a=x,y or 1,2
] : J.a j,al * /0 ' Ul

from i to j and the other from to i. Ignoring again th_e form the spin-flip excited states of the syste®< 2iS, S, is

: . ! ) 3 two-flip process Out of them one can construct the Bloch
simply R;; and Rj; . But, taking two independent paths re-

sults in an additional over-counting of a factor $&2e(10)]
which should be deducted. We end up with the expression 1 .
(droppingy, asW, is variationa) | bra) = m/izj: exp(ik-1))|dj.a),

Yk (17)

1
E P
bond_‘N; WZ

2_3 Fka (11)
N< 1-[W 3 . _(¢ralHldka)
kot <¢k,a|¢k,a>

The evaluations of the matrix element&py o o),
1 (¢r.4!S- S|, can again be done using the transfer ma-

V=5 (COKy+Cosky), (120 trix (4) and can be mapped to a loop-gas statistics. Extreme
care has to be taken with the orders of the operators on the
loop, sometimes, the loop direction. The relevant ISape

T = = (sink, + sink,) (13  listed in Fig. 2. Some techniques of avoiding the sign oscil-

k 2 X y/ - . . .

lations are discussed in Ref. 4.

We briefly report the main results at half-filling. The op-
timized state on 4848 lattice has an energy
—0.3344)/bond, virtually identical to commonly accepted
—0.3346(1)/bond for the ground-state energy. The stag-
(14) gered magnetization is 0.311, agreeing with 0.31(2) of the

most reliable estimatesOn 4x 4 lattice it is —0.3509 vs

Eo.
where

Equation(11) is subject toW,= —W_, and the normaliza-
tion constraint

12 1 3
NE 1-|W ]2 2
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V. SINGLE HOLE MOVING ON THE RVB BACKGROUND

l ¢ l k
z<>k l<>k z<>k<> l<>]<> How does a doped hole vary the RVB wave function?
Since all the spins are paired in the ground st@jecreating
j j j { a hole by removing one spin at a given sitaill leave its
—3/4 +1/4 —1/4 —3/4 spin partner unattended. Prior to doping, the latter spin can
be at any sitg which is connected to the first one by the
! RVB amplitudeW;; . If one maintains such an RVB ampli-
i@k le z<>k® z,<>]<> tude after the removal of sitespin, the static-hole energy
would be just 4< (0.3344+1)J=2.33764 relative to the un-
J J k

doped state. This is considerably higher than, e.g.,

—-3/4 —-1/4 -1/4 —3/4 2.193(7) estimated in Ref. 10 &=0 limit. The reason is
that, by removal of the spin, it is no longer energetically
favorable for its former spin partner to stay nearby. In other

i<>k 7<>k QkQ words, one should find a different amplituig , in place of
, W;;, for the hole-spin pair. The unattended spin may be
J properly called spinoft as it carries spin-1/2 surrounded by
+1/4 +1/4 -1/4 other spin-singlet pairs. Accordingly, the hole here may be

called holon as no spin is associated with it. This holon-

FIG. 2. Alist of loop configurations and the associated weightsSPinon pair are mobile with respect to the antiferromagnetic
in evaluating( ¢y .|S - Sj| ¢ o). There is, in addition, a common RVB background just like their parental spin pair. If they
factor (— 1)< for all graphs. form a bound state, it means a spin-charge confinement and

the dopant carries both spin and charge. But once the holon
and the spinon have a finite amplitude of being infinitely far

—0.35089, which can then serve as an exact reference wa@vay, a spin-charge separation is realized. We note that as

function. Figure 3 plots the spin-flip spectrum, calculated orthe holon moves around, more RVB spin pairs in the back-
a 12<12 lattice. It turns out to fit the renormalized spin- ground may be broken. Nevertheless, breaking an additional

_ —— . _ : nearby RVB pair would cause much higher energy when
wave resulte,=2J7,v1—y, with Z,=1.22, in excellent t/J<1. Thus, at least in this limit, one may focus on the

agreement V.V'th the_ resul_t O.f Ref. 6 done on a SljperCompUteIrTolon-spinon pair and safely neglect the pair-breaking effect
To summarize, this optimized, parameter-free RVB state; the RVB background

with full rotational and translational symmetry, is virtually | ot s define an operation which projects out the bond

identical to the exact one for any practical purposes. It prowij in |¥) but preserves the phasor the mere sake of
vides a solid ground for the following analysis. convenienck

Wi' N/2—-1
PylW)=2 mkﬂl [Wig Al JIO) - (19

y ik
it

3.00
Now imagine the spin as an “electron” surrounding the hole,

=2 a “nucleus,” thus forming an atom with wave function
Ws(rs—rp) under the set of bases{|s,o;h)

