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A systematic ‘‘loop-gas’’ formalism is developed for a general study of the resonance-valence-bond~RVB!
states of a quantum antiferromagnet. At half-filling, we obtain analytic, parameter-free RVB amplitudes which
reproduce virtually exact ground-state energy and spin excitation spectrum. A doped hole is then modeled by
a holon-spinon pair moving on this optimized RVB background. Its energy is in excellent agreement with other
estimates on the finite lattice fort/J<1. Such a pair wave function shows a finite amplitude even at infinite
separation. Spin-charge separation and vanishing quasiparticle spectral weight are discussed in this framework.

I. INTRODUCTION

The idea that a resonance-valence-bond~RVB! state of
spin-liquid type1 may be a precise picture of the two-
dimensional quantum antiferromagnet was once the most at-
tractive topic soon after the discovery of the high-Tc super-
conductivity. Despite numerous forms of wave functions
were proposed~some of them are not quite RVB!, there has
always been a lack of systematic methods to carry out the
analysis. In addition, subsequent numerical results have con-
cluded with the long-range magnetic ordering~LRMO! for
the ground state of the Heisenberg model, contrary to the
naive short-range picture of the spin liquid. Nevertheless,
what has been less emphasized in the literature is that even
RVB states can possess LRMO if the bonds decay suffi-
ciently slow. The optimized states are in fact such kind, as
was first found on a square lattice by Liang, Doucot, and
Anderson,2 and recently found even on the triangular lattice
by one of the authors.3 Furthermore, a class of optimized
RVB amplitudes were derived which reproduce virtually ev-
erything exactly:4 Not only its ground-state energy and the
staggered magnetization are identical to the exact values~as
cited by Ref. 5!, the low-lying spin-flip spectrum also agrees
precisely with the best numerical result obtained by
supercomputer.6 These successes, we believe, should have
strong impact on the original idea once a suitable generali-
zation to the doped regime is found.

In this article, we sketch out an approach for a general
analysis of the RVB states in terms of a loop-gas formalism.7

It is based on the fact that an overlap between two given
~generally different! realizations of the RVB bonds can be
mapped onto a configuration of a self-avoiding loop gas.
Various physical quantities may be then calculated in terms
of the loop gas and Monte Carlo technique. We also develop
a simple but powerful way of deriving the best RVB state. It
is amazing that such a simple wave function gives a com-
plete account of the whole energy.

Our main goal is to understand and provide a precise pic-
ture of holes moving on the optimized RVB background. In
fact, it turns out to be simple enough for general audiences:

We show that a doped hole may be accurately modeled by a
holon-spinon pair for at leastt/J<1. A static hole is in an
s-state relative to the background, in the sense that its
counter part, the spin, carries completely the before-doping
RVB phase. This is a peculiar two-body problem in which
spin states at different sites are not orthogonal. Now it is
energetically unfavorable for the spin to stay nearby the hole
in the absence of the binding force, i.e., the superexchange
energy between them. It thus escapes to infinity, giving rise
to spin-charge separation. Hopping, on the other hand, is
found to induce additional short-rangep-wave component
for the holon-spinon pair in order to gain coherent motion
over the lattice. The energy of such kind of states agrees well
with other accurate estimates on finite lattices~especially at
t/J<1). Both thes wave and thep wave lead to vanishing
spectral weight as the lattice size increases once the effect of
long-range spin-flip fluctuations is included. This means that
a perturbation starting with the undoped state cannot account
correctly for the coherent motion of the hole~in fact holon-
spinon pair!. A rigorous proof of this point on a general basis
will be given elsewhere.8

The outline of the paper is as follows. In the next section
we present the general formalism of using the loop gas as a
computational tool. Then we show in Sec. III how an ana-
lytic self-consistency approximation can be used to derive
the optimized set of RVB amplitudes. Section IV explains
the use of the Monte Carlo technique in details, along with
the main achievements at the half-filling limit. Section V
applies the loop-gas formalism to the one-hole problem. The
question of phase separation and vanishing quasiparticle
weight is finally explored in Sec. VI. Section VII concludes
the paper with some discussions and speculations on future
work.

II. GENERAL SCHEME

We start with the so-calledt-J model which is written as
H5Ht1HJ . In terms of the Schwinger bosons$bis

† ,bis%
and slave fermions$ f i

† , f i%,
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Ht52t (
^ i j &,s

@ f i f j
†bis

† bjs1H.c.#,

~1!

