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We give a consistent explanation of thec-axis Josephson tunneling experiment by Sun and co-workers
between YBa2Cu3O61x and Pb within thed-wave pairing scenario. Using a Ginzburg-Landau formulation,
orthorhombic deformation and twinning of the crystal lattice are taken into account. In the presence of ortho-
rhombic distortion, symmetry arguments allow ac-axis Josephson coupling between YBa2Cu3O61x and Pb.
However, for a highly twinned YBa2Cu3O61x sample, the Josephson coupling is weakened due to destructive
interference effects. On the other hand, we demonstrate that destructive effects due to twinning can be over-
come, if twin boundaries support a state which locally breaks time reversal symmetry and leads to a channel
which adds constructively to the total Josephson coupling. Properties of the Josephson junctions measured in
experiment, such as the Fraunhofer pattern and the Fiske resonance, keep their standard form for such a
junction. The existence of a twin boundary state with broken time reversal symmetry can directly be tested, for
example, by observing vortices with fractional flux quanta on twin boundaries.

I. INTRODUCTION

The symmetry of the superconducting order parameter in
CuO2 systems has been hotly debated during recent years,1

especially since generally microscopic theories predict a
definite Cooper pairing symmetry. Leading candidates are
variouss-wave pairing states which are invariant under all
crystal symmetry transformations and the so-called
dx22y2-wave state which is usually described by the generic
pair wave functionc(k)5coskx2cosky .

Experiments have probed specific properties related to the
symmetry, but, unfortunately, results seemingly in conflict
with each other have led to considerable confusion. Various
investigations of the quasiparticle excitation spectrum point
towards the existence of zeros or nodes in the excitation gap.
While this feature appears naturally for ad-wave supercon-
ductor due to the difference in sign of the wave function
along the two main crystal axes, the gap of ans-wave state
could have nodes too under certain conditions. One example
of these experiments is that the low-temperature behavior of
the London penetration depth in YBa2Cu3 O61x ~YBCO! ex-
hibits a temperature dependence which agrees strikingly well
with predictions for ad-wave superconductor.2 Furthermore,
angle-resolved photoemission spectroscopy~ARPES! has re-
vealed an angular dependence of the excitation gap for
Bi2SrCa2Cu2O8 ~BSCCO!, which seem to be compatible
with d-wave symmetry.3,4 However these experiments do not
probe the pairing symmetry directly as they provide no ac-
cess to the signs~or the phase! of the pair wave function in
different momentum directions.

This deficiency was removed recently by a number of
experiments based on the Josephson effect which is sensitive
to the intrinsic phase structure of the order parameter. Many
favor d-wave pairing. The sign change of thed-wave order

parameter under 90° rotation corresponds to a phase differ-
ence ofp. This can lead to frustration effects in multiply
connected superconductors and could be the origin of a pe-
culiar paramagnetic signal seen in granular BSCCO~Wohlle-
ben effect!.5,6The angular form of the pair wave function can
be observed in a controlled way in an interferometer@super-
conducting quantum interference device~SQUID!# with a
single crystal of YBCO and a conventional superconductor
connected by two Josephson junctions. Several experiments
done so far show indeed with improving accuracy such a
phase differencep consistent with d-wave pairing
symmetry.7 Other experiments make use of a loop with a
phase twist ofp, so that the flux quanta are half-integer
multiples of the standard flux quantumF0 (5hc/2e),
F5F0(2n11)/2, instead ofF5nF0 . This new flux quan-
tization has been observed recently and fits also well into the
picture of a d-wave superconductor.8 Further support for
d-wave symmetry comes from the modification of Fraun-
hofer interference patterns for weak Josephson junctions at a
corner of a YBCO crystal.9

Nevertheless, these results have been challenged by two
other experiments based on the idea of the probing Joseph-
son couplings ‘‘forbidden’’ by symmetry. Chaudhari and Lin
investigated the supercurrent flow out of a misoriented inclu-
sion in ac-axis textured film of YBCO.10 The inclusion has
a hexagonal shape with the crystal axes misaligned by 45°
with respect to the surrounding. At first sight one would ex-
pect in this geometry that interference effects should cancel
the total Josephson current if YBCO were ad-wave super-
conductor. Instead a finite current was measured. However,
Millis showed that this can be understood, because the order
parameter can realign itself to cancel the phase difference by
introducing vortices of length scalelJ ~Josephson penetra-
tion depth!.11 The resulting magnetic fluxes at the interface
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have recently been observed directly by scanning SQUID
microscopy.12

In another experiment, Sun and co-workers demonstrated
the existence of Josephson junctions in which ac-axis nor-
mal face of YBCO was coupled to superconducting Pb
through a thin Ag layer~diffusion barrier!.13 The quality of
these superconducting-normal-superconducting (S-N-S!
junctions was tested. TheFraunhofer interference pattern
shows many oscillations of the critical current with applied
magnetic field and theFiske resonancesappear with a very
highQ factor.13 The productI cR of these junctions~the Jo-
sephson critical current times the normal state junction resis-
tance! ranges from 0.05 to 2 mV depending on qualitative
differences among the YBCO samples. These values are
smaller than those estimated by Sun and co-workers based
on the Ambegaokar-Baratoff theory.14

The existence of such high-quality junctions is difficult to
understand, if YBCO is ad-wave superconductor. In a sys-
tem with tetragonal crystal structure, symmetry would pre-
vent any second~lowest! order Josephson coupling along the
c axis to an s-wave superconductor such as Pb.15 Only
higher order couplings~simultaneous coherent transmission
of more than one Cooper pair! would contribute to the Jo-
sephson coupling, which are extremely small for tunneling
junctions as used in these experiments. However, YBCO is
orthorhombic; i.e., thea- and b axes of the basal plan are
distinguished by length and by the presence of CuO chains
parallel to theb axis. For this symmetrys and d waves
cannot be distinguished anymore, but transform according to
the same~trivial! irreducible representation. Thus,c-axis Jo-
sephson coupling would be allowed between a single crystal
of YBCO and Pb. However, high-quality junctions were also
made using highly twinned YBCO samples. These junctions
are difficult to understand since we know that thed-wave
order parameter of YBCO has different signs along the two
main axes. This sign difference leads to a Josephson cou-
pling along thec axis with opposite sign in neighboring twin
domains, which would lead to a destructive interference and
very weak macroscopic effects inconsistent with the experi-
mental data.11

In our view there are three possible explanations:~1! The
order parameter in YBCO has basicallys-wave symmetry
and the previous experiments pointing towards a sign
changes in the pair wave function were misinterpreted.~2!
The Josephson coupling is not via thec axis, but instead
comes from defects of the interface such as step edges which
are induced because the orientation of the interface normal is
not precisely along thec axis. ~3! The twin boundaries yield
an additional contribution to the Josephson coupling which
produces the result observed by Sun and co-workers.13 In
this paper we focus on thethird possibility and its conse-
quences.

We give here a brief outline of the basic ideas underlying
our explanation. The orthorhombic lattice distortion
e5exx2eyy introduces a natural coupling between the
d-wave and ans-wave order parameter of the original tetrag-
onal system, forming areal combination, a state we will call
‘‘ d6s-wave’’ state@the relative phase of the two components
is 0~1! or p(2)#. While the d-wave component does not
couple to a standard (s-wave! superconductor along thec
axis, the induceds-wave component leads to nonzero Jo-

sephson tunneling. A complication occurs due to the forma-
tion of twin domains, characterized by eithere.0 or
e,0. They are separated by ‘‘domain walls,’’ so-calledtwin
boundaries~TB’s! ~see Fig. 1!. In our approach the twin
domains are also distinguished by the property that one type
supports thed1s- and the other thed2s-wave state which
leads to a sign change of thes-wave order parameter at each
TB. Therefore, for a twinned YBCO sample thec-axis junc-
tion to an s-wave superconductor consists of an array of
junctions with alternating sign of the Josephson coupling.
Such an arrangement gives rise to destructive interference,
which for random domain size leads to a reduction of the
effective Josephson coupling by a factor proportional to
N21/2 compared with that of an untwinned sample (N is the
number of twin domains!. In actual samplesN;1032104

and the Josephson penetration depth is larger than the linear
extension of the interface.13 Therefore the argument given by
Millis for the Chaudhari-Lin experiment does not apply
here.11We cannot expect that nonuniform current flow could
overcome the destructive interference effects. As the experi-
ments on highly twinned YBCO do not show a drastic sup-
pression of the Josephson effect, there must be a coupling
channel which is not affected by this interference behavior.

