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The renormalization of the electron-phonon interaction by strong electronic correlations is studied using a
one-band Hubbard model with infinite repulsion and neafestode) and nearest and second-near@st
mode) neighbor hopping terms and an on-site electron-phonon coupling. Using HubBapgsrators and an
extension from 2 toN degrees of freedom for the electrons the leading contributions for the electron self-
energy and the vertex function inNl/and the electron-phonon coupling constant are given and numerically
evaluated for a square lattice. We find that the momentum dependence of the vertex function depends strongly
on doping: For large dopings it is rather weak, with decreasing doping it becomes more and more pronounced
leading to a strong reduction of the vertex at larger momentum transfers until, for very small dopings, the
vertex essentially consists of a forward scattering peak with a width proportional to the doping. This behavior
occurs both in the and thett’ models and also in one dimension where analytic expressions are derived.
Correlation effects also chang€F in general: The full-symmetric componeatF, is in thet model some-
what, in thett’ model rather strongly suppressed, especially near half-filling; the other symmetry components
o?F, with i=2,...,5 increase strongly with decreasing doping and are of similar magnitudéFasnear
half-filling. Including also direct Coulomb repulsion nontrivial symmetries suath @save become more stable
than thes-wave order parameter below a critical value for the doping even for the considered phonon-mediated
superconductivity. Most dramatic, however, is the quenching of the resistivity due to electron-phonon scatter-
ing both in thet and thett’ models at intermediate and small dopings. This result may explain the absence of
phonon features in the experimental transport coefficients of Hijgtempounds.

I. INTRODUCTION width of the Drude peak and the temperature dependence of
the resistivity are not incompatible with a strong-coupling
Strong correlations between electrons and a nontheory usingA~3 and \,~1, where )\, is the transport
negligible electron-phonon interaction are two characteristi@lectron-phonon coupling constdAt.However, the same
features of highF,. oxides. The relevance of correlations in theory would requiren~\;,<0.1 in the overdoped system
these compounds is well documented: Self-consistent bandB»i2+XSrz_yCuoﬁﬁ,13 which seems to be incompatible with
structure calculations as well as photoemission experimenthie band-structure results. Furthermore, it is even doubtful
find an effective Hubbard constatt for the Cu ions of whether at all the electron-phonon scattering determines the
about 6-10 eV:? which is much larger than the observed conductivity in this system as well as in doped
width of the conduction bands of about 1 X rather direct  La;_,Sr,CuQ,:'* The experimental curves do not show any
evidence for strong correlations also comes from the dopindeatures at low temperatures which could be associated with
dependence of the frequency-dependent conductivity a transition to the asymptoti€® law of phonon scattering.
La; _,Sr,CuQ, and YBgCu;0O,_,, in particular, from the ob- Moreover, the rather continuous evolution of the resistivity
served shift of spectral weight from large to low energiesp(T) as function of doping questions the early interpretations
with doping® of the linear dependence @fin optimal doped systems in
There is also good evidence that the bare electron-phonaerms of phonon scattering. Thus a pure electron-phonon
coupling in highT, oxides is not small: Self-consistent theory is confronted with the problem to explain why the
local-density approximation band-structure calculations yielcelectron-phonon coupling is present in self-energy effects but
a rather large electron-phonon coupling constantl—  absent in transport properties or, equivalently, why is
1.5%7 Experimentally, superconductivity-induced phononmuch smaller tham\.'® One possibility is that correlation
renormalization§, Fano line shapé$large isotope coeffi- effects strongly renormalize the electron-phonon
cients away from optimal dopingand phonon-related fea- coupling'®~°It is the aim of this paper to investigate this
tures in tunneling spectta!! give evidence for a substantial problem in a controlled and quantitative way.
electron-phonon coupling in these compounds. On the other The important low-energy physics of electrons in high-
hand, if the data are interpreted only in terms of a strongxides can be described in a good approximation by a one-
electron-phonon coupling some puzzles arise. One is corband Hubbard model on a square lattideExact diagonal-
nected with the conductivity: In optimally doped systems theization studies of small clusters suggest that the charge-
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fluctuation spectra vary only weakly at larges.?® Since we  electron-phonon interaction have already been discussed in
are dealing in the following only with charge fluctuations we the literature‘®=*%2627|n particular, the frozen phonon cal-
thus may putU equal to infinity. The resulting electronic culations in Refs. 16 and 17, using a covalentlike electron-
model is called a (tt') model if nearestnearest and second- phonon coupling, yielded results for a special, large-
nearest neighbor hopping terms are included. These twomomentum phonon which are in line with our findings.
models will be studied in the following. As to the electron- Some of our results for themodel have already been pub-
phonon interaction, there are two kinds of couplings: First/ished in Refs. 18, 26, and 27. The aim of this paper is to

there is an ioniclike, site-diagonal coupling where the totalPresent the theory in more detail and to give complete nu-

electronic density at a lattice site interacts with phononsMerical results, in particular, also for tht! model.

second, there is a covalentlike, site-nondiagonal coupling

where the dependence of the hopping matrix elements on the Il. HAMILTONIAN AND HILBERT SPACE
distance between the sites causes the coupling. The perturba- o

tion expansion for the two types of couplings is different and Our Hamiltonian reads

somewhat simpler for the first type. Since there are also rea-

sons to believe that the ioniclike coupling dominates in ti; 0
high-T, oxides!?* we will consider only this coupling in the H= 2 EpXPP— X N XPOXP+ > w(KN)
following. p=0..N p=1..n *

The Hamiltonian of our electron-phonon model is given
in Sec. Il in terms of HubbardX operators. Instead of one x| al(kn)a(kn)+ E + E gi(—kn)[al(kn)
orbital per site we introduc&l/2 identical orbitals per site 2 T

and generalize the Hamiltonian correspondingly treating p=1.N

later LN as a small parameter. We also specify carefully the +a(—kN)J(XPP—(XPPy). (1)
Hilbert space and the action of tbeoperators on its states.

