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We give a consistent explanation of tkeaxis Josephson tunneling experiment by Sun and co-workers
between YBaCu;Og,, and Pb within thed-wave pairing scenario. Using a Ginzburg-Landau formulation,
orthorhombic deformation and twinning of the crystal lattice are taken into account. In the presence of ortho-
rhombic distortion, symmetry arguments allowcaxis Josephson coupling between ¥Ba;Og, . and Pb.
However, for a highly twinned YBZu;Og ., Sample, the Josephson coupling is weakened due to destructive
interference effects. On the other hand, we demonstrate that destructive effects due to twinning can be over-
come, if twin boundaries support a state which locally breaks time reversal symmetry and leads to a channel
which adds constructively to the total Josephson coupling. Properties of the Josephson junctions measured in
experiment, such as the Fraunhofer pattern and the Fiske resonance, keep their standard form for such a
junction. The existence of a twin boundary state with broken time reversal symmetry can directly be tested, for
example, by observing vortices with fractional flux quanta on twin boundaries.

I. INTRODUCTION parameter under 90° rotation corresponds to a phase differ-
ence ofs. This can lead to frustration effects in multiply
The symmetry of the superconducting order parameter itonnected superconductors and could be the origin of a pe-
Cu0O, systems has been hotly debated during recent yearsguliar paramagnetic signal seen in granular BSG@®hlle-
especially since generally microscopic theories predict @en effect.>® The angular form of the pair wave function can
definite Cooper pairing symmetry. Leading candidates arde observed in a controlled way in an interferomégaiper-
various s-wave pairing states which are invariant under allconducting quantum interference devic®@QUID)] with a
crystal symmetry transformations and the so-calledsingle crystal of YBCO and a conventional superconductor
dy2_,2-wave state which is usually described by the genericconnected by two Josephson junctions. Several experiments
pair wave function(k) = cosk,—Cox, . done so far show indeed with improving accuracy such a
Experiments have probed specific properties related to thphase difference = consistent with d-wave pairing
symmetry, but, unfortunately, results seemingly in conflictsymmetry’ Other experiments make use of a loop with a
with each other have led to considerable confusion. Variouphase twist ofw, so that the flux quanta are half-integer
investigations of the quasiparticle excitation spectrum poinimultiples of the standard flux quanturd®, (=hc/2e),
towards the existence of zeros or nodes in the excitation gagh = d,(2n+1)/2, instead ofb =n®d,. This new flux quan-
While this feature appears naturally fordawave supercon- tization has been observed recently and fits also well into the
ductor due to the difference in sign of the wave functionpicture of ad-wave superconduct8rFurther support for
along the two main crystal axes, the gap ofsawave state d-wave symmetry comes from the modification of Fraun-
could have nodes too under certain conditions. One examplgofer interference patterns for weak Josephson junctions at a
of these experiments is that the low-temperature behavior aforner of a YBCO crystdl.
the London penetration depth in YB2u; Og, , (YBCO) ex- Nevertheless, these results have been challenged by two
hibits a temperature dependence which agrees strikingly wetither experiments based on the idea of the probing Joseph-
with predictions for ad-wave superconductdrrurthermore,  son couplings “forbidden” by symmetry. Chaudhari and Lin
angle-resolved photoemission spectroscOPRPES has re-  investigated the supercurrent flow out of a misoriented inclu-
vealed an angular dependence of the excitation gap fasion in ac-axis textured film of YBCO? The inclusion has
Bi,SrCaCu,0g (BSCCO, which seem to be compatible a hexagonal shape with the crystal axes misaligned by 45°
with d-wave symmetry:* However these experiments do not with respect to the surrounding. At first sight one would ex-
probe the pairing symmetry directly as they provide no acect in this geometry that interference effects should cancel
cess to the signér the phasgof the pair wave function in  the total Josephson current if YBCO weredavave super-
different momentum directions. conductor. Instead a finite current was measured. However,
This deficiency was removed recently by a number ofMillis showed that this can be understood, because the order
experiments based on the Josephson effect which is sensitiparameter can realign itself to cancel the phase difference by
to the intrinsic phase structure of the order parameter. Manintroducing vortices of length scabe; (Josephson penetra-
favor d-wave pairing. The sign change of tdewave order tion depth.!* The resulting magnetic fluxes at the interface
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have recently been observed directly by scanning SQUID
microscopy-2

In another experiment, Sun and co-workers demonstrated
the existence of Josephson junctions in whict-axis nor-
mal face of YBCO was coupled to superconducting Pb
through a thin Ag laye(diffusion barriey.!® The quality of
these superconducting-normal-superconducting-N¢S)
junctions was tested. ThEraunhofer interference pattern
shows many oscillations of the critical current with applied
magnetic field and th&iske resonanceappear with a very
high Q factor® The product .R of these junctiongthe Jo-
sephson critical current times the normal state junction resis-
tance ranges from 0.05 to 2 mV depending on qualitative
differences among the YBCO samples. These values are
smaller than those estimated by Sun and co-workers based
on the Ambegaokar-Baratoff thea¥.

The existence of such high-quality junctions is difficult to
understand, if YBCO is a-wave superconductor. In a sys-
tem with tetragonal crystal structure, symmetry would pre-
vent any seconfowes) order Josephson coupling along the
C axis to an S-wave su_perconductor such as ]P_bOr?Iy_ an orthorhombically distorted crystal lattice. The ellipses denote the
higher order couplmg{;&multa_neous COhe_rent transmission schematic structure of the pair wave functions on each side, which
of more than one Cooper paiwould contribute to the Jo-  ;1e 4 combination of- andd-wave pairing. For the situation here

sephson coupling, which are extremely small for tunnelinge phase of the-wave component is assumed to be constant while
junctions as used in these experiments. However, YBCO ighat of thes-wave component switches from 0 to. This is the

orthorhombic; i.e., thea- andb axes of the basal plan are sjtuation which will be discussed in this paper.
distinguished by length and by the presence of CuO chains
parallel to theb axis. For this symmetrys and d waves  sephson tunneling. A complication occurs due to the forma-
cannot be distinguished anymore, but transform according tton of twin domains, characterized by eithet>0 or
the samdtrivial) irreducible representation. Thus;axis Jo-  €<0. They are separated by “domain walls,” so-calledn
sephson coupling would be allowed between a single crystdloundaries(TB'’s) (see Fig. 1 In our approach the twin
of YBCO and Pb. However, high-quality junctions were alsodomains are also distinguished by the property that one type
made using highly twinned YBCO samples. These junctionsupports thel+s- and the other thel—s-wave state which
are difficult to understand since we know that h@vave leads to a sign change of tisewave order parameter at each
order parameter of YBCO has different signs along the twdrB. Therefore, for a twinned YBCO sample theaxis junc-
main axes. This sign difference leads to a Josephson cotion to ans-wave superconductor consists of an array of
pling along thec axis with opposite sign in neighboring twin junctions with alternating sign of the Josephson coupling.
domains, which would lead to a destructive interference anéuch an arrangement gives rise to destructive interference,
very weak macroscopic effects inconsistent with the experiwhich for random domain size leads to a reduction of the
mental data? effective Josephson coupling by a factor proportional to
In our view there are three possible explanatidagThe N~ %2 compared with that of an untwinned samph¢ is the
order parameter in YBCO has basicallywave symmetry number of twin domains In actual sampleN~10°—10*
and the previous experiments pointing towards a sigrand the Josephson penetration depth is larger than the linear
changes in the pair wave function were misinterpret@)l.  extension of the interfac€.Therefore the argument given by
The Josephson coupling is not via theaxis, but instead Millis for the Chaudhari-Lin experiment does not apply
comes from defects of the interface such as step edges whittere* We cannot expect that nonuniform current flow could
are induced because the orientation of the interface normal isvercome the destructive interference effects. As the experi-
not precisely along the axis.(3) The twin boundaries yield ments on highly twinned YBCO do not show a drastic sup-
an additional contribution to the Josephson coupling whictpression of the Josephson effect, there must be a coupling
produces the result observed by Sun and co-workems.  channel which is not affected by this interference behavior.
this paper we focus on thehird possibility and its conse- A special superconducting state at the TB can provide
guences. such a channel. Naively we expect that at the TBdtveave
We give here a brief outline of the basic ideas underlyingcomponent changes sign by passing through zero. As a com-
our explanation. The orthorhombic lattice distortion plex order parameter, however, it can avoid zero by going
€=€,,— €,y introduces a natural coupling between thethrough the complex plane. This leads to a complex combi-
d-wave and ars-wave order parameter of the original tetrag- nation ofs- and d-wave componentg+e'Xs with y# 0,.
onal system, forming &eal combination, a state we will call We will see in Sec. IV that such a state provides an addi-
“ d+s-wave” state[the relative phase of the two componentstional Josephson coupling whose contributions can
is O(+) or «r(—)]. While thed-wave component does not adds constructively over all TB’s. This would yield a good,
couple to a standardsfwave superconductor along the  though inhomogeneous, Josephson junction. In Sec. V we
axis, the induceds-wave component leads to nonzero Jo-demonstrate that the Fraunhofer interference pattern and the