A special superconducting state at the TB can provide
such a channel. Naively we expect that at the TB thes-wave
component changes sign by passing through zero. As a com-
plex order parameter, however, it can avoid zero by going
through the complex plane. This leads to a complex combi-
nation ofs- andd-wave component,d1eixs with xÞ0,p.
We will see in Sec. IV that such a state provides an addi-
tional Josephson coupling whose contributions can
adds constructively over all TB’s. This would yield a good,
though inhomogeneous, Josephson junction. In Sec. V we
demonstrate that the Fraunhofer interference pattern and the

FIG. 1. Schematic structure of a twin boundary~dashed line! in
an orthorhombically distorted crystal lattice. The ellipses denote the
schematic structure of the pair wave functions on each side, which
are a combination ofs- andd-wave pairing. For the situation here
the phase of thed-wave component is assumed to be constant while
that of thes-wave component switches from 0 top. This is the
situation which will be discussed in this paper.
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Fiske modes behave as in homogeneous junctions in the ex-
perimentally tested samples. The properties of such an inter-
face correspond to the averages over a large number of twin
boundaries and inhomogeneity of the interface would not be
visible. It is worth noting that this TB state breaks time re-
versal symmetry. This leads to unusual properties such as
spontaneous currents or vortices with fractional flux quanta
at the TB, which may be used for a direct test of the TB state
~Sec. VI!.

Note that our symmetry consideration leads to a different
conclusion for BSCCO where the orthorhombic deformation
of the crystal lattice is described by a shear straine5exy ,
different from YBCO. This deformation does not yield a cou-
pling between thes-wave anddx22y2-wave order parameter,
because in this case the two pairing states belong to different
irreducible representations. Hence, by symmetry argument
we would exclude Josephson coupling of BSCCO along the
c axis to ans-wave superconductor. Indeed analogous ex-
periments with ac-axis interface between BSCCO and an
s-wave superconductor~Pb! have so far not shown any ap-
preciable Josephson effect for junctions with ac-axis normal
face.16

We adopt a phenomenological approach using a
Ginzburg-Landau theory based on symmetry properties only.
Consequently, the theory presented here can only account
qualitatively for the effects we expect to occur in twinned
YBCO.

II. GINZBURG-LANDAU THEORY OF A d- AND s-WAVE
ORDER PARAMETER

In a system with tetragonal crystal field symmetry given
by the point groupD4h the s-wave order parameter belongs
to the trivial representationA1g while thedx22y2-wave order
parameter transforms like the representationB1g . Therefore
their bare transition temperaturesTcs andTcd are in general
different. Purely based on symmetry arguments we can for-
mulate the Ginzburg-Landau~GL! free energy functional
which has to be a scalar under all possible symmetry trans-
formations ofD4h , time reversal, and U~1! gauge symmetry.
The free energy as an expansion in the two complex order
parameters,hm5uhmuexp(ifm) with m5s for s wave and
m5d for d wave, is given by

F@hs ,hd ,A#5E d3xF (
m5s,d

$ãm~T!uhmu21bmuhmu4

1KmuPhmu2%1g1uhsu2uhdu21
g2

2
~hs*

2hd
2

1hs
2hd*

2!1
K̃

2
$~Pxhs!* ~Pxhd!

2~Pyhs!* ~Pyhd!1 c.c.%1
1

8p
~¹3A!2G ,

~1!

whereãm(T)5am(T/Tcm21) andbm , Km , g1 , g2 , and K̃
are real parameters. The vectorP denotes the gauge-invariant
gradient¹2(2p i /F0)A (A is the vector potential!. Under

tetragonal symmetry no coupling of the two order parameters
occurs at the level of second order expansion.17,18

Let us consider the bulk properties of this free energy for
Tcd.Tcs . Furthermore, we shall assume thatg1.g2.0.
Naturally all the other parameters are positive, in particular
4bsbd.(g12g2)

2, in order to guarantee the overall stability
of the GL free energy. We find in general two distinct super-
conducting phases by lowering the temperature, a high-
temperature phase with

hs050 and uhd0u252
ãd~T!

2bd
, ~2!

for Tcd.T.T* , and a twofold degenerate low-temperature
phase with

uhs0u25
~g12g2!ãd22bdãs
4bsbd2~g12g2!

2 ,

~3!

uhd0u25
~g12g2!ãs22bsãd
4bsbd2~g12g2!

2 ,

for T,T* where the relative phaseu5fs2fd56p/2, be-
cause we tookg2.0 (g2,0 would lead tou50,p). The
lower transition point T* is defined by the equation
(g12g2)ãd(T* )52bdãs(T* ), i.e., hs(T* )50. By the
choice of the parametersg1,2 the transition pointT* is lower
than the bare transition temperatureTcs of hs ~in particular,
there would be no transition ifTcs<0). The low-temperature
phase breaks time reversal symmetryT because the time
reversal operation acts on the order parameter byhm→hm* ,
relatingu to 2u. We call this phase thes6 id state because
u56p/2.

Next we consider the effect of the orthorhombic distortion
of the typee5exx2eyy as it is found in YBCO. We include
this property in our theory only by adding the following term
to the free energy functional:

Fe5ceE d3x~hs*hd1hshd* !, ~4!

wherec is a real parameter which we choose to be positive.
This term is the only scalar combination of the superconduct-
ing order parameters ande underD4h . There are two imme-
diate consequences due to this new term:~1! The presence of
a finite hd forces alsohs to be finite ~driven order param-
eter!, and~2! the crystal lattice parameters are affected below
the onset of superconductivity. Concerning the relative phase
there is a competition between the fourth order term
g2(hs*

2hd
21c.c.) and the second order term ofFe . The

former prefersu56p/2 and the latteru50 or p. As long
as both order parameters are small~close toTcd) we expect
thatu50 ~for e,0) orp ~for e.0). At lower temperature a
transition occurs whenu deviates continuously from these
values, leading to a state with broken time reversal symme-
try. Orthorhombic distortion suppresses the transition to the
T -violating state. Additionally, the coupling between thed-
ands-wave order parameters inFe leads to a renormalization
of the onset temperature of superconductivity,
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Tc~ce!5
Tcd1Tcs

2
1A~Tcd2Tcs!

2

4
1
TcdTcs
adas

~ce!2.

~5!

We neglect the change of volume, e.g.,exx1eyy , as another
source to shiftTc , because it is not important at all for our
discussion.

In Fig. 2 we show the behavior of the moduli of both
order parameters and the relative phase as a function of tem-
perature for a set of parameters in the GL free energy. The
inset of Fig. 2 is the corresponding phase diagram, tempera-
ture versusce, which shows clearly the suppression of the
T -violating phase due to the orthorhombic deformation. We
remind the reader here that the results shown in these figures
have only qualitative meaning, as the GL theory would be
quantitatively valid only in the vicinity of the onset of super-
conductivity. In addition we have neglected here any change
of e with temperature.

The other interesting aspect is the influence of the cou-
pling of the order parameters toe in Eq. ~4! on crystal lattice
behavior. We replacee by e01de, wheree0 is the ortho-
rhombic distortion just at the onset of superconductivity and
de is a small deviation from this value. The elasticity energy
for this small additional distortion isFelast5Bde2/2 whereB
is a ~positive! elasticity constant of the lattice. Minimizing
Felast1Fe with respect tode leads to

de52c~hs*hd1hshd* !/B, ~6!

where the sign ofde is the same as that ofe0 , becauseFe is
minimal if sgn(hs*hd1hshd* )52sgn(e0). Consequently,
the presence of the superconducting phase enhances the
orthorhombic deformation. This behavior is in qualitative
agreement with experiments done with YBCO.19,20

III. STATE NEAR A TWIN BOUNDARY

Orthorhombic deformation of a tetragonal lattice yields
two degenerate crystal~twin! states characterized bye.0
and e,0. This allows the formation of so-called twin do-
mains which are separated by twin boundaries~TB’s! ~see
Fig. 1!. We mentioned above that the relative phase between
the two order parameters depends on the sign ofe so that a
TB separates the stated1s from d2s. It is reasonable to
assume that at the TB the phase of one of the two order
parameters changes from 0 top, while the phase of the other
would remain essentially constant. One can argue which of
the two order parameter phasesfs andfd would change in
the case of YBCO. It is generally believed that the TB acts
like a very good junction between the twin domains, which
tends to keep the phase of thed-wave order parameter con-
stant. On the other hand, the phasefd could be tied to the
lattice deformation~for example, we could imagine that the
CuO2 chains in YBCO yield the dominant connection be-
tween the twin domains! such that it would change between
0 andp. In the following we assume the first case andhs
has to change the sign at the TB~as shown in Fig. 1!. As will
become clear below this assumption is equivalent to the ar-
gumentation by Sun and co-workers concerning the alternat-
ing phase~0 or p) of the Josephson coupling in an array of
twin domains. We also emphasize that the other case would
lead to a conflict in the interpretation of the SQUID and loop
experiments mentioned above, where it is assumed that twin-
ning does not affect the basal plane Josephson coupling
along the main axes.7,8,21,22Our assumption for the behavior
of fd leads to a situation where the respective sign of the
pair wave function along both main axis is the same in all
twin domains.