=b! fIP,dW¥)}. The phase ofy, is relative to the RVB
background. Different bases are not orthogonal. Instead, their

2.40

1.80 inner products should be calculated using
<S/’O_I;h/|s,0';h>:50_1’0_5hr‘h><,,,/z, (19)
1.20 where
N—1
60 =24 2 Yo aiid)
n=1 | {ix}
00 =+ 1 1 ) ) Tr[ Gikojl o Gjnjo]

7 /3 1x/3 0 /3 2n/3 } , (20
M F 2|VVJ*011WJnJO| in=hij.=s"j.=
Jo=hJ1=S"h=Ss

b

which forms a second kind of loop gas to be illustrated be-
FIG. 3. The spin-flip excitation spectrum @ and in units ofJ, IO_W' In t_he presence of hole hopping, the Bloch state of a
calculated on a 1212 lattice, along thé1,0) (right-hand sideand ~ 9ivenk is
the (1,1) axes. The curve corresponds to the renormalized spin-

o ; 1 _
wave rgs.ult W|t.hZr —.1.22 and an up-shif=0.22 (presumably due |ka>= N E Yo (Ts—rp)explik- rh)|S,0;h). (22)
to the finite lattice size s,h=1N
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. h=h TABLE I. The ground-state energyn units of J) of the holon-
spinon pair vs the exa€Ref. 19 or the variationa(Ref. 13 results
on finite lattices when available. The errors in the data are negli-

s e . s gible for smallt/J, but have not been systematically analyzed.
(a) 4x4 8x8
k t/d Exact Variation
o h B h o B 0.0 2.361 2.349 2.215 2.232
/ \ /\ 02 2251 2248 2081 2111
1/2 / _ ’
’ 172 * s ’ (-1t ¢ ¢ ()12 0.5 1.811 1.764 1.591 1.594
(b) 1.0 0.830 0.656 0.571 0.447
2.5 -2.416 -3.305 -2.717 -3.552
FIG. 4. A schematical representation of the Ioop gas uged to 5.0 -7.950 -10.49 -8.296 -10.448
calculate the hole energga) Loop gas of the second kind in which
the hole siteth=h’ is isolated with an open chain running frasmo
s’. (b) Loop gas of the third kind and the weights used in the ) 3 )
calculation of the hopping matrix elements. with some best numerical resuitd® for comparison. The
corresponding quasiparticle weight is presented in Table II.
The energy Oﬂk0'> is Computed using the expression Note that the RVB ground state is taken as the reference

state, whose energy differs negligibly from that of the true
ground state on the ¥4 and 8x8 lattices. Clearly the

— 41 _ _ . . .
Exo=-1 2 ico(Ts =) ic(Ts— ) holon-spinon pair wave function so constructed, free from
shsihth . adjustable parameters once the rigid RVB background is cho-
X{T 18 nt Tomp €K L (22)  sen, is able to yield accurately the superexchange energy and

the major part of the kinetic energy. It is, as a matter of fact,
) . ) an excellent approximation farJ<1 as noted above and
t/f’/:; Peo(Ts —Th)(s",ashls, o h) g, (rs— ). virtually exact att/J—0. Further improvement on the ap-
(23 proximation att/J=1 will be discussed in Sec. VII.
It is important to observe that the ground state of the
In (22), holon-spinon pair after diagonalization can be well approxi-

mated to all range of/J by [k=(m,7)/2
Ti=(s" oih[Hyls.aih),  T,=(s' 030 [Hyls,oih), ge oy by [k=(mm)/2]

h—s
and ny, , sets the nearest neighbor constraint betwkén o~ 1-(-1 e
andh. Once the holon-spinon wave function is obtained, the YrolTs— )= 2 +Cirsn eIk (rs=rp)].
spectral weight can be easily calculated using the same loop (25

gases via the definition . . _ i
Namely, it consists of a uniforrs-wave(the first term and a

(®[ck,lk—o)]? nearest neighbgo-wave componentwith magnetic number
Z= , (24 m==1). The coefficientC, is determined by minimizing
(®|PWk—0olk—0) : .
the energy. The resulting energy and spectral weight are
wherecy, is the usual electron creation operatore de- ~ shown in Table Ill. They are essentially the same as the
tails on this are given in the next sectipn. previous results of the numerical diagonalization. The agree-
We perform numerical diagonalization on finite lattices toment does not vary much with lattice sizes. The physical
find the eigenstates and eigenenergigsich give also infor-

mation of excited stat¢sThe evaluation of the matrix ele- TABLE II. The spectrum weight corresponding to Table I.
ments for the normalization and the spin part is almost thé