The most popular way to proceed would be to decomposge first two terms in Eq(1) describe the electronic part of
the X operators into products of Fermi and Bose operatorgy. E,, andt;; are atomic energies at the atomic sitand
which obey the usual simple commutation rules. The resulthoppi‘;,g ampJIitudes between the siteand], respectively. It
ing slave-boson or fermion treatmeffts* are characterized s assumed in the following that the atomic sites form a
by an increase of degrees of freedom plus constraints, |°C§'quare latticeX P9 is a HubbardX operator for the atomic
gauge symmetries which are often broken on the mean-fieldjsq i wherep,q=0 refer to the empty and,q=1...N to a
level, etc. In Sec. Ill we present a direct, slave-free Baymsingly occupied state with spin directiopsq. The first two
Kadanoff perturbation expansion for the electron self-energyerms in Eq.(1) are invariant under SUY) transformations.
which uses the unmodlleseld operators and the original, un- gometimes, for instance, in discussing superconductivity, it
enlarged Hilbert spacg:?®> General, formally closed expres- is more convenient to use a symplectic extensiomtde-
sions for the electronic self-energy in the presence of a Weaﬁrees of freedom: SW) is replaced by the symplectic group
electron-phonon interaction will be given in this section. INSK(N/2); the indexp then consists of a spin-1/2 projection
Sec. IV we specialize to the case where the paramekeisl/ |gpe| and a flavor index counting thé/2 identical orbitals.
small. It is then sufficient to keep only the leading terms forthe third term in Eq.(1) is the free phonon part where
the electronic self-energy and the vertex function for WhiChaT(k)\) creates a phonon with momentumbranch index\,
explicit expressions will be given in the normal state. In this g, frequencyw(k\). The fourth term in Eq(1) represents
section the Eliashberg functiow’F (w) will be derived and  he glectron-phonon coupling with the coupling functiprit
decomposed in its irreducible symmetry components. It als@agcribes an ioniclike coupling where the phonons change
will be compared with its usual form where correlation ef- ihe chemical potential locally at the lattice sitegXPP) is
fects are neglected. All modifications due to correlations cafnhe thermal average ofPP and has to be introduced in the
be expressed by a few symmetry- apdependent functions, nteraction to havéa'(k\))=0. The hopping termg; in Eq.
called enhancement functions in the following. In Sec. V our(1) have been scaled with N/so that the IimitNJHoo is

expression for the vertex will be compared with the Corre-physically meaningful and the leading order of the self-
sponding one of the slave-boson method. ThoughXoop-  gnergy is ofo(1).

erator approach has, for instance, no Bose condensate We pqrN=2 the Hamiltonian Eq(1) describes usual spin-1/2
will show that the two approaches give nearly, but not exarticles. The extension to a genehlis useful in order to
actly the same results in leading order of thfl Bxpansion.  ptain a small parameterN/and has been introduced in Ref.
Whether such an approximate equivalence holds to all ordejs i, the framework oK operators. For a complete specifi-
in 1/N remains to be seen. Finally, Sec. VI contains exacl.aiion of the problem we also have to specify the underlying

results for thet model in one dimer;sion and numerical re- jjhert space. We assume that it is spanned by the eigenfunc-
sults for the two-dimensionalandtt’ models. Our conclu-  tions of the diagonal operatoP? with p=1...N:

sions can be found in Sec. VII. For readers who are not

interested in the details of the derivations we would like to

point out the most important expressions used in the numeri- XPPIng,...np,...nn;Ng)=nNp[ng,..np,..nysng).  (2)

cal evaluation in Sec. VI: Eq$52)—(59) contain the various

forms for the Eliashberg functions’F and Eqs.(41)—(44)  Assuming thatXPP is still a projector forp=1...N the ei-

explicit expressions for the vertex function. genvaluesi, may be either 0 or 1. Imposing also the gener-
Some aspects of the influence of correlation effects on thalized constraint
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N
pzo XPP=N/2, (3)

Ny is determined byn,=N/2—=}_;n,. Since X% is as-
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are no admissible operators: Applying them to a state vector
yields in general vectors which no longer belong to the Hil-
bert space.

sumed to be a non-negative operator as in the physical case

N=2 we must haveny=0, i.e., only such sets of numbers
n,...ny are admitted which lead to a non-negatiyg

The action of nondiagona{ operators on the states of the
Hilbert space is defined by

XPng;ng...ny...Ng...NN)
=(=1)""TNa-1|ng;n...np+1..ng—1...ny), (4)

Xioplno;nl-..np...nN>
= np+1(—1)"" M-1ing+1;n,...n,— 1..ny), (5)
XFOlno;nl"~np~-~nN>=\/n—o(—l)”1+'--+np_1

(6)

X[ng—1;n;...np+1...ny).

In Egs. (4)—(6) the convention is used that vectors on the
right-hand sides in these equations with unacceptable argut(123 = —

ments should be identified with the zero vector. In &y we
also assumeg<q without loss of generality. From Eqgs.
(4)—(6) it follows that fermionicX operators obey the anti-
commuting and bosoni¥ operators the commuting relations
of usualX operators, i.e., those of the unextended ddse
(fermionic operators ar¥ operators where exactly one zero
appears in the two indices; all the remaindigperators are
called bosonik In contrast to that, the commutators of fer-
mionic and the anticommutators of bosotXcoperators de-
pend explicitly onN. From Eqs.(4)—(6) follows, in particu-
lar, the identity

X00xPa=X0s, — XOIXPO, ()

It relates diagonal to nondiagonal elements of ¥hepera-

tors and will be used in Sec. IV to express expectation values
of bosonicX operators in terms of Green'’s functions. Note

that the left- and right-hand sides of Ed) are identical zero
in the casaN=2.

Ill. THE ELECTRON SELF-ENERGY IN THE PRESENCE
OF A WEAK ELECTRON-PHONON COUPLING

Using the Hamiltonian Eq1) the Heisenberg equation of
motion for fermionic operators becomes

(i— E(1)>xu)=f d2 d3t(123 Y(2)X(3)

(9’7'1
+ J d2 d3h(123)H(2)Y(3). (9)

1 stands for the site, and the imaginary timey, T=(i 171)-
Similarly, 1 stands for &nd the paipq of internal labels, so
that 15(‘13(1). The functiongt andh are given explicitly by

tii,
N
T 5p1p25q2p3) 5q10( 1- 5930) 5‘130_ ( 5D2¢I35q1q2

+ 5p1p25(1205ql(313) 5[310( 1- 5Q30) 5’)30]’

5i1i25( 71— 72) (13— 71)[( 5p205q1q25p1p3

(10

h(123)=—6; i,8i,i,0( 71— 72) 8( 71— 73)(6p,004,q,5p,0

- 6(1105(]305[31}33) . (ll)

Y denotes a bosoniX operator, a notation, which is often
convenient to distinguish bosonic and fermioXioperators
in an explicit way.H(1) is given by

H(D)=3 g, (—knlal(kary) +a(-kam)l. (12

Following Ref. 28 we define nonequilibrium Green’s
functions with fermionic Hubbard operators by

Finally, we remark that the slave-boson representation of

X operators fop>0,q>0:

XPP=bf;, XPI=1f] f;q, XP°=Dbb; (8)

in terms of bosonic and fermionic creation and destruction

operatorsb; ,b; and fi“tp f

ip» respectively, also obeys Egs.