Twin boundaries usually lie along the direction corre-
sponding to@110# of the original tetragonal lattice~Fig. 1!.
Let us analyze the problem of a single TB located at
x2y50 which separates two half spaces. In this geometry
the spatial variation of the order parameter occurs only along
one dimension given by the coordinatex̃5x2y while we
can assume homogeneity alongz and ỹ (5x1y) directions
(x andy refer here always to the coordinates of the tetrago-
nal system!. The boundary conditions at infinity on the left
and right hand sides of the TB corresponding to the bulk
d1s andd2s states, respectively,

„hd~ x̃!,hs~ x̃!…5~hd0 ,6hs0! for x̃→6`, ~7!

wherehd0 andhs0 are positive and real. The order parameter
has two possibilities to connect the two domains:~I!
hs( x̃)/hd( x̃) is real every where, or~II ! it becomes complex
near the TB. Near the onset of superconductivity the second
order term inFe dominates the behavior of the relative phase
so that state~I! is realized. However, for lower temperature
the fourth order (g2) term gains in importance and a con-
tinuous transition to state~II ! happens. This instability can be
understood by examining the structure of the GL theory.
State ~I! is described by a weaklyx̃ dependenthd( x̃)
('hd0) andhs( x̃)5hs0f ( x̃) where f ( x̃) is an odd function
of x̃ @21< f ( x̃)<11# which varies on a length scale

j~T!5AKs /@ ãs~T!16bshs0
2 ~T!1~g11g2!hd0

2 ~T!#
~8!

FIG. 2. Behavior of the order parameter as a function of tem-
perature: uhdu ~solid line!, uhsu ~dashed line! both in units of
uhd(T50)u, and the relative phaseu5fs2fd ~dot-dashed line!.
Inset: phase diagram with theT -invariant ~1! and theT -violating
~2! bulk phases. These results are obtained by solving the Ginzburg-
Landau equations numerically for a generic choice of parameters:
as,d51, bs,d50.5, Ks,d51, g150.6, g250.5, andTcs /Tcd50.5.
For the plot of the order parameter we chosece50.2 ~indicated in
the inset by the dashed arrow!.
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near the TB andf ( x̃→6`)561. Both order parameter
components are real. When does this state become unstable
against a small admixture of imaginary components of the
order parameter„hd( x̃)1 iu( x̃),hs( x̃)1 iv( x̃)…? To answer
this question we consider corrections of the GL free energy
up to second order inu andv which has the structure

Fuv5E dx̃ dỹ@Kd~u8!21Ks~v8!21Rdu
21Rsv

21Quv#,

~9!

with

Rd~ x̃!5ãd12bdhd
2~ x̃!1~g12g2!hs

2~ x̃!

5Rd01~g12g2!V~ x̃!,

Rs~ x̃!5ãs12bshs
2~ x̃!1~g12g2!hd

2~ x̃!5Rs012bsV~ x̃!,
~10!

Q~ x̃!54g2hs~ x̃!hd~ x̃!1ce~ x̃!,

whereRd05Rd( x̃→`) andRs05Rs( x̃→`). @Note that all
first order terms inu and v vanish sincehd( x̃) andhs( x̃)
satisfy the GL equations.# The prime abbreviates the deriva-
tive with respect to x̃. The function V( x̃) denotes
hs0
2 ( f ( x̃)221),0 andQ( x̃) is odd. „The stability of the

homogeneouss6d state implies the inequalityRd0Rs0

2Q0
2.0 @Q05uQ( x̃→6`)u#. The equality corresponds to

the instability of this state against theT -violating bulk phase
discussed above.… We simplified our consideration here by
neglecting the vector potential. Note that therefore the gradi-
ent term with the coefficientK̃ in Eq. ~1! does not appear
here due to the symmetry of the coordinatex̃.23

The variational equations to minimizeFuv are

Kdu95Rd0u1~g12g2!V~ x̃!u1Q~ x̃!v,
~11!

Ksv95Rs0v12bsV~ x̃!v1Q~ x̃!u.

This linear differential equation system has only solutions for
special values of the parameters~depending on the tempera-
tureT! which represent the instability conditions of state~I!.
The solution belonging to the largest temperatureT deter-
mines the physical instability. This equation system has the
form of a two-component Schro¨dinger equation with an at-
tractive potential well, proportional toV( x̃), and a coupling
Q( x̃) between the two components. SinceQ( x̃) is an odd
function, it follows thatu( x̃) andv( x̃) have different parity
under x̃→2 x̃. The physical instability corresponds to a
bound state where bothu( x̃) andv( x̃) are finite near the TB
and decay exponentially forx̃→6` on a length scalej̃,

j̃225r2Ar 224q2, ~12!

with r5Rs0 /Ks1Rd0 /Kd and q25(Rs0Rd02Q0
2)/KsKd .

This length diverges as the bulk instability is approached
(q2→0) and can therefore be rather long compared withj.
In Appendix A we will show that the transition between
states~I! and ~II ! occurs always at a temperatureT8 higher
than the transition to the bulkT -violating phase (T8.T* ).

The parity of u and v is essentially decided by the
strength of the attractive potential for the two components. In

the further discussion we shall assume that the instability
leads to a state wherev( x̃) is even, whileu( x̃) is odd. For
the relevant solutionv( x̃) is nodeless andu( x̃) has just one
node atx̃50. The resulting state is twofold degenerate be-
cause the~time reversal! transformation (u,v)→2(u,v)
leads to another solution of the equations. Therefore, time
reversal symmetry is broken locally at the TB by this state
~II !. In this state the relative phaseu( x̃)5fs( x̃)2fd( x̃)
changes in a smooth kink between 0 andp on the length
j̃, in contrast to discontinuous jump for the state~I!.

Unfortunately, analytic solution of the above equation
system is difficult.~In Appendix A we will discuss the solu-
tion of a simplified version of these equations.! Therefore we
analyzed the behavior of the order parameter in the vicinity
of the TB by solving the complete GL equations numerically.
In Fig. 3 we show the solutions for the parameters used in
Fig. 2 andce51 at three different temperatures. The highest
temperature lies aboveT8 such that TB state~I! is realized.
The intermediate temperature show the locallyT -violating
TB state~II !, where the relative phase approaches 0 andp
with a finite distance (j̃) from the TB. The lowest tempera-
ture is within the bulkT -violating phase (T,T* ) and ap-
proaching the bulk the relative phase saturates at a value
different from 0 orp.

We complete the phase diagram of the inset in Fig. 2 by
adding the TB phase boundary line@T8(ce)#. The phase

FIG. 3. Numerical solution for the twin boundary state at three
different temperatures: For~a! uhd( x̃)u, ~b! uhs( x̃)u, and ~c! u( x̃)
with the parameters in the Ginzburg-Landau theory as given in Fig.
2 with ce51. The temperatures areT/Tcd50.1 ~solid line!, 0.2
~dashed line!, and 0.4~dot-dashed line!. They belong to the phases
~2!, ~1,II!, and~1,I! of Fig. 4, respectively.
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boundary merges naturally with the transition line
@T* (ce)# between theT -invariant andT -violating bulk
phase force→0. In the limit uceu@ad ,as a simple scaling
behavior ~discussed in Appendix A! leads toT(ce)}uceu.
Note thatT8(ce)/Tc(ce)→ const in this limit. In Fig. 4 the
phase diagramT versusce obtained numerically is shown.