HJ52
J

2(̂i j &
Ai j
†Ai j ,

where

Ai j5bi↑bj↓2bi↓bj↑ ,
~2!

f i
†f i1 (

s5↑↓
bis
† bis51

andHJ includes the reference term2(J/4)(^ i j &ninj . Solv-
ing ~1! in two dimensions is not yet possible. But the spin
part of the Hamiltonian suggests that athalf-filling one may
look at the RVB type of trial wave function for the ground
state:

uC&5( )
k51

N/2

@Wikj k
Ai kj k
† #u0&;

~3!

Wij52Wji .

Herei k , j k are not necessarily nearest neighbors and the sum-
mation is over all possible pair configurations withi kÞ j m ,
andi kÞ i m for kÞm. Note that the Marshall sign is built into
Ai j . How precise this state is depends on how one chooses
the RVB amplitudesWij . We shall see that using optimized
bond amplitudes one could virtually describe the exact
ground state and the low-lying excitations within the RVB
context.

To find the overlap between two sets of pair realizations,
say,^cLucR&, let us start with sitej 0 from ucR&, which could
have eitherbj 0↑

† or bj 0↓
† . This bj 0↑

† is then annihilated off by

a bond from^cLu, and is transferred tobj 1↓ at a new site.

bj 1↓ is again transferred tobj 2↑
† at a next site by a bond from

ucR&. This procedure can be continued aftern steps when it
reachesbjn↓

† , the latter is bonding withbj 0↑
† . That is, we end

up with a loop weighted by the product ofWij ’s along the
loop. The remaining part of the lattice can be similarly
treated, thus forming a loop gas. The problem can be most
conveniently handled by using a 232 transfer matrix of the
form

Gi j5S 0 Wij

2Wij 0 D , ~4!

which acts in the following way:

S bi↑bi↓D 5Gi j* S bj↑†bj↓† D ; S bi↑†
bi↓
† D 5Gi j S bj↑bj↓D .

The weight of the loop is simply

w~$ j k%!5Tr@Gj 0 j n
Gj nj n21
* •••Gj 2 j 1

Gj 1 j 0
* #. ~5!

Note that the loop is direction dependent. Being definite, we
always start loops~i.e., takej 0) at even sites. Let us denote
^CuC& of anN-site lattice byYN . It is simply the partition

function of the loop gas. To illustrate the calculation, one can
decomposeYN at a given j 0 into ~all j k’s below are self-
avoiding!

YN5 (
n50

N21 H (
$ j k ;kÞ0%

YN2n21~$ j k%!3w~$ j k%!J . ~6!

The arguments ofYN2n21 represent the sites excluded for
the (N2n21)-site partition function.

It is then straightforward to evaluatêCuSi•Sj uC&. One
simply performs the operationSi•Sj at sitesi and j before
connecting them to other sites. The order of operations are
relevant here: a given operator acts onbis

† ’s (bis’s! from the
left ~right! hand side. This results in modified transfer matri-
ces ati and j : One inserts simultaneously to the loop~s! at
sitesi and j ,

1
4 ~sz! i~sz! j1

1
2 @~s1! i~s1! j1~s2! i~s2! j #

i2 j5odd;

1
4 ~sz! i~sz! j1

1
2 @~s1! i~s2! j1~s2! i~s1! j #

i2 j5even.

It turns out that there are nonzero matrix elements only when
i and j are on the same loops. More precisely,

^Si•Sj&5
1

YN
(
n51

N21
3

4 H (
$ j k%

YN2n21~$ j k%!

3 (
m51

n

Tr@szGj 0 j m
~2! szGj mj 0

~1! #d i j 0d j j mJ , ~7!

Gj mj 0
~1! [Gj mjm21

* •••Gj 2 j 1
Gj 1 j 0
* ,

~8!

Gj 0 j m
~2! [Gj 0 j n

•••Gj m12 j m11
* Gj m11 j m

.

The twosz’s in ~7! simply transpose one of theG’s, leading
to a minus sign for odd distance betweeni and j . The
ground-state energy follows the simple rule: If the two sites
of a randomly picked bond are found to be in the same loop,
its energy is2(3/4)J, otherwise it is 0. Figure 1 presents a
typical case of the above picture. Then one sums over all the
configurations.