(4)—(6). Using such a representation one is, however, force

to introduce a Bose condensdte) which has no analog in

09, p0
1 2

) = —(TSXU(L)XPL(2))/(S), (13

S=T ¥y, 02YP22DKP22(2) (14)

d”dl_meansEilfgdrl. T is the time ordering operato an

external source which couples to bosoKioperators. Using

the X-operator approach. The reason for this is that in thehe equation of motion, Eq9), it is easy to show thaG

Hilbert space where th¥ operators act the operatdyor b’

I 9 _
qEZ fdEfé(Z—l)[éqqu(—a—TZJr(EilO—Eilql) —K%(1)8,

satisfies the Dyson equation

0q; 0g>
1’2)]6( 271

= 8(1-1')Qoq, pyo(D)- (15

— 0 0
1qznLK‘ll‘JZ(l)}—E( g pi)
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Q is given by where3(" is of poweri in g. 3* vanishes in equilibrium
and thus can be dropped. From the modified Dyson equation
Qog, 1o(1)=([X%%1(1),XP10(1)], ). (16)  follows

The self-energy. is defined by 2(2)(11'):f " d3(3‘1(12)é<2>(23)é‘1(31’) 20

f d22(12G(21 ):f d2d3t(123 whereG™ denotes terms of powerin g andG© is simply
denoted byG. Carrying out second-order perturbation theory

(TSM2)X(3)X(1")) in Eg. (13) in the electron-phonon interaction one finds

(S
— G2(23)= f d4 d5V(4—5) re29 21)
+J d2 d3h(123) 2 K (4) K (5)
(TSH2)X(3)X(1')) K(4) stands forK(%O). V is the phonon-medited interaction
1_2)= (= ph — _
It is also convenient to introduce the normalized Green'’s V(1-2) %:‘ 9i,(— kMDA, 7= 72)Gi (kM) (22)
function h )
where DP" denotes the phonon Green’s function. From Eg.
~(0q; 0q; 0g; p'0\ _ (18) follows
G( 1—1,?1>=2 ( 107 | Qog): (18 )
i p' §°G(23)  8°G(23) 0(3)+ &(23 5°Q(3)
;3 satisfies Eq(15) if Q on the right-hand side is replaced by 5K(4_)5K(5_) 5K(4_)5K(5_) 5K(4_)5K(5_)
aPy° ~
We now assume that the electron-phonon coupling is 5G(23) 5Q(3) 6G(23) 6Q(3)
weak so thal can be expanded in a power seriegin 5K(4) 5K(5) 5K(5_) 5K(4_)' (23)
3(11)=3911)+3@(11)+..., (190 Inserting Eq.(23) into Egs.(20) and(21) one finds

-
53(23)_+286(23) 5Q(3) ot |5-4ar). (24
SK(4)SK(5) ~ SK(4) 6K(5)

-1 . -
@11 = > f d2d3d4 d5G%(12)V(4-5)

Defining the vertex functiod by

r(11:2)= m (25
' oK(2)
the functional derivatives of with respect taK can be written as
5G(12)
d6 d7G(16)[(67;5G(72 26
K(5) f (16)1(67:5G(72), (26)
& f d6 d7 d8 doG(18)1'(89; 4)G(96)F(67 5)G 72)— f d6 d7G(16) @ G(72)
SK(4) 5K (5) SK(4)
+f d6d7 d8 d9G(16)1'(67;5G(79)1(89;4G(92). (27)

Inserting Eq.(27) into Eq. (24) yields finally
3@(11)= - fd4 d5V/(4— 5)(fd6d7r(16 26 (67715 — = 1 60(11';5)
2 oK(4)

fde d77(16:4G(67) %))Q Y7 G Y71 |. (29)
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The expression for the zeroth-order self-enekgycan e vin equations for the self-energy, the vertex function, and the
the average over three operators by a functional derivativexpectation values of operators in the presence of a source
with respect taK, and by using then Ed25). The resultis  field K.

Without any approximation we can make the following
two simplifications in Eqs(29)—(31) in the normal state.

(@ In the absence of superconductivity the two pairs of
internal labelspg and p’q’ for fermionic operators in the
+f d2 d3d4t(123G(34)1(41;2) Green’s function, the self-energy, and the vertex function

must have the formp=p’=0, q#0, q'#0 or q=q’ =0,
B 5Q(4) p#0, p’'#0. Moreover, each o_f the two choices leads _to the
—J d2d3d4t(123)G(34) 5K(2 same closed system of equations so that we can confine our-
(2) selves to the first choice.
“1 -1 41 (b) For our purposes it is sufficient to consider only the

XQTH4)G(4L). (29 source fieldK°%(1). This means that the source field does not
Equations(28) and(29) are the main results of this section: lower the symmetry of the Hamiltonian so that all selection
They give explicit expression for the electron self-energyrules without field can also be used in the presence of the
in the presence of a weak electron-phonon interactiombove special source field:
in terms ofG, T, and the derivativeST'/ 5K which are to be )
calculated without the electron-phonon coupling. Note also é(o_q 0q )z &(11) 32)
that Egs.(28) and(29) are valid in the presence of a source 1 1’ qq’ '
field K. Equatlon(28) tells us that only charge fluctuations
enter>® because the third, bosonic argumentR)filways E(O_Q Pq_' ): P E(H) 33)
has the internal pair index 00. This is a consequence of our 1 171 qq’ '
Hamiltonian Eq.(1) where phonons only couple to density

>O11)=— f d2t(121')(Y(2))

fluctuations. ~(0g 0q’ 00 N —
( I I ’ g =—5qq,1_'(1 1 ,5) (34)
IV. DETERMINATION OF THE VERTEX FUNCTION IN In Eq. (34) we have introduced a minus sign in order to
0(@) conform with the definition of the vertex in Ref. 18.
In the Baym-Kadanoff theor}, is considered as a func- Finally we use IX as a small parameter to simplify the

tional of G and Q but does not depend_explicitly on the above equations. Fl<1)r the Iead|r(1)g order it follows from Egs.
source field<. Using this, the definition of, Eq. (25), and (3 and (1) that(Y*%)~0(1) (X%)~O(N), G~3~0(1).