Finally, we examine the problem of ‘‘interaction’’ be-
tween the degenerateT -violating states on two TB’s lying
close to each other. This problem can be considered within
the instability equation@Eq. ~10!# when two identical attrac-
tive potentials are included each at the position of one TB.
The ~fourfold! degeneracy of the bound states at the two
TB’s is lifted by the formation of a bonding~even! or anti-
bonding ~odd! combination.~These states are still twofold
degenerate because they break time reversal symmetry.! It is
easy to see that the bonding configuration is favored and the
‘‘interaction energy’’ decreases exponentially with the dis-
tanced }exp(2d/j̃) ~Appendix A!. This configuration cor-
responds to a combination of kink and an antikink ofu( x̃).
In an array of TB’s this yields a sequence of alternating kinks
and antikinks ofu( x̃).

IV. PROPERTIES OF A JOSEPHSON JUNCTION

Following the goal of this article we discuss now the Jo-
sephson coupling at the interface between our superconduc-
tor S1 and a conventionals-wave superconductorS2 with
the arrangement found in the experiment by Sun and co-
workers; i.e., the interface between the two has a normal
vector parallel to thec axis of thed-wave superconductor
S1.13 The interface is assumed to have a square shape with a
edge lengthL. As pointed out in the Introduction, the lowest
order Josephson coupling via thed-wave order parameter
hd vanishes in this direction. The only contribution origi-
nates from the presence ofhs . Thus the local interface en-
ergy and the Josephson current are given by

«J52
I 0F0

2pc
uhsuuh0ucos~w2u!,

~13!
J5I 0uhsuuh0usin~w2u!5I csin~w2u!,

whereuhsu and uh0u are the moduli of thes-wave order pa-
rameters at the interface on the side ofS1 andS2, respec-
tively. The phase difference between these two order param-
eters is denoted byw. If the Josephson coupling is weak,
then the order parameters should be affected only weakly by
the presence of the interface. Therefore we assume thatu is
the relative phase as given in the previous section. The su-
perconductorS1 shall not be in theT -violating bulk phase,
but have state~II ! on the TB.

Let us discuss the influence of the spatial variation ofu on
w by the standard sine-Gordon equation for Josephson junc-
tions (x̃ and ỹ are the coordinates within the interface!,

S ]2

] x̃2
1

]2

] ỹ2
D w5lJ

22sin~w2u!, ~14!

with lJ5(F0/2pd̃I c)
1/2 the Josephson penetration depth, the

length scale of variation ofw (d̃ is the effective magnetic
thickness, which is the sum of the London penetration depths
of the two superconductors and the interface thickness!.24 It
depends on the comparison oflJ and the length scale ofu
whetherw can follow the spatial variation ofu. If u varies
very rapidly over the lengthlJ , then w will adjust to an
averaged modulation ofu only. The situation of interest for
us corresponds exactly to this limit. In particular, in the fol-
lowing we will assume thatlJ.L and the number of TB’s,
N, is large so that theu varies very rapidly.27 This situation
is different in the Chaudhari-Lin experiment10 where the
length over whichu remains constant is the length of the
hexagon edges which is much longer thanlJ .

11 In this case
the phase differencew can easily align itself withu over
most of the junction and compensate the effect of change of
u easily.

As we argued in the previous section neighboring TB’s
favor alternatingu-kink and u-antikink configurations. Al-
though the energy difference for the kink-kink formation
may be rather small, we will assume here that this alternation
is realized. Thus, without loss of generality we can assume
that u varies between 0 andp via u5p/2 on each TB. We
decompose cos(w2u),

cos~w2u!5cosw cosu1sinw sinu, ~15!

where cosu changes sign in the range 0<u<p and the con-
tributions of neighboring twin domains (u50 and u5p)
tend to cancel each other. On the other hand, sinu is always
positive and adds up constructively over all TB’s becauseu
changes between 0 andp for each TB throughp/2 ~or alter-
natively for each TB through2p/2) so that sinu has the
same sign in each TB.

We consider now an array of parallel TB’s intersecting the
interface. The position of thenth TB is given by
x̃n2 x̃n215d1zn . The deviationszn of the distance be-
tween two TB’s from the averaged are independent random
variables with Gaussian distribution^zn&50 and
^znzn8&5s2dn,n8 (s,d). Calculations are simplified if we
consider the following approximate form ofu as a function
of x̃:

FIG. 4. Completed phase diagram including the twin boundary
states~I! and ~II !. The parameters of the Ginzburg-Landau theory
are chosen as in Fig. 2.

2840 53SIGRIST, KUBOKI, LEE, MILLIS, AND RICE



2u~ x̃!

p
55

11~21!n
~ x̃2 x̃n!

j̃
, x̃n< x̃< x̃n1 x̃8,

11~21!n, x̃n1 x̃8< x̃< x̃n112 x̃8,

12~21!n
~ x̃2 x̃n11!

j̃
, x̃n112 x̃8< x̃< x̃n11 ,

~16!

where x̃85 j̃ if x̃n112 x̃n.2j̃ and 2x̃85 x̃n112 x̃n if
x̃n112 x̃n,2j̃. In the latter case the constant region ofu
betweenx̃n and x̃n11 disappears. The extensionj̃ of the re-
gions with varyingu near the TB corresponds to the effective
extension given in Eq.~12! and we use here the same sym-
bol. Further,I c( x̃) is not constant but shall have the value
I c1 in regions whereu varies andI c2 whereu is constant.

For this form the interface energy per unit area is given by

^«J&52
F0

2pcL2E dx̃ dỹ I c~ x̃!cos@w2u~ x̃!#

52
F0

2pc
~^I csinu&sinw1^I ccosu&cosw!, ~17!

where^•••& denotes the average over the random variables
zn , We consider first the average ofI csinu,

^I csinu&5
4j̃I c1
pd K sinS p x̃8

2j̃
D L . ~18!

In the limit d@ j̃ we find

^I csinu&'
4j̃I c1
pd

, ~19!

which is proportional to the density 1/d of TB’s, and for
d! j̃,

^I csinu&5
4j̃I c1
pd K sinS p

4j̃
~d1z!D L 'I c1K cosS pz

4j̃
D L

'I c1F12
p2s2

32j̃2
G , ~20!

where we keep in mind thats,d. Note thatI c1 is propor-
tional to uhsu in the TB which would also depend on the
density of TB’s too. Therefore in the limitd! j̃ we would
expect thatI c1 would be reduced due to the suppressive ef-
fect of the TB on thes-wave order parameter~change of sign
or phase!.

For the average ofI ccosu we have to take into account
that neighboring domains contribute with opposite sign and
tend to cancel each other,

^I ccosu&5K E
x̃n

x̃n11
dx̃ I c~ x̃!cosu~ x̃!L

5K ~21!nF I c2~ x̃n112 x̃n22x̃8!

2
2j̃I c1

p
cosS p x̃8

2j̃
D G L , ~21!

which for d@ j̃ is

^I ccosu&5
I c2
Nd K (

n51

N/2

~z2n212z2n!L
5
I c2
Nd F (

n51

N/2

^~z2z8!2&G1/25 sI c2

dAN
~22!

and ford! j̃ is

^I ccosu&5
I c1
2Nd K (

n51

N

~21!ncosS p

4j̃
~d1zn!D L

'
pI c1

2j̃N
F (
n51

N/2

^~z2z8!2&G 1/25psI c1

j̃AN
. ~23!

In both cases the central limit theorem leads toN21/2 depen-
dence.

The Josephson current phase relation can be obtained by
the derivative of the interface energy with respect tow,

J5
2pc

F0

d^«J&
dw

5^I csinu&cosw2^I ccosu&sinw, ~24!

and the maximum current is immediately obtained as

Jmax5A^I csinu&21^I ccosu&2. ~25!

The phasew which minimizes the interface energy corre-
sponds toJ(w0)50,
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tanw05
^I csinu&

^I ccosu&
, ~26!

and the phase shiftw0 approachesp/2 for N@1. Obviously,
the contributions due to the TB state dominate the Josephson
effect in case of largeN. For j̃,d the coupling should in-
crease essentially proportionally to the density of TB’s,
Jmax'4j̃I c1 /pd. It reaches a maximum forj̃;d and de-
creases for increasing density of TB’s (j̃.d) again, because
I c1 and I c2 become gradually smaller.@Note that even in
state~II ! the TB suppresses thes-wave order parameter lo-
cally.# In the experiment by Sun and co-workers the average
distance between TB’s is of the orderd;102–103 Å. As we
mentioned in Sec. III it is possible thatj̃ can be rather large
althoughj is very short. Therefore it is not unrealistic to
assume thatj̃ could be of the same order of magnitude asd.
However, our qualitative considerations do not allow to give
any reliable estimate ofj̃.