III. OPTIMIZING THE AMPLITUDES

Rigorous analytic evaluation of the RVB expectation val-
ues appears problematic. But a simple self-consistency ap-
proach yields surprising accuracy. One can first approximate,
in ~6! and ~7!, YN /YN2n21→yn11. This replaces the com-
plicated ‘‘environment’’ of a loop of (n11) sites by a uni-
form weight 1/yn11. Let us try to ignore the self-avoiding
restriction in the first place, and denote the correspondingy
by y0 . The correcty is then obtained by properly identifying
the overcounting. The matrix after summing over the paths
connectingi to j reads@ iÞ j ; see~8!#,
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Ri j5
1

N(
k

exp~2 ik•r i j !

12uWk /y0u2
S 1 Wk* /y0

2Wk* /y0 1
D . ~9!

y0 is determined, from~6!, by the total probability of finding
the paths, Tr(Ri i21)51 @see ~14! below#. Now y can be
recovered by grouping the extra winding at a given site~say
i ! into 1/y ~recovering the self-avoiding loops! which gives,
approximately,

y215Tr~Ri i /2!3y0
215~3/2!3y0

21 . ~10!

For the spin-spin correlations, we now have one path starting
from i to j and the other fromj to i . Ignoring again the
overlap between the two paths, the result of the summation is
simply Ri j andRj i* . But, taking two independent paths re-
sults in an additional over-counting of a factor 3/2@see~10!#
which should be deducted. We end up with the expression
~droppingy0 asWk is variational!

Ebond5U1N(
k

gk

12uWku2
U22U1N(

k

GkWk

12uWku2
U2, ~11!

where

gk5
1

2
~coskx1cosky!, ~12!

Gk5
1

2
~sinkx1sinky!. ~13!

Equation~11! is subject toWk52W2k and the normaliza-
tion constraint

1

N(
k

1

12uWku2
5
3

2
. ~14!

It can be minimized via the method of Lagrangian multiplier.
For simplicity, we assume here realWk’s. It is now a simple
exercise to find~picking up the right solution satisfying
uWku<1)

Wk5
d2Gk

11A~11d1gk!
22~d2Gk!

2
, ~15!

with

d1
d2

5
(k@gk /~12Wk

2!#

(k@GkWk /~12Wk
2!#

~16!

andd2 is the Lagrangian multiplier corresponding to~14!. In
the present case, it is always possible to get a consistent
solution withd1[0. Note thatWij so obtained connects be-
tween those sites with odd distances. Hered251 in order to
satisfy ~14! @still, a condensation atk56(p,p)/2 is re-
quired, related to LRMO of the state3,4#. Nevertheless,
d2,1 gives a set of amplitudes which all have quite low
energies but finite correlation lengths. In addition, finited1
corresponds to having spiral twist on the RVB bonds. They
may be used as trivial wave functions at finite temperature or
finite doping where LRMO is absent.

IV. MONTE CARLO SIMULATION

Analytic approach is useful for finding the right ampli-
tudes. In addition, the structure of~7! allows as well a direct
evaluation via Monte Carlo simulation. It amounts to sam-
pling over the configurations of the loop gas. The rule to
calculate the spin-spin correlations is particularly simple as
mentioned in Sec. II. In the simulation, a common phase
exp@ik0•(r i2r j )#, k05(p,p)/2 can be taken out, leading to
positive weights for all loops. Thus the standard Metropolis
algorithm applies.

Our ground state has rotational invariance so that
^CuSj uC&50. The statesuf j ,a&5Sj ,auC&, a5x,y or 1,2,
form the spin-flip excited states of the system (Sz52iSySx is
a two-flip process!. Out of them one can construct the Bloch
states

ufk,a&5
1

N1/2(
j
exp~ ik•r j !uf j ,a&,

~17!

ek,a5
^fk,auHufk,a&

^fk,aufk,a&
2E0 .

The evaluations of the matrix elementŝfk,auf l ,a&,
^fk,auSi•Sj uf l ,a& can again be done using the transfer ma-
trix ~4! and can be mapped to a loop-gas statistics. Extreme
care has to be taken with the orders of the operators on the
loop, sometimes, the loop direction. The relevant loops9 are
listed in Fig. 2. Some techniques of avoiding the sign oscil-
lations are discussed in Ref. 4.