Dyson’s equation we obtain lterating Eq.(31) we obtain
1171\ — +
[(11;2)=— T(Z) f d3d4ds5 d6—(3 2 Taking a derivative of this relation we find

o 0101
X G(35)1(56;2)G(64) %:_N 266 3) +0O(1)
oK(3) oK(5 )
f 539(11") 5Q(3)
— | d3 (30)

5Q(3) SK(2) :NJ d4 d5G(3 4)1'(45;2)G(5 3%)+ O(1).

W(11') is the inverse of5©(11'). The derivative oG with
respect toK in the second term on the right-hand side has (36)
been expressed kiy by taking the derivative of the identity To calculate®® in Eq.(29) in O(1) it is sufficient to use just
GG 1=1. Finally we have to relat&, or, equivalently, the first term forl on the right-hand side of E¢30) so that
(YPY(1)), to G. Taking the expectation value of the operator

identity Eq. (7) in the presence of the source fiekd we 2(0>(W): +5(1__?)f dﬁ(l_—z_)é(z_*l_)—t(l_—?)
obtain the general relation

oq| &YP(D) 1 X(X(D)+O(1N). (37
(YPT) = G( p q) (YPUD) 1 ¢
1 1t SKO(T) (X(1)) t(1-2) is given y_ B
. Op Oq, <qu,(I)> <qu(1)> t(l_ 2):ti1i25(7-1_ ’Tz)/N. (38)
% G i 1 (X°(D)) - <X°°(I))7 It is sufficient to use only the first two terms in E@7) in

_ _ carrying out the derivatives & in Eq. (30). From Eq.(36)
where I denotes lwith an infinitesimally increased time and Egs.(32)—(34) the following equation for the vertex
argument. Equation$29)—(31) form a closed system of function is then obtained:
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1-3)+1(1-1)8(1-3)1G(3 4T (4 52)G(5 1%). (39

T(11:2)=6(1-1)8(1-2)+N f d3d4 ds[ 8(1—1/)t(

A more detailed proof that Eq$37) and (39) indeed repre- v, is the area of the primitive cell and theintegrations in
sent the leading expressions for lafgs is given in Ref. 34.  Eqs. (42)—(44) are to be extended over the first Brillouin
The vertex equatiori39)_can be solved_exactly without zone.&k) is equal toe(k)—u where e(k) are the renormal-

source fie|dK_Oo- Writing I'(11";3)=#(1~1",1-3) and per- ized one-particle energies due @(1) terms in= of Eq.
formlng Fourier transformations with respect to space anQ37)_ Furthermore, the first term in E(ﬁ?) can be absorbed

time variables Eq(39) becomes into the chemical potential. In order to have the usual Hamil-
TN tonian forN=2 in Eqg.(1) one has to putj; =2t andt;; = 2t’
y(k,q)=1+ R 2 [t(k)+t(k;+)]G(Ky) if i arjdj denote nearest- and second—nearest neighbors, re-
c ki spectively. For a square lattice we obtain then for the one-
~ particle energies e(k)=—qglcos(k,) +cosk,)
X G(kyta)y(ks,q) (40 +8t’cos(k,)cos(k,)] choosing 4 anda as the energy and

with k= (k,iwp ) andq=(d,iv,). N is the number of primi- length units, respectivelya is the lattice constant of the
tive cells. Equatior(40) represents an integral equation with SAuare lattice, and,=4&2 whered'is the doping defined at

two separable kernels and thus can be solved: T=0by 1-5=2[%.N(e)de andN(e) is the density of renor-
malized one-particle states for one spin direction.
1+b(g)—a(q)t(k) In order to determineSl'/ 8K, which appears in Eq28),
y(k,q)= [T+ b(QI[1b(—q)]-a(qc(q)’ (41D  we take the derivative in the general vertex equation Eq.
(39):
where

d’k f(E(k)—f(é(k+0)

A=ve| Gz Ekrq -k i, |+ %(1_;5)4(1 1,45+ | d3d6d7[6(1—1)t(1-3)
d?k f(&(k))—f(&(k+q)) - . __§[(675). —
5(@)=ve] T2 ) a4 T BNEE 6 BT
ok F(£(K)— F(E(K+ ) 49
c(0)=0e ] a5z (0N 0) g

(44)  with the inhomogeneous term

F(11:45)=— | d3d6d7d8d9s(1—1")t(1—3)+t(1—1')8(1—3)][G(38)T(8 9;4)G(96)I'(67:5/G(7 3%)
+G(36)[(67;5)G(78)I(89,4)G(93")]. (46)
|
In Eq. (46) we have expresseﬁf;/&K in terms of the vertex [ ——  __ _ __ __ __ __
function as previously. Multiplying Eq(45) with V(4—5) A=f d4 d5 d6 d7 d8 d9V(4-5)
and integrating over 4nd 50ne obtains a separable integral I . . .
equation for the quantity XG(38)I'(89;4)G(96)'67,5G(73"), (49
— 1 —— — (11,5 I
o(119=7 f dadvVia-d @ - W le—f d1d1'G(2 1)(5(1—1') d3t(1-3)
which can be solved trivially and which, according to Eq. — =\ —
(28), represents exactly the self-energy contribution. The re- +t(1-1") |G(1'27). (50
sult is

For a square lattice holds

A1T)=5 (60T [ da@ F @ )|

with the numbers f d3t(1-3)=2+8t". (52)
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According to Eq.(48) o represents a static renormalization  Depending on the symmetry of the superconducting order
of the chemical potentidfirst term) and of the hopping ma- parameter various averages of the above function
trix elements(second termdue to the electron-phonon inter- o?F (k,k’,w) enter the Eliashberg equation. Assuming that the
action. These frequency-independent renormalizations can lweder parameter transforms according to the representition
neglected ifA/B<1/2—q, which always holds with our as- of the point groupC,, of the square lattice the appropriate
sumptions except in the special case of exactly half-filling. symmetry-projected function is