V. PROPERTIES OF THE INTERFACE IN A WEAK
MAGNETIC FIELD

In this section we consider phenomena in connection with
a magnetic field parallel to the interface. The phase differ-
encew at the junction obeys the equation

S ]

] x̃
,

]

] ỹ
D w5

2pd̃

F0
~Bỹ ,2Bx̃!5~kx̃ ,kỹ!, ~27!

with d̃ the effective magnetic width of the interface. For very
weak Josephson coupling such thatlJ is much larger thanL,
the magnetic field spreads uniformly throughout the inter-
face. Then the local phase differencew( r̃ ) is

w~ x̃!5a1k• r̃ , ~28!

with r̃5( x̃,ỹ). Obviously, k corresponds to the inverse
lengthsl x̃52p/kx̃ andl ỹ52p/kỹ , which define the exten-
sion of one flux quantumF0 within the interface.

The phase modulation due to the magnetic field leads to
interference effects~Fraunhofer pattern! and in combination
with a voltage on the junction to~Fiske! resonance phenom-
ena. We discuss here whether the inhomogeneity of the in-
terface would modify these properties. For simplicity we will
assume that the~square! interface edges are parallel to the
x̃ and ỹ axes, respectively, and the TB’s are again parallel to
the x̃ axis.

A. Fraunhofer pattern

We study first the interference effects observable in the
total Josephson current given by

I tot5E
2L/2

L/2

dx̃E
2L/2

L/2

dỹ I c~ x̃!sin@a2u~ x̃!1k• r̃ #, ~29!

which after integration overỹ leads immediately to

I tot5L
sin~kỹL/2!

kỹL/2
E

2L/2

L/2

dx̃ I c~ x̃!sin@a2u~ x̃!1kx̃x̃#.

~30!

If the field lies perpendicular to the TB,kx̃50, then the
inhomogeneity of the interface does not affect the interfer-
ence effect at all and the total current maximized with re-
spect toa is given by the standard form

I ~F!5JmaxL
2UFS pF

F0
D U, ~31!

with Jmax from Eq. ~25!, F(x)5sin(x)/x and
F5ukỹL/2pu5ud̃LBx̃u as the total flux threading the inter-
face.

On the other hand, if the magnetic field is parallel to the
TB, the maximal current has the form

I ~F!5L2H F ^I csinu&FS pF

F0
D G21^I ccosu&2FS 2pF

F0
D J 1/2,

~32!

which in the large-N limit is dominated by the first term,

I ~F!5^I csinu&L2UFS pF

F0
D U1O~N21! ~33!

~for details see Appendix B!. Up to small corrections the
maximal current follows the standard Fraunhofer interfer-
ence pattern and the effects of the inhomogeneity of the in-
terface are not observable.

B. Fiske resonance

The interface can also act as a wave guide supporting
discrete modes of electromagnetic waves with a definite
momentum-frequency relationv5vk where v5c/Ad̃C
with C as the capacitance of the interface per unit area andc
as the speed of light. By applying a voltageV and a magnetic
field B such modes can be excited. In particular these modes
appear in form of resonances in the dc Josephson current. We
follow here the standard method for analyzing this
problem.25 For a very weak junction the phase differencew
is a function of position and time,

w~ x̃,t !5vt2k• r̃1a1w̃~ x̃,t !, ~34!

wherev52pV/F0 and the functionw̃( x̃,t) is a small cor-
rection to the other terms. The sine-Gordon equation@Eq.
~14!# has to be extended to describe also the time dependence
of the phase and dissipation effects,

S ]2

] r̃2
2

1

v2
]2

]t2
2G

]

]t D w5lJ
22sin@w2u~ x̃!#, ~35!

with G as the dissipation rate.25 In the large-N limit this
equation reduces to

S ]2

] r̃2
2

1

v2
]2

]t2
2G

]

]t D w̃5
2pd̃

F0
Im^I ce

2 iu&ei ~vt2k• r̃1a!

~36!

~see Appendix B!. This equation can be solved immediately,

w̃~ x̃,t !5
2pd̃

F0
Im

^I ce
2 iu&

~v2/v22k2!2 iGv
ei ~vt2k• r̃1a!. ~37!

Inserting this result intow of Eq. ~34! we find the dc current

2842 53SIGRIST, KUBOKI, LEE, MILLIS, AND RICE



Jdc5
Gv

~v2/v22k2!21G2v2

pd̃

F0
Jmax
2 , ~38!

as shown in Appendix B. As in the standard case the dc
current shows a resonance if the voltage and the magnetic
field match the conditionv5vk.

Both the Fraunhofer interference pattern and the Fiske
resonance are not modified qualitatively compared with the
behavior of usual junctions, ifN is very large ~highly
twinned sample!. This is only true as long as the applied field
is sufficiently small, in the sense that the lengthl ;1/kx̃ is
much larger than the average distanced between the TB’s. In
a measurement of the total current we observe only the prop-
erties averaged over a large number of twin domains. The
varyingu( x̃) introduces phase modulations with many wave
vectorsq @5(qx̃ ,0)# which lead to dominant contributions
for qx̃5pn/d ~see Appendix B!. However, very large fields
(kx̃;p/d) were necessary to reveal the inhomogeneous
structure of the interface by examining interference effects.
Such magnetic fields correspond to a flux of the orderNF0
in the interface. We cannot expect that a Josephson tunneling
junction would still work under such conditions.

VI. OTHER EXPERIMENTAL CONSEQUENCES

We consider now properties of the system which could be
used to test some aspects of the picture developed here. The
first probe is connected with the average phase shiftw0
which for the highly twinned samples approachesp/2. The
two next effects are based on specific magnetic properties of
the T -violating state. Finally we consider also the presence
of soft modes due to the phase transition from state~I! to ~II !.

A. Average phase shiftw0

For thec-axis interface between thes wave and a highly
twinned sample of YBCO the Josephson current-phase rela-
tion is given by

J5Jmaxsin~w2w0!, ~39!

whereJmax andw0 are defined in Eqs.~25! and~26!, respec-
tively. We can arrange the geometry of thes-wave supercon-
ductor so that it forms a second junction with the YBCO
sample, this time along the basal plane direction of YBCO
~basal plane junction with the critical currentI c). In this way
we create a superconducting loop where the latter junction is
in general much stronger than thec-axis junction discussed
above. Due to the phase shiftw0 we expect that the order
parameter phase around the loop is twisted. This can lead to
a spontaneous current and a magnetic flux through the loop.
The fact that thec-axis junction is weak, however, leads to
the problem that the flux is not well quantized and, in par-
ticular, not in a simple topological way related tow0 .

Let us analyze the behavior of the current in such a loop,
assuming that the basal plane contact is much stronger than
the one alongc axis, i.e., the dimensionless parameter
2pLI c /F0c@1 (L is the self-inductance of the loop!. On
the other hand, the analogous parameter shall be much
smaller than 1 for thec-axis junction (g52pLJmax/F0c
!1). In this case currents flowing in the loop are so small
that the current-phase relation of basal plane junction can be

approached byI5I csinw'Icw. Therefore we can write an
energy expression as a function of the current in the loop
containing the contribution of thec-axis junction only and
the magnetic field energy (}I 2),

E~ I !5
1

2c2
LI 22

F0Jmax
2pc

cosS 2pLI

F0c
2w0D . ~40!

Minimizing this energy with respect toI we obtain the flux

F5
1

c
LI5

1

c
LJmaxsinw01O~g2!, ~41!

which is finite only ifw0 is different from 0 andp. Hence,
according to our picture thec-axis junction of a highly
twinned sample would lead to finite flux, while in contrast no
flux would be expected in the case YBCO were a pure
s-wave superconductor or the sample were untwinned
(w050 or p).