FIG. 1. Schematic structure of a twin boundédashed lingin
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Fiske modes behave as in homogeneous junctions in the etetragonal symmetry no coupling of the two order parameters
perimentally tested samples. The properties of such an intepccurs at the level of second order expansioff.

face correspond to the averages over a large number of twin Let us consider the bulk properties of this free energy for
boundaries and inhomogeneity of the interface would not bd .4>T.s. Furthermore, we shall assume tha{>y,>0.
visible. It is worth noting that this TB state breaks time re-Naturally all the other parameters are positive, in particular
versal symmetry. This leads to unusual properties such agbJo,>(y;— y,)2 in order to guarantee the overall stability
spontaneous currents or vortices with fractional flux quantaf the GL free energy. We find in general two distinct super-
at the TB, which may be used for a direct test of the TB stateconducting phases by lowering the temperature, a high-

(Sec. V). temperature phase with
Note that our symmetry consideration leads to a different
conclusion for BSCCO where the orthorhombic deformation 5 ag(T)
of the crystal lattice is described by a shear straine,,, 7s0=0 and |9go|“=— 2by 2

different from YBCO. This deformation does not yield a cou-

pling between the-wave andd,2_2-wave order parameter, for T,,>T>T*, and a twofold degenerate low-temperature
because in this case the two pairing states belong to differefghase with

irreducible representations. Hence, by symmetry argument

we would exclude Josephson coupling of BSCCO along the (y1— 2)3g— 2b4as

¢ axis to ans-wave superconductor. Indeed analogous ex- |1750|2= 2b Do (v — v 2

periments with ac-axis interface between BSCCO and an sPa= (717 72)

s-wave superconductdPb) have so far not shown any ap- 3
preciable Josephson effect for junctions witb-axis normal 5 .

face® (y1— v2)as—2bsay

2_

We adopt a phenomenological approach using a | 760l"= Abby—(y1—2)? "’
Ginzburg-Landau theory based on symmetry properties only.
Consequently, the theory presented here can only accoufar T<T* where the relative phase= ¢s— pq=*+ 7/2, be-
qualitatively for the effects we expect to occur in twinned cause we tooky,>0 (y,<<0 would lead to#=0,7). The
YBCO. lower transition point T* is defined by the equation
(71— 72)a8u(T*)=2bgay(T*), i.e., 7s(T*)=0. By the
choice of the parameters, , the transition poinT* is lower
than the bare transition temperatirg, of 7. (in particular,
there would be no transition T.s<0). The low-temperature

In a system with tetragonal crystal field symmetry givenphase breaks time reversal symmetrybecause the time
by the point grougD,;, the s-wave order parameter belongs reversal operation acts on the order parametenpy- 7} ,
to the trivial representatioA,4 while thed,2_2>-wave order relating ¢ to — 6. We call this phase the=id state because
parameter transforms like the representatiay. Therefore 6= = u/2.
their bare transition temperatur&s; and T4 are in general Next we consider the effect of the orthorhombic distortion
different. Purely based on symmetry arguments we can foref the typee= €,,— €,y as it is found in YBCO. We include
mulate the Ginzburg-Landa(GL) free energy functional this property in our theory only by adding the following term
which has to be a scalar under all possible symmetry trango the free energy functional:
formations ofD,;,, time reversal, and (1) gauge symmetry.
The free energy as an expansion in the two complex order 3 % .
parametersy,=|7,/exp(¢,) with u=s for s wave and Fe:Cff d*X(ms ma+ nsmg ), (4)
un=d for d wave, is given by

Il. GINZBURG-LANDAU THEORY OF A d- AND s-WAVE
ORDER PARAMETER

wherec is a real parameter which we choose to be positive.
This term is the only scalar combination of the superconduct-
> {a,(D] 72 +b,|7,* ing order parameters ardunderD 4,. There are two imme-
n=sd diate consequences due to this new tethThe presence of
v, a finite 5y forces alsozg tq be finite (driven order param-
+K P72+ vil 76l% mal 2+ 5 ( 7294 ete), and(2) the crystal lattice parameters are affected below
the onset of superconductivity. Concerning the relative phase
K there is a competition between the fourth order term
+ 2%+ S{(Px79* (Pxna) yo(nE?n3+c.c) and the second order term Bf.. The
former prefersd=+ /2 and the latte®=0 or 7. As long
1 as both order parameters are snielbse toT.4) we expect
—(Pyns)* (Pyng)+ c.ct+ g(VXA)2 , that =0 (for e<0) or 7 (for €>0). At lower temperature a
transition occurs wher deviates continuously from these
(1)  values, leading to a state with broken time reversal symme-
. try. Orthorhombic distortion suppresses the transition to the
whereéM(T)=aM(T/TCM—1) andb,, K,, y1, 72, andK 7-violating state. Additionally, the coupling between tthe
are real parameters. The veckbdenotes the gauge-invariant ands-wave order parameters if, leads to a renormalization
gradientV — (27i/®g)A (A is the vector potential Under  of the onset temperature of superconductivity,

e msAl= | @
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Ill. STATE NEAR A TWIN BOUNDARY

Orthorhombic deformation of a tetragonal lattice yields
two degenerate crystdtwin) states characterized by>0
and e<0. This allows the formation of so-called twin do-
mains which are separated by twin boundai(€B’s) (see
Fig. 1. We mentioned above that the relative phase between
the two order parameters depends on the siga &6 that a
TB separates the statk+s from d—s. It is reasonable to
assume that at the TB the phase of one of the two order
parameters changes from 049 while the phase of the other
would remain essentially constant. One can argue which of
the two order parameter phasgés and ¢4 would change in
the case of YBCO. It is generally believed that the TB acts
like a very good junction between the twin domains, which
tends to keep the phase of thevave order parameter con-
stant. On the other hand, the phagg could be tied to the
lattice deformationfor example, we could imagine that the

FIG. 2. Behavior of the order parameter as a function of tem-CuO2 chains in YBCO yield the dominant connection be-
perature:| 74| (solid line), |7 (dashed ling both in units of  yeen the twin domainssuch that it would change between
| 74(T=0)|, and the relative phasé= ¢~ ¢q (dot-dashed line 5 54 - 1 the following we assume the first case ang
Inset: phase diagram with theé-invariant(1) and the7-violating has to change the sign at the T& shown in Fig. 1L As will

