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Strong-coupling expansions for the pure and disordered Bose-Hubbard model
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A strong-coupling expansion for the phase boundary of(ifieompressiblgMott insulator is presented for
the Bose-Hubbard model. Both the pure case and the disordered case are examined. Extrapolations of the series
expansions provide results that are as accurate as the Monte Carlo simulations and agree with the exact
solutions. The shape difference between Kosterlitz-Thouless critical behavior in one-dimension and power-law
singularities in higher dimensions arises naturally in this strong-coupling expansion. Bounded disorder distri-
butions produce a “first-order” kink to the Mott phase boundary in the thermodynamic limit because of the
presence of Lifshitz's rare regions.

[. INTRODUCTION sumed to be a real symmetric matri;&t;;) and the lattice
is also assumed to be bipartite; i.e., the lattice may be sepa-
Strongly interacting bosonic systems have attracted a latated into two sublattice@he A sublattice and th& sublat-
of recent interest-* Physical realizations include short- tice) such thatt;; vanishes wheneverandj both belong to
correlation-length superconductors, granular superconducthe same sublatticén particular, this impliest;;=0). The
ors, Josephson arrays, the dynamics of flux lattices in type-lipcal site energye; is a quenched random variable chosen
superconductors, and critical behavior‘#ie in porous me-  from a distribution of site energies that is symmetric about
dia. The bosonic systems are either tightly bound compositesarg anq satisfiex; e;=0. The pure case corresponds to all
of fermions that act like effectl\_/e bos_om_c particles with soft Fite energies vanishings(=0).
cores or cor_respond to.bosomc excitations that have repul- The form of the zero-temperaturd € 0) phase diagram
sive interactions. For this reason, these systems are modelggn be understood by starting from the strong-coupling or
by soft-core bosons which are described most simply by the e i 11192\ this limit. the kinetic energy vanishes
Bose Hubbard model. Various aspects of this model Were(\ . ' o - 1€1gy
investigated analytically by mean-field thedry,by renor- t;=0) and every site is occupied by a fixed number of
malization group techniqués and by projection methods. bosons,no._ In the pure case, the g_roun_d—state boson occu-
The Bose Hubbard model has also been studied with quaR@ncy 0o) is the same for each lattice site, and is chosen to
tum Monte Carlo (QMC) methods by Scalettar and Minimize the on-site energy. If the chemical potential
co-workeré in one dimension(1+1) and by Krauth and &=(No+0)U is parametrized in terms of the deviatigh
Trivedi,” van Otterlo and Wagenbla$gnd Batrounet al®in ~ from integer filling ny, then the on-site energy is
two dimensiong2+1). In this contribution, the Mott-phase E(Nng)=—8Ung—3Uny(ng+1), and the energy to add a
diagram is obtained from a strong-coupling expansion thaboson onto a particular site satisfids(ng+1)—E(ng)
has the correct dependence on spatial dimensionality, is as—é8U. Thus for a nonzerd, a finite amount of energy is
accurate as the QMC calculations, and agrees with theequired to move a particle through the lattice. The bosons
known exact solutions. Preliminary results for the pure casere incompressible and localized, which produces a Mott in-
have already appearedl. sulator. For6=0, the ground-state energies of the two dif-
The Bose Hubbard model is the minimal model whichferent boson densities are degenergigny)=E(ny+1)]
contains the key physics of the strongly interacting Boseand no energy is needed to add or extract a particle; i.e., the
systems—the competition between kinetic and potential encompressibility is finite and the system is a conductor. As the

ergy effects. Its Hamiltonian is strength of the hopping matrix elements increases, the range
of the chemical potentigk about which the system is incom-
- - ressible decreases. The Mott-insulator phase will com-
H:—iEj tljbl-rbj—’—zl Gini_MZi n; P P

pletely disappear at a critical value of the hopping matrix
elements. Beyond this critical value 6f the system is a
superfluid.

In the disordered case, a Mott-insulating phase may or
may not exist depending upon the strength of the disorder.
whereb; is the boson annihilation operator at ditd;; isthe ~ The energy to add a boson onto site becomes
hopping matrix element between the sitandj, ¢ is the E(ng+1)—E(ny)=¢— U, so that the system is compress-
local site energylJ is the strength of the on-site repulsion, ible if a sitei can be found which satisfies=5U. If the
and u is the chemical potential. The hopping matrix is as-disorder is assumed to be symmetrically bounded about zero