The third term for>® in Eq. (28) is due to first-order
changes irG andQ. Using Eq.(36) it is evident that its last ~ ,_ ~ ~
factor, G}, is not compensated by a preceding factr ¢ Fi(k,k",0)
This means that this_term actually is not a self-energy term
but a contribution toG which should be kept on the right- 1 -
hand side in Dyson’s equation. It thus renormalizes the 1 in =N(0) = lo(k,k—T
an additive way making the right-hand side of Dyson’s equa- 8 %
tion frequency and momentum dependent. Being of ogder
its real part may be neglected compared to 1 but its imagi-
nary part contributes, for instance, to the amplitude of qua- ~ o ] )
siparticles. We will not discuss this term further in this paperk andk’ are momenta on the Fermi line in the irreducible
but concentrate on the first term in E@8) which we denote  Brillouin zone which is 1/8 of the total Brillouin zond,,
by 3. Carrying out obvious integratioffsand assuming a j=1,..8, denote the eight point-group transformations form-

slowly varying density of states near the Fermi energy wend the symmetry grou,, of a square lattice. This group
obtain has five irreducible representations which we distinguish by

the labeli=1,2...5. In the following the representatioins1
and i=3 will be of importance corresponding te- and
o d-wave symmetry in the full rotation groui;(j) is the
2p(kz)= fo do(a®F(kk',)R(zZ,w) (52  representation matrix of thigh transformation for the repre-

sentation . Assuming that the order parameter does not vary

with much in the irreducible Brillouin zone one can average over
k andk’ in the irreducible Brillouin zone. For each symme-
try one obtains in this way a function

X 8(w—w(k—T;k',\))y2(k,k—T;k")Di(j). (55

ty

. 1 1 w2z 5 b
Riz.0)=~2m | b(w)+ 3| +o{ 3+ o] PR () =P ER o)) (59

1 w+z which, in a first approximation, deter.mines the transition
— ,p(__i _) (53  temperature for an order parameter with symméiry Per-
2 2aT forming a similar calculation as above for the phonon-
limited resistivity one finds that the resistivity is related to
the functionaF (w) as usual and thateF () is given by

2 ’ _ L’ 2
a?F(Kk,k ,w)—N(O); lg(k,k—k’,\)] 2F(w)

X 8= w(k=k )y (k k=K. = ((@2F (k. k', )[V(K) = V(K" ) P 12(VE(K) i)
(54 (5

The effect of correlations can be discussed in a simple

b(w) denotes the Bose distribution agidthe digamma func- way if one assumes that the bare coupling functiéiak’,\)

tion. g(k,q,\) is related tag;(g\) by a Fourier transform with and the phonon frequenciestk \) are independent of mo-

respect to the site labél (), denotes a Fermi-surface aver- menta. Correlation effects in’F; at zero frequency are then
age with respect to the momentlrandN(0) is the density - ; ic 1req y
described by the “enhancement” functions

of renormalized particle states for one spin direction. In the

one-particle approximatiofi.e., if U=0) o°F is also given ~ T
by Eq. (54) except for two important changeBt(0) is re- A:E S <|7’(k’k_Tjk )| > D). (58
placed by the density of noninteracting particle states which '8/ do Wi e

is N(0) multiplied by qq. The second change concerpsin
the free particle approximatio=1 whereas in our case Similarly, correlation effects in the resistivigyare described
with U=w vy is the momentum-dependent function E41). by A, with

k,k—k")|?
Atr=<<u[v<k>—v(k'>]2> > / 220N ) (59)
Jo K/ gr
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" Lo (0)=—205c(q) + vy’a(q)/2. (65
1-2 _ 11..2 . 1=1.2 . 12 Inserting Eqs(61)—(65) into Eq. (60) we obtain
‘ o= 1+b(q)—a(@)[t(k)+t(k+q)]/2
k,q)= . 66
- (@ k= b+ b(—g)]-alae@” 0

The denominators in Eq$41) and (66) are the same which
implies, for instance, that the collective excitations are the
same in the two approaches. However, the numerator in Eq.
(66) is somewhat different from that of E¢41): The slave-
boson expression is symmetric in the initial and final mo-
menta of electrongk andk+q, respectively. In the expres-
sion of theX-operator approach only the initial momentkm
FIG. 1. Diagrammatic equation for the electron-phonon vertexgggsg‘;' ;Zet\zggellr:)pa:ggctr?ees rglgvg:]ecseer?tflythr:ztd\;\/sejlrelﬁ)l’?cri]gz

(shaded triangleusing () Hubbard’'sX operators andb) slave- T . .
boson theory. Fat solid, thin solid, and wavy lines denote eIectronS.tOOd' Note, however, that this discrepancy vanishes in the

spinon, and boson propagators, the dashed line the hopping terrw,nit g—0 and is also irrelgvk?nt in alrl] cases yvhe;e the eleck:}—
the small filled circles and trianglesfunctions and the bare spinon- tron momenta can be put right onto the Fermi surface. On the

boson interaction, respectively. other hand,y(k,q) is the ratio of the renormalized and the

' ' bare electron-phonon coupling. Equivalent theories thus
should give the same value farfor arbitrary argument&
andq.

(b)

The additional factow in p is due to the fact thah contains
renormalized Fermi velocitiegjielding a factor) as well
as a density of state factdyielding a factor 1) so that
altogether a factors appears in front ofA,. Absence of
correlations implies thah;=A,=1, A;=0 for i>1, and the
absence of the factaf in the relation betweep and A, .

VI. RESULTS AND DISCUSSION

A. Limiting cases of the vertex function
and the one-dimensional case

Keeping the frequency finite and taking the lingjit-0
Egs. (42)—(44) yield a=b=c—0 and thereforey—1. This
Comparison with Ref. 22 shows that oO(1) result for  limitis relevant for the renormalization @f=0 phonons due
2(0), Eq. (37), agrees exactly with the corresponding slave-t0 superconductivity. In these calculations the bare, un-
boson result. Only the meaning of various quantities is dif-screened vertex=1 should be used in agreement with Ref.
ferent which is due to the fact that, for instance, there is n®32.
Bose condensate in our approach. In the following we will A less trivial case is obtained if we first put the frequency

V. COMPARISON WITH THE SLAVE-BOSON APPROACH

compare our expression for the vertex functigriEqgs.(40)—
(44), with that of slave-boson theory.
Figure Xa) shows the vertex equation of th&operator

approach which has been used in Sec. IV. The corresponding
vertex equation of the slave-boson approach is graphically

shown in Fig. 1b) and looks quite different from Fig.(&).
The thin solid lines in Fig. (b) denote the spinon Green'’s

function, the wavy line an effective potential due to fluctua-
tions in the amplitude of the condensate and the variable
conjugate to the constraint. The corresponding analytic ex-

pressions aré*!
1 ! ! !
y(k,q)=1+§2 G(k")G(K'+q)ven(k.k',q), (60)
k!

ver(K.K',q) ={ L () +i[e(k") + e(k’ + )+ e(k)
+e(k+q)JLp(q) +[e(k)+e(k+a)][e(k")
+e(k'+a)]Ln(a)}/D(a), (61)

D(q) =L (a)Ly\(q)— LA ().