(2) bulk phase.s‘ These re?'u"s are obtalned_ by so!vmg the Glr'Zburgb'ecome clear below this assumption is equivalent to the ar-
Landau equations numerically for a generic choice of parameters:

acg=1, bg=0.5, K g=1, y,=0.6, y,=0.5, andT/T4=0.5. gumentation by Sun and co-workers concerning the alternat-
For the pldt of the order parameter we chaze=0.2 (indicated in Ing phase(Q or m) of the Joseph_son coupling in an array of
the inset by the dashed arrpw twin domalns._W_e also'emphaS|z_e that the other case would
lead to a conflict in the interpretation of the SQUID and loop
ToT TorTo0? Tl experiments mentioned above, where it is assumed that twin-
T.(ce)= cd’ ‘cs, \/ cd ‘¢ , ‘cd °(ce)?. ning does not affect the basal plang Josephson cou_pllng
¢ 2 4 agas along the main axes®?122Qur assumption for the behavior
(5)  of ¢4 leads to a situation where the respective sign of the
pair wave function along both main axis is the same in all
twin domains.
Twin boundaries usually lie along the direction corre-

order parameter

We neglect the change of volume, e.g.,+ €y, as another
source to shiffT., because it is not important at all for our

discussion. . 2 S
X . . sponding to[110] of the original tetragonal latticéFig. 1).
In Fig. 2 we show the behavior of the moduli of both Let us analyze the problem of a single TB located at

order parameters and the relative phase as a function of te ~y=0 which separates two half spaces. In this geometry

perature for a set of parameters in the GL free energy. Thﬁwe spatial variation of the order parameter occurs only along
inset of Fig. 2 is the corresponding phase diagram, tempera. " Gimension given by the coordingtex—y while we

t/u”‘r?/i Vlertisrijscer’l Whl(c:jh STO\;VhS Cl?ﬁ]”%hthri;u?rfiior:i or1: tc\? can assume homogeneity alongndy (=x+y) directions
-violating phase due fo the orthorhombic deformation. We, andy refer here always to the coordinates of the tetrago-

remind the reader here that the results shown in these figur " e
have only qualitative meaning, as the GL theory would be al system The boundary conditions at infinity on the left

guantitatively valid only in the vicinity of the onset of super- and right hand sides of the TB corresponding to the bulk

. " + - i
conductivity. In addition we have neglected here any c:hang((aj s andd—s states, respectively,

of e with temperature. v VA + VI

The other interesting aspect is the influence of the cou- (76(X), 7530 = (740, = ms0) fOF X 22, 0
pling of the order parameters tin Eq. (4) on crystal lattice ~ wherezy, and 74, are positive and real. The order parameter
behavior. We replace by €5+ d¢, wheregg is the ortho- has two possibilities to connect the two domain$)
rhombic distortion just at the onset of superconductivity andzn(X)/ 74(X) is real every where, aill) it becomes complex
Se is a small deviation from this value. The elasticity energynear the TB. Near the onset of superconductivity the second
for this small additional distortion iE 4 ,s=B&€?/2 whereB  order term inF, dominates the behavior of the relative phase
is a (positive) elasticity constant of the lattice. Minimizing so that statél) is realized. However, for lower temperature

F elasit F ¢ With respect tode leads to the fourth order §,) term gains in importance and a con-
tinuous transition to stat@l ) happens. This instability can be
Se=—c(nk ng+ nsn})IB, (6)  understood by examining the structure of the GL theory.

State (1) is described by a weaklk dependentzy(X)
where the sign obe is the same as that ef,, becausé=,is (= 749) and 54(X)= 5, f(X) wheref(X) is an odd function
minimal if sgn(n% nq+ nsn})=—sgn(e). Consequently, of X [—1<f(X)=<+ 1] which varies on a length scale
the presence of the superconducting phase enhances the
orthorhombic deformation. This behavior is in qualitative §(T)=\/Ks/[és(T)+6bsn§0(T)+(yl+ V) nﬁo(T)]
agreement with experiments done with YBE° (8)
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near the TB andf(X— +»)=+1. Both order parameter . .
components are real. When does this state become unstable a)
against a small admixture of imaginary components of the 1ot |
order parametefny(X)+iu(X), ns(X)+iv(X))? To answer e — ]
this question we consider corrections of the GL free energy
up to second order ion andv which has the structure

::U _______________
FUU=f dXx dY[Kq(u")2+Kg(v")2+ Ryu?+ Rev?+ Quu],
9

0.5

b)

with
Ry(X) =84+ 2bg73(X) + (y1— ¥2) 3(X)
=Rygot+ (y1— v2)V(X),

Re(X) =g+ 2bs72(X) + (71— v2) 73(X) = Rgo+ 2bgV(X),

(10) 0.0 — 1

Q(X) =4y, m5(X) 7a(X) + ce(X), 30 F
where Ryo=Ry(X— ) and Ryy=Ry(X— ). [Note that all 20
first order terms inu andv vanish sincezny(X) and 74(X) @ ol
satisfy the GL equationsThe prime abbreviates the deriva- '
tive with respect toX. The function V(X) denotes 00}
7%(f(X)?—1)<0 and Q(X) is odd. (The stability of the
homogeneouss=d state implies the inequalityRyoRso 1050 50 5.0 5.0
—Q3>0 [Qy=|Q(X— *==)|]. The equality corresponds to X

the instability of this state against thié-violating bulk phase
discussed aboveWe simplified our consideration here by  FIG. 3. Numerical solution for the twin boundary state at three
neglecting the vector potential. Note that therefore the gradieifferent temperatures: Fdg) |74(X)|, (b) |75(X)|, and(c) 6(X)
ent term with the coefficienK in Eqg. (1) does not appear With the parameters in the Ginzburg-Landau theory as given in Fig.
here due to the symmetry of the coordinaté® 2 with ce=1. The temperatures arB/T;4=0.1 (solid line), 0.2
The variational equations to minimize,, are (dashed ling and 0.4(dot-dashed ling They belong to the phases
(2), (1,11), and(1,)) of Fig. 4, respectively.
"_ + _ XU+ v
Kall"=Raoll+ (727 72)V(X)U+ QX0 the further discussion we shall assume that the instability
leads to a state wherg(X) is even, whileu(X) is odd. For
K" =Rguv +2bV(X)v+Q(X)u. the relevant solutiom (X) is nodeless and(X) has just one

- . . . . node atx=0. The resulting state is twofold degenerate be-
This linear differential equation system has only solutions for g 9

ial val f th tédenendi the t cause the(time reversal transformation ¢,v)— —(u,v)
tSLE)rE;CTIE; v\v/r?icL:lr? Sr e(:) r esiﬁtatrﬁéniigabﬁi?ncg]g dﬁir:)nseofesr?gt;ra- leads to another solution of the equations. Therefore, time
The solution belonging to the Iargeyst temperatiireleter- reversal symmetry IS broke_n locally at the T8 by this state
mines the physical instability. This equation system has th lrll)zinlnesthilr? ;tzﬁogﬁ &?Ait'ggtﬁgsrﬁxgﬁﬁ?h; qlsgrgxzuh
form of a two-component Schdinger equation with an at- ~ 9 trast to di i . for the st 9
tractive potential well, proportional t&(X), and a coupling & In contrast to discontinuous jump for the s ale .
Q(X) between the two components. Sing¢%) is an odd Unfortunately, analytic solution of the above equation
function, it follows thatu(X) andv(X) have different parity system |s.d|ff|pglt.(|n Appendix A we will discuss the solu-
under X——%. The physical instability corresponds to a tion of a simplified version of these equatioriBherefore we

~ ~ o analyzed the behavior of the order parameter in the vicinity
gggngeif;eey;;ﬁnﬁwg 5?ndf§ox)c,§r§ I;nr:tgihnii;ge B of the TB by solving the complete GL equations numerically.
— = 1

In Fig. 3 we show the solutions for the parameters used in
Yo T a2 Fig. 2 andce=1 at three different temperatures. The highest
¢ T=rmNrt 4 (12 temperature lies abovE’ such that TB statél) is realized.

with r=Rg/K+Rgo/Kg and g2=(RgRgo— Q3)/KKy. The intermediate temperature show the locafiyviolating

This length diverges as the bulk instability is approachedlB state(ll), where the relative phase approaches 0 and

(q2—0) and can therefore be rather long compared With  with a finite distance &) from the TB. The lowest tempera-