B. Spontaneous currents in the twin boundary

It is known for some time that inT -violating supercon-
ductors domain walls can carry supercurrents even in the
absence of external fields.17,28 These spontaneous currents
flow parallel to the domain walls and generate a local mag-
netic field distribution. No net magnetization is resulting
from these currents, because screening effects lead to an
overall canceling of the fields. Such currents flow also in
TB’s with a T -violating state. We will illustrate this here
briefly by examining the structure of the supercurrent in the
basal plane,Ja52c]F/]Aa whereF is given in Eq.~1!
(a5x,y),

Ja5
2pc

F0
F (

m5s,d
Kmuhmu2S ]

]a
fm2

2p

F0
AaD

1K̃saS H uhsu
]

]a
uhdu2uhdu

]

]a
uhsuJ sinu

1H ]

]a
~fs1fd!2

4p

F0
AaJ uhsuuhducosu D G , ~42!

with hm5uhmuexp(ifm), u5fs2fd , and sx511 and
sy521. Far away from the surface of the sample we find
that the current perpendicular to the TB (J') has to vanish in
any case due to Meissner screening effects described by the
London equation¹3B54pJ/c. In the analysis of this
equation it is important to notice that deep inside the sample
the only spatial dependence is along the normal vectorn
@5~1,1,0!# of the TB. Thus,

05J'5n•J5Jx1Jy5
4pc

F0
F (

m5s,d
Kmuhmu2S ]Fm

] x̃

2
2p

F0
Ax̃D 1

4p

F0
K̃uhsuuhduAỹcosuG , ~43!

with Ax̃5Ax1Ay andAỹ5Ax2Ay . The current parallel to
the TB is given by
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Ji5Jx2Jy5
4pc

F0
K̃F H uhsu

]

] x̃
uhdu2uhdu

]

] x̃
uhsuJ sinu

1H ]

] x̃
~fs1fd!2

4p

F0
Ax̃J uhsuuhducosuG . ~44!

The structure of theT -violating state leads to sinu and
uhmu that are even functions ofx̃ with respect to the center of
the TB (x̃50), while cosu is an odd function. Combining
Eqs.~43! and~44! it is easy to see thatJi is nonzero and an
odd function; i.e., the supercurrent flows in opposite direc-
tions on the two sides of the TB. This current distribution
generates a magnetic field pointing along thez direction
which is peaked in the center of the TB. It changes sign and
approaches gradually zero on a length of the London pen-
etration depth further away from the TB due to screening
effects.29

A very rough estimate of the magnitude of the field in the
center of the TB can be obtained by neglecting screening
effects and the spatial dependence of the moduli of the order
parameteruhmu. Then u is the only x̃-dependent quantity
changing continuously from 0 top at the TB. Using Eqs.
~43! and ~44! within this approach we obtain the equation

]Bz

] x̃
5
8p2

F0
K̃uhsuuhdu H Kduhdu2

Kduhdu21Ksuhsu2
J cosu ]u

] x̃
,

~45!

where we setA50 in the current expressions. The magnetic
field at x̃50 is obtained by simple integration with respect to
x̃,

Bz~ x̃50!52S 2p

F0
D 2K̃uhsuuhdu H Kduhdu2

Kduhdu21Ksuhsu2
J F0 ,

~46!

with sinu(x̃50)51. We can estimate this expression by con-
sidering the anisotropy of the London penetration depth,

1

4pla
2 52S 2p

F0
D 2@Ksuhsu21Kduhdu21K̃sauhsuuhducosu#,

~47!

which leads to

2S 2p

F0
D 2K̃uhsuuhdu5

1

8p
ulx

222ly
22u. ~48!

Furthermore, the ratio in$•••% may lie somewhere between
0.1 and 1. Thus, we find

Bz~0!;~0.1–1!
F0

8p
ulx

222ly
2u. ~49!

If we assume that this formula gives a reasonable estimate
also at low temperatures~where the GL theory is not exact
anymore!, we may use the zero temperature values of the
London penetration depth (l'1600 and 1000 Å). This
leads toBz(0); 5–50 G. This estimate is surely too high.
Screening effects and reduction of the order parameter close
to the TB would reduce this value. Even if these effects
would diminish the estimated field by one or two orders of

magnitude, it still could be observable. Unfortunately, the
internal variation of the field occurs on a length ofj̃, so that
the magnetization would have canceled to zero on the scale
of London penetration depth. Therefore, this is not a favor-
able condition to do any kind of magnetic microscopy
searching for these fields. In addition it is not so clear how
sensitive the TB states are to the conditions at the surface. A
technique more likely to reveal the presence of such a spon-
taneous current and field distribution ismSR ~muon spin
rotation! in zero external field. When~spin polarized! muons
are injected into a sample, they are trapped at specific crys-
tallographic positions throughout the volume. The measure-
ment of their dipolarization rate provides a good probe for
the local magnetic field at the trapping points. As they
sample the local field over the whole volume of the sample
they can give information of the overall field distribution.
Hence, it is possible to observe the change in the internal
field distribution below the transition to theT -violating TB
state. We would like to emphasize that in a similar way such
signals have demonstrated the occurrence of internal mag-
netic fields for superconducting phases which break time re-
versal symmetry in the heavy fermion compounds UPt3 and
U12xThxBe13.

C. Fractional vortices on twin boundaries

For well-separated TB’s theT -violating state is twofold
degenerate. Therefore both degenerate states may appear as
domains on the TB’s separated by boundary lines, similar to
Bloch lines in the domain walls of ferromagnets. These
boundary lines correspond to the phase winding of the
s-wave order parameter and carry a topological charge, i.e., a
magnetic flux~see Ref. 30!. The magnetic flux enclosed in
this line is, in general, only a fraction ofF0 . This can be
understood in the following way. Consider an isolated do-
main boundary line, where on one sideu passes through
1p/2 and on the other side through2p/2 in the TB. We
encircle the line with a path sufficiently far that it contains all
the flux associated with the line. The path has rectangular
shape with two edgesa and a8 perpendicular to the TB,
while the other two edgesb andb8 lie parallel to the TB. All
path segments are located so that there is no current flowing
parallel to them:J'50 on a and a8 and Ji50 on b and
b8. Using Eqs.~43! and~44! it is easy to arrive at the integral

R a,b,a8,b8ds•S ¹f2
2p

F0
AD

5S E
a
dx̃2E

a8
dx̃D F Ksuhsu2

Ksuhsu21Kduhdu2
]u

] x̃

1
4p

F0

K̃uhsuuhduAỹcosu

Ksuhsu21Kduhdu2G , ~50!

where we introducedfd5f andfs5f1u. Note that the
integrals onb andb8 do not contribute to the right hand side,
because these segments are taken very far from the TB. The
first integrand on the right hand side of Eq.~50! gives obvi-
ously a fraction of 2p depending on the system parameters
like Ks andKd . This is true also for the second integrand,
becauseAỹ is generated by the currents running along the TB
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(Ji) so that its contribution is roughly proportional to
(K̃uhsuuhdu)2. Note that the integrands are identical in mag-
nitude ona and a8 and however, have opposite sign. We
obtain for the fluxF from Eq. ~50!

F2F0n5F0f ~Ks ,Kd ,K̃, . . . !, ~51!

wheren is the integer winding number andf is a function of
the phenomenological parameters of the system,u f u,1, for
certainn. The flux in the domain boundary line depends on
specific system properties and is not related in a simple way
to an integer or rational multiple ofF0 . This flux line is a
fractional vortex analogous to that found in Ref. 29.

On the other hand, the total flux to two neighboring do-
main boundary lines adds up to an integer multiple ofF0 ,
because in the integral on the right hand side of Eq.~50! the
integrands are identical even in sign so that their contribu-
tions cancel,

F11F25nF0 . ~52!

This has interesting consequences. A standard vortex trapped
on a TB can decay into two fractional vortices, each with a
flux smaller thanF0 , and gain magnetic line energy in this
way. This decay pays only if the gain of field energy is not
compensated by the energy expense to create two domain
boundary lines.@Usually the field energy (}F2) is more
important than the core energy in strongly type-II supercon-
ductors.# Fractional vortices cannot leave the TB, but are
‘‘pinned’’ on it. As a consequence flux flow parallel to the
array of TB should be considerably easier than perpendicular
to the TB.

Of course, an ideal experiment to verify the existence of
fractional vortices on TB would be their direct observation
by such tools as scanning SQUID microscopes, Hall probes,
or electron holography, all of which allow a rather good mea-
surement of the magnitude of local magnetic flux. Such ex-
periments could be successful in rather weak magnetic fields
where the vortices are rare and would almost exclusively
reside on TB’s due to the lower line energy or critical mag-
netic field. The observation of fractional vortices would be
another indication for the correctness of our picture.

D. Soft mode

Finally we consider another indication of the occurrence
of a new TB state at low temperatures. In connection with
the transition of the TB state atT8 a local softening of the
mode of the relative phaseu is expected. In the TB state~II !
fluctuations of the relative phase couple to the lattice strain
e5exx2eyy as seen in Eqs.~8!–~10!,

cde~udv1vdu!5cdeuhsuuhdusinudu. ~53!

