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Hole bipolaron band structure with two flat anisotropic bands is derived for oxide superconductors. Strong
anisotropy leads to one-dimensional localization in a random field which explains themetal-likevalue of the
Hall effect and thesemiconductorlikedoping dependence of resistivity of overdoped oxides. Doping depen-
dence ofTc andlH(0) as well as the low-temperature dependence of resistivity, of the Hall effect,Hc2(T) and
robust features of angle-resolved photoemission spectroscopy of several high-Tc copper oxides are explained.

I. INTRODUCTION

The ‘‘parent’’ Mott insulators suggest that high-Tc super-
conductors are in fact doped semiconductors. There is now a
growing consensus that the dopant-induced charge carriers in
high-Tc oxides exhibit a significant dressing due to spin,1

charge,2 and lattice3 fluctuations. Studies of strongly corre-
lated models like the Holsteint-J model show that the criti-
cal electron-phonon coupling strength for polaron formation
is considerably reduced by an antiferromagnetic exchange
interaction compared to that in the uncorrelated model.4

There is also a growing experimental evidence that polarons
and bipolarons are carriers in high-temperature supercon-
ductors. In particular, studies of photoinduced carriers in di-
electric parent compounds like La2CuO4 and YBa2Cu3O6 as
well as the infrared conductivity of metallic compounds con-
firm the formation of self-localized polarons.5,6 A direct evi-
dence for small polarons in doped copper oxides has been
provided by Calvaniet al.7 with infrared spectroscopy. An
oxygen isotope effect on the Ne´el temperature has been
found in La2CuO4 suggesting the oxygen-mass dependence
of superexchangeJ due to the small polaron band
narrowing.8 The crucial role of apex oxygen ions in the po-
laron formation has been verified for La-Sr-Cu-O~LSCO!.
Assuming that the carriers in a doped Mott insulator are
spin-lattice bipolarons moving in a random potential Mott
and the author explained several unusual features of the low-
energy kinetics and thermodynamics ofunderdopedcopper
oxides.3

On the other hand, it has been suggested that optimally
doped and overdoped oxides are metals with a large Fermi
surface as follows from angle-resolved photoemission spec-
troscopy~ARPES!, theT2 temperature dependence of resis-
tivity, and from the small value of the Hall effect. A three-
band model involving a strong oxygen-copper hybridization
@Fig. 1~a!# has been studied by several authors as a relevant
one. However, the recent progress in elucidating the normal
state of the prototypical cuprate La22xSrxCuO4,

9,10 and of
overdoped Tl2Ba2CuO6,

11 as well as the unusualHc2(T) of
Tl2Ba2CuO6 ~Ref. 12! and Bi2Sr2CuOy ~Ref. 13! led several
authors to the conclusion that low-energy kinetics ofover-

doped oxides is inconsistent with the Fermi-liquid
picture14,11 and with the spin-charge separation picture.9 In
particular, semiconductorlike scaling withx of dc conductiv-
ity of La22xSrxCuO4 for a wide temperature and doping
region10 and thelinear low-temperature resistivityr as well
as thelinear Hall effect in overdoped Tl2Ba2CuO6,

11 have
been observed.

Sometimes it is argued that unusual features of overdoped
high-Tc oxides can be understood as a result of a strong
magnetic pair breaking if the spin-flip mean free pathl s is
shorter than the coherence lengthj0. However high-Tc ox-
ides are at a ‘‘clean’’ limit, the mean free pathl is at least 20
times larger thanj0.

12,11This makes the magnetic pair break-
ing irrelevant for high-Tc because the strong inequalityl s! l
is unrealistic; normallyl s@ l .

In this paper the oxygen hole energy dispersion is studied
with the model electron-phonon interaction taking into ac-
count the self-trapping effect and the attraction between in-