In Appendix A we will show that the transition between ture is within the bulk7-violating phase T<T*) and ap-

states(l) and (Il) occurs always at a temperatufe higher  proaching the bulk the relative phase saturates at a value

than the transition to the bulk™-violating phase T'>T*). different from 0 orar.
The parity of u and v is essentially decided by the We complete the phase diagram of the inset in Fig. 2 by
strength of the attractive potential for the two components. Iradding the TB phase boundary lifd’(ce)]. The phase

(11)
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05 , 1@
g)= 2W0|n4|nd001¢ 0),

: I=tol ndl molsinte— o) =1 sing—0), ¥
where| 4 and| 7| are the moduli of thes-wave order pa-

i rameters at the interface on the sideSif andS2, respec-
tively. The phase difference between these two order param-
()] eters is denoted by. If the Josephson coupling is weak,

. then the order parameters should be affected only weakly by
the presence of the interface. Therefore we assumeftimat

the relative phase as given in the previous section. The su-
(") ] perconductoiS1 shall not be in the7-violating bulk phase,

but have statéll) on the TB.
Let us discuss the influence of the spatial variatiod oh
50 ¢ by the standard sine-Gordon equation for Josephson junc-
tions (x andy are the coordinates within the interface

( 2 P

T/T (c¢)

-~
~—
———

FIG. 4. Completed phase diagram including the twin boundary
states(l) and (Il). The parameters of the Ginzburg-Landau theory
are chosen as in Fig. 2.

@e=\j’sin(e—0), (14)

X% oy

with A y= (& o/27d1 ) ¥2 the Josephson penetration depth, the
length scale of variation of (d is the effective magnetic
thickness, which is the sum of the London penetration depths
boundary merges naturally with the transition line of the two superconductors and the interface thickn®sts
[T*(ce)] between the7-invariant and.7-violating bulk  depends on the comparison of and the length scale dof
phase force—0. In the limit|ce|>aq,as a simple scaling whether can follow the spatial variation of. If ¢ varies
behavior (discussed in Appendix JAleads toT(ce)x|ce|. very rapidly over the length;, then ¢ will adjust to an
Note thatT’(ce)/T.(ce)— const in this limit. In Fig. 4 the averaged modulation of only. The situation of interest for
phase diagranT versusce obtained numerically is shown. us corresponds exactly to this limit. In particular, in the fol-
Finally, we examine the problem of “interaction” be- lowing we will assume thak ;>L and the number of TB’s,
tween the degeneraté-violating states on two TB's lying N, is large so that th@ varies very rapidly. This situation
close to each other. This problem can be considered withifs different in the Chaudhari-Lin experimehtwhere the
the instability equatiofiEq. (10)] when two identical attrac- !ength over whiché remains constant is the length of the
tive potentials are included each at the position of one TBh€xagon edges which is much longer thasnll In this case
The (fourfold) degeneracy of the bound states at the twothe phase difference can easily align itself witho over
TB's is lifted by the formation of a bondingeven or anti- most pf the junction and compensate the effect of change of
bonding (odd) combination.(These states are still twofold ¢ €aSily: _ , , , , ,
degenerate because they break time reversal syminigtisy. As we argued in the previous section neighboring TB's

easy to see that the bonding configuration is favored and thf vor alternatingd-kink and 6-antikink configurations. Al-

“interaction energy” decreases exponentially with the dis-t ough the energy d|ffergnce for the kmk—klnk. format|op
~ . i i . may be rather small, we will assume here that this alternation
tanced «exp(—d/¢) (Appendix A). This configuration cor-

VAP ] e is realized. Thus, without loss of generality we can assume
responds to a combination of kink and an antikinkégk).

e ! . that 6 varies between 0 and via 6= #/2 on each TB. We
In an array of TB’s this yields a sequence of alternating k'”ksdecompose cost-6)

and antikinks off(X).
cog ¢— 6)=cosp coh+ Sing sind, (15

where co# changes sign in the ranges®¥< = and the con-
IV. PROPERTIES OF A JOSEPHSON JUNCTION tributions of neighboring twin domains#&0 and 6= )
tend to cancel each other. On the other hand sralways
Following the goal of this article we discuss now the Jo-positive and adds up constructively over all TB's becadse

sephson coupling at the interface between our superconduchanges between 0 andfor each TB throughr/2 (or alter-
tor S1 and a conventiona-wave superconductd®2 with  natively for each TB through- 7/2) so that sid@ has the
the arrangement found in the experiment by Sun and casame sign in each TB.
workers; i.e., the interface between the two has a normal We consider now an array of parallel TB’s intersecting the
vector parallel to thee axis of thed-wave superconductor interface. The position of thenth TB is given by
S1.13The interface is assumed to have a square shape with¥a—X,_;=d+,. The deviations{, of the distance be-
edge lengthL. As pointed out in the Introduction, the lowest tween two TB’s from the averaged are independent random
order Josephson coupling via tiiewave order parameter variables with Gaussian distribution({,)=0 and
nq vanishes in this direction. The only contribution origi- (gngn,):azén'n, (o<d). Calculations are simplified if we
nates from the presence gf. Thus the local interface en- consider the following approximate form @fas a function
ergy and the Josephson current are given by of X:
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¢

n(;(_;(n) ~ ~ ~ ~,
1+(—1) —_—, Xn$X$Xn+x s
260(X . e e~ .
( ):< 1+(=1)", Xn+X <X<Xp41—X', (16)
aw
W (X=Xq41) < P
1-(-D)"—=—, Xn+1 ™ X' SXSXnt1,
\
|
where X'=¢ if Xn.1—%,>2& and XK' =%, ,—%, if S i
Xn+1—X,<2£. In the latter case the constant region f (I ccosp)= J dXx I ¢(X)cosd(x)
betweenx,, andX, . ; disappears. The extensignof the re- “
gions with varyingé near the TB corresponds to the effective
extension given in Eq12) and we use here the same sym- (—D)" 1 eo(Xpy1—Xp—2X")
bol. Further,|.(X) is not constant but shall have the value
I .1 In regions where) varies and ., whereé is constant. 2 -,
For this form the interface energy per unit area is given by _ é;Clcos< %) > , (21)

@,
(e)=—73 CLZJ dx dy 1(X)cog ¢~ ()] which for d> £ is

:—%((ICsine)sinc,oJr(ICCOSG)COSP), 17 I, | N2
(lecost)= g <2 (Lan-1— §2n)>

N/2 1/2 |
} c2

)2 _v
) N Nd| 2, (=) N @
4B (ax
(lcsing)y= g <sm(2—é)>. (18

and ford<é is

where(- - -) denotes the average over the random variables
{n, We consider first the average kyiiné,

In the limit d> & we find

N
(1 .cos) = 2Nd< Z (—1)“c05(4—é(d+§n)

|

. 4%'01
(1 csing)~ wd ’ (19 N/2 vz
E (=t )2>1 == (23
which is proportional to the density d/of TB's, and for 2§N &N
d<§1
In both cases the central limit theorem lead$\fo'/? depen-
by [ ml dence. . |
(lsing)= g \sin —(d+) | )~Il| cog —= The Josephson current phase relation can be obtained by
& 4¢ 4¢ the derivative of the interface energy with respectsto
1= T 20
“le1f + 3222 ' ( ) 27TC d<83>

——<Icsm0>coap (I.codd)sing, (24)
where we keep in mind that<<d. Note thatl ., is propor-
tional to |74 in the TB which would also depend on the
density of TB’s too. Therefore in the limid<¢ we would
expect thatl .; would be reduced due to the suppressive ef-
fect of tge TB on thes-wave order parametéchange of sign o= \/<| .Sind)2+ (1 .cosh)2. (25)
or phas