Comparing the expression for thes in Ref. 22 with our
expressions fom,b,c we find with q=(q,i v,)

La(a)=a(q)/2,

Lin(q)=—igo{1+[b(q)+b(—a)]/2},

(62

(63

(64)

to zero and then leg go to zero. From Eqs42)—(44) fol-
lows

a—N(u), (67)
b — 2 N(w), 69)
o

#2
c— — N(u), (69

do

so that

lim y(ke,q,iv,)= (70

1-2(ulgN(p)°

The denominator in Eq70) is related to the compressibility
K by

q~>0

. N(w)

1-2(ulgo)N(u)
Near a boundary for phase separatiodiverges. According
to Eqg. (71) this may happen in two different way$l(w)
diverges and, at the same time—0 which holds in thet
model at half-filling; or,N(u«) remains finite but the denomi-
nator in Eq.(71) vanishes. This case occurs in ttié model
if t/t'>0. Real highT oxides, however, always correspond
to the case/t’'<0, so we will not consider the possibility
t/t'>0 further.

(71)
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In the following we assume that the adiabatic approximawith approaches 1/3 fof—0 andw for §—~1. The compress-
tion holds so that the dependence d, b, ¢, andy can be ibility «, Eq. (71), becomes
neglected. Thé& integrals ina,b,c can be performed in gen- 5
eral only numerically. However, in the special case of one K= i
dimension, these integrals can be carried out analytically. w6 cog 76/2) + 2 sin(wS/2)

Putting 4 anda to one one obtains the following results: and diverges fors—0. Since limy_oy(ks,q) and « differ
only by a density of states factor the divergence xofs

(78

V2 1 tg(|q|/4+ kF/Z)‘ caused by the divergence of the density of states at half-
a@=—5 \/7In to([alA—ke2)|" (72 filling.
1—cogq) F Near Xg a,b,c, andy behave as follows ifk|< 2k :
1 sinlq Sin(kF"'|Q|/2)’ a(2ke—k)= i 1 In E (79
2 b(2k:—k) ! t(ke)l 1’ (80
. —k)=—co ni—,
o(a)= — [f(a)cosq)—g(asinal], (79 T ome Tk
1
with the two functions c(2kg—k)= pys [cot(kg)cog 2kg)
. 1 (lal| |sin(ke)+]sin(q/2)]| _ 1
f(a)=sinke)+ 5 ctg(;) In sinke) —[sing/2)]|’ +cog k) sin( 2ke) Jin| . (81
(75
é tankg) 1+2 cosgk
Y(2ke—kK) = ™ nke) $kr) 82

Inj1k| 1—2cog(ke)"

Each of the three susceptibilitiesb,c diverges at R and

. . is symmetric with respect tok? . The vertex function, on the
sin(ke) + |sm(q/2)|| (76) other hand, approaches zellfgz &:2n a logarithmically way
sin(kg) —[sin(a/2)||’ from above for coz)<1W2 and from below for
) _ . coskg)>1W2. This implies that for cos()>1W2, y

dis the doping away from half-filling and related kg by  changes from positive values at small momenta to negative
1-6=2kg/m.  The  renormalized  energies  are yajyes at large momenta at a momentum which is somewhat
€(k)=—qo cosk) with qo=42. Inserting Eqs.(72)—(75  smaller than R .

into Eq. (41) yields an analytic expression for the vertex  Figure 2 shows plots fory as a function ofq for four
function y. y is an even function im and periodic ing with  gjfferent values of the doping. Expanding E¢&2)—(74) for
periOd 27 so it is sufficient to vang in the intervaI[O,Tr]. small §s and q’s y|e|ds the approximate expression

The g—0 limit of yis

1

, 1 YT 35 q?(6725%)
lim (ke ,q)= = 77 NP
4—0 {1+[4 cotke)/(m—2kg) ]} y thus approaches for smafk a Lorentzian with height 1/3

and width 3r6v2, in agreement with Fig. 2. Fa#=0.125 the
logarithmic singularity at R becomes visible in the plot at
ag~2.7 in the form of a small change in the slope. Increas-
ing the doping the Rr singularity moves to smaller mo-
menta, becomes more pronounced, and changes its sign in
agreement with Eq(82). y is always a strongly decreasing
function forg<<2kg but beyond X it starts to increase with
increasing momentum i>0.5. In the next section we will
find that some of these features are also typical for the two-
dimensional case.

g(q)=ctg(@)sin(kp)

1 sin(q)
4 [sin(g/2)] "

(83

03k

14
[N}

vertex y (kg,q)
o

B. Results for thet and tt’ models on a square lattice

As discussed in Sec. IV the renormalized band for elec-
trons inO(1) is given by

€(k) = —qo[ cogk,a) +cogk,a) + 8t'cog k.a)cogk,a) |
(84)
momentum aq with go=&/2 and measuring all energies in units df Zhere
is in addition a constant, doping-dependent term on the right-
FIG. 2. Vertex functiony(kg,q) as a function ofaq for four ~ hand side of Eq(84) due to the first term in Eq:37). It will
different dopingss in the one-dimensiondl model. play no role in the following so we will drop it for simplicity.

o
o
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15
-~ = q,o
A Ny q=(q,0)
N\, t'=-0.05
—_— \‘
S o \
@ 1.0 L 02 ——-—5=0.548
£ =
2 x
c (0]
OJ '
5 0.1
£ g
E 05
0.0
0O 1 2 3 4 5 6
momentum aq

0.0

FIG. 5. Vertexy(kg ,q) as a function of the momentuarq with

momentum aqy
g=(q,0) fort’'=—0.05.