FIG. 1. Counterplot of thex bipolaron dispersionEk
x. Dark re-

gions correspond to the bottom of the band.Ek
y energy surfaces are

obtained byp/2 rotation. Three-band (t-J) model~a! and two-band
apex bipolaron model~b!.
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plane and apex holes. The role of copper in electronic trans-
port is significantly reduced by bipolaron formation. A
simple two-band model is derived with a stronga-b anisot-
ropy of two narrow bipolaron oxygen bands. The effective-
mass anisotropy is 4 or larger. A random potential increases
the anisotropy, so low-energy carriers are effectively local-
ized in one direction for a wide range of doping. Then there
is a ‘‘Hall mobility edge’’ EcH . The states belowEcH con-
tribute to the longitudinal conductivity rather than to the
transverse one. A quantitative explanation for a high value of
the Hall density in La22xSrxCuO4 is proposed compatible
with thex scaling of dc conductivity. The doping dependence
of Tc and oflH both in underdoped and overdoped samples,
the low-temperature dependence ofr, RH , andHc2 of over-
doped Tl2Ba2CuO6 and the robust features of ultrahigh en-
ergy resolution angle-resolved photoemission spectra15,16

~ARPES! are explained with bipolarons.

II. TWO-BAND BIPOLARON MODEL

The hole in a square oxygen-copper lattice hops directly
from one oxygen ion to its oxygen neighbor due to an over-
lap of p oxygen orbitals, Fig. 1~b!, or via a second-order
indirect transition involvingd orbitals of copper, Fig. 1~a!.
While the direct tunneling is linear in the oxygen-oxygen
hopping integralTpp8, the indirect transition is of the second
order in the oxygen-copper hoppingTpd . There is an as-
sumption within the three-band model that the indirect hop-
ping is more important because of a shorter copper-oxygen
distance compared with an oxygen-oxygen one and of the
relatively small size of the charge-transfer gapEg.1–2 eV.
A strong Fröhlich-type interaction modifies essentially the
energy spectrum. To show this I consider the model Hamil-
tonian

H5(
i , j

Ti j ci
†cj1(

q, j
vqnj@uj~q!dq1H.c.#1(

q
vqdq

†dq

1
1

2(i , j Vi j ninj , ~1!

whereTi j determines the bare band structure in the site rep-
resentation;ci , cj are hole annihilation operators for oxygen
or copper sitesi , j ; nj5c j

†cj is the number operator,Vi j is
the direct Coulomb repulsion, which does not include the
on-site termi5 j for parallel spins;vq ,dq are the phonon
frequency and annihilation operator, respectively. The
electron-phonon coupling in the site representation for elec-
trons is given by

uj~q!5
1

A2N
g~q!eiq•mj , ~2!

whereN is the number of cells in the normalized volume
NV, mj is the lattice vector. Oxides are strongly polarizable
materials, so coupling with optical phonons dominates in the
electron-phonon interaction

g~q!52
iA8pa

AV~2mv!1/4q
~3!

with the dimensionless coupling constanta5e2(e `
212e 0

21)
Am/2v, introduced by Fro¨hlich,17 and the momentum-
independent optical phonon frequencyvq5v. The lattice
polarization is coupled with the electron density, therefore
the interaction is diagonal in the site representation and the
coupling constant does not depend on the particular orbital.
In doped oxides optical phonons are partially screened. Then
molecularvq5v0 and acousticalvq5sq phonons contribute
also to the interaction with the coupling constantsg[g0 and
g;1/Aq, respectively. The canonical displacement transfor-
mationS5exp$(q, jnj @uj ~q!dq2H.c.#% eliminates an essential
part of the electron-phonon interaction. The transformed
Hamiltonian is given by3

H̃5SHS215~Tp2Ep!(
i ~p!

ni ~p!1~Td2Ed!(
i ~d!

ni ~d!

1(
iÞ j

ŝ i j ci
†cj1(

q
vqdq

†dq

2
1

2 (
q,i , j

@2vqui~q!uj* ~q!2Vi j #ninj . ~4!

The first oxygen (p) and the second copper (d) diagonal
terms include the polaronic level shift, which is the same for
oxygen and copper ions

Ep5Ed5(
q

uuj~q!u2vq . ~5!

The transformed hopping term involves phonon operators

ŝ i j5Ti j expS (
q
ui* ~q!dq

†2H.c.DexpS (
q
uj~q!dq2H.c.D .

~6!