same as before. But we now use a loop gas in which hole site ax4 8x8

h is isolated while an open chain connest$o s’. For the Kk t/J Exact Variation

hopping term, a third kind of loop gas with two open chains

is employed: If the chain starting atconnects to the nearest 0.0 0.98 0.91

neighbor hopping sité’ (also an open endthe configura- 0.2 0.92 0.91 0.84 0.831

tion contributes ¢ 1)t; otherwise whers connects back th p

(the hole it belongs tait is (1/2)t. The two additional “loop  (™™/2 05~ 0.79 071 0.684

gases” are illustrated in Fig. 4. Note that there is an overall 1.0 0.67 0.59 0.61 0.553

ratio between the two kinds of loop gas, which can be com-

puted by referring to the original loop gas. 25 0.57 040 0.54 0.388
Selected results on the ground-state ené&gyfor a one- 5.0 0.54 0.28 0.52 0.348

hole problem as a function ¢fJ are shown in Table I, along
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TABLE lll. The energy(in units ofJ) and the spectral weight of amplitude as shown if25). Generally speaking, one would
the trivial wave function25) as a function of/J. The point is that expect to get zero overlap between these two states on an
they are extremely close to those of the direct diagonalization premfinite lattice, and thuZ,=0. Nevertheless, with the pres-

sented in Tables | and II. ence of LRMO, things become a little bit tricky. In this case,
W;; falls off in its marginal form(power-law decayri‘jz) to
4%4 8x8 give a long-range order, and we find a findg instead, for
k t/J  Energy  Weight Energy  Weight both analytic and numericah, . It is due to the fact
0.0 2.361 0.97 2.219 0.90 |im|rs—rs,\_m<s',0';h|5,0;h>¢0- (26)
0.2 2.253 0.91 2.097 0.85

[In terms of Monte Carlo simulation, the chain in Figay
(m,m)/2 0.5 1.816 0.78 1.624 0.69 has a finite probability of being infinitely lonpThis effect is

10 0.842 066 0633 058 marginal in the sense that ondg; fal!s slightly.faster than it
is here at largej; [for example, usingl,<1 in (15)], one
25 -2.379 0.56 -2.562 0.50 would haveZz=0. However, in the following, we shall em-
phasize that even in the presence of the long-range order the
spin-charge separation should still lead to a vanishing spec-
tral weight, due to some nonlocal phase effect.

As far asZ, is concerned, there is a crucial ingredient
picture here is rather simple. The main process of hoppingnissing in the preceding section’s discussion. Recall that we
goes like this: When the pair is in thewave bound state, are confined in a sub-Hilbert space where only a holon-
the holon hops by placing the spinon in front of it and thenspinon pair is considered while the rest spins are still in the
exchanging their sites. After that the spinon relaxes to infinRVB ground state. But a careful examination shows that the
ity to lower the superexchange energy, forming $h@ave.  bases|s,o;h) are actually not completely orthogonal to
When the pair is in the latter state, the hole first breaks theéhose states where some background spins are flipped as ex-
RVB pair of one of its nearest-neighbor spins, and then excitations. Note that the overlap is finite no matter how far a
changes its site with the spin's to form tewave. The flip is from the hole site. This nonorthogonal effect is due to
remaining two spins form a new RVB pair which condensesmany-body effects in the RVB wave functigqB) after the

5.0 -7.870 0.52 -7.971 0.47

back into the background. removal of the spin at hole site, but its correction to the

energy E,, and other short-range properties seems negli-

V1. SPIN-CHARGE SEPARATION AND VANISHING gible. However, it could profoundly affect the long-distance
SPECTRAL WEIGHT behavior of the wave function,,, in (25). The argument

goes as follows.

We have shown that the holon-spinon pair description can There is a simple rule in the loop-gas formalism to con-
very accurately account for the one-hole ground state, at leasider the overlap between RVB states with these “zero-
for t/J=<1. An important consequence is that the holon andpoint” spin flips due to the presence of a hole. A loop must
spinon do not always bind together and there is a finite ameontain an even number of flip sites. More precisely, a flip
plitude for the spinon running away from the holon, in favor must be repaired by the next flip as one goes on the loop. The
of its superexchange energy. This is a clear indication of théole site can be considered as either a flip or a regular one. A
spin-charge separation. With the increase/df additional pair of flips having odd distance between them acquires a
broken RVB pairs or spin-flip processes may be dynamicallf —1) factor. Thus, as one walks from a givento s’ in
created by hopping, but including these corrections shoulds’,o;h|s,o;h) [cf. Fig. 4a), but now the RVB background
not change the conclusion of the spin-charge separation beentaining spin flip$ and as the distance betwesrto s’
cause a bound state of the holon and spinon does not faviricreases, there are more and more flips adding to the path.
the hopping energy either, which becomes increasingly imgEven though such effect is negligible locally, the total sign of
portant at large/J. the weight will be accumulated at long distance and will