We briefly report the main results at half-filling. The op-
timized state on 48348 lattice has an energy
20.3344J/bond, virtually identical to commonly accepted
20.3346(1)J/bond for the ground-state energy. The stag-
gered magnetization is 0.311, agreeing with 0.31(2) of the
most reliable estimates.5 On 434 lattice it is20.3509 vs

FIG. 1. A typical configuration of the loop gas on a 434 lattice,
starting (21,21) at the left-bottom corner. The sites~0,0! and~1,0!
happen to be on the same loop, thus contributing23/4 to the
ground-state energy.
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20.35089, which can then serve as an exact reference wave
function. Figure 3 plots the spin-flip spectrum, calculated on
a 12312 lattice. It turns out to fit the renormalized spin-
wave resultek52JZrA12gk

2, with Zr>1.22, in excellent
agreement with the result of Ref. 6 done on a supercomputer.
To summarize, this optimized, parameter-free RVB state,
with full rotational and translational symmetry, is virtually
identical to the exact one for any practical purposes. It pro-
vides a solid ground for the following analysis.

V. SINGLE HOLE MOVING ON THE RVB BACKGROUND

How does a doped hole vary the RVB wave function?
Since all the spins are paired in the ground state~3!, creating
a hole by removing one spin at a given sitei will leave its
spin partner unattended. Prior to doping, the latter spin can
be at any sitej which is connected to the first one by the
RVB amplitudeWij . If one maintains such an RVB ampli-
tude after the removal of site-i spin, the static-hole energy
would be just 43(0.334411)J52.3376J relative to the un-
doped state. This is considerably higher than, e.g.,
2.193(7)J estimated in Ref. 10 att50 limit. The reason is
that, by removal of the spin, it is no longer energetically
favorable for its former spin partner to stay nearby. In other
words, one should find a different amplitudeFi j , in place of
Wij , for the hole-spin pair. The unattended spin may be
properly called spinon,11 as it carries spin-1/2 surrounded by
other spin-singlet pairs. Accordingly, the hole here may be
called holon as no spin is associated with it. This holon-
spinon pair are mobile with respect to the antiferromagnetic
RVB background just like their parental spin pair. If they
form a bound state, it means a spin-charge confinement and
the dopant carries both spin and charge. But once the holon
and the spinon have a finite amplitude of being infinitely far
away, a spin-charge separation is realized. We note that as
the holon moves around, more RVB spin pairs in the back-
ground may be broken. Nevertheless, breaking an additional
nearby RVB pair would cause much higher energy when
t/J!1. Thus, at least in this limit, one may focus on the
holon-spinon pair and safely neglect the pair-breaking effect
in the RVB background.

Let us define an operation which projects out the bond
Wij in uC& but preserves the phase~for the mere sake of
convenience!,

Pi j uC&5(
Wij

uWij u
)
k51

N/221

@Wikj k
Ai kj k
† #u0&U

i k , j kÞ i , j

. ~18!

Now imagine the spin as an ‘‘electron’’ surrounding the hole,
a ‘‘nucleus,’’ thus forming an atom with wave function
cs(r s2rh) under the set of bases $us,s;h&
5bss

† f h
†PhsuC&%. The phase ofcs is relative to the RVB

background. Different bases are not orthogonal. Instead, their
inner products should be calculated using

^s8,s8;h8us,s;h&5ds8,sdh8,h3M, ~19!

where

M5 (
n51

N21 H (
$ j k%

YN2n21~$ j k%!

3
Tr@Gj 0 j 1

* •••Gj nj 0
#

2uWj 0 j 1
* Wjnj 0

u J
j 05h, j 15s8, j n5s

, ~20!

which forms a second kind of loop gas to be illustrated be-
low. In the presence of hole hopping, the Bloch state of a
given k is

uks&5
1

N (
s,h51,N

cks~r s2rh!exp~ ik•rh!us,s;h&. ~21!

FIG. 2. A list of loop configurations and the associated weights
in evaluating^fk,auSi•Sj uf l ,a&. There is, in addition, a common
factor (21)k2 l for all graphs.