There are two major effects of the electron-phonon interac-
tion. One is the band narrowing due to a phonon cloud
around the hole. In case ofEg@v the bandwidth reduction
factor is the same for the directtpp8 and the second-order via
coppertpp8

(2) oxygen-oxygen transfer integrals~see the Appen-
dix!

tpp8[^0uŝpp8u0&5Tpp8e
2g

pp8
2

, ~7!

tpp8
~2! [(

n

^0uŝpdun&^nus̃dp8u0&
E02En

.
Tpd
2

Eg
e2g

pp8
2

, ~8!

where un&, En are eigenstates and eigenvalues of the trans-
formed Hamiltonian, Eq.~4! without the hopping term,u0&
the phonon vacuum, and the reduction factor is

gpp8
2

5
1

2N(
q

ug~q!u2$12cos@q•~mp2mp8!#%. ~9!

Because the nearest-neighbor oxygen-oxygen distance in
copper oxides is less than the lattice constant the calculation
yields a remarkably lower value ofgpp8

2 .0.2Ep /v than one
can expect with a naive estimation (.Ep/v) ~see the Appen-
dix!.
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The other effect of the electron-phonon coupling is the
attraction between two polarons given by the last term in Eq.
~4!. For the Fro¨hlich interaction the polaron level shift deter-
mined by Eq.~5! is

Ep.
qDe

2

p
~e`

212e0
21!, ~10!

whereqd5(6p 2/V)1/3 is the Debye momentum. With the
static and high-frequency dielectric constantse0@e`.5 and
qD.0.7 Å21 one estimatesEp.0.64 eV and withv50.06
eV, gpp8

2 .2. As a result a large attraction between two po-
larons of the order of 2Ep.1 eV is possible accompanied by
the band mass enhancement less than one order of magni-
tude. This is in contrast with some assessments of the bipo-
laronic mechanism of high-Tc superconductivity based on
the incorrect estimation of the effective mass.

The polaron-polaron interaction is the sum of two large
contributions of the opposite sign, last term in Eq.~4!, which
generally are large compared with the reduced polaron band-
width. This is just the opposite regime to that of the BCS
superconductor where the Fermi energy is the largest. In that
case one can expect real-space bipolarons. Different types of
bipolarons in La2CuO4 were investigated by Zhang and
Catlow18 with computer simulation techniques based on the
minimization of the ground-state energyE0 of the Hamil-
tonian Eq.~4! without the hopping term. The intersite pairing
of the in-plane oxygen hole polaron with theapexone was
found energetically favorable with the binding energy
D50.119 eV. Obviously this apex bipolaron can tunnel from
one cell to another via a direct single polaron hopping from
one apex oxygen to its apex neighbor, Fig. 2. Thebipolaron
hopping integralt is obtained by projecting the Hamiltonian,
Eq. ~4! onto the reduced Hilbert space containing only empty
or doubly occupied elementary cells. The wave function of
the apex bipolaron localized, say in the cellm is written as

um&5(
i51

4

Aici
†capex

† u0&, ~11!

wherei denotes thepx,y orbitals and spins of the four plane
oxygen ions in the cellm, Fig. 2 andcapex

† is the creation
operator for the hole on one of the threeapexoxygen orbitals
with the spin, which is same or opposite to the spin of the
plane hole, depending on the total spin of the bipolaron. The
probability amplitudesAi are normalized by the condition
uAi u51/2 because only four plane orbitalspx1, py2, px3, and
py4 are relevant within the three-band model. The matrix
element of the Hamiltonian Eq.~4! of the first order with

respect to the transfer integral responsible for the bipolaron
tunneling to the nearest-neighbor cellm1a is

t5^muH̃um1a&5
1

4
Tpp8
apexe2g2, ~12!

where Tpp8
apex is the single hole hopping between two apex

ions, and

g25
1

2N(
q

ug~q!u2@12cos~qxa!# ~13!

is the polaron narrowing factor. Herea is the in-plane lattice
constant, which is also the nearest-neighbor apex-apex dis-
tance. As a result the hole bipolaron energy spectrum in a
tight-binding approximation consists of two bandsEx,y

formed by the overlap ofpx and py apex polaronorbitals,
respectively, Fig. 1~b!:

Ek
x52t cos~kx!1t8cos~ky!, ~14!