For the average of.cos) we have to take into account

that neighboring domains contribute with opposite sign andrhe phasep which minimizes the interface energy corre-
tend to cancel each other, sponds taJ(¢g) =0,

and the maximum current is immediately obtained as
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(1sind) If the field lies perpendicular to the TEyz=0, then the
tafkpozm, (26) inhomogeneity of the interface does not affect the interfer-
¢ ence effect at all and the total current maximized with re-
and the phase shift, approachesr/2 for N>1. Obviously, spect toa is given by the standard form
the contributions due to the TB state dominate the Josephson ®
T’
)

effect in case (_)f largdN. For%<d the coupling ;hould in- (D) =J L2

crease essentially proportionally to the density of TB's,

JImax=4él .1 /md. It reaches a maxirrlum fof~d and de- with  J.., from Eg. (25, F(x)=sin®)/x and
creases for increasing density of TB&>*d) again, becau;e <D=|k~L/27-r|:|c~JLB;(| as the total flux threading the inter-
lc; and I, become gradually smallefNote that even in a0 Y

state(ll) the TB suppresses tt@wave order parameter 10- o the other hand, if the magnetic field is parallel to the
cally.] In the experiment by Sun and co-workers the averagerg the maximal current has the form

distance between TB's is of the ordgr 10°~10* A. As we '
mentioned in Sec. lll it is possible thgtcan be rather large )
although ¢ is very short. Therefore it is not unrealistic to (P)=L
assume thaf could be of the same order of magnitudedas

Howevgr, our qyalltatl\/Ne considerations do not allow to 9iVe  1ich in the largeN limit is dominated by the first term,
any reliable estimate of.

Fﬂ'q)
@,

_ _ _ _ _ _ (for details see Appendix B Up to small corrections the
In this section we consider phgnomena in ConneCtlon_WlthnaximaI current follows the standard Fraunhofer interfer-
a magnetic field parallel to the interface. The phase difference pattern and the effects of the inhomogeneity of the in-

F , (3D

2

+<Iccos9)2F(@) ] 1/2,

Td
<Icsin0>F<F o
0 0

+O(N™ 1) (33

_ H 2
V. PROPERTIES OF THE INTERFACE IN A WEAK 1(P)=(lcsind)L
MAGNETIC FIELD

encegp at the junction obeys the equation terface are not observable.
J 9 2md B. Fiske resonance
(T,T)¢=F(59,—Bi)=(ki,k9), (27) , _ _
ax ay 0 The interface can also act as a wave guide supporting

with d the effective magnetic width of the interface. For very discrete modes of eIectromagnetlc waves with a_definite
momentum-frequency relatiorw=vk where v=c/+/dC

weak Josephson coupling such thatis much larger thah,, ith h ) f the interf .
the magnetic field spreads uniformly throughout the interWith C as the capacitance of the interface per unit areacand

face. Then the local bh diff = as the speed of light. By applying a voltageand a magnetic
ace. Then the local phase differengtr) is field B such modes can be excited. In particular these modes

e(X)=a+k-F, (28)  appear in form of resonances in the dc Josephson current. We
follow here the standard method for analyzing this

with F=(X,y). Obviously, k corresponds to the inverse problem?® For a very weak junction the phase differenge
lengths/;=2x/ky and/y=2m/ky, which define the exten- is a function of position and time,
sion of one flux quantun®, within the interface. . . L

The phase modulation due to the magnetic field leads to e(X,t)=owt—k-r+at+e(Xt), (34)
interference effect¢Fraunhofer pattejnand in combination where w=2mV/®, and the functionj(%,t) is a small cor-
with a voltage on the junction tCF‘SkQ resonance_phenom-_ rection to the otk?er terms. The sine-éordon equafigg.
ena. We discuss here whether the inhomogeneity of the "}’14)] has to be extended to describe also the time dependence

terface would modify these properties. For simplicity we will J¢ .01 it ff,
assume that thésquare interface edges are parallel to the of the phase and dissipation effects,
X andy axes, respectively, and the TB’s are again parallel to 21 g2 P
the X axis. s T o=A"2siMo— O(X

(af 22 762 Fat)(’o Ay sife—6(x)], (39

A. Fraunhofer pattern with T' as the dissipation rafg.In the largeN limit this

We study first the interference effects observable in thequation reduces to
total Josephson current given by
( 2 1P 9

(~P:ZTrd'm(lCe—ia>ei(wt—kf+a>

L/2 L/2 Y 2 2
o | ax [ dy 1Rosina— o0 +k-71, 29 gz vt At AT o
-2 J-Lre (36)
which after integration ovey leads immediately to (see Appendix B This equation can be solved immediately,
i 27d (1.e™'% _ .
sin(k;L/2) (L2 . . ~ sy Im c i(wt—k-F+a)
lo=L == | dX I (Rsin @~ 6(%) + kK], P = g M W2k 1T w® - 87

kyL/i2 J-Li2
(30 Inserting this result inte of Eq. (34) we find the dc current
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| d 2 approached by =I_.sinp~Il.p. Therefore we can write an
Jac= (02102~ K22+ T2w? @, 5 Im (38) energy expression as a function of the current in the loop
containing the contribution of the-axis junction only and
as shown in Appendix B. As in the standard case the dthe magnetic field energy=(?),
current shows a resonance if the voltage and the magnetic
field match the conditiom =uvk. 1 D Jmax S(27-rLI

Both the Fraunhofer interference pattern and the Fiske E(|):2—CzL|2— 5mc %8 o %o/ (40
resonance are not modified qualitatively compared with the 0

behavior of usual junctions, iN is very large (highly  Minimizing this energy with respect tbwe obtain the flux
twinned sample This is only true as long as the applied field

is sufficiently small, in the sense that the length 1/k; is 1 1 _

much larger than the average distaddeetween the TB’s. In ®=ZLI=ZLImasSingo+ O(v), (41)

a measurement of the total current we observe only the prop-

erties averaged over a large number of twin domains. Theyhich is finite only if ¢, is different from 0 andr. Hence,
varying () introduces phase modulations with many waveaccording to our picture the-axis junction of a highly
vectorsq [=(dx,0)] which lead to dominant contributions twinned sample would lead to finite flux, while in contrast no
for gz=mn/d (see Appendix B However, very large fields flux would be expected in the case YBCO were a pure
(kx~/d) were necessary to reveal the inhomogeneous-wave superconductor or the sample were untwinned
structure of the interface by examining interference effects(o,=0 or ).

Such magnetic fields correspond to a flux of the onfddr,

in the interface. We cannot expect that a Josephson tunneling
junction would still work under such conditions.

B. Spontaneous currents in the twin boundary

It is known for some time that itv-violating supercon-
VI. OTHER EXPERIMENTAL CONSEQUENCES ductors domain Walls'can carry supercurrents even in the
absence of external field5?® These spontaneous currents
We consider now properties of the system which could bdlow parallel to the domain walls and generate a local mag-
used to test some aspects of the picture developed here. Thetic field distribution. No net magnetization is resulting
first probe is connected with the average phase shift from these currents, because screening effects lead to an
which for the highly twinned samples approachg?. The overall canceling of the fields. Such currents flow also in
two next effects are based on specific magnetic properties afB’s with a.7-violating state. We will illustrate this here
the.7-violating state. Finally we consider also the presencédriefly by examining the structure of the supercurrent in the
of soft modes due to the phase transition from st (Il).  basal planeJ,=—cdF/JdA, whereF is given in Eq.(1)