FIG. 3. The spin-flip excitation spectrum ind and in units ofJ,
calculated on a 12312 lattice, along the~1,0! ~right-hand side! and
the ~1,1! axes. The curve corresponds to the renormalized spin-
wave result withZr51.22 and an up-shift>0.22 ~presumably due
to the finite lattice size!.
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The energy ofuks& is computed using the expression

Eks5N 21 (
s8,s;h8,h

cks* ~r s82rh8!cks~r s2rh!

3$T1dh8,h1T2hh8,h e
ik•~rh2rh8!%, ~22!

N 5(
h

cks* ~r s82rh!^s8,s;hus,s;h&cks~r s2rh!.
~23!

In ~22!,

T15^s8,s;huHJus,s;h&, T25^s8,s;h8uHtus,s;h&,

and hh8,h sets the nearest neighbor constraint betweenh8
andh. Once the holon-spinon wave function is obtained, the
spectral weight can be easily calculated using the same loop
gases via the definition

Zk5
u^Fucks

† uk2s&u2

^FuF&^k2suk2s&
, ~24!

wherecks
† is the usual electron creation operator.~More de-

tails on this are given in the next section.!
We perform numerical diagonalization on finite lattices to

find the eigenstates and eigenenergies~which give also infor-
mation of excited states!. The evaluation of the matrix ele-
ments for the normalization and the spin part is almost the
same as before. But we now use a loop gas in which hole site
h is isolated while an open chain connectss to s8. For the
hopping term, a third kind of loop gas with two open chains
is employed: If the chain starting ats connects to the nearest
neighbor hopping siteh8 ~also an open end!, the configura-
tion contributes (21)t; otherwise whens connects back toh
~the hole it belongs to! it is (1/2)t. The two additional ‘‘loop
gases’’ are illustrated in Fig. 4. Note that there is an overall
ratio between the two kinds of loop gas, which can be com-
puted by referring to the original loop gas.

Selected results on the ground-state energyEks for a one-
hole problem as a function oft/J are shown in Table I, along

with some best numerical results12,13 for comparison. The
corresponding quasiparticle weight is presented in Table II.
Note that the RVB ground state is taken as the reference
state, whose energy differs negligibly from that of the true
ground state on the 434 and 838 lattices. Clearly the
holon-spinon pair wave function so constructed, free from
adjustable parameters once the rigid RVB background is cho-
sen, is able to yield accurately the superexchange energy and
the major part of the kinetic energy. It is, as a matter of fact,
an excellent approximation fort/J<1 as noted above and
virtually exact att/J→0. Further improvement on the ap-
proximation att/J>1 will be discussed in Sec. VII.

It is important to observe that the ground state of the
holon-spinon pair after diagonalization can be well approxi-
mated to all range oft/J by @k5(p,p)/2#

cks~r s2rh!>
12~21!h2s

2
1Ckhs,h exp@ ik•~r s2rh!#.

~25!

Namely, it consists of a uniforms-wave~the first term! and a
nearest neighborp-wave component~with magnetic number
m561). The coefficientCk is determined by minimizing
the energy. The resulting energy and spectral weight are
shown in Table III. They are essentially the same as the
previous results of the numerical diagonalization. The agree-
ment does not vary much with lattice sizes. The physical

FIG. 4. A schematical representation of the loop gas used to
calculate the hole energy.~a! Loop gas of the second kind in which
the hole siteh5h8 is isolated with an open chain running froms to
s8. ~b! Loop gas of the third kind and the weights used in the
calculation of the hopping matrix elements.

TABLE I. The ground-state energy~in units of J! of the holon-
spinon pair vs the exact~Ref. 12! or the variational~Ref. 13! results
on finite lattices when available. The errors in the data are negli-
gible for smallt/J, but have not been systematically analyzed.

k
434 838

t/J Exact Variation

0.0 2.361 2.349 2.215 2.232

0.2 2.251 2.248 2.081 2.111

(p,p)/2 0.5 1.811 1.764 1.591 1.594

1.0 0.830 0.656 0.571 0.447

2.5 -2.416 -3.305 -2.717 -3.552

5.0 -7.950 -10.49 -8.296 -10.448

TABLE II. The spectrum weight corresponding to Table I.

k
434 838

t/J Exact Variation

0.0 0.98 0.91

0.2 0.92 0.91 0.84 0.831

(p,p)/2 0.5 0.79 0.71 0.684

1.0 0.67 0.59 0.61 0.553

2.5 0.57 0.40 0.54 0.388

5.0 0.54 0.28 0.52 0.348
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picture here is rather simple. The main process of hopping
goes like this: When the pair is in thep-wave bound state,
the holon hops by placing the spinon in front of it and then
exchanging their sites. After that the spinon relaxes to infin-
ity to lower the superexchange energy, forming thes wave.
When the pair is in the latter state, the hole first breaks the
RVB pair of one of its nearest-neighbor spins, and then ex-
changes its site with the spin’s to form thep wave. The
remaining two spins form a new RVB pair which condenses
back into the background.