Ek
y5t8 cos~kx!2t cos~ky!, ~15!

where the in-plane lattice constant is taken to bea51, t is
the renormalized hopping integral, Eq.~12! betweenp orbit-
als of the same symmetry elongated in the direction of the
hopping (pps), andt8 is the renormalized hopping integral
in the perpendicular direction (ppp).19 Their ratio t/t85

Tpp8
apex/T8pp8

apex
54 as follows from the tables of hopping inte-

grals in solids.20 Two different bands are not mixed because
Tpx ,py8
apex

50 for the nearest neighbors. The random potential

does not mix them either if it varies smoothly on the lattice
scale. Consequently, one can distinguishx andy bipolarons
with a lighter effective mass in thex or y direction, respec-
tively. The apexz bipolaron, if formed is ca. four times less
mobile than thex andy bipolarons. The bipolaron bandwidth
is of the same order as the polaron one, which is a specific
feature of the intersite bipolarons.

The polaronic features of the energy spectrum and bipo-
laron formation are in line with the extremely flatanisotropic
bands measured recently with ARPES~Refs. 16 and 15! in
several copper high-Tc oxides which display at least an order
of magnitude less dispersion than the first-principles band-
structure methodology can provide.16 I believe that this flat-
ness is due to the polaron narrowing of the band, Eq.~12!
and the anisotropy is due to the remarkable difference ofpx
overlaps inx andy direction, respectively. If bipolarons are
formed the spectral weight is shifted down by half of the
bipolaron binding energy with respect to the chemical poten-
tial. This could provide an explanation why the flat band
observed with ARPES in YBa2Cu4O8 does not cross the
Fermi level. It lies approximately 20 meV below the chemi-
cal potential16 which means that the bipolaron binding en-
ergy is aboutD.40 meV in this material. The ‘‘static’’ cal-
culations by Zhang and Catlow18 of the bipolaron binding
energy depends on details of the perovskite crystal struc-
tures. In their modeling of small bipolarons in doped high-Tc
La2CuO4 they treated holes as Cu

31 or O2 species placed in
the dielectric matrix with the CuO6 unit, Fig. 2. The energy
of a region of the crystal surrounding the hole or the hole
pair is then minimized with respect to the coordinates of the

FIG. 2. Apex bipolaron tunneling between two copper
polyhedra.
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ions within the region containing;200–300 ions. The re-
sponse of the more distant regions of the crystal is calculated
using approximate procedures based on continuum model
employing the relative permittivity of the material. With a
proper choice of the interatomic potentials one can find the
binding energy of the small bipolaron of different geometry
with the accuracy within 0.01 eV. The pairing was studied
for a variety of separations in three types of possible bipo-
laron ~Cu31-Cu31, Cu31-O2, and O2-O2 pairs!. Intercopper
and copper-oxygen intersite bipolarons are unstable both for
interlayer and intralayer pairing, where the binding energy is
negative for all separations studied. However, three stable
O2-O2 configurations were found. For in-plane configura-
tion the bipolaron is bound by;0.06 eV, whereas apex bi-
polaron configuration is bound by;0.12 eV. These two
bound oxygen pairs are situated at the nearest-neighbor sites
~d52.66 Å! and next-nearest-neighbor sites~d53.11 Å!.
There is also a slightly bound bipolaron with a binding en-
ergy of 0.001 eV atd53.58 Å. Whend is larger than 3.81 Å
all the configurations are energetically unfavorable. Conse-
quently, the binding energy of small bipolarons is strongly
related not only to the distance of the pair but also to the
detailed geometry of the site where the polaron is situated
and to the dielectric properties of the matrix. It is not surpris-
ing that the bipolaron binding energy is not universal among
different copper oxides.

III. THE HALL CONSTANT

It is well known that the effective-mass anisotropy of en-
ergy ellipsoids in a square~or cubic! lattice diminishes the
value of the Hall constant as in Si or Ge. In the presence of
disorder anx bipolaron can be localized in they direction
tunneling practically freely alongx and ay bipolaron can be
localized in thex direction remaining free alongy.21 That
gives a very low metalliclikeRH which presumably is due to
bipolarons with the energy above theHall mobility edge,
E.EcH . At the same time the dc conductivity remains pro-
portional to the number of bipolarons above the mobility
edge, which lies below,Ec,EcH . To support this conclusion
quantitatively one can adopt the effective-mass approxima-
tion for a large part of the Brillouin zone near~0,p! for thex
and ~p,0! for the y bipolaron, Fig. 1,

Ek
x,y5

kx
2

2mx,y
1

ky
2

2my,x
~16!

with kx,y taken relative to the band bottom positions and
mx51/t, my54mx . The Boltzmann equation in the relax-
ation time approximation yields

RH;
(k,n5x,yf 8~Ek

n!@~]2Ek
n/]kx

2!~]Ek
n/]ky!