+;U2 ﬁi(ﬁi_l)’ I’:‘Ii:bitbi! (1)
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(le)|<AU), then a Mott-insulator exists whenever the minimal eigenvalue approaches the sum of the minimal
A<1/2. The ground-state boson occupancy is uniformlyeigenvalues of the hopping matrix and of the disorder matrix
equal ton, within the Mott-insulating phase which extends as closely as desiréti(because of the existence of arbitrarily
from —A=6=A—1 (whent;;=0). Once again, the bosons large “rare regions” where the system looks pure with
are incompressible within the Mott phase and the system isj=—AU or with ¢,=AU). Therefore, in the thermody-
insulating. As the hopping matrix elements increase in magnamic limit, the perturbative energy of each defect state be-
nitude, the range of the chemical potential within which thecomes

system is incompressible decreases until the Mott phase van-

ishes at a critical value of the hopping matrix elements. The EP2 () — Eore( No) = — 8P2PU + X (N + 1)
compressible phase will typically also be an insulator and is

called a Bose glassbut it has been conjectured that in some —AU+---, 4
cases the transition proceeds directly from the Mott insulator
to the superfluid‘:3 (hole) _ o(hole)
. . E No) — Emott(No) = 8MPU + X inno— AU+ - - -,
The phase boundary between the incompressible phase —%f (Mo) ~ Entor(No) min’0 ®)

(Mott insulatoy and the compressible phagsuperfluid or

Bose glasgis determined here in a strong-coupling expan-y, first order inS, where i, is the minimal eigenvalue of
sion by calculating _both the energy of the Mott msule_ltor andipe hopping matrix—t;; . In the case of nearest-neighbor
of a defect statéwhich contains an extra hole or particia hopping on a hypercubic lattice thdimensions, the number

a pertugbative expansion of the single-particle t€rmSy¢ nearest neighbors satisfies:2d and the minimal eigen-
—2j;tbybj+Zj€n; . At the point where the energy of the \5jue is) =1zt
Mott state is degenerate with the defect state, the systgm The boundary between the incompressible phase and the
becomes compressible. In the pure case, the compressiflgmpressible phase is determined when the energy difference
phase is also superfluid, but in the disordered case, the COMatween the Mott insulator and the defect state vanighes
pressible phase Is a Bose gldescept possibly at the tip of compressibility is assumed to approach zero continuously at
the Mott lobg.™* the phase boundaryThus two branches of the Mott lobe can
There are two distinct cases for the defect sta#t€:0  pe found depending upon whether the defect state is an ad-

corresponds to adding @article to the Mott-insulator phase gjtional hole or an additional particle. The two branches of
(with ng bosons per site and 5>0 corresponds to adding a the Mott-phase boundary meet when

hole to the Mott-insulator phaséwith ny+1) bosons per
site. Of course, the phase boundary depends upon the num-
ber of bosons per site,, of the Mott insulator phase.

To zeroth order irtj; /U the Mott-insulating state is given

8P (ng) +1=6M"(ny). (6)

The additional one on the left hand side arises becauise

by measured from the poink/U=ng,. Equation(6) may be
N used to estimate the critical value of the hopping matrix el-
¥, (na))0= bl)"o| 0}, 2 ement beyond which no Mott-insulator phase exists. et
[¥vor(o)) ,Hl Vne! (b)"[0) @ denote the combinatiothit/U and consider the first-order ex-

) o pansions in Eqs4) and(5). The critical value of satisfies
where ng is the number of bosons on each si,is the

number of sites in the lattice, anl@) is the vacuum state. 1-2A
The defect state is characterized by one additional particle Xeie(Ng) =

(hole) which moves coherently throughout the lattice. To ze- ot 2(2n0+ 1)
roth order in the single-particle terms the wave function for

the “defect” state is determined by degenerate perturbatiowvhich vanishes when the disorder strength becomes too large

@)

theory: (A=1/2). Note that the critical value of is independent
of the dimension of the latticethe dimensionality first
1 enters at second order in fThe slopes of the phase bound-
W gef o)) o= === T{P2"D] | ¥ yon(no)) @, aries about the point u=n,U are equal in
Vo + 1 magnitude [lim,_ o(d/dx) 6Pa(ng,x) = —limy_ o(d/

dx) 8")(ny+1, x)], but change their magnitude as a func-
tion of the densityny, implying that the Mott-phase lobes
always have an asymmetrical shapéote further that the
presence of disorder shifts the phase boundaries uniformly
where thef; is the eigenvector of the corresponding single-by A, but the slope isndependenbf the disorder distribu-

: v o(part) - _ (hole) :
particle matrix S;”*"(no)= —tj; + & & /(No+ 1)[ S (no) tion.
=—t;j;— dij € Ino] with the lowest eigenvaluéhe hopping The Bose Hubbard model in the absence of disorder is
matrix is assumed to have a nondegenerate lowest eigenvaxamined by a strong-coupling expansion through third order
ue