VI. SPIN-CHARGE SEPARATION AND VANISHING
SPECTRAL WEIGHT

We have shown that the holon-spinon pair description can
very accurately account for the one-hole ground state, at least
for t/J<1. An important consequence is that the holon and
spinon do not always bind together and there is a finite am-
plitude for the spinon running away from the holon, in favor
of its superexchange energy. This is a clear indication of the
spin-charge separation. With the increase oft/J, additional
broken RVB pairs or spin-flip processes may be dynamically
created by hopping, but including these corrections should
not change the conclusion of the spin-charge separation be-
cause a bound state of the holon and spinon does not favor
the hopping energy either, which becomes increasingly im-
portant at larget/J.

The spin-charge separation has an interesting implication
for the spectral weightZk of the bare-hole statecksuF&. As
defined in~24!, Zk measures the overlap ofcksuF& with the
plane-wave stateuk2s& of the doped system. To actually
compute it, one can use the Wannier states. Namely, one
calculates the overlap ofch2suF&}(sWshus,s;h& and
uchs&5(scks(r s2rh)us,s;h& @according to~21!#. Thus the
pair wave functioncks basically determines the overlap. It
follows immediately that, in terms of the analytical form of
~25!, the bound-state component ofuchs& at k5(p,p)/2 has
no contribution to the overlap or the spectral weight due to
its p-wave symmetry. Now in the bare-hole statech2suF&
the unattended spinon stays nearby the holon for the ampli-
tudeWsh→0 at ur shu→`. On the other hand, the spinon in
uchs& can be infinitely separated from the holon with a finite

amplitude as shown in~25!. Generally speaking, one would
expect to get zero overlap between these two states on an
infinite lattice, and thusZk50. Nevertheless, with the pres-
ence of LRMO, things become a little bit tricky. In this case,
Wij falls off in its marginal form~power-law decay,r i j

22) to
give a long-range order, and we find a finiteZk instead, for
both analytic and numericalcks . It is due to the fact

limurs2rs8u→`^s8,s;hus,s;h&Þ0. ~26!

@In terms of Monte Carlo simulation, the chain in Fig. 4~a!
has a finite probability of being infinitely long.# This effect is
marginal in the sense that onceWij falls slightly faster than it
is here at larger i j @for example, usingd2,1 in ~15!#, one
would haveZ[0. However, in the following, we shall em-
phasize that even in the presence of the long-range order the
spin-charge separation should still lead to a vanishing spec-
tral weight, due to some nonlocal phase effect.

As far asZk is concerned, there is a crucial ingredient
missing in the preceding section’s discussion. Recall that we
are confined in a sub-Hilbert space where only a holon-
spinon pair is considered while the rest spins are still in the
RVB ground state. But a careful examination shows that the
basesus,s;h& are actually not completely orthogonal to
those states where some background spins are flipped as ex-
citations. Note that the overlap is finite no matter how far a
flip is from the hole site. This nonorthogonal effect is due to
many-body effects in the RVB wave function~3! after the
removal of the spin at hole site, but its correction to the
energyEks and other short-range properties seems negli-
gible. However, it could profoundly affect the long-distance
behavior of the wave functioncks in ~25!. The argument
goes as follows.

There is a simple rule in the loop-gas formalism to con-
sider the overlap between RVB states with these ‘‘zero-
point’’ spin flips due to the presence of a hole. A loop must
contain an even number of flip sites. More precisely, a flip
must be repaired by the next flip as one goes on the loop. The
hole site can be considered as either a flip or a regular one. A
pair of flips having odd distance between them acquires a
(21) factor. Thus, as one walks from a givens to s8 in
^s8,s;hus,s;h& @cf. Fig. 4~a!, but now the RVB background
containing spin flips# and as the distance betweens to s8
increases, there are more and more flips adding to the path.
Even though such effect is negligible locally, the total sign of
the weight will be accumulated at long distance and will
effectively cause the overlap vanishing. In other words, the
s-wave component in~25! actually involves some phase-
string correction at large length scale, which always leads to
vanishing spectral weight. In fact, based on a different ap-
proach,Z50 has been rigorously shown in Ref. 8 for the one
hole problem, due to a similar unrepairable phase string in-
duced by doping.