Due to this coupling the transition atT8 would be accompa-
nied by an anomaly in ultrasound absorption and a renormal-
ization of the sound velocity for longitudinal sound waves
along the main axis in a highly twinned sample. Such mea-
surements could, however, be disturbed by scattering of ul-
trasound at the TB’s.

VII. CONCLUSIONS

Among the experiments probing the symmetry of the su-
perconducting order parameter of YBCO the one observing a
Josephson coupling along thec axis is the most puzzling
one, often used as an argument against ‘‘d-wave
superconductivity.’’13 We have examined here the conditions
of this experiment assuming that the basic order parameter of
YBCO hasd-wave symmetry. Obviously, the orthorhombic
distortion (exx2eyy) of the crystal lattice of YBCO plays an
important part in the Josephson coupling because there is no
symmetry which would forbid it. While for a single-domain
orthorhombic system the situation is rather simple, a more
careful consideration is necessary for twinned samples. Our
analysis shows that in the case of highly twinned sample still
a sizable Josephson coupling is possible. We demonstrated
that twin boundaries can provide a channel of coupling if
they support a locallyT -violating state in their vicinity,
while the twin domains contribute little due to destructive
interference effect in the phase coherent tunneling. Although
the coupling is very inhomogeneous in magnetitude and
phase, we have seen that the properties of the junction on a
macroscopic scale may look rather homogeneous.

In the Introduction we mentioned the measurement of the
I cR product which is lower than one would expect from the
theory by Ambegaokar and Baratoff.14 One source of the
discrepancy between the calculated and the measured value
lies in the assumption about the correct gap values for YBCO
using the formula

I cR5
2

e

DPbDY

DPb1DY
KFUDPb2DY

D Pb1DY
UG , ~54!

whereDPb andDY are the measured gap values in Pb and
YBCO, respectively, andK the complete elliptic integral.13,14

If we insertDPb51.4 meV andDY514 meV, then we obtain
I cR'5 mV. However, the assumed gap value for YBCO
corresponds to the one of thed-wave order parameter rather
than to that of the induceds-wave component which actually
is responsible for the Josephson coupling. For untwinned
samples the measuredI cR product lies between 1 and 2 mV
which leads to a gap value ofDY;0.4–1 meV in Eq.~54!,
which may not be unreasonable for the induceds-wave order
parameter. The reduction of theI cR product for twinned
samples follows, of course, from the destructive interference
effects and the fact that the dominant channel of coupling is
provided by theT -violating TB states. In this case no simple
relation as in Eq.~54! is available. Naively, we would expect
I cR to increase more or less proportionally with the density
of TB’s. However, as mentioned earlier, we should be cau-
tious because the s-wave order parameter component would
be suppressed if the average distance between TB’s becomes
comparable with its coherence length, as it is suppressed in
the vicinity of the TB’s. It is difficult to estimate this length
and it might be considerably longer than the one of the
d-wave order parameter@j(T50);10 Å#. Consequently, it
is difficult to predict the dependence of theI cR product on
the density of TB’s. Unfortunately, at present, there is no
systematic experimental study on this problem.

TheT -violating twin boundary states correspond to a su-
perconducting phase with locals6 id symmetry which is
known to have no nodes in the gap. To ensure that this would
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not spoil the experiments probing the density of states of the
quasiparticles, one has to consider the quality of the samples
used in these experiments. It turns out that samples used to
measure the London penetration depth are rather weakly
twinned with an average distance of;1 mm between twin
boundaries. This leaves a lot of space with thes6d bulk
phase which has nodes in the gap.

We mentioned also that the virtual absence of Josephson
coupling in BSCCO may originate from the different type of
the orthorhombic distortion with a shear strain of the form
exy . In contrast to the case of YBCO there is no admixture of
ans-wave component to thedx22y2 order parameter enforced
by symmetry. The absence or rather small magnitude of such
ans-wave component may explain the negative result found
for c-axis Josephson coupling between BSCCO and a con-
ventional s-wave superconductor.16 On the other hand,
Kuboki and Lee26 argued recently that an interlayers-wave
component is present in this system. Thiss-wave component
itself, however, gives only a negligible contribution to the
c-axis Josephson effect.26 Instead it could induce orthorhom-
bic distortionexx2eyy , leading to a situation as in YBCO.
However, since this distortion has not been detected so far, it
is not possible to draw any firm conclusion on how interlayer
pairing might affect thec-axis tunneling.

Finally, we like to mention that the interface with phase
modulationu could be an object for various new studies on
pinning effects ifd andlJ are comparable. It will be inter-
esting to analyze the static screening properties of the junc-
tion as well as the dynamics ofw and the current under this
condition. This issue will be considered in a future publica-
tion.
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APPENDIX A: INSTABILITY CONDITION
OF THE TB STATE

In Sec. III we considered the instability of the TB state~I!
analyzed by means of the linearized GL equation@Eq. ~10!#
of the imaginary partsu and v of the order parametershs
andhd . Here we give a solution of a simplified version of
these equations. We assume that the length scalej of varia-
tion of hs at the TB is very small compared with the one
introduced byu and v ( j̃). Therefore we replaceV( x̃) by
hs0
2 jd( x̃2 x̃0) andQ( x̃) by Q0sgn(x̃) in Eq. ~10! ~TB’s lo-

cated atx̃0). We assume thatv( x̃) is even andu( x̃) is odd
@u( x̃0)50#. We replaceu( x̃) by w( x̃)5u( x̃)sgn(x̃) and
Fourier transform the equations to obtain

~k2Kd1Rd0!w̃k1Q0ṽk50,

~A1!

Q0w̃k1~k2Ks1Rs0!ṽk52bshs0
2 jv~ x̃0!e

ikx̃0,

with

„v~ x̃!,w~ x̃!…5
1

2pE2`

1`

dk e2 ikx̃~ ṽk ,w̃k!. ~A2!

Note that the termu( x̃)d( x̃2 x̃0) vanishes in the real space
equation because ofu( x̃0)50. This set of equations can be
solved at once and by Fourier transformation lead to

v~ x̃!5
v~ x̃0!hs0

2 bsj

KsKd
(
l51,2

R~ ik l !e
2kl ux̃2 x̃0u,

~A3!

u~ x̃!5
v~ x̃0!hs0

2 bsj

KsKd
sgn~ x̃! (

l51,2
S~ ik l !e

2kl ux̃2 x̃0u.

The functionsR andS are obtained in the residuum calcula-
tion,

R~k!5
i ~k2Kd1Rd0!

k~2k21r !
and S~k!5

iQ0

k~2k21r !
, ~A4!

with r5Rs0 /Ks1Rd0 /Kd . The argumentsik1,2 are the
imaginary poles ofṽk andw̃k in the upper complex plane of
k. We implicitly assumed here thatr 224q2.0 to ensure
that these poles are purely imaginary@q25(Rs0Rd0

2Q0
2)/KsKd.0#,

k1,2
2 5r6Ar 224q2. ~A5!

The smaller among the two,k15 j̃21, defines the longer
length scale ofv and u. In particular, note thatk1→0 for
q→0 which is the instability condition for theT -violating
bulk transition atT* (ce).

The instability condition for state~II ! is obtained via the
self-consistency equation forv( x̃0) which for v( x̃0)Þ0
leads to

15
hs0
2 b2j

KsKd
(
l51,2

R~ ik l !. ~A6!

The right hand side of this equation is smaller than 1 close to
the onset of superconductivity, and hence for allT.T8, the
instability temperature. BecauseR( ik1→0)→`, we can
conclude thatT8>T* always.

We can easily extend our discussion to the case of two
TB’s located atx̃0 and x̃1 . Equation~A1! is modified by
replacing the right hand side of the second equation by

2bshs0j@v~ x̃0!e
ikx̃01v~ x̃1!e

ikx̃1# ~A7!

and adjusting alsoQ( x̃) appropriately. By symmetry there
are only two possible candidates for the instability character-
ized byv( x̃1)51v( x̃0) ~bonding! andv( x̃1)52v( x̃0) ~an-
tibonding!. The self-consistence equation has then the form

15
hs0
2 b2j

KsKd
(
l51,2

R~ ik l !@16e2kl ux̃02 x̃1u# ~A8!

for the bonding~1! and antibonding (2) configuration. The
bonding state leads to the first instability and has the higher
transition temperature than the one of antibonding state, be-
cause the1 sign increases the right hand side in the self-
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consistence equation. Note that also for an entire whole array
of TB’s the symmetric configuration yields the preferred TB
state.