22~]Ek
n/]ky!~]Ek

n/]kx!~]2Ek
n/]ky]kx!#

@(k,nf 8~Ek
n!~]Ek

n/]kx!
2#2

, ~17!

where f 8(Ek
n) is the derivative of the distribution function.

Counting bipolarons (n0), with the energy aboveEcH in the
numerator and aboveEc in the denominator of Eq.~17! one
obtains

2eRH5
4mxmyn0

@~mx1my!n01myn1#
2 , ~18!

wheren05x/22nL is the number of bipolarons with the en-
ergy aboveEcH , which are free in both directions;nL is the
number of bipolarons localizedat leastin one direction, and
n1 is the number of bipolarons localizedonly in one direc-
tion. The number of bipolarons per cell localized at least in
one direction is proportional to the number of random poten-
tial wells with the depthU larger thant8

nL5BE
2`

2t8
exp~2U2/g2!dU. ~19!

The coefficientB is determined by the condition that all
states of the Brillouin zone should be localized (nL51) if
the random potential is very large,g@t8. The average depth
g of random wells is proportional to the relative fluctuation
of the dopant density, which is the square root of the mean
densityx ~Ref. 22!

g5g0Ax. ~20!

Hereg0 is the characteristic binding energy independent of
the dopant density. That yieldsB52/gAp and

n05x/21erf~k/Ax!21 ~21!

with k5t8/g0 . The number of bipolarons,n01n1 , above the
mobility edgeEc contributing to thelongitudinalconductiv-
ity remains practically equal to the chemical densityx/2 in a
wide range ofk which can be verified with Eq.~19! replac-
ing t8 for t54t8. As a result, the Hall densitynH51/2eRH to
the chemical density ratio is given by

nH
x/2

5
@5x12 erf~k/Ax!22#2

16x@x12 erf~k/Ax!22#
~22!

with erf(z)5(2/Ap)* 0
zexp~2j2!dj. The agreement with ex-

periment is almost perfect fork50.57, Fig. 3. Due to the
mass anisotropy the low-temperature physical densitynH re-
mains;1.6 times larger than the chemicalx/2 even for low
doping whennL!x/2. The dc conductivity scales withx in
overdoped samples as observed10 becausen01n1.x/2 for
all x. On the contrary, the densityn0 of carriers extended in
both directions falls rapidly in overdoped samples, Fig. 3
~inset!, due to increasing random potential fluctuations, pro-
portional toAx. The mass anisotropy of the order of 4 can be
seen commonly in doped semiconductors. However the an-
isotropy increases rapidly in overdoped samples. In fact, the
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Hall to chemical density ratio, Fig. 3 is a measure of this
anisotropy. At temperatures compared or higher than the bi-
polaron binding energy bipolarons coexist with unbound
thermally excited polarons, which contribute also to the
transport. In-plane polaronic bands are not so anisotropic as
the apex bipolaron ones. That can explain why the Hall con-
stant in LSCO depends less on doping at high temperatures
compared with the low-temperature values.

IV. BIPOLARONS AND CRITICAL PARAMETERS
OF HIGH- Tc COPPER OXIDES

The coherence volume determined with the heat-capacity
measurements nearTc in many copper oxides is comparable
or even less than the unit-cell volume.23 That favors a
charged 2e Bose liquid of small bipolarons as a plausible
microscopic model of the superconducting state.3

The critical temperature of the superfluid phase transition
in 21e dimensions is proportional and the London penetra-
tion depth squared is inversely proportional to the densityn0
of delocalized bosons. Therefore

Tc;x12 erf~k/Ax!22 ~23!

and

lH
2 ~0!;

1

x12 erf~k/Ax!22
. ~24!

With Eqs. ~23! and ~24! one can easily explain the doping
dependence ofTc(x) in superconducting oxides as well as
the so-called ‘‘Uemura’’ plotTc;1/l H

2 verified experimen-
tally in underdoped and overdoped samples, Fig. 3~inset!.