FIG. 3. Fermi lines in the irreducible Brillouin zone for four
different dopingss andt’=—0.05 in units of 4. out fort’=—0.05 where the maximal occupation, i.6=0,
is reached ajt=—0.12. The densityd,/2)N(x) as well as
Typical values fort" aret’ ~—0.125 for YBgCu;0; and  the average occupation per sité/z), are shown in Fig. 4 as
~—0.05 for maximal doped L&£u0,. Figure 3 shows Fermi solid and broken lines, respectively. The peakNfw) at
lines in the irreducible part of the Brillouin zone for ;=-0.2 is caused by the van Hove singularity.
t'=—0.05 for different values of the chemical potential: For  The vertex functiomyk,q) depends ork only via t(k),
u>4qot’ the Fermi lines are centered around Mepoint; at  j.e., only via the Fermi energy. The first argument is therefore
u=4qet’ there is a van Hove singularity, and fpr<4qet’  constant for a given doping, denoted symbolicallyKpyin
the lines are centered around tRepoint. The density of the following. y as a function ofy is only restricted by the
states can be obtained analytically after a lengthy but elpoint group of the square lattice, i.e., it still depends in gen-
ementary calculation: eral on the direction off. Plots ofy as a function of momen-
. Vo tum along the[10] and the[11] directions have been pre-
N(w)= K(4—(,U~+8t ) sented in Refs. 18, 26, and 27 for thenodel. These results
K m2qoV1—8at’ | 4(1—8ut’) also agree with the slave-boson method | of Ref. 33. The
. second slave-boson method Il in that reference which is not
with u=pu/q,. K is the elliptic function of the first kind. For  pased on a N expansion gives comparable results for large
pu<—2—4t’ the band is empty and the maximum occupa-momentum but much smaller values for small momentum
tion is reached already at negative valuesddf t' is nega-  transfers. Figures 5 and 6 show similar plots fdor thett’
tive. All subsequent calculations for th€ model are carried model. For each doping the momentuny varies between 0
and the largest possible momentum transfer on the Fermi

| oo

1.0 surface. At largeSs vy is rather unaffected by/. For smaller
i dopings thett’ model shows two new features compared to
0.8
[ o3 ™ a=(a.a)
~
0.6— ’\~
" §=0.548 \\ t'=-0.05
T 0.2} AN
= 6=0.139 \
= >
x
0.2\ e 0.1} 65=0.036
(]
» N >
0.0 | ) | 1 | 1 | Y ook e
-0.8 -0.6 -0.4 -0.2 N 1 . 1 )
chem. pot. i 0 1 2 3

momentum aqg

FIG. 4. Density of statesgp/2)- N(w) and the mean site occu-

pation &) as a function of the renormalized chemical potenial
for t'=-0.05.

FIG. 6. Vertexy(kg ,q) as a function of the momentuarq with
g=(q,q) for t'=—0.05.
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04r 1.0
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< : — 0.8
S o3 \ 1'=-0.05
?L < \
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‘:'x-/ QE) 0.6
Z 02 2
o 2 04
£ H
[0
Q
c
T 01 0.2
[=
[+}]
0.0
0.0 L. 0.0
0 ] 2 3 4 5 6 doping &

momentum aq
FIG. 9. Enhancements;, A3, anddA,, as a function of doping

FIG. 7. Enhancement functiop?(kg ,0)/qq as a function of the  § for thet model.
momentumaq with q=(q,0) fort’=-0.05.
model the enhancement function of th€ model shows
smaller absolute values and the increase towgre is less

thet model: The absolute values forare substantially re- ,
dramatic.

duced which can be verified analytically in the lingjt-0 .
; . ; ; As discussed at the end of Sec. IV the enhancement func-
using Eq.(85); y may become slightly negative at larger o A, and A,, describe the change ia’F; and o2F, re-

momenta similar as in the one-dimensional case. The mosst ectively, due to correlations if tioedependence of the bare
important features ofy in the t model do, however, not b Y, P

h in that’ model- v d ds f 100 | doDi electron-phonon interaction and the phonon branches can be
change in modet. y depends for not 1oo 1arge dopings neglected. Approximating the Fermi surface by a cylindler
strongly on the momentum and decreases monotonlcall}secomes

with increasing momentum. At larger momenta and small
dopingsy becomes very small which implies that also the
effective electron-phonon coupling becomes very small in Alzf d*q((8(q—p+p"))p)p ¥ (ke ,Q)/do.  (86)
this region even if the bare coupling was large.

Figures 7 and 8 show the enhancement functior® Straightforward calculation gives in two dimensions
(ke ,9)/qq for the tt’ model as a function ofj between 0
and g along the[10] and [11] directions, respectively. (8(G=p+p))o) ':% 0(2ke—q)0O(q) @7
Similarly to thet model this function is stronglyg dependent PP q ‘/4k2F_q2 '
for not too large dopings, decreases monotonically wijith
and assumes in general very small values at large momen®? that
and small dopings. For the special case of[th@ direction 5
the enhancement function increases again at large momenta A _2 Jz"qu 1 ¥ (ke ,q) 9
and small dopings due to the symmetry requirement that it Y o \/4k§—q2 Jo
has to be symmetric with respect to Compared to the

assuming also that depends only ofg|. A; is thus given by

a slightly distorted average of?(kg,q)/q, between 0 and

0.4 2kg . Similarly, A, is given by Eq.(88) if the additional

factorq®/(2k2) is inserted in the integrand. The effect of the

N ' strongq dependence o§?/q, is now evident from Figs. 7

and 8: InA; both small and large momentum transfers are

\ important whereas only large momenta contributé\jo As

\ /\ a resultA;, will decrease much stronger that, with de-

5=0.548 \ creasingds. One expects therefore a substantial difference
\ betweenA; and A, at small dopings caused by the strong

\ momentum dependence of the vertex function and thus by
\ correlations.
. We have performed the averagesAn, Az, and Ay, nu-
5=0.036 merically using the true anisotropic band dispersion and ver-

o o
N W
L=
/!
-
|
j
o
o
(4]

enhancement y%(kc,q)/q,
o

0.0 I ---- | 3
0

momentum aq

FIG. 8. Enhancement functiop?(kg ,0)/qq as a function of the
momentumaq with q=(q,q) for t'=-0.05.

tex. Figures 9 and 10 show the results for thend thett’
models, respectively. We have multiplied the three curves
with a common factor so that,; approaches 1 in the empty-
band limit 5—1. We also have plottedA,, instead ofA,,
because the doping dependence of the resistivity is given by
O\, as discussed at the end of Sec. IV. In thenodel A,
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10 ings. Taking also Coulomb repulsion into account, but
'=-0.05 not A, will be suppressed within the usual approximation.
Thus d-wave superconductivity necessarily becomes more
08 Ay y stable thans-wave superconductivity at sufficiently small
- - / dopings in both models. This transition froga to d-wave
5 06 van Hove / superconductivity is caused entirely by electronic correla-
E / tions because our bare electron-phonon coupling is assumed
e / to have onlys-wave symmetry.
£ 0.4 By The long-dashed lines in Figs. 9 and 10 descrébdg, .
@ L N Both in thet and thett’ modelséA,, decreases very fast with
02k ‘ decreasing and is very small fors<0.4. The guenching of
’ PN 6, is caused by two effects: Firs#?(kg,q)/qo becomes
A with decreasing very small for large momenta and large for
O’%o - —‘(’)"2 L 0'4 L O'(;""f‘"be small momenta. Due to the factgr(k)—v(k’)]% in A, only
‘ ' dopi‘ng 5 ) ‘ large momentum transfers contribute Ag which decrease