(a=xy),
A. Average phase shifte,
. . 2mc d 2
For thec-axis interface between treewave and a highly Jo=——| > K| ,7#|2(_¢#_ _Aa>
twinned sample of YBCO the Josephson current-phase rela- Po | w=5d da Do

tion is given by

. +l~<8a<(|n| | 74| — |77d| Inl]smt9
J=Jnmasin(e— @), (39) ° °

whereJ.xand ¢, are defined in Eq9425) and(26), respec-
tively. We can arrange the geometry of thevave supercon-
ductor so that it forms a second junction with the YBCO
sample, this time along the basal plane direction of YBCOwith 7,=|7,lexp(¢,), 6=¢s— ¢4, and s,=+1 and
(basal plane junction with the critical currer). In this way s,=—1. Far away from the surface of the sample we find
we create a superconducting loop where the latter junction ighat the current perpendicular to the T8 | has to vanish in

in general much stronger than tleaxis junction discussed any case due to Meissner screening effects described by the
above. Due to the phase shift, we expect that the order London equationVxB=4mJ/c. In the analysis of this
parameter phase around the loop is twisted. This can lead tquation it is important to notice that deep inside the sample

a spontaneous current and a magnetic flux through the loophe only spatial dependence is along the normal venotor
The fact that thes-axis junction is weak, however, leads to [=(1,1,0] of the TB. Thus,

the problem that the flux is not well quantized and, in par-

(42

0 4
%( b5t dg) — (}TOAa | 773” 77d|C039

ticular, not in a simple topological way related ¢g . e oD,
Let us analyze the behavior of the current in such a loop, 0=J, =n-J=J,+ Jy:(}T > K Kl 7,1%
assuming that the basal plane contact is much stronger than 0 |u=sd X

the one alongc axis, i.e., the dimensionless parameter

27Ll . /dyc>1 (L is the self-inductance of the loppOn _ 2_7TA~
the other hand, the analogous parameter shall be much D,
smaller than 1 for thec-axis junction (y=27LJa/PoC

<1). In this case currents flowing in the loop are so smallwith A;=A,+A, and A;=A,—A,. The current parallel to
that the current-phase relation of basal plane junction can bie TB is given by

(43

4ar
+ (E)Kl 74l [ 70| Aycosh |,
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P 9 magnitude, it still could be observable. Unfortunately, the
| 7sl—=| 74l = | 74l =] 7| ] sing internal variation of the field occurs on a length&fso that
Ix X the magnetization would have canceled to zero on the scale
of London penetration depth. Therefore, this is not a favor-
_ (44) able condition to do any kind of magnetic microscopy
searching for these fields. In addition it is not so clear how
sensitive the TB states are to the conditions at the surface. A
technique more likely to reveal the presence of such a spon-
taneous current and field distribution isSR (muon spin
rotation in zero external field. Whe(spin polarized muons
i . . i ' are injected into a sample, they are trapped at specific crys-
o_dd function; i.e., t_he supercurrent flqws In oppo_sﬂg dlrec'tallographic positions throughout the volume. The measure-
tions on the two sides of the TB. This current distribution ment of their dipolarization rate provides a good probe for

generates a magnetic field pointing along thelirection e local ma e ; ;
e : . gnetic field at the trapping points. As they
which is peaked in the center of the TB. It changes sign an(ihample the local field over the whole volume of the sample

approaches gradually zero on a length of the London pen[hey can give information of the overall field distribution.

etration depth further away from the TB due to screeningonce it s possible to observe the change in the internal
effects? ] ) o field distribution below the transition to the&-violating TB

A very rough estimate of the magnitude of the field in the iy 40 “\ve would like to emphasize that in a similar way such
center of the TB can be obtained by neglecting screening;,,» s have demonstrated the occurrence of internal mag-

effects and the spatial dependence of the moduli of the Ord'EHretic fields for superconducting phases which break time re-

parameter|,,|. Then 6 is the only X-dependent quantity symmetry in the heavy fermion compounds J&td
changing continuously from O tar at the TB. Using Egs. U, ,ThBe
—_xThy .

(43) and (44) within this approach we obtain the equation

47rC

dDOK

J“=JX—Jy=

| 7ls| | 7ld| coy

+ i + )_4_71-A~
(?;(((ﬁs ¢d CI)O X

The structure of the7-violating state leads to sthand

| n,| that are even functions afwith respect to the center of
the TB (x=0), while co® is an odd function. Combining
Egs.(43) and(44) it is easy to see thaly is nonzero and an

B, 872 C. Fractional vortices on twin boundaries

—~=<ITO'~<|7ISIIW|[

Kol a2+ Ko 72 | <% o For well-separated TB's the™-violating state is twofold
dl 7d sl s X
(45) degeqerate. Therefore both degenerate state_s may appear as
domains on the TB'’s separated by boundary lines, similar to
where we seA=0 in the current expressions. The magneticBloch lines in the domain walls of ferromagnets. These
fjeld atx=0 is obtained by simple integration with respect to boundary lines correspond to the phase winding of the

K 7 2 a0
d| d| ] )
oXx

X, s-wave order parameter and carry a topological charge, i.e., a
5 5 magnetic flux(see Ref. 30 The magnetic flux enclosed in
B,(Xx=0)=2 2_77 F<| 74l Kl 74l this line is, in general, only a fraction ab,. This can be
z D, IS4l K a2+ Ky a2 | O understood in the following way. Consider an isolated do-

(46) main boundary line, where on one sidepasses through

+ /2 and on the other side through/2 in the TB. We
encircle the line with a path sufficiently far that it contains all
the flux associated with the line. The path has rectangular

with sing(x=0)=1. We can estimate this expression by con-
sidering the anisotropy of the London penetration depth,

1 2772 . shape with two edgea and a’ perpendicular to the TB,
— = (3> [Kg| 752+ Kl 74+ Ks,| 74l | 174 cOS], while the other two edges andb’ lie parallel to the TB. All
47\ 0 path segments are located so that there is no current flowing

(4 parallel to them:J, =0 ona anda’ andJ;=0 onb and
which leads to b’. Using Eqs(43) and(44) it is easy to arrive at the integral
2m\%. i 2m
2(30) Kl 79l = g 1A« 2=N 2. (48) %a,bva’,b'ds'(vﬁb_ (}TOA)
gulrtgﬁ(rjmlor_(la_htr;e rzgigri]g. .-} may lie somewhere between J & J & K| 742 90
. . Thus, we fi = X— % =
a a’ Ks| 773|2+Kd|77d|2 X

Dy .
B,(0)~(0.1-D) g\ 2= A7), (49) 4 K|nd | 74l Ajcosd
) Ks| 77$|2+Kd|77d|2

, (50

If we assume that this formula gives a reasonable estimate
also at low temperaturgsvhere the GL theory is not exact where we introducedby= ¢ and ¢s= ¢+ 6. Note that the
anymore, we may use the zero temperature values of thentegrals orb andb’ do not contribute to the right hand side,
London penetration depthA&1600 and 1000 A). This because these segments are taken very far from the TB. The
leads toB,(0)~ 5-50 G. This estimate is surely too high. first integrand on the right hand side of E§0) gives obvi-
Screening effects and reduction of the order parameter closgusly a fraction of 2r depending on the system parameters
to the TB would reduce this value. Even if these effectslike K andKy. This is true also for the second integrand,
would diminish the estimated field by one or two orders ofbecausé\; is generated by the currents running along the TB
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(J)) so that its contribution is roughly proportional to VIl. CONCLUSIONS
(K| 74| 74))2. Note that the integrands are identical in mag-
nitude ona anda’ and however, have opposite sign. We
obtain for the flux® from Eq.(50)

Among the experiments probing the symmetry of the su-
perconducting order parameter of YBCO the one observing a
Josephson coupling along tleaxis is the most puzzling

. one, often used as an argument againstl-wave
O —Dyn=>Dyf(Kg,Kg,K, ...), (51)  superconductivity.®* We have examined here the conditions
of this experiment assuming that the basic order parameter of

wheren is the integer winding number arfds a function of YBCO hasd-wave symmetry. Obviously, the orthorhombic
the phenomenological parameters of the systdfs; 1, for  distortion (e,,— €,y) of the crystal lattice of YBCO plays an
certainn. The flux in the domain boundary line depends onimportant part in the Josephson coupling because there is no
specific system properties and is not related in a simple wagymmetry which would forbid it. While for a single-domain
to an integer or rational multiple ab,. This flux line is a  orthorhombic system the situation is rather simple, a more
fractional vortex analogous to that found in Ref. 29. careful consideration is necessary for twinned samples. Our

On the other hand, the total flux to two neighboring do-analysis shows that in the case of highly twinned sample still
main boundary lines adds up to an integer multipledgy, a sizable Josephson coupling is possible. We demonstrated
because in the integral on the right hand side of &f) the  that twin boundaries can provide a channel of coupling if
integrands are identical even in sign so that their contributhey support a locally7-violating state in their vicinity,
tions cancel, while the twin domains contribute little due to destructive

interference effect in the phase coherent tunneling. Although
B+ DP=nd (52) the coupling is very inhomogeneous in magnetitude and
! 2 0 phase, we have seen that the properties of the junction on a
g&acroscopic scale may look rather homogeneous.