As we have shown earlier24 the density of delocalized
bosons depends on temperature, increasing linearly forT!g
in a ‘‘single-well–single-particle’’ approximation,n0(T)
5n0(0)1TnL ln 2/g. That explains a linear increase ofRH
with increasing temperature observed by Mackenzieet al.11

in overdoped Tl2Ba2CuO6 starting from the mK scale up to
;30 K as follows from Eq.~18!. The linear temperature
dependence of resistivity at low temperatures11 is explained
by the fact that the number of unoccupied potential wells is
proportional to temperature24 as the number of extended
bosons. Less screened they provide a strong temperature-
dependentelastic scattering of bipolarons. With increasing
temperature the boson-boson scattering dominates and the
resistivity becomes proportional toT2 as observed in over-
doped oxides.

One can also describe the unusual temperature depen-
dence ofHc2 of a ‘‘low Tc’’ overdoped Tl2Ba2CuO61d ,

12 as
the critical fieldH* of the Bose-Einstein condensation of
charged bosons. Starting with the linearized stationary equa-
tion for the macroscopic condensate wave functionc0~r !

S 2
1

2m
@¹22ieA~r !#21Uim~r ! Dc0~r !5mc0~r !, ~25!

FIG. 4. Upper critical field of doped
Tl2Ba2CuO61d ~Ref. 12! ~points! compared with
the critical field of the Bose-Einstein condensa-
tion, Eq.~26! from 15 mK up toTc.20 K; inset
represents the low-temperature part from 15 mK
up to.2 K.

FIG. 3. The ratio of the HallnH51/2eRH to chemicalx/2 den-
sities in La22xSrxCuO4 as a function of doping compared with ex-
periment ~Ref. 9! at 40 K. The size of the experimental circles
includes an error bar due to temperature dependence ofRH below
50 K and the uncertainty in the oxygen content. Theoretical depen-
dence of the density of extended bosonsn0 , of Tc and of the pen-
etration depth~in relative units! on doping~inset!.

53 2867BIPOLARON ANISOTROPIC FLAT BANDS, HALL MOBILITY . . .



where A~r !, Uim~r !, and m are the vector, random, and
chemical potentials, respectively, one arrives at25

H* ~T!5constS 122nL~ t !/x

t@122nL~1!/x#
2At D 3/2. ~26!

Heret5T/Tc , whereTc is theexperimentalcritical tempera-
ture, x is the chemicalpolaron density determined in
Tl2Ba2CuO61d by the excess oxygen contentd, x52d, and
nL(t) is the number of localized bipolarons belowEcH .
From Fig. 3~inset! x/22nL is very small in strongly over-
doped samples. In fact, at zero temperature the condition
2nL(0)/x51 is satisfied because each bipolaron is localized
on the excess oxygen ion. In the ‘‘single-well–single-
particle’’ approximation the number of localized bipolarons
is determined by24

nL~ t !5E
2`

0

de
NL~e!

exp~e/T!11
, ~27!

whereNL(e) is the density of localized states. The positive
curvature ofH* (T) on the temperature scale of the order of
Tc does not depend on the particular shape ofNL(e). How-
ever, at mK temperatures shallow potential wells are impor-
tant. Therefore the low-temperature behavior ofH* (T) is
sensitive to the shape ofNL(e) just below the mobility edge.
One can model

NL~e!50.5nL~0!Fee/g

g
1d~e2E0!G , ~28!

to imitate both the discrete levels with the energyE0 and the
exponential shallow tail due to the randomness of the impu-
rity potential. Then one can quantitatively describe the ex-
perimental Hc2(T) with Eq. ~26! and g/Tc50.13 and
E0/Tc50.3 for three decades of temperature, Fig. 4. This
equation was also applied by Osofskyet al.13 to describe the
Hc2(T) of Bi2Sr2CuOy with an excellent agreement for the
critical temperature.26

V. CONCLUSIONS

In summary, the oxygen hole bipolaron bands of high-Tc
oxides are derived manifesting a remarkable flatness and
effective-mass anisotropy. The metallic value of the Hall ef-
fect and the semiconducting scaling of dc conductivity in
overdoped high-Tc oxides are explained taking into account
the Anderson localization of bipolarons. The doping depen-
dence of the critical temperature and of the London penetra-
tion depth, the low-temperature dependences of resistivity, of
the Hall ‘‘constant’’ and of the upper critical field as well as
the robust features of ARPES are described.