Ay . Second, the Fermi velocities entering are renormal-
FIG. 10. Enhancements,, A5, and 8A, as a function of dop- ized ones Ieadlng_, t_ogether wlth a density of states factor to a

ing & for t'=—0.05. factoréln the resistivityp whu_:h suppresses at small dop-

ings. As a net result correlation effects quenichby about

decreases first rather slowly with decreasing doping, passégle. order of magnitude in the small or intermediate doping
through a minimum at~0.1 and then increases strongly at regime. The electrons are then only weakly scattered by

very small dopings. The asymptotic behavior\gfat smalls phonons or, using simila_r arguments, by impl_Jrities a_lnd the
can be obtained analytically from E¢58): For a small electron-p_honon interaction becomes rather ineffective due
Y2(kg ,0)/q, has a width~ 6 and a height-1/8. Performing to correlation effects.

the averages in E@58) one findsA;~1/5 in agreement with
the numerical result. The decreaseAgfwith decreasing is
much stronger in the case of th&€ model: Betweens=1
and6=0.2 A, decreases roughly by a factor 5. The van Hove In the preceding sections we have calculated the renor-
singularity at 5~0.17 is clearly visible inA; producing a malization of the electron-phonon interaction by strong elec-
change in the slope at the singularity. F6~0 A; ap-  tronic correlations. For this we used an infiniteHubbard
proaches 0 in thét’ model because approaches 0 in this model with nearest- and second-nearest-neighbor hopping
limit. The different limits of thet and thett’ models for&—~0  terms on a square lattice and an electron-phonon coupling
are due to the fact that the density of states diverges im, the where the phonons couple to density fluctuations on the at-
but not in thett’ model in this limit. Since\, is the effective  oms. Our results for the various symmetry components of the
coupling constant fos-wave pairing one concludes that cor- Eliashberg functiona?F and the corresponding transport
relation effects suppred& in a monotonous way as function function o2F are asymptotically exact at lardé and for a

of doping and that this suppression is rather small in the casemall electron-phonon coupling constant. Useful quantities
of thet, but substantial for th&t’ model. The authors of Ref. characterizing the correlation effects are the enhancement
31 argued for a rather different behavidi; should show a functionsA, . They are defined as the ratio @fF; at doping
maximum at small dopings and not be much suppressed by and at6=1 taken at zero frequency and for the symmetry
correlations. It is presently unclear whether the different becomponenti. If the momentum dependence of the bare
haviors of T, can be attributed solely to the different electron-phonon coupling and of the phonon branches can be
electron-phonon couplingmodulation of the hopping matrix neglectedA; renormalizes theF; or \; of the uncorrelated
elements by core displacementsed in Ref. 31. case in a multiplicative way.

The short-dashed lines in Figs. 9 and 10 show the doping We find that electronic correlations affect different sym-
dependence of ; which is responsible fod-wave supercon- metry components of’F in a different way: The totally
ductivity. A3 must vanish for6—~1 because we assumed a symmetric functionA; in general decreases with decreasing
g-independent bare electron-phonon coupling and disperdoping with the biggest effects occurring at small dopings. In
sionless phonon branches. With decreasththe function thet model the reduction is rather moderate except at very
v?(kg ,q)/q, becomes more and morpdependent leading small dopings wheré\; even increases and diverges due to
to a finite A;. The unaveraged effective interaction has al-the coincidence of the van Hove singularity and the metal-
ways the same sign ig space which implies\;>A;. The insulator transition at half-filling. For the more realistic
equality sign occurs exactly then if the effective interactionmodel the correlation-induced reduction/of is monotonous
is diagonal inq space so that it no longer scatters electronsas function of§ and quite large for small dopings. Our nu-
between different momentum states on the Fermi surfacanerical results suggest that electronic correlations suppress
This situation occurs approximately at small dopings wheren general phonon pairing, especially in thE model, at
the function y?(kg,q)/q, develops a very narrow forward least in the adiabatic approximation, i.e., forck-vg(k). In
scattering peak. As a resul; is nearly coincident with\; at  the nonadiabatic regime>k-vg(k) the enhancement func-
small dopings. In theé model A; diverges similar taA; at  tion y?(kge,q)/q, may be substantially larger compared to
small dopings. In thét" model, on the other hand; always  the adiabatic case becausetends to the bare value 1. A
has a maximum in the region of small or intermediate dopproper inclusion of these effects inTa calculation would

VII. CONCLUSIONS
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need a solution of Eliashberg equations taking into accoursuperconductivity and it is asymptotically exact at lafge
the energy dependence of the vertex at small dopings and aihd for a small electron-phonon coupling.
the density of states near the van Hove singularity. Finally we find that the doping-dependent part of the re-
Another correlation effect is that the nontrivial symme- Sistivity, dA;, is heavily suppressed by correlations, both in
tries A; with i>1 can no longer be disregarded. In our cal-the t and thett’ models at low and intermediate dopings.
culations we assumed that the bare electron-phonon couplintfis is & consequence of the appearance of a forward scat-
has only as-wave componeni=1. Therefore all functions tering peak in t_he vertex f_unctlon |n_th|s regime. Our results
A; with i>1 have to vanish in the empty band case1. suggest that this feature is a generic one for strongly corre-
With decreasing doping the vertex becomes momentum dd@t€d systems. Moreover, they are consistent with the experi-
pendent and develops a forward scattering peak at small dogi€ntal observation that the transport coefficients in High-
ings. As a result functions\; are nonzero and of similar oxides do not exhibit fea_tures which are characteristic for the
magnitude and approach the same value in the limit of Van(_electron-phonon scattering.
ishing doping. We have verified this for thé-wave-like
componentA; by numerical calculations. In both models
indeed approaches, from below at small dopings; in the'’ It is a pleasure for the authors to thank L. Gehlhoff and A.
model A3 vanishes foib—0 andé—1 and shows a maximum Greco for many discussions. Helpful remarks of I. Mazin
near the van Hove singularity. Taking also the direct Cou-concerning vertex corrections are also acknowledged. One of
lomb repulsion into account it was argued that for our mod-us (M.L.K.) would like to thank Professor M. Mehring for
els as-wave order parameter can never be the stable ordesupport. He also acknowledges the hospitality of the Univer-
parameter below a certain critical value for the doping. Thissity of Stuttgart and the Max-Planck-InstitutrfEestkoper-
result is remarkable because it holds for phonon-mediatetbrschung.
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