In the Introduction we mentioned the measurement of the
aICR product which is lower than one would expect from the
theory by Ambegaokar and Baratdff.One source of the

mscrepancy between the calculated and the measured value

compensated by the energy expense to create two domain_ i
boundary lines[Usually the field energy £®2) is more aIIE§ in the assumption about the correct gap values for YBCO
using the formula

important than the core energy in strongly type-1l supercon-

This has interesting consequences. A standard vortex trapp
on a TB can decay into two fractional vortices, each with
flux smaller than®,, and gain magnetic line energy in this
way. This decay pays only if the gain of field energy is not

ductors] Fractional vortices cannot leave the TB, but are 2 Apdy APb_AY‘

“pinned” on it. As a consequence flux flow parallel to the l.R=— ’ , (59
array of TB should be considerably easier than perpendicular e ApytAy A pytAy|

to the TB. where Ap, and Ay are the measured gap values in Pb and

Of course, an ideal experiment to verify the existence ofyBCO, respectively, an& the complete elliptic integraf*4
fractional vortices on TB would be their direct observation|f we insertAp,=1.4 meV andAy =14 meV, then we obtain
by such tools as scanning SQUID microscopes, Hall probeg, R~5 mV. However, the assumed gap value for YBCO
or electron holography, all of which allow a rather good mea-corresponds to the one of tiewave order parameter rather
surement of the magnitude of local magnetic flux. Such exthan to that of the inducestwave component which actually
periments could be successful in rather weak magnetic f|e|d§ responsib'e for the Josephson Coup"ng_ For untwinned
where the vortices are rare and would almost exclusivelsamples the measurégR product lies between 1 and 2 mV
reside on TB’s due to the lower line energy or critical mag-which leads to a gap value df,~0.4—1 meV in Eq(54),
netiC f|e|d The Obsel’vation Of fraCtiona| VOI’ticeS W0u|d bewh|ch may not be unreasonable for the indusedave order

another indication for the correctness of our picture. parameter. The reduction of theR product for twinned
samples follows, of course, from the destructive interference
D. Soft mode effects and the fact that the dominant channel of coupling is

. . s provided by the7-violating TB states. In this case no simple
Finally we consider another indication of the OCCUITeNCE g ation as in Eq(54) is available. Naively, we would expect
of a new TB state at low tempgratures. In con.nectlon WlthICR to increase more or less proportionally with the density
the transition of t_he B state dt’ a local softening of the of TB’s. However, as mentioned earlier, we should be cau-
mode O.f the relative Ph?%'s expected. In the TB stg(d) .tious because the s-wave order parameter component would
fluctuations of the re'Iat|ve phase couple to the lattice strairy suppressed if the average distance between TB's becomes
€= €xx~ €yy as seen in Eqs8)—(10), comparable with its coherence length, as it is suppressed in
the vicinity of the TB’s. It is difficult to estimate this length
COe(Udv +v 8u)=Ce| 54| 4| SINGSH. (53  and it might be considerably longer than the one of the
d-wave order parametg&(T=0)~10 A]. Consequently, it
Due to this coupling the transition & would be accompa- is difficult to predict the dependence of thgR product on
nied by an anomaly in ultrasound absorption and a renormakhe density of TB’s. Unfortunately, at present, there is no
ization of the sound velocity for longitudinal sound wavessystematic experimental study on this problem.
along the main axis in a highly twinned sample. Such mea- The.7-violating twin boundary states correspond to a Su-
surements could, however, be disturbed by scattering of ulperconducting phase with locat-id symmetry which is
trasound at the TB's. known to have no nodes in the gap. To ensure that this would
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not spoil the experiments probing the density of states of the 1 [+ L

quasiparticles, one has to consider the quality of the samples (%), w(X))= Zf dk e "0y, Wy). (A2
used in these experiments. It turns out that samples used to ”

measure the London penetration depth are rather weaklyote that the termu(X) (X —X,) vanishes in the real space
twinned with an average distance fL um between twin  equation because af(X,)=0. This set of equations can be

boundaries. This leaves a lot of space with #ed bulk  solved at once and by Fourier transformation lead to
phase which has nodes in the gap.

We mentioned also that the virtual absence of Josephson v(Xo) 72obsé <
I - ; %)= — 0 7s07sS > R(ik))e Kkl
coupling in BSCCO may originate from the different type of v(X) KK, R(ik)e :
the orthorhombic distortion with a shear strain of the form shd 1212
€4y - In contrast to the case of YBCO there is no admixture of (A3)

ans-wave component to the,> 2 order parameter enforced 0 (%) n2bt
by symmetry. The absence or rather small magnitude of such u(x)= U1%0) 15005
ans-wave component may explain the negative result found KKqg
for c-axis Josephson coupling between BSCCO and a co
ventional s-wave superconductd?. On the other hand,

sgr(i();12 S(ik)e kil

nl_'he functionsR andS are obtained in the residuum calcula-

Kuboki and Le® argued recently that an interlayswave 0O

component is present in this system. Téigave component i (k2K 4+ Ryo) iQ

itself, however, gives only a negligible contribution to the R(k)= % and S(k) = —20, (A4)
c-axis Josephson effett.nstead it could induce orthorhom- k(2k“+T) k(2k*+T)

bic distortio_n Exx— Eyy> Ieat_jing to a situation as in YBCO. with r=Ry/K.+Ry/Ky. The argumentsik,, are the
However, since this distortion has not been detected so far, anaginary poles ofs and, in the upper compvlex plane of
is not possible to draw any firm conclusion on how interlayerk We implicitly as;umed khere thaf—4g%>0 to ensure

pairing might affect thes-axis tunneling. i ; 2_
Finally, we like to mention that the interface with phaseng)}EeSKi>%c])les are purely - imaginaa”=(RsoRuo
o)/ Bs '

modulationé could be an object for various new studies on
pinning effects ifd and A ; are comparable. It will be inter- K2 =1+ 12— 292 A5
esting to analyze the static screening properties of the junc- L2t = qa- (AS5)
tion as well as the dynamics qf and the current under this The smaller among the twd, =& 1, defines the longer
condition. This issue will be considered in a future publica-jength scale oy andu. In particular, note thak,—0 for
tion. q—0 which is the instability condition for the"-violating
bulk transition atT* (ce).
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The right hand side of this equation is smaller than 1 close to

the onset of superconductivity, and hence forTat T', the
instability temperature. Becaus@(ik;—0)—o, we can
conclude thaff’=T* always.