Consequently, the relative phaseu varies only between 0
andp and passes throughp/2 at each TB. For the antibond-
ing stateu would pass at one TB throughp/2 and at the next
through 3p/2 such that after passing through two TB’su
would have changed by 2p. However, this behavior is not
favored energetically.

Let us briefly discuss two limiting cases. For very small
orthorhombic distortionce thes-wave component of the or-
der parameter is small,hs0}ce. In order to satisfy the self-
consistence equationR( ik j ) has to become large. This is the
case if q→0. Hence, force→0 the phase transition line
T8(ce) approaches graduallyT* (ce). Finally we would like
to demonstrate a scaling behavior to the self-consistence
equation for very large values ofce. In this case the bulk
valueshs0 andhd0 have about the same magnitude and are
proportional to ce. By redefining the temperature as
T̂ce5T and the unit length asx̂/Ace5 x̃, we observe that up
to a correction of the orderad /ce the right hand side of Eq.
~A6! does not depend once. Therefore we find that the
instability temperatureT8 is proportional toce and the ratio
of T8(ce)/Tc(ce) approaches a constant for largece as
shown in the example of Fig. 4.

APPENDIX B: THE JUNCTION IN A MAGNETIC FIELD

We analyze here the properties of the junction in a field in
more detail in order to demonstrate the validity of the ex-
pressions given in Sec. V.

1. Fraunhofer pattern

We consider again the limitN@1. With an external mag-
netic field parallel to the TB the local Josephson current has
the form

J~ x̃!5I c~ x̃!sin@w1kx̃2u~ x̃!#, ~B1!

wherek52pBd̃/F0 where in the small field limitkd!1. In
order to calculate the total current in the region
2L/2< x̃,ỹ<L/2 (L5Nd), we perform theỹ integration im-
mediately and divide the remainingx̃ integral into two parts,

I ~1!5L (
n50

N21

cos~w1kx̃n!E
x̃n2 j̃

x̃n1 j̃
dx̃ I c~ x̃!sin@k~ x̃2 x̃n!

2u~ x̃!#'^I csinu&Ld(
n50

N21

cos~w1kx̃n! ~B2!

and

I ~2!5L (
n50

N21

sin~w1kx̃n!E
x̃n2 j̃

x̃n1 j̃
dx̃ I c~ x̃!cos@k~ x̃2 x̃n!

2u~ x̃!#'L (
n50

N21

sin~w1kx̃n!~21!nF I c2~ x̃n112 x̃n

22x̃8!2
2j̃I c1

p
cosS p x̃8

2j̃
D G , ~B3!

where we used thatkd,kj̃!1. First, we considerI (1) by
rewriting this expression into a form where we easily per-
form the average of thezn and the summation overn,

I ~1!5^I csinu&Ld ReH eiw (
n50

N21

expF ikS dn1(
j50

n

z j D G J
5^I csinu&Ld ReFeiw 12gNeikL

12geikd G , ~B4!

where we averaged by using ^eikz&5e2k2^z2&/2

5e2k2s2/25g. In the small field limit various approxima-
tions are allowed now: g'11O„(ks)2…, 12gN

5(bs/2)bsN5O(ks), and cos(a1kd)5cos(a)1O(kd).
This leads to the following final expression forI (1) :

I ~1!5^I csinu&L2
sin~kL/2!

kL/2
cos~w1kL/2!1O~kd!.

~B5!

We turn now toI (2) . As neighboring domains tend to
cancel each other we combine them and make use of the
central limit theorem which leads to the following sum
whose imaginary part apart from prefactors will be relevant
for us:

K (
n50

N/221

ei ~w1kx̃2n!~z2n112z2n12!L
5F K H (

n50

N/221

ei ~w1kx̃2n!~z2n112z2n12!J 2L G1/2
5F2s2e2iw (

n50

N/221

g8ne4inkdG1/2
5sei ~w2kL/2!Asin~kL!

sin~kd!
1O~kd!. ~B6!

Using the results from Sec. IV this can be translated easily
into the expression

I ~2!5^I ccosu&L2Asin~kL!

kL
sin~w1bL/2!1O~bd!.

~B7!

Therefore the total current is given byI5I (1)1I (2) and the
maximal current which can pass through the junction is

Imax5L2H F ^I csinu&FS pF

F0
D G21^I ccosu&2FS 2pF

F0
D J 1/2

~B8!

@F(x)5sin(x)/x#, which in the large-N limit is dominated by
the first term

Imax5^I csinu&L2UFS pF

F0
D U1O~N21!. ~B9!

This corresponds to the standard interference pattern and is
equivalent to the expression given in Sec. V for the large-N
limit.
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2. Phase modulation

As we mentioned in Sec. V,u( x̃) imposes a modulation of
the Josephson current phase relation. We show here that this
modulation is not harmful for the Fiske resonance~as well as
the Fraunhofer pattern!. For this purpose we analyze here the
Fourier decomposition of the phase modulation

I c~ x̃!e2 iu~ x̃!5 (
n50

`

hne
2 iqnx̃, ~B10!

where, due to the finite extension (L3L) of the interface, the
wave vectorq is discrete,qn52pn/dN52pn/L. ~We as-
sume again that the TB’s are parallel to the edges of the
square.! It is straightforward to calculatehn as

hn5
1

LE0
L

dx̃ I c~ x̃!e2 iu~ x̃!eiqnx̃5^I c~ x̃!e2 iu~ x̃!eiqnx̃&.

~B11!

We are allowed to use the average over thez whenN is very
large. Hence, the component ofn50 is nothing but the av-
erage used in Secs. IV and V,

h05^I ce
2 iu&. ~B12!

For the expressions ofn.0 we restrict ourselves to the limit
d@ j̃,

hn5
i

L

12e2qn
2s2N/2

12ei2qnd2qn
2s2

~hn
~1!1hn

~2!!, ~B13!

with

hn
~1!52j̃I c1cos~qnj̃ !H 1

2qnj̃2p
2
eiqnd2qn

2s2/2

2qnj̃1p
J ,

~B14!

hn
~2!5

2I c2
qn

eiqnd2qn
2s2/2H cos~qnj̃ !2cosS qn~d2 j̃ !

1 i
qn
2s2

2 D J .
For n;mN/2, hn has peaks more or less pronounced de-
pending on the ratios/d (m is an integer!. If s/d!1 ~the
TB’s form an almost regular lattice!,

UhN/2h0
U; a

N

qN/2
2 s2N/2

qN/2
2 s2 ;a/2, ~B15!

where a is of order 1. For a more realistic ratio of
s/d;0.1, however,

UhN/2h0
U; a8

N

1

12e2~ps/d!2
;

a8d2

Nps2 , ~B16!

with a8 of order 1. ThusuhN/2u is strongly reduced compared
with uh0u and it is easy to see thatuhmN/2u,uhN/2u for m.1.

Note also thatuhn /h0u;2pns2/d2N for n!N. Therefore
we can assume thath0 represents by far the largest contribu-
tion in Eq. ~B12!.

We now turn to the problem of the Fiske resonances
where the phasew̃ of Eq. ~36! is given more generally now
by the superposition

w̃~ x̃,t !5
2pd̃

F0
(
n

ImS hne
i @vt2~k1qn!x̃1a#

v2/v22~k1qn!
22 iGv D .

~B17!

Becausew̃ is small, we find for the dc current

Jdc5 limT→`E
0

T dt

T E0
L dx̃

L
Im(

n
hne

i @vt2~k1qn!x̃1a1w̃~ x̃,t !#

5
pd̃

F0
E
0

L dx̃

L (
n,n8

hnhn8
* Gv cos@~qn2qn8!x̃#

@v2/v22~k1qn8!
2#1G2v2

5
pd̃

F0
(
n

uhnu2Gv

@v2/v22~k1qn!
2#21G2v2 , ~B18!

where the largest contribution originates from then50 term
which is identical to Eq.~32!. All other terms are diminished
by a factor of the orderN22, apart fromn;N/2,N, . . . ,
which are of orderN22(d/s)4. In principle, such terms
could lead to small resonances at rather high magnetic fields,
in particular, fork;pm/d. Only such high fields could pro-
duce a clear sign of the inhomogeneous nature of the Joseph-
son coupling.
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