VII. DISCUSSION

In this paper, we have developed a general scheme for
studying RVB states of quantum antiferromagnet, and the
optimized RVB state is shown to be virtually identical to the
exact ground state as well as excitation states. We have then
extended the approach to the doped regime and demonstrated

TABLE III. The energy~in units ofJ! and the spectral weight of
the trivial wave function~25! as a function oft/J. The point is that
they are extremely close to those of the direct diagonalization pre-
sented in Tables I and II.

k t/J
434 838

Energy Weight Energy Weight

0.0 2.361 0.97 2.219 0.90

0.2 2.253 0.91 2.097 0.85

(p,p)/2 0.5 1.816 0.78 1.624 0.69

1.0 0.842 0.66 0.633 0.58

2.5 -2.379 0.56 -2.562 0.50

5.0 -7.870 0.52 -7.971 0.47
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that a one-hole problem may be modeled, accurately at small
t/J and reasonably at larget/J, by a holon-spinon pair mov-
ing on the optimized RVB background. The spin-charge
separation and vanishing quasiparticle spectral weight were
revealed, which is consistent with a general proof of zero
spectral weight in this kind of system.8

Why has the discussion of the spectral weight problem in
the literature been inconclusive and why is our zero-weight
result not evident in finite-size calculations? We believe that
the key issue here is the failure to take into account the spin
distortion over a long range, where the associated U~1! phase
fluctuations are particularly important~cf. Ref. 8!. A direct
diagonalization can only be done on a system of 20 sites or
so where the spin-flip energy gap is still too large to play a
role. Perturbation theories based on the usual spin-string pic-
ture do not really let the string be long. A next-nearest-
neighbor string theory already yields accurate energies over
the entire ranget/J. The basic argument is that the energy
cost of the string will be linearly increased with its length so
that the string cannot be too long. However, it has been
shown8 that besides such a conventional spin string, there is
a hidden U~1! phase string which has been neglected in the
usual slave-fermion approach and in contrast to the former it
causes less energy and is not repairable by low-lying spin
fluctuations. Therefore, in order to capture correctly the long-
range properties of the system one has to consider the back-
ground distortion at sites far away from the hole. This would
require the string to reach far away from a given polaron
center, which is practically difficult. In addition, there is al-
ways a lack of precise wave function at the half-filling limit
to start with. Having the nearly-exact half-filling wave func-
tion is in fact the unique advantage of the present approach.

In Tables I and II, the spectral weight of our result seems
too large compared to others ast/J increases. This suggests

that the same long-range fluctuation discussed in the preced-
ing section might also be responsible for the kinetic energy
deficiency att/J>1 in our calculation. Another possibility is
to have broken pairs in the RVB background. This would
allow, among other things, the spinon to occupy the even
sites with respect to the holon. In both cases, the effective
pairing of the RVB background is weakened~cf. below!. In
the next order of approximation, one would extend the Hil-
bert space to include these effects. Also, it is interesting that
the background fluctuations induce flipping of the spinon in
the holon-spinon pair. A careful study of this ‘‘Kondo effect’’
may reveal physical properties of the system.

Things become simpler if the RVB background has no
LRMO, for instance, in the presence of finite but dilute dop-
ing. The spin-flip spectrum would have a finite gap and
therefore be less important. On the other hand, the right-hand
side of ~26! is readily zero. The spin-flip effect is no longer
an essential ingredient of spin-charge separation. In fact we
found that using an undoped state of~15! with d2,1 can
actually yield lower energies at larget/J ~but the result is too
primitive to be presented here!. It is interesting that back-
ground spin flips play a similar role as the gauge fluctuations
in the recent approach of Weng, Sheng, and Ting,14 whose
results agree with many experimental features of the high-
Tc supercondutors. Possible generalization of the present ap-
proach to finite doping is currently under study.
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