In Sec. Il we considered the instability of the TB stéle We can easily extend our discussion to the case of two
analyzed by means of the linearized GL equafign. (10)]  TB’s located atX, and X;. Equation(Al) is modified by
of the imaginary partsi andv of the order parameters,  replacing the right hand side of the second equation by
and n4. Here we give a solution of a simplified version of . o
these equations. We assume that the length scafevaria- 2bm50élv (Xo) ™0+ v (%) e'1] (A7)
tion of 7 at the TB is very small compared with the one
introduced byu andv (£). Therefore we replac¥(X) by
n5E8(X—Xo) andQ(X) by Qosgn() in Eq. (10) (TB's lo-
cated atX,). We assume that(X) is even andu(X) is odd
[u(X)=0]. We replaceu(X) by w(X)=u(X)sgnk) and

APPENDIX A: INSTABILITY CONDITION
OF THE TB STATE

and adjusting als®(X) appropriately. By symmetry there
are only two possible candidates for the instability character-
ized byv(X;)=+v(Xg) (bonding andv(X;)=—v(Xy) (an-
tibonding. The self-consistence equation has then the form

Fourier transform the equations to obtain 7720b2§ i
o = > Rikp[1=xekPoml]  (Ag)
(K*K g+ Rgo) Wi+ Qovy=0, KsKq 1512
(AL for the bonding +) and antibonding { ) configuration. The
QoW+ (K2K s+ Reg) = 2bg 72, €0 (Kg) €K%0 bonding state leads to the first instability and has the higher
S S| S'/sl '

transition temperature than the one of antibonding state, be-
with cause thet sign increases the right hand side in the self-
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consistence equation. Note that also for an entire whole arrayhere we used thd{d,k§<1. First, we considet ;) by
of TB’s the symmetric configuration yields the preferred TB rewriting this expression into a form where we easily per-

state. form the average of thé&, and the summation ovaer,
Consequently, the relative phagevaries only between 0

and 7 and passes through/2 at each TB. For the antibond- _ N T
ing stated would pass at one TB through/2 and at the next l)=(lcsind)Ld Re €'® ZO exp ik
through 37/2 such that after passing through two THjs i
would have changed by However, this behavior is not _ 1—gNelkt
favored energetically. =(lsinf)Ld R e'*”ml—k—d—

Let us briefly discuss two limiting cases. For very small 9
orthorhombic distortiorce the s-wave component of the or- : ikey — a— K32
der parameter is smallgycce. In order to satisfy the self- Vilhe_l’kelez/zVile averaged F)y .us.mg <? )=e .
consistence equatidr(ik;) has to become large. This is the -€ =9. In the small f_'EId limit Va”°“§ approwaa-
case ifq—0. Hence, force—0 the phase transition line tons are allowed now: g~1+0((ko)%), 1-g
T'(ce) approaches gradually* (ce). Finally we would like ~ — (Po/2)boN=0(ko), ‘and cos¢+kd)=cos@)+O(kd.
to demonstrate a scaling behavior to the self-consistencEiS €ads to the following final expression fig) :
equation for very large values afe. In this case the bulk sin(kL/2)
values g, and 74, have about the same magnitude and are |(1):<|c3m9>|_2—
proportional to ce. By redefining the temperature as kL/2
Tce=T and the unit length a&/ \/ce=X, we observe that up
to a correction of the ordeay/ce the right hand side of Eq.
(A6) does not depend one. Therefore we find that the
instability temperaturd”’ is proportional toce and the ratio
of T'(ce)/T.(ce) approaches a constant for large as
shown in the example of Fig. 4.

o)

: (B4)

y2

cog p+KL/2)+O(kd).
(BS)

We turn now tol,. As neighboring domains tend to
cancel each other we combine them and make use of the
central limit theorem which leads to the following sum
whose imaginary part apart from prefactors will be relevant
for us:

APPENDIX B: THE JUNCTION IN A MAGNETIC FIELD N2-1 )
nZO el (erkan) (£, 1= lonto)

We analyze here the properties of the junction in a field in
more detail in order to demonstrate the validity of the ex-

pressions given in Sec. V. H[ N/2—1 )]2> }1/2

nZO ellerlan) (g, 1= Lonsa

1. Fraunhofer pattern N/2—1

20,2e2i<p z g8ne4inkd
n=0

1/2
We consider again the limNi>1. With an external mag- =
netic field parallel to the TB the local Josephson current has

the form Sin(kL)
I =1 (R si o+ kk— 6(3)1, (B1) =o' Gka) Ok (B6)

wherek=27rBa/<1>o where in the small field limikd<1. In  Using the results from Sec. IV this can be translated easily
order to calculate the total current in the regioninto the expression
—L/2<X,y<L/2 (L=Nd), we perform they integration im-

mediately and divide the remainingintegral into two parts, sin(kL)
ey and av ningintegrat! P |2 ={l COB)L2 nlEL sin( @+ bL12)+ O(bd).
N-1 .
ly=L> cos(<p+k5<n)f~)%t§d3<Ic(i)sir[k(i—in) B7)
n=0 Hhé Therefore the total current is given by=1.,+1,) and the
N-1 maximal current which can pass through the junction is
—0(X)]={(lsind)Ld 2, cog ¢+ kX B2
(R)]=(Icsin)Ld 2, cosg-+k¥,) (B2) Ao\ (2m0| |2
max= L1 | {1 cSing)YF o + (1 .co)°F D
and 0 0
N—1 -
_ . o [atE o~ o o [F(x) =sinX)/x], which in the largeN limit is dominated by
I(z)—LnZ,O sin(¢p+ kxn)J'~>§1~§ dx I (x)cog k(X—X,) the first term
N—1 P
—0(X)]~L >, sin(@+kXy)(—1)" 1 cx(Xns1—Xn I max= (1 cSin6)L? F(qTO +O(N71). (B9)
n=0

This corresponds to the standard interference pattern and is
(B3) equivalent to the expression given in Sec. V for the laxge-
’ limit.
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2. Phase modulation hN/2’ a qﬁ,ZUZN/Z

ho| N Qr%uz‘fz

~al2, (B15)

As we mentioned in Sec. §(X) imposes a modulation of
the Josephson current phase relation. We show here that this
modulation is not harmful for the Fiske resonaras well as where « is of order 1. For a more realistic ratio of
the Fraunhofer patteynFor this purpose we analyze here the o/d~0.1, however,
Fourier decomposition of the phase modulation

1 a'd?

P @ _
N 1—eg (mo/d* Nxg?’

l(})e 0= heian} (B10) T
n=0 0

(B16)

where, due to the finite extensioh X L) of the interface, the
wave vectorq is discrete,gq,=2m7n/dN=2#n/L. (We as-
sume again that the TB’s are parallel to the edges of the
square). It is straightforward to calculath,, as

with o’ of order 1. Thughy,| is strongly reduced compared
with |hg| and it is easy to see thit | <|hy| for m>1.
Note also thath,,/ho|~2m7na?/dN for n<N. Therefore
we can assume that, represents by far the largest contribu-
L . . tion in Eqg.(B12).
=[f dX I (x)e "Meldn=(] (X)e ™ ?Xeldn®), We now turn to the problem of the Fiske resonances
0 where the phasé of Eq. (36) is given more generally now

B11) P
( by the superposition
We are allowed to use the average overfhehenN is very
large. Hence, the component 0f 0 is nothing but the av- 2d h. @il ©t—(k+dn)x+a]
erage used in Secs. IV and V, P(X,t)= > im| — )
_ oy 5 o lve—(k+q,) —iTw
ho={l.e"?). (B12) (B17)
For the expressions @f>0 we restrict ourselves to the limit - _
d> ¢, Becausep is small, we find for the dc current
i 1—e GNP T dt (L dx
ha=T m(hﬁwh?), (B13) _an%f f —|m2 hyellet=(ctanfxrat o]
with ~ wafL dX « heh} To cog(dn—gn)X]
) ) 1 aind 20?12 Polo L 5 [0*Tv?—(k+0n)?]+ T %0?
hV=2¢l,co —— - -
n g cl iqng) 2qn§_’77 2qn§+77 :7T_d E |hn|2Fw (818)
(B14) Oy & [wlv’—(k+q,)%]%+%w?’
@_2Ve2 jqda-q2o?r 7 y - -
hy?=—=¢'9%"M7'4 cogq,£) — cog gn(d— &) where the largest contribution originates from the 0 term
Gn which is identical to Eq(32). All other terms are diminished
qﬁgz by a factor of the ordeN~2?, apart fromn~N/2,N, ...,
+i— } which are of orderN~2(d/o)%. In principle, such terms

could lead to small resonances at rather high magnetic fields,
For n~mN/2, h, has peaks more or less pronounced dedn particular, fork~sm/d. Only such high fields could pro-
pending on the ratier/d (m is an integer. If o/d<1 (the  duce a clear sign of the inhomogeneous nature of the Joseph-
TB's form an almost regular lattige son coupling.
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