The proposed two-band oxygen bipolaron model favors
the spin-polaron formation as suggested by Mott for high-Tc
copper oxides.27 One conclusion is that copper electrons re-
main localized even in overdoped oxides because of the large
Hubbard U on copper and the local lattice deformation,
which prevents their hopping. Therefore the role of copper in
electronic transport is significantly reduced. If so, one can

envisage oxygen holes as heavy spin-lattice polarons sur-
rounded by lattice andcopperspin-polarized regions. Then
both underdoped and overdoped high-Tc oxides are doped
semiconductors with oxygen~bi!polarons as carriers partly
localized by disorder. Another conclusion is that an estima-
tion of the small~bi!polaron mass with the dispersionless
Holstein model leads to an erroneous conclusion that small
bipolarons are immobile. Taking into account the dispersion
of the electron-phonon coupling constant and the perovskite
crystal structure one obtains significantly less mass enhance-
ment compared with this estimation and at the same time the
polaron binding energy sufficient to overcome the intersite
direct Coulomb repulsion.

This work is motivated by Mott’s idea27 that the localiza-
tion of carriers in a random potential is crucial to our under-
standing of low-energy kinetics of high-Tc oxides which is
receiving now an overwhelming experimental support.3
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APPENDIX

Here the first-@Eqs. ~7! and ~12!# and the second-order
@Eq. ~8!# phonon averages and the reduction factors are cal-
culated using the standard technique~see Ref. 3 and refer-
ences therein!. The direct hopping is given by

tpp85Tpp8^0uexpS (
q
up
* ~q!dq

†2H.c.D
3expS (

q
up8~q!dq2H.c.D u0&. ~A1!

With the help ofeA1B5eAeBe2[AB]/2 for any operatorsA, B
with a c-number commutator one obtains

tpp85Tpp8e
2g

pp8
2

^0uexpS (
q
up
* ~q!dq

†D
3expS 2(

q
up8~q!dq

†D u0&, ~A2!

where

gi j
25

1

2(q @ uui~q!u21uuj~q!u222ui* ~q!uj~q!#. ~A3!

The bracket in Eq.~A2! is equal unity. Then Eq.~9! follows
from Eqs. ~A2! and ~A3! using the definition ofuj ~q!,
Eq. ~2!.

Taking into account thatEn2E05Eg1(qvqnq , the
second-order indirect hopping Eq.~8! is written as
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tpp8
~2!

5 i E
0

`

dt e2 iEgt^0uŝpd~ t !ŝdp8u0&, ~A4!

where

ŝpd~ t !5Tpd expS (
q
up
* ~q,t !dq

†2H.c.D
3expS (

q
ud~q,t !dq2H.c.D . ~A5!

Here uj ~q,t![uj ~q!exp(ivqt) and nq50,1,2,... the phonon
occupation numbers. Calculating the bracket in Eq.~A4! one
obtains

^...&5e2gpd
2
e2g

dp8
2

expS 2(
q

@up~q!2ud~q!#

3@ud* ~q!2up8
* ~q!#e2 ivqtD . ~A6!

If vq is q independent the integral in Eq.~A4! is calculated
by the expansion of the exponent in Eq.~A6!:

tpp8
~2!

5
Tpd
2

Eg
e2gpd

2
e2g

dp8
2

3 (
k50

` ~21!k~(q@up~q!2ud~q!#@ud* ~q!2up8
* ~q!# !k

k! ~11kv/Eg!
.

~A7!

Equation~8! is obtained from Eq.~A7! in the limit Eg@v.
Substitution of Eq.~3! into Eqs.~9! and ~13! yields

gpp8
2 ,g25

Ep

v S 12
Si~qdm!

qdm
D , ~A8!

if the Debye approximation for the Brillouin zone is applied.
HereSi(x)5* 0

x sin(t)dt/t, m5a/A2, andm5a for the in-
planegpp8

2 and for the apex reduction factorg2, respectively.
For LSCO with qd.0.7 Å21 and a.3.8 Å one obtains
gpp8
2 .0.2Ep /v andg2.0.3Ep/v, whereEp is given by Eq.

~10!.
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