The spin-charge separation has an interesting implicatioeffectively cause the overlap vanishing. In other words, the
for the spectral weighZ, of the bare-hole state,,|®). As  s-wave component in25) actually involves some phase-
defined in(24), Z, measures the overlap of,|®) with the  string correction at large length scale, which always leads to
plane-wave stat¢k— o) of the doped system. To actually vanishing spectral weight. In fact, based on a different ap-
compute it, one can use the Wannier states. Namely, ongroach,Z=0 has been rigorously shown in Ref. 8 for the one
calculates the overlap oft;,_,|®)x= W s,0;h) and  hole problem, due to a similar unrepairable phase string in-
| ho) = Zsthio(rs—n)|S,o;h) [according to(21)]. Thus the  duced by doping.
pair wave functiony,, basically determines the overlap. It
follows immediately that, in terms of the analytical form of
(25), the bound-state component|ef,,) atk= (7, )/2 has
no contribution to the overlap or the spectral weight due to In this paper, we have developed a general scheme for
its p-wave symmetry. Now in the bare-hole statg ,|®) studying RVB states of quantum antiferromagnet, and the
the unattended spinon stays nearby the holon for the amploptimized RVB state is shown to be virtually identical to the
tude Wy,— 0 at|rg,|—. On the other hand, the spinon in exact ground state as well as excitation states. We have then
|m,) can be infinitely separated from the holon with a finite extended the approach to the doped regime and demonstrated

VIl. DISCUSSION
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that a one-hole problem may be modeled, accurately at smathat the same long-range fluctuation discussed in the preced-
t/J and reasonably at largéJ, by a holon-spinon pair mov- ing section might also be responsible for the kinetic energy
ing on the optimized RVB background. The spin-chargedeficiency at/J=1 in our calculation. Another possibility is
separation and vanishing quasiparticle spectral weight wert® have broken pairs in the RVB background. This would
revealed, which is consistent with a general proof of zeraallow, among other things, the spinon to occupy the even
spectral weight in this kind of systefn. sites with respect to the holon. In both cases, the effective
Why has the discussion of the spectral weight problem impairing of the RVB background is weakenéxf. below). In
the literature been inconclusive and why is our zero-weighthe next order of approximation, one would extend the Hil-
result not evident in finite-size calculations? We believe thabert space to include these effects. Also, it is interesting that
the key issue here is the failure to take into account the spithe background fluctuations induce flipping of the spinon in
distortion over a long range, where the associatél) phase the holon-spinon pair. A careful study of this “Kondo effect”
fluctuations are particularly importaitf. Ref. 8. A direct  may reveal physical properties of the system.
diagonalization can only be done on a system of 20 sites or Things become simpler if the RVB background has no
so where the spin-flip energy gap is still too large to play aLRMO, for instance, in the presence of finite but dilute dop-
role. Perturbation theories based on the usual spin-string pidag. The spin-flip spectrum would have a finite gap and
ture do not really let the string be long. A next-nearest-therefore be less important. On the other hand, the right-hand
neighbor string theory already yields accurate energies oveside of (26) is readily zero. The spin-flip effect is no longer
the entire rangé/J. The basic argument is that the energy an essential ingredient of spin-charge separation. In fact we
cost of the string will be linearly increased with its length sofound that using an undoped state (46) with d,<1 can
that the string cannot be too long. However, it has beeractually yield lower energies at largg) (but the result is too
showr that besides such a conventional spin string, there iprimitive to be presented herelt is interesting that back-
a hidden W1) phase string which has been neglected in theground spin flips play a similar role as the gauge fluctuations
usual slave-fermion approach and in contrast to the former iih the recent approach of Weng, Sheng, and Ffhghose
causes less energy and is not repairable by low-lying spimesults agree with many experimental features of the high-
fluctuations. Therefore, in order to capture correctly the longT. supercondutors. Possible generalization of the present ap-
range properties of the system one has to consider the bacgroach to finite doping is currently under study.
ground distortion at sites far away from the hole. This would
require the string to reach far away from a given polaron
center, which is practically difficult. In addition, there is al-
ways a lack of precise wave function at the half-filling limit ~ This work was supported by the National Science Council
to start with. Having the nearly-exact half-filling wave func- and the National Education Committee of China, by Texas
tion is in fact the unique advantage of the present approactidvanced Research Program through Grant No. 3652182,
In Tables | and I, the spectral weight of our result seemsand by Texas Center for Superconductivity at the University
too large compared to others €9 increases. This suggests of Houston.
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