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The renormalization of the electron-phonon interaction by strong electronic correlations is studied using a
one-band Hubbard model with infinite repulsion and nearest~t model! and nearest and second-nearest~tt8
model! neighbor hopping terms and an on-site electron-phonon coupling. Using Hubbard’sX operators and an
extension from 2 toN degrees of freedom for the electrons the leading contributions for the electron self-
energy and the vertex function in 1/N and the electron-phonon coupling constant are given and numerically
evaluated for a square lattice. We find that the momentum dependence of the vertex function depends strongly
on doping: For large dopings it is rather weak, with decreasing doping it becomes more and more pronounced
leading to a strong reduction of the vertex at larger momentum transfers until, for very small dopings, the
vertex essentially consists of a forward scattering peak with a width proportional to the doping. This behavior
occurs both in thet and thett8 models and also in one dimension where analytic expressions are derived.
Correlation effects also changea2F in general: The full-symmetric componenta2F1 is in the t model some-
what, in thett8 model rather strongly suppressed, especially near half-filling; the other symmetry components
a2Fi with i52,...,5 increase strongly with decreasing doping and are of similar magnitude asa2F1 near
half-filling. Including also direct Coulomb repulsion nontrivial symmetries such asd wave become more stable
than thes-wave order parameter below a critical value for the doping even for the considered phonon-mediated
superconductivity. Most dramatic, however, is the quenching of the resistivity due to electron-phonon scatter-
ing both in thet and thett8 models at intermediate and small dopings. This result may explain the absence of
phonon features in the experimental transport coefficients of high-Tc compounds.

I. INTRODUCTION

Strong correlations between electrons and a non-
negligible electron-phonon interaction are two characteristic
features of high-Tc oxides. The relevance of correlations in
these compounds is well documented: Self-consistent band-
structure calculations as well as photoemission experiments
find an effective Hubbard constantU for the Cu ions of
about 6–10 eV,1,2 which is much larger than the observed
width of the conduction bands of about 1 eV.3 A rather direct
evidence for strong correlations also comes from the doping
dependence of the frequency-dependent conductivity4 in
La12xSrxCuO4 and YBa2Cu3O72x, in particular, from the ob-
served shift of spectral weight from large to low energies
with doping.5

There is also good evidence that the bare electron-phonon
coupling in high-Tc oxides is not small: Self-consistent
local-density approximation band-structure calculations yield
a rather large electron-phonon coupling constantl;1–
1.5.6,7 Experimentally, superconductivity-induced phonon
renormalizations,8 Fano line shapes,8 large isotope coeffi-
cients away from optimal doping,9 and phonon-related fea-
tures in tunneling spectra10,11 give evidence for a substantial
electron-phonon coupling in these compounds. On the other
hand, if the data are interpreted only in terms of a strong
electron-phonon coupling some puzzles arise. One is con-
nected with the conductivity: In optimally doped systems the

width of the Drude peak and the temperature dependence of
the resistivity are not incompatible with a strong-coupling
theory usingl;3 and ltr;1, where ltr is the transport
electron-phonon coupling constant.12 However, the same
theory would requirel;ltr,0.1 in the overdoped system
Bi21xSr22yCuO66d,

13 which seems to be incompatible with
the band-structure results. Furthermore, it is even doubtful
whether at all the electron-phonon scattering determines the
conductivity in this system as well as in doped
La12xSrxCuO4:

14 The experimental curves do not show any
features at low temperatures which could be associated with
a transition to the asymptoticT5 law of phonon scattering.
Moreover, the rather continuous evolution of the resistivity
r(T) as function of doping questions the early interpretations
of the linear dependence ofr in optimal doped systems in
terms of phonon scattering. Thus a pure electron-phonon
theory is confronted with the problem to explain why the
electron-phonon coupling is present in self-energy effects but
absent in transport properties or, equivalently, whyltr is
much smaller thanl.15 One possibility is that correlation
effects strongly renormalize the electron-phonon
coupling.16–19 It is the aim of this paper to investigate this
problem in a controlled and quantitative way.

The important low-energy physics of electrons in high-Tc
oxides can be described in a good approximation by a one-
band Hubbard model on a square lattice.1,2 Exact diagonal-
ization studies of small clusters suggest that the charge-
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fluctuation spectra vary only weakly at largeU ’s.20 Since we
are dealing in the following only with charge fluctuations we
thus may putU equal to infinity. The resulting electronic
model is called at ~tt8! model if nearest~nearest and second-
nearest! neighbor hopping terms are included. These two
models will be studied in the following. As to the electron-
phonon interaction, there are two kinds of couplings: First,
there is an ioniclike, site-diagonal coupling where the total
electronic density at a lattice site interacts with phonons;
second, there is a covalentlike, site-nondiagonal coupling
where the dependence of the hopping matrix elements on the
distance between the sites causes the coupling. The perturba-
tion expansion for the two types of couplings is different and
somewhat simpler for the first type. Since there are also rea-
sons to believe that the ioniclike coupling dominates in
high-Tc oxides,

7,21we will consider only this coupling in the
following.

The Hamiltonian of our electron-phonon model is given
in Sec. II in terms of Hubbard’sX operators. Instead of one
orbital per site we introduceN/2 identical orbitals per site
and generalize the Hamiltonian correspondingly treating
later 1/N as a small parameter. We also specify carefully the
Hilbert space and the action of theX operators on its states.
The most popular way to proceed would be to decompose
the X operators into products of Fermi and Bose operators
which obey the usual simple commutation rules. The result-
ing slave-boson or fermion treatments22–24are characterized
by an increase of degrees of freedom plus constraints, local
gauge symmetries which are often broken on the mean-field
level, etc. In Sec. III we present a direct, slave-free Baym-
Kadanoff perturbation expansion for the electron self-energy
which uses the unmodifiedX operators and the original, un-
enlarged Hilbert space.18,25General, formally closed expres-
sions for the electronic self-energy in the presence of a weak
electron-phonon interaction will be given in this section. In
Sec. IV we specialize to the case where the parameter 1/N is
small. It is then sufficient to keep only the leading terms for
the electronic self-energy and the vertex function for which
explicit expressions will be given in the normal state. In this
section the Eliashberg functiona2F~v! will be derived and
decomposed in its irreducible symmetry components. It also
will be compared with its usual form where correlation ef-
fects are neglected. All modifications due to correlations can
be expressed by a few symmetry- andq-dependent functions,
called enhancement functions in the following. In Sec. V our
expression for the vertex will be compared with the corre-
sponding one of the slave-boson method. Though ourX op-
erator approach has, for instance, no Bose condensate we
will show that the two approaches give nearly, but not ex-
actly the same results in leading order of the 1/N expansion.
Whether such an approximate equivalence holds to all order
in 1/N remains to be seen. Finally, Sec. VI contains exact
results for thet model in one dimension and numerical re-
sults for the two-dimensionalt and tt8 models. Our conclu-
sions can be found in Sec. VII. For readers who are not
interested in the details of the derivations we would like to
point out the most important expressions used in the numeri-
cal evaluation in Sec. VI: Eqs.~52!–~59! contain the various
forms for the Eliashberg functionsa2F and Eqs.~41!–~44!
explicit expressions for the vertex function.

Some aspects of the influence of correlation effects on the

electron-phonon interaction have already been discussed in
the literature.16–19,26,27In particular, the frozen phonon cal-
culations in Refs. 16 and 17, using a covalentlike electron-
phonon coupling, yielded results for a special, large-
momentum phonon which are in line with our findings.
Some of our results for thet model have already been pub-
lished in Refs. 18, 26, and 27. The aim of this paper is to
present the theory in more detail and to give complete nu-
merical results, in particular, also for thett8 model.

II. HAMILTONIAN AND HILBERT SPACE

Our Hamiltonian reads

H5 (
i

p50...N

EipXi
pp2 (

i j
p51...N

ti j
N
Xi
poXj

0p1(
kl

v~kl!

3S a†~kl!a~kl!1
1

2D1 (
ikl

p51...N

gi~2kl!@a†~kl!

1a~2kl!#~Xi
pp2^Xi

pp&!. ~1!

The first two terms in Eq.~1! describe the electronic part of
H; Eip and t i j are atomic energies at the atomic sitei and
hopping amplitudes between the sitesi and j , respectively. It
is assumed in the following that the atomic sites form a
square lattice.X i

pq is a HubbardX operator for the atomic
site i wherep,q50 refer to the empty andp,q51...N to a
singly occupied state with spin directionsp,q. The first two
terms in Eq.~1! are invariant under SU(N) transformations.
Sometimes, for instance, in discussing superconductivity, it
is more convenient to use a symplectic extension toN de-
grees of freedom: SU(N) is replaced by the symplectic group
Sp(N/2); the indexp then consists of a spin-1/2 projection
label and a flavor index counting theN/2 identical orbitals.
The third term in Eq.~1! is the free phonon part where
a†~kl! creates a phonon with momentumk, branch indexl,
and frequencyv~kl!. The fourth term in Eq.~1! represents
the electron-phonon coupling with the coupling functiong. It
describes an ioniclike coupling where the phonons change
the chemical potential locally at the lattice sites.21 ^X i

pp& is
the thermal average ofX i

pp and has to be introduced in the
interaction to havêa†~kl!&50. The hopping termst i j in Eq.
~1! have been scaled with 1/N so that the limitN→` is
physically meaningful and the leading order of the self-
energy is ofO~1!.

ForN52 the Hamiltonian Eq.~1! describes usual spin-1/2
particles. The extension to a generalN is useful in order to
obtain a small parameter 1/N and has been introduced in Ref.
25 in the framework ofX operators. For a complete specifi-
cation of the problem we also have to specify the underlying
Hilbert space. We assume that it is spanned by the eigenfunc-
tions of the diagonal operatorsX i

pp with p51...N:

Xi
ppun1 ,...np ,...nN ;n0&5npun1 ,...np ,...nN ;n0&. ~2!

Assuming thatX i
pp is still a projector forp51...N the ei-

genvaluesnp may be either 0 or 1. Imposing also the gener-
alized constraint
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(
p50

N

Xi
pp5N/2, ~3!

n0 is determined byn05N/22( p51
N np . SinceX

00 is as-
sumed to be a non-negative operator as in the physical case
N52 we must haven0>0, i.e., only such sets of numbers
n1 ...nN are admitted which lead to a non-negativen0.

The action of nondiagonalX operators on the states of the
Hilbert space is defined by

Xi
pqun0 ;n1 ...np ...nq ...nN&

5~21!np1•••1nq21un0 ;n1 ...np11...nq21...nN&, ~4!

Xi
0pun0 ;n1 •••np •••nN&

5An011~21!n11•••1np21un011;n1 ...np21...nN&, ~5!

Xi
p0un0 ;n1 •••np •••nN&5An0~21!n11•••1np21

3un021;n1 ...np11•••nN&. ~6!

In Eqs. ~4!–~6! the convention is used that vectors on the
right-hand sides in these equations with unacceptable argu-
ments should be identified with the zero vector. In Eq.~4! we
also assumedp,q without loss of generality. From Eqs.
~4!–~6! it follows that fermionicX operators obey the anti-
commuting and bosonicX operators the commuting relations
of usualX operators, i.e., those of the unextended caseN52
~fermionic operators areX operators where exactly one zero
appears in the two indices; all the remainingX operators are
called bosonic!. In contrast to that, the commutators of fer-
mionic and the anticommutators of bosonicX operators de-
pend explicitly onN. From Eqs.~4!–~6! follows, in particu-
lar, the identity

X00Xpq5X00dpq2X0qXpo. ~7!

It relates diagonal to nondiagonal elements of theX opera-
tors and will be used in Sec. IV to express expectation values
of bosonicX operators in terms of Green’s functions. Note
that the left- and right-hand sides of Eq.~7! are identical zero
in the caseN52.

Finally, we remark that the slave-boson representation of
X operators forp.0,q.0:

Xi
op5bi

†f ip ,Xi
pq5 f ip

† f iq ,Xi
005bi

†bi ~8!

in terms of bosonic and fermionic creation and destruction
operatorsbi

† ,bi and f ip
† , f ip , respectively, also obeys Eqs.

~4!–~6!. Using such a representation one is, however, forced
to introduce a Bose condensate^b& which has no analog in
the X-operator approach. The reason for this is that in the
Hilbert space where theX operators act the operatorsb or b†

are no admissible operators: Applying them to a state vector
yields in general vectors which no longer belong to the Hil-
bert space.

III. THE ELECTRON SELF-ENERGY IN THE PRESENCE
OF A WEAK ELECTRON-PHONON COUPLING

Using the Hamiltonian Eq.~1! the Heisenberg equation of
motion for fermionic operators becomes

S ]

]t1
2E~1! DX~1!5E d2 d3t~123!Y~2!X~3!

1E d2̄ d3h~12̄3!H~ 2̄!Y~3!. ~9!

1̄ stands for the sitei 1 and the imaginary timet1, 1̄5~i 1t1!.
Similarly, 1 stands for 1̄and the pairpq of internal labels, so
that 1[(

1̄

pq
). The functionst andh are given explicitly by

t~123!52
t i1i3
N

d i1i2d~t12t2!d~t32t1!@~dp20
dq1q2dp1p3

1dp1p2
dq2p3!dq10~12dp30

!dq302~dp2q3
dq1q2

1dp1p2
dq20dq1q3!dp10

~12dq30!dp30
#, ~10!

h~12̄3!52d i1i2d i1i3d~t12t2!d~t12t3!~dp10
dq1q3dp30

2dq10dq30dp1p3
!. ~11!

Y denotes a bosonicX operator, a notation, which is often
convenient to distinguish bosonic and fermionicX operators
in an explicit way.H~1̄! is given by

H~ 1̄!5(
kl

gi1~2kl!@a†~klt1!1a~2klt1!#. ~12!

Following Ref. 28 we define nonequilibrium Green’s
functions with fermionic Hubbard operators by

GS 0q11̄ p20

2̄ D52^TSX0q1~ 1̄!Xp20~ 2̄!&/^S&, ~13!

S5Te(p2q2
*d2̄Yp2q2~ 2̄!Kp2q2~ 2̄!. ~14!

*d1̄ means( i1
*0

bdt1. T is the time ordering operator,K an
external source which couples to bosonicX operators. Using
the equation of motion, Eq.~9!, it is easy to show thatG
satisfies the Dyson equation

(
q2

E d2̄H d~ 2̄21̄!Fdq2q1S 2
]

]t2
1~Ei10

2Ei1q1
! D 2K00~ 1̄!dq1q21Kq1q2~ 1̄!G2SS 0q11̄ ,

0q2
2̄ D JGS 0q22̄ ,

p180

1̄8 D
5d~ 1̄21̄8!Q0q1 ,p180

~ 1̄!. ~15!
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Q is given by

Q0q1 ,p180
~ 1̄!5^@X0q1~ 1̄!,Xp180~ 1̄!#1&. ~16!

The self-energyS is defined by

E d2S~12!G~218!5E d2 d3t~123!

3
^TSY~2!X~3!X~18!&

^S&

1E d2̄ d3h~12̄3!

3
^TSH~ 2̄!X~3!X~18!&

^S&
. ~17!

It is also convenient to introduce the normalized Green’s
function

G̃S 0q11̄ ,
0q18

1̄8 D 5(
p8

GS 0q11̄ ,
p80

1̄8 DQp80,0q18
21

~ 1̄8!. ~18!

G̃ satisfies Eq.~15! if Q on the right-hand side is replaced by
dq1p18.

We now assume that the electron-phonon coupling is
weak so thatS can be expanded in a power series ing:

S~118!5S~0!~118!1S~2!~118!1..., ~19!

whereS( i ) is of power i in g. S~1! vanishes in equilibrium
and thus can be dropped. From the modified Dyson equation
follows

S~2!~118!5E d2 d3G̃21~12!G̃~2!~23!G̃21~318! ~20!

whereG̃( i ) denotes terms of poweri in g andG̃~0! is simply
denoted byG̃. Carrying out second-order perturbation theory
in Eq. ~13! in the electron-phonon interaction one finds

G~2!~23!5
21

2
E d4̄ d5̄V~ 4̄25̄!

d2G~23!

dK~ 4̄!dK~ 5̄!
. ~21!

K~4̄! stands forK(
4̄

00
). V is the phonon-medited interaction

V~ 1̄22̄!5(
kl

gi1~2kl!Dph~kl,t12t2!gi2~kl!, ~22!

whereDph denotes the phonon Green’s function. From Eq.
~18! follows

d2G~23!

dK~ 4̄!dK~ 5̄!
5

d2G̃~23!

dK~ 4̄!dK~ 5̄!
Q~3!1G̃~23!

d2Q~3!

dK~ 4̄!dK~ 5̄!

1
dG̃~23!

dK~ 4̄!

dQ~3!

dK~ 5̄!
1

dG̃~23!

dK~ 5̄!

dQ~3!

dK~ 4̄!
. ~23!

Inserting Eq.~23! into Eqs.~20! and ~21! one finds

S~2!~118!5
21

2
E d2 d3 d4̄ d5̄G̃21~12!V~ 4̄25̄!S d2G̃~23!

dK~ 4̄!dK~ 5̄!
12

dG̃~23!

dK~ 4̄!

dQ~3!

dK~ 5̄!
Q21~3!D G̃21~318!. ~24!

Defining the vertex functionG̃ by

G̃~118;2!5
dG̃21~118!

dK~2!
, ~25!

the functional derivatives ofG̃ with respect toK can be written as

dG̃~12!

dK~ 5̄!
52E d6 d7G̃~16!G̃~67;5̄!G̃~72!, ~26!

d2G̃~12!

dK~ 4̄!dK~ 5̄!
5E d6 d7 d8 d9G̃~18!G̃~89;4̄!G̃~96!G̃~67;5̄!G̃~72!2E d6 d7G̃~16!

dG̃~67;5̄!

dK~ 4̄!
G̃~72!

1E d6 d7 d8 d9G̃~16!G̃~67;5̄!G̃~78!G̃~89;4̄!G̃~92!. ~27!

Inserting Eq.~27! into Eq. ~24! yields finally

S~2!~118!52E d4̄ d5̄V~ 4̄25̄!S E d6 d7G̃~16;4̄!G̃~67!G̃~718;5̄!2
1

2

dG̃~118;5̄!

dK~ 4̄!

2E d6 d7G̃~16;4̄!G̃~67!
dQ~7!

dK~ 5̄!
Q21~7!G̃21~718!D . ~28!
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The expression for the zeroth-order self-energyS~0! can eas Y in
the average over three operators by a functional derivative
with respect toK, and by using then Eq.~25!. The result is

S~0!~118!52E d2t~1218!^Y~2!&

1E d2 d3 d4t~123!G̃~34!G̃~418;2!

2E d2 d3 d4t~123!G̃~34!
dQ~4!

dK~2!

3Q21~4!G̃21~418!. ~29!

Equations~28! and ~29! are the main results of this section:
They give explicit expression for the electron self-energy
in the presence of a weak electron-phonon interaction
in terms ofG̃, G̃, and the derivativedG̃/dK which are to be
calculated without the electron-phonon coupling. Note also
that Eqs.~28! and ~29! are valid in the presence of a source
field K. Equation~28! tells us that only charge fluctuations
enterS~2! because the third, bosonic argument ofG̃ always
has the internal pair index 00. This is a consequence of our
Hamiltonian Eq.~1! where phonons only couple to density
fluctuations.

IV. DETERMINATION OF THE VERTEX FUNCTION IN
O„1…

In the Baym-Kadanoff theoryS is considered as a func-
tional of G̃ and Q but does not depend explicitly on the
source fieldK. Using this, the definition ofG̃, Eq. ~25!, and
Dyson’s equation we obtain

G̃~118;2!52
dW~118!

dK~2!
1E d3 d4 d5 d6

dS~0!~118!

dG̃~34!

3G̃~35!G̃~56;2!G̃~64!

2E d3
dS~0!~118!

dQ~3!

dQ~3!

dK~2!
. ~30!

W~118! is the inverse ofG̃~0!~118!. The derivative ofG̃ with
respect toK in the second term on the right-hand side has
been expressed byG̃ by taking the derivative of the identity
G̃G̃2151. Finally we have to relateQ, or, equivalently,
^Ypq~1!&, to G̃. Taking the expectation value of the operator
identity Eq. ~7! in the presence of the source fieldK we
obtain the general relation

^Ypq~1!&5G̃S 0p
1

0q

11D 2
d^Ypq~1!&

dK00~1!

1

^X00~1!&

(
q8

G̃S 0p
1

0q8

11 D ^Ypq8~1!&

^X00~1!&
2

^Ypq~1!&

^X00~1!&
,

where 1̄1 denotes 1̄with an infinitesimally increased time
argument. Equations~29!–~31! form a closed system of

equations for the self-energy, the vertex function, and the
expectation values ofY operators in the presence of a source
field K.

Without any approximation we can make the following
two simplifications in Eqs.~29!–~31! in the normal state.

~a! In the absence of superconductivity the two pairs of
internal labelspq and p8q8 for fermionic operators in the
Green’s function, the self-energy, and the vertex function
must have the formp5p850, qÞ0, q8Þ0 or q5q850,
pÞ0, p8Þ0. Moreover, each of the two choices leads to the
same closed system of equations so that we can confine our-
selves to the first choice.

~b! For our purposes it is sufficient to consider only the
source fieldK00~1̄!. This means that the source field does not
lower the symmetry of the Hamiltonian so that all selection
rules without field can also be used in the presence of the
above special source field:

G̃S 0q1 0q8
18 D5dqq8G̃~ 1̄ 1̄8!, ~32!

SS 0q1 0q8
1 18D5dqq8S~ 1̄ 1̄8!, ~33!

G̃S 0q1 0q8
1
;
00
5 D52dqq8G̃~ 1̄ 1̄8;5̄!. ~34!

In Eq. ~34! we have introduced a minus sign in order to
conform with the definition of the vertex in Ref. 18.

Finally we use 1/N as a small parameter to simplify the
above equations. For the leading order it follows from Eqs.
~3! and ~15! that ^Y11&;O(1),^X00&;O(N),G̃;S;O(1).
Iterating Eq.~31! we obtain

^Y11~ 1̄!&5G̃~ 1̄ 1̄1!1O~1/N!. ~35!

Taking a derivative of this relation we find

dQ~ 3̄
00

!

dK~ 2̄
00

!
52N

dG̃~ 3̄
01

3̄1

01
!

dK~ 2̄
00

!
1O~1!

5NE d4̄ d5̄G̃~ 3̄ 4̄!G̃~ 4̄ 5̄;2̄!G̃~ 5̄ 3̄1!1O~1!.

~36!

To calculateS~0! in Eq. ~29! in O~1! it is sufficient to use just
the first term forG̃ on the right-hand side of Eq.~30! so that

S~0!~ 1̄ 1̄8!51d~ 1̄21̄8!E d2̄t~ 1̄22̄!G̃~ 2̄11̄!2t~ 1̄21̄8!

3^X00~ 1̄!&1O~1/N!. ~37!

t~1̄22̄! is given by

t~ 1̄22̄!5t i1i2d~t12t2!/N. ~38!

It is sufficient to use only the first two terms in Eq.~37! in
carrying out the derivatives ofS~0! in Eq. ~30!. From Eq.~36!
and Eqs.~32!–~34! the following equation for the vertex
function is then obtained:
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G̃~ 1̄ 1̄8;2̄!5d~ 1̄21̄8!d~ 1̄22̄!1NE d3 d4 d5@d~ 1̄21̄8!t~ 1̄23̄!1t~ 1̄21̄8!d~ 1̄23̄!#G̃~ 3̄ 4̄!G̃~ 4̄ 5̄;2̄!G̃~ 5̄ 1̄1!. ~39!

A more detailed proof that Eqs.~37! and ~39! indeed repre-
sent the leading expressions for largeN’s is given in Ref. 34.

The vertex equation~39! can be solved exactly without
source fieldK00. Writing G̃~1̄ 1̄8;3̄!5g~1̄21̄8,1̄23̄! and per-
forming Fourier transformations with respect to space and
time variables Eq.~39! becomes

g~k,q!511
TN

Nc
(
k1

@ t~k!1t~k11q!#G̃~k1!

3G̃~k11q!g~k1 ,q! ~40!

with k5(k,ivn1
) andq5~q,inn!. Nc is the number of primi-

tive cells. Equation~40! represents an integral equation with
two separable kernels and thus can be solved:

g~k,q!5
11b~q!2a~q!t~k!

@11b~q!#@11b~2q!#2a~q!c~q!
, ~41!

where

a~q!5vcE d2k

~2p!2
f „j~k!…2 f „j~k1q!…

j~k1q!2j~k!2 inn
, ~42!

b~q!5vcE d2k

~2p!2
t~k!

f „j~k!…2 f „j~k1q!…

j~k1q!2j~k!2 inn
, ~43!

c~q!5vcE d2k

~2p!2
t~k!t~k1q!

f „j~k!…2 f „j~k1q!…

j~k1q!2j~k!2 inn
.

~44!

vc is the area of the primitive cell and thek integrations in
Eqs. ~42!–~44! are to be extended over the first Brillouin
zone.j~k! is equal toe~k!2m wheree~k! are the renormal-
ized one-particle energies due toO~1! terms inS~0! of Eq.
~37!. Furthermore, the first term in Eq.~37! can be absorbed
into the chemical potential. In order to have the usual Hamil-
tonian forN52 in Eq.~1! one has to putt i j52t andt i j52t8
if i and j denote nearest- and second-nearest neighbors, re-
spectively. For a square lattice we obtain then for the one-
particle energies e~k!52q0@cos(kx)1cos(ky)
18t8cos(kx)cos(ky)# choosing 4t and a as the energy and
length units, respectively.a is the lattice constant of the
square lattice, andq05d/2 whered is the doping defined at
T50 by 12d52*2`

m N(e)de andN~e! is the density of renor-
malized one-particle states for one spin direction.

In order to determinedG̃/dK, which appears in Eq.~28!,
we take the derivative in the general vertex equation Eq.
~39!:

dG̃~ 1̄ 1̄8;5̄!

dK~ 4̄!
5F~ 1̄ 1̄8,4̄ 5̄!1E d3̄ d6̄ d7̄@d~ 1̄21̄8!t~ 1̄23̄!

1t~ 1̄21̄8!d~ 1̄23̄!] G̃~ 3̄ 6̄!
dG̃~ 6̄ 7̄;5̄!

dK~ 4̄!
G̃~ 7̄ 3̄1!

~45!

with the inhomogeneous term

F~ 1̄ 1̄8;4̄ 5̄!52E d3̄ d6̄ d7̄ d8̄ d9̄@d~ 1̄21̄8!t~ 1̄23̄!1t~ 1̄21̄8!d~ 1̄23̄!#@G̃~ 3̄ 8̄!G̃~ 8̄ 9̄;4̄!G̃~ 9̄ 6̄!G̃~ 6̄ 7̄;5̄!G̃~ 7̄ 3̄1!

1G̃~ 3̄ 6̄!G̃~ 6̄ 7̄;5̄!G̃~ 7̄ 8̄!G̃~ 8̄ 9̄;4̄!G̃~ 9̄ 3̄1!#. ~46!

In Eq. ~46! we have expresseddG̃/dK in terms of the vertex
function as previously. Multiplying Eq.~45! with V~4̄25̄!
and integrating over 4̄and 5̄one obtains a separable integral
equation for the quantity

s~ 1̄ 1̄8!5
1

2
E d4̄ d5̄V~ 4̄25̄!

dG̃~ 1̄ 1̄8;5̄!

dK~ 4̄!
, ~47!

which can be solved trivially and which, according to Eq.
~28!, represents exactly the self-energy contribution. The re-
sult is

s~ 1̄ 1̄8!5
A

B S d~ 1̄21̄8!E d3̄t~ 1̄23̄!1t~ 1̄21̄8! D ~48!

with the numbers

A5E d4̄ d5̄ d6̄ d7̄ d8̄ d9̄V~ 4̄25̄!

3G̃~ 3̄ 8̄!G̃~ 8̄ 9̄;4̄!G̃~ 9̄ 6̄!G̃6̄ 7̄;5̄)G̃~ 7̄ 3̄1!, ~49!

B512E d1̄ d1̄8G̃~ 2̄ 1̄!S d~ 1̄21̄8!E d3̄t~ 1̄23̄!

1t~ 1̄21̄8! D G̃~ 1̄82̄1!. ~50!

For a square lattice holds

E d3̄t~ 1̄23̄!5218t8. ~51!
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According to Eq.~48! s represents a static renormalization
of the chemical potential~first term! and of the hopping ma-
trix elements~second term! due to the electron-phonon inter-
action. These frequency-independent renormalizations can be
neglected ifA/B!1/22q0 which always holds with our as-
sumptions except in the special case of exactly half-filling.

The third term forS~2! in Eq. ~28! is due to first-order
changes inG̃ andQ. Using Eq.~36! it is evident that its last
factor, G̃21, is not compensated by a preceding factorG̃.
This means that this term actually is not a self-energy term
but a contribution toG̃ which should be kept on the right-
hand side in Dyson’s equation. It thus renormalizes the 1 in
an additive way making the right-hand side of Dyson’s equa-
tion frequency and momentum dependent. Being of orderg2

its real part may be neglected compared to 1 but its imagi-
nary part contributes, for instance, to the amplitude of qua-
siparticles. We will not discuss this term further in this paper
but concentrate on the first term in Eq.~28! which we denote
by SF . Carrying out obvious integrations29 and assuming a
slowly varying density of states near the Fermi energy we
obtain

SF~kz!5E
0

`

dv^a2F~k,k8,v!&k8R~z,v! ~52!

with

R~z,v!522p i S b~v!1
1

2D1cS 121 i
v2z

2pT D
2cS 122 i

v1z

2pT D , ~53!

a2F~k,k8,v!5N~0!(
l

ug~k,k2k8,l!u2

3d„v2v~k2k8,l!…g2~k,k2k8!.

~54!

b~v! denotes the Bose distribution andc the digamma func-
tion. g~k,q,l! is related togi~ql! by a Fourier transform with
respect to the site labeli . ^ &k denotes a Fermi-surface aver-
age with respect to the momentumk andN~0! is the density
of renormalized particle states for one spin direction. In the
one-particle approximation~i.e., if U50! a2F is also given
by Eq. ~54! except for two important changes:N~0! is re-
placed by the density of noninteracting particle states which
is N~0! multiplied byq0. The second change concernsg: in
the free particle approximationg51 whereas in our case
with U5` g is the momentum-dependent function Eq.~41!.

Depending on the symmetry of the superconducting order
parameter various averages of the above function
a2F~k,k8,v! enter the Eliashberg equation. Assuming that the
order parameter transforms according to the representationGi
of the point groupC4v of the square lattice the appropriate
symmetry-projected function is

a2Fi~ k̃,k̃8,v!

5N~0!
1

8 (
l, j

ug~ k̃,k̃2Tj k̃8,l!u2

3d„v2v~ k̃2Tj k̃8,l!…g2~ k̃,k̃2Tj k̃8!Di~ j !. ~55!

k̃ and k̃8 are momenta on the Fermi line in the irreducible
Brillouin zone which is 1/8 of the total Brillouin zone.Tj ,
j51,..8, denote the eight point-group transformations form-
ing the symmetry groupC4v of a square lattice. This group
has five irreducible representations which we distinguish by
the labeli51,2...5. In the following the representationsi51
and i53 will be of importance corresponding tos- and
d-wave symmetry in the full rotation group.Di( j ) is the
representation matrix of thej th transformation for the repre-
sentationi . Assuming that the order parameter does not vary
much in the irreducible Brillouin zone one can average over
k̃ and k̃8 in the irreducible Brillouin zone. For each symme-
try one obtains in this way a function

a2Fi~v!5^^a2Fi~ k̃,k̃8,v!& k̃& k̃8 ~56!

which, in a first approximation, determines the transition
temperature for an order parameter with symmetryGi . Per-
forming a similar calculation as above for the phonon-
limited resistivity one finds that the resistivity is related to
the functionatr

2F~v! as usual30 and thatatr
2F~v! is given by

a tr
2F~v!

5^^a2F~k,k8,v!@v~k!2v~k8!#2&k&k8 /~2^^v2~k!&k&k8!.
~57!

The effect of correlations can be discussed in a simple
way if one assumes that the bare coupling functiong~k,k8,l!
and the phonon frequenciesv~k,l! are independent of mo-
menta. Correlation effects ina2Fi at zero frequency are then
described by the ‘‘enhancement’’ functions

L i5
1

8 (
j51

8 K K ug~ k̃,k̃2Tj k̃8!u2

q0
L
k̃
L
k̃8

Di~ j !. ~58!

Similarly, correlation effects in the resistivityr are described
by dLtr with

L tr5K K ug~k,k2k8!u2

q0
@v~k!2v~k8!#2L

k
L
k8

Y~2^^v2~k!&k&k8!. ~59!
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The additional factord in r is due to the fact thatr contains
renormalized Fermi velocities~yielding a factord2! as well
as a density of state factor~yielding a factor 1/d! so that
altogether a factord appears in front ofLtr . Absence of
correlations implies thatL15Ltr51, Li50 for i.1, and the
absence of the factord in the relation betweenr andLtr .

V. COMPARISON WITH THE SLAVE-BOSON APPROACH

Comparison with Ref. 22 shows that ourO~1! result for
S~0!, Eq. ~37!, agrees exactly with the corresponding slave-
boson result. Only the meaning of various quantities is dif-
ferent which is due to the fact that, for instance, there is no
Bose condensate in our approach. In the following we will
compare our expression for the vertex functiong, Eqs.~40!–
~44!, with that of slave-boson theory.

Figure 1~a! shows the vertex equation of theX-operator
approach which has been used in Sec. IV. The corresponding
vertex equation of the slave-boson approach is graphically
shown in Fig. 1~b! and looks quite different from Fig. 1~a!.
The thin solid lines in Fig. 1~b! denote the spinon Green’s
function, the wavy line an effective potential due to fluctua-
tions in the amplitude of the condensate and the variable
conjugate to the constraint. The corresponding analytic ex-
pressions are22,31

g~k,q!511
1

2 (
k8

G~k8!G~k81q!veff~k,k8,q!, ~60!

veff~k,k8,q!5$2Lrr ~q!1 i @e~k8!1e~k81q!1e~k!

1e~k1q!#Lrl~q!1@e~k!1e~k1q!#@e~k8!

1e~k81q!#Lll~q!%/D~q!, ~61!

D~q!5Lrr ~q!Lll~q!2Lrl
2 ~q!. ~62!

Comparing the expression for theL ’s in Ref. 22 with our
expressions fora,b,c we find withq5~q,inn!

Lll~q!5a~q!/2, ~63!

Lrl~q!52 iq0$11@b~q!1b~2q!#/2%, ~64!

Lrr ~q!522q0
2c~q!1nn

2a~q!/2. ~65!

Inserting Eqs.~61!–~65! into Eq. ~60! we obtain

g~k,q!5
11b~q!2a~q!@ t~k!1t~k1q!#/2

@11b~q!#@11b~2q!#2a~q!c~q!
. ~66!

The denominators in Eqs.~41! and ~66! are the same which
implies, for instance, that the collective excitations are the
same in the two approaches. However, the numerator in Eq.
~66! is somewhat different from that of Eq.~41!: The slave-
boson expression is symmetric in the initial and final mo-
menta of electrons,k andk1q, respectively. In the expres-
sion of theX-operator approach only the initial momentumk
appears. The origin and the relevance of this discrepancy
between the two approaches are presently not well under-
stood. Note, however, that this discrepancy vanishes in the
limit q→0 and is also irrelevant in all cases where the elec-
tron momenta can be put right onto the Fermi surface. On the
other hand,g(k,q) is the ratio of the renormalized and the
bare electron-phonon coupling. Equivalent theories thus
should give the same value forg for arbitrary argumentsk
andq.

VI. RESULTS AND DISCUSSION

A. Limiting cases of the vertex function
and the one-dimensional case

Keeping the frequency finite and taking the limitq→0
Eqs. ~42!–~44! yield a5b5c→0 and thereforeg→1. This
limit is relevant for the renormalization ofq50 phonons due
to superconductivity. In these calculations the bare, un-
screened vertexg51 should be used in agreement with Ref.
32.

A less trivial case is obtained if we first put the frequency
to zero and then letq go to zero. From Eqs.~42!–~44! fol-
lows

a→N~m!, ~67!

b→2
m

q0
N~m!, ~68!

c→
m2

q0
2 N~m!, ~69!

so that

lim
q→0

g~kF ,q,inn!5
1

122~m/q0!N~m!
. ~70!

The denominator in Eq.~70! is related to the compressibility
k by

k5
N~m!

122~m/q0!N~m!
. ~71!

Near a boundary for phase separationk diverges. According
to Eq. ~71! this may happen in two different ways:N~m!
diverges and, at the same time,m→0 which holds in thet
model at half-filling; or,N~m! remains finite but the denomi-
nator in Eq.~71! vanishes. This case occurs in thett8 model
if t/t8.0. Real high-Tc oxides, however, always correspond
to the caset/t8,0, so we will not consider the possibility
t/t8.0 further.

FIG. 1. Diagrammatic equation for the electron-phonon vertex
~shaded triangle! using ~a! Hubbard’sX operators and~b! slave-
boson theory. Fat solid, thin solid, and wavy lines denote electron,
spinon, and boson propagators, the dashed line the hopping term,
the small filled circles and trianglesd functions and the bare spinon-
boson interaction, respectively.
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In the following we assume that the adiabatic approxima-
tion holds so that thev dependence ofa, b, c, andg can be
neglected. Thek integrals ina,b,c can be performed in gen-
eral only numerically. However, in the special case of one
dimension, these integrals can be carried out analytically.
Putting 4t anda to one one obtains the following results:

a~q!5
&

pd

1

A12cos~q!
lnUtg~ uqu/41kF/2!

tg~ uqu/42kF/2!
U, ~72!

b~q!5
1

pd

sinuqu
12cos~q!

lnUsin~kF1uqu/2!

sin~kF2uqu/2!
U, ~73!

c~q!5
2

pd
@ f ~q!cos~q!2g~q!sinuqu#, ~74!

with the two functions

f ~q!5sin~kF!1
1

2
ctgS uqu

2 D lnUsin~kF!1usin~q/2!u
sin~kF!2usin~q/2!uU,

~75!

g~q!5ctgS uqu
2 D sin~kF!

2
1

4

sin~q!

usin~q/2!u
lnUsin~kF!1usin~q/2!u
sin~kF!2usin~q/2!uU. ~76!

d is the doping away from half-filling and related tokF by
12d52kF/p. The renormalized energies are
e(k)52q0 cos(k) with q05d/2. Inserting Eqs.~72!–~75!
into Eq. ~41! yields an analytic expression for the vertex
functiong. g is an even function inq and periodic inq with
period 2p so it is sufficient to varyq in the interval@0,p#.
Theq→0 limit of g is

lim
q→0

g~kF ,q!5
1

$11@4 cot~kF!/~p22kF!#%
~77!

with approaches 1/3 ford→0 and` for d→1. The compress-
ibility k, Eq. ~71!, becomes

k5
2

pd cos~pd/2!12 sin~pd/2!
~78!

and diverges ford→0. Since limq→0g(kF ,q) and k differ
only by a density of states factor the divergence ofk is
caused by the divergence of the density of states at half-
filling.

Near 2kF a,b,c, andg behave as follows ifuku,2kF :

a~2kF2k!5
1

pd

1

sin~kF!
lnU1kU, ~79!

b~2kF2k!5
1

pd
cot~kF!lnU1kU, ~80!

c~2kF2k!5
1

pd
@cot~kF!cos~2kF!

1cos~kF!sin~2kF!# lnU1kU, ~81!

g~2kF2k!5
pd tan~kF!

lnu1/ku
112 cos~kF!

122 cos2~kF!
. ~82!

Each of the three susceptibilitiesa,b,c diverges at 2kF and
is symmetric with respect to 2kF . The vertex function, on the
other hand, approaches zero at 2kF in a logarithmically way
from above for cos(kF),1/& and from below for
cos(kF).1/&. This implies that for cos(kF).1/&, g
changes from positive values at small momenta to negative
values at large momenta at a momentum which is somewhat
smaller than 2kF .

Figure 2 shows plots forg as a function ofq for four
different values of the doping. Expanding Eqs.~72!–~74! for
small d’s andq’s yields the approximate expression

g;
1

31q2/~6p2d2!
. ~83!

g thus approaches for smalld’s a Lorentzian with height 1/3
and width 3pd&, in agreement with Fig. 2. Ford50.125 the
logarithmic singularity at 2kF becomes visible in the plot at
aq;2.7 in the form of a small change in the slope. Increas-
ing the doping the 2kF singularity moves to smaller mo-
menta, becomes more pronounced, and changes its sign in
agreement with Eq.~82!. g is always a strongly decreasing
function forq,2kF but beyond 2kF it starts to increase with
increasing momentum ifd.0.5. In the next section we will
find that some of these features are also typical for the two-
dimensional case.

B. Results for the t and tt8 models on a square lattice

As discussed in Sec. IV the renormalized band for elec-
trons inO~1! is given by

e~k!52q0@cos~kxa!1cos~kya!18t8cos~kxa!cos~kya!#
~84!

with q05d/2 and measuring all energies in units of 4t. There
is in addition a constant, doping-dependent term on the right-
hand side of Eq.~84! due to the first term in Eq.~37!. It will
play no role in the following so we will drop it for simplicity.

FIG. 2. Vertex functiong(kF ,q) as a function ofaq for four
different dopingsd in the one-dimensionalt model.
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Typical values fort8 are t8 ;20.125 for YBa2Cu3O7 and
;20.05 for maximal doped La2CuO4. Figure 3 shows Fermi
lines in the irreducible part of the Brillouin zone for
t8520.05 for different values of the chemical potential: For
m.4q0t8 the Fermi lines are centered around theM point; at
m54q0t8 there is a van Hove singularity, and form,4q0t8
the lines are centered around theG point. The density of
states can be obtained analytically after a lengthy but el-
ementary calculation:

N~m!5
1

p2q0A128m̃t8
KS 42~m̃18t8!2

4~128m̃t8! D ~85!

with m̃5m/q0 . K is the elliptic function of the first kind. For
m̃,2224t8 the band is empty and the maximum occupa-
tion is reached already at negative values form̃ if t8 is nega-
tive. All subsequent calculations for thett8 model are carried

out for t8520.05 where the maximal occupation, i.e.,d50,
is reached atm̃520.12. The density (q0/2)N(m̃) as well as
the average occupation per site,d(m̃), are shown in Fig. 4 as
solid and broken lines, respectively. The peak inN(m̃) at
m̃520.2 is caused by the van Hove singularity.

The vertex functiong~k,q! depends onk only via t~k!,
i.e., only via the Fermi energy. The first argument is therefore
constant for a given doping, denoted symbolically bykF in
the following.g as a function ofq is only restricted by the
point group of the square lattice, i.e., it still depends in gen-
eral on the direction ofq. Plots ofg as a function of momen-
tum along the@10# and the@11# directions have been pre-
sented in Refs. 18, 26, and 27 for thet model. These results
also agree with the slave-boson method I of Ref. 33. The
second slave-boson method II in that reference which is not
based on a 1/N expansion gives comparable results for large
momentum but much smaller values for small momentum
transfers. Figures 5 and 6 show similar plots forg for the tt8
model. For each dopingd the momentumq varies between 0
and the largest possible momentum transfer on the Fermi
surface. At larged’s g is rather unaffected byt8. For smaller
dopings thett8 model shows two new features compared to

FIG. 3. Fermi lines in the irreducible Brillouin zone for four
different dopingsd and t8520.05 in units of 4t.

FIG. 4. Density of states (q0/2)•N(m̃) and the mean site occu-
pationd(m̃) as a function of the renormalized chemical potentialm̃
for t8520.05.

FIG. 5. Vertexg(kF ,q) as a function of the momentumaq with
q5(q,0) for t8520.05.

FIG. 6. Vertexg(kF ,q) as a function of the momentumaq with
q5(q,q) for t8520.05.
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the t model: The absolute values forg are substantially re-
duced which can be verified analytically in the limitq→0
using Eq. ~85!; g may become slightly negative at larger
momenta similar as in the one-dimensional case. The most
important features ofg in the t model do, however, not
change in thett8 model:g depends for not too large dopings
strongly on the momentum and decreases monotonically
with increasing momentum. At larger momenta and small
dopingsg becomes very small which implies that also the
effective electron-phonon coupling becomes very small in
this region even if the bare coupling was large.

Figures 7 and 8 show the enhancement function
g2~kF ,q!/q0 for the tt8 model as a function ofq between 0
and 2kF along the @10# and @11# directions, respectively.
Similarly to thet model this function is stronglyq dependent
for not too large dopings, decreases monotonically withq,
and assumes in general very small values at large momenta
and small dopings. For the special case of the@10# direction
the enhancement function increases again at large momenta
and small dopings due to the symmetry requirement that it
has to be symmetric with respect top. Compared to thet

model the enhancement function of thett8 model shows
smaller absolute values and the increase towardsq50 is less
dramatic.

As discussed at the end of Sec. IV the enhancement func-
tions L1 andLtr describe the change ina2Fi andatr

2F, re-
spectively, due to correlations if theq dependence of the bare
electron-phonon interaction and the phonon branches can be
neglected. Approximating the Fermi surface by a cylinderL1
becomes

L15E d2q^^d~q2p1p8!&p&p8g
2~kF ,q!/q0 . ~86!

A straightforward calculation gives in two dimensions

^^d~q2p1p8!&p&p85
1

p2q

Q~2kF2q!Q~q!

A4kF22q2
, ~87!

so that

L15
2

p E
0

2kF
dq

1

A4kF22q2
g2~kF ,q!

q0
, ~88!

assuming also thatg depends only onuqu. L1 is thus given by
a slightly distorted average ofg2(kF ,q)/q0 between 0 and
2kF . Similarly, Ltr is given by Eq.~88! if the additional
factorq2/(2k F

2) is inserted in the integrand. The effect of the
strongq dependence ofg2/q0 is now evident from Figs. 7
and 8: InL1 both small and large momentum transfers are
important whereas only large momenta contribute toLtr . As
a resultLtr will decrease much stronger thanL1 with de-
creasingd. One expects therefore a substantial difference
betweenL1 andLtr at small dopings caused by the strong
momentum dependence of the vertex function and thus by
correlations.

We have performed the averages inL1, L3, andLtr nu-
merically using the true anisotropic band dispersion and ver-
tex. Figures 9 and 10 show the results for thet and thett8
models, respectively. We have multiplied the three curves
with a common factor so thatL1 approaches 1 in the empty-
band limit d→1. We also have plotteddLtr instead ofLtr
because the doping dependence of the resistivity is given by
dLtr as discussed at the end of Sec. IV. In thet modelL1

FIG. 9. EnhancementsL1, L3, anddLtr as a function of doping
d for the t model.FIG. 7. Enhancement functiong2(kF ,q)/q0 as a function of the

momentumaq with q5(q,0) for t8520.05.

FIG. 8. Enhancement functiong2(kF ,q)/q0 as a function of the
momentumaq with q5(q,q) for t8520.05.
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decreases first rather slowly with decreasing doping, passes
through a minimum atd;0.1 and then increases strongly at
very small dopings. The asymptotic behavior ofL1 at smalld
can be obtained analytically from Eq.~58!: For a smalld
g2(kF ,q)/q0 has a width;d and a height;1/d. Performing
the averages in Eq.~58! one findsL1;1/d in agreement with
the numerical result. The decrease ofL1 with decreasingd is
much stronger in the case of thett8 model: Betweend51
andd50.2L1 decreases roughly by a factor 5. The van Hove
singularity atd;0.17 is clearly visible inL1 producing a
change in the slope at the singularity. Ford→0 L1 ap-
proaches 0 in thett8 model becauseg approaches 0 in this
limit. The different limits of thet and thett8 models ford→0
are due to the fact that the density of states diverges in thet,
but not in thett8 model in this limit. SinceL1 is the effective
coupling constant fors-wave pairing one concludes that cor-
relation effects suppressTc in a monotonous way as function
of doping and that this suppression is rather small in the case
of the t, but substantial for thett8 model. The authors of Ref.
31 argued for a rather different behavior:Tc should show a
maximum at small dopings and not be much suppressed by
correlations. It is presently unclear whether the different be-
haviors of Tc can be attributed solely to the different
electron-phonon coupling~modulation of the hopping matrix
elements by core displacements! used in Ref. 31.

The short-dashed lines in Figs. 9 and 10 show the doping
dependence ofL3 which is responsible ford-wave supercon-
ductivity. L3 must vanish ford→1 because we assumed a
q-independent bare electron-phonon coupling and disper-
sionless phonon branches. With decreasingd the function
g2(kF ,q)/q0 becomes more and moreq dependent leading
to a finiteL3. The unaveraged effective interaction has al-
ways the same sign inq space which impliesL1.L3. The
equality sign occurs exactly then if the effective interaction
is diagonal inq space so that it no longer scatters electrons
between different momentum states on the Fermi surface.
This situation occurs approximately at small dopings where
the functiong2(kF ,q)/q0 develops a very narrow forward
scattering peak. As a resultL3 is nearly coincident withL1 at
small dopings. In thet modelL3 diverges similar toL1 at
small dopings. In thett8 model, on the other hand,L3 always
has a maximum in the region of small or intermediate dop-

ings. Taking also Coulomb repulsion into accountL1, but
not L3, will be suppressed within the usual approximation.
Thus d-wave superconductivity necessarily becomes more
stable thans-wave superconductivity at sufficiently small
dopings in both models. This transition froms- to d-wave
superconductivity is caused entirely by electronic correla-
tions because our bare electron-phonon coupling is assumed
to have onlys-wave symmetry.

The long-dashed lines in Figs. 9 and 10 describedLtr .
Both in thet and thett8 modelsdLtr decreases very fast with
decreasingd and is very small ford,0.4. The quenching of
dLtr is caused by two effects: First,g2(kF ,q)/q0 becomes
with decreasingd very small for large momenta and large for
small momenta. Due to the factor@v~k!2v~k8!#2 in Ltr only
large momentum transfers contribute toLtr which decrease
Ltr . Second, the Fermi velocities enteringLtr are renormal-
ized ones leading, together with a density of states factor to a
factord in the resistivityr which suppressesr at small dop-
ings. As a net result correlation effects quenchLtr by about
one order of magnitude in the small or intermediate doping
regime. The electrons are then only weakly scattered by
phonons or, using similar arguments, by impurities and the
electron-phonon interaction becomes rather ineffective due
to correlation effects.

VII. CONCLUSIONS

In the preceding sections we have calculated the renor-
malization of the electron-phonon interaction by strong elec-
tronic correlations. For this we used an infinite-U Hubbard
model with nearest- and second-nearest-neighbor hopping
terms on a square lattice and an electron-phonon coupling
where the phonons couple to density fluctuations on the at-
oms. Our results for the various symmetry components of the
Eliashberg functiona2F and the corresponding transport
function atr

2F are asymptotically exact at largeN and for a
small electron-phonon coupling constant. Useful quantities
characterizing the correlation effects are the enhancement
functionsLi . They are defined as the ratio ofa2Fi at doping
d and atd51 taken at zero frequency and for the symmetry
component i . If the momentum dependence of the bare
electron-phonon coupling and of the phonon branches can be
neglectedLi renormalizes thea

2Fi or li of the uncorrelated
case in a multiplicative way.

We find that electronic correlations affect different sym-
metry components ofa2F in a different way: The totally
symmetric functionL1 in general decreases with decreasing
doping with the biggest effects occurring at small dopings. In
the t model the reduction is rather moderate except at very
small dopings whereL1 even increases and diverges due to
the coincidence of the van Hove singularity and the metal-
insulator transition at half-filling. For the more realistictt8
model the correlation-induced reduction ofL1 is monotonous
as function ofd and quite large for small dopings. Our nu-
merical results suggest that electronic correlations suppress
in general phonon pairing, especially in thett8 model, at
least in the adiabatic approximation, i.e., forv,k•vF~k!. In
the nonadiabatic regimev.k•vF~k! the enhancement func-
tion g2(kF ,q)/q0 may be substantially larger compared to
the adiabatic case becauseg tends to the bare value 1. A
proper inclusion of these effects in aTc calculation would

FIG. 10. EnhancementsL1, L3, anddLtr as a function of dop-
ing d for t8520.05.
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need a solution of Eliashberg equations taking into account
the energy dependence of the vertex at small dopings and of
the density of states near the van Hove singularity.

Another correlation effect is that the nontrivial symme-
triesLi with i.1 can no longer be disregarded. In our cal-
culations we assumed that the bare electron-phonon coupling
has only as-wave componenti51. Therefore all functions
Li with i.1 have to vanish in the empty band cased→1.
With decreasing doping the vertex becomes momentum de-
pendent and develops a forward scattering peak at small dop-
ings. As a result functionsLi are nonzero and of similar
magnitude and approach the same value in the limit of van-
ishing doping. We have verified this for thed-wave-like
componentL3 by numerical calculations. In both modelsL3
indeed approachesL1 from below at small dopings; in thett8
modelL3 vanishes ford→0 andd→1 and shows a maximum
near the van Hove singularity. Taking also the direct Cou-
lomb repulsion into account it was argued that for our mod-
els as-wave order parameter can never be the stable order
parameter below a certain critical value for the doping. This
result is remarkable because it holds for phonon-mediated

superconductivity and it is asymptotically exact at largeN
and for a small electron-phonon coupling.

Finally we find that the doping-dependent part of the re-
sistivity, dLtr , is heavily suppressed by correlations, both in
the t and thett8 models at low and intermediate dopings.
This is a consequence of the appearance of a forward scat-
tering peak in the vertex function in this regime. Our results
suggest that this feature is a generic one for strongly corre-
lated systems. Moreover, they are consistent with the experi-
mental observation that the transport coefficients in high-Tc
oxides do not exhibit features which are characteristic for the
electron-phonon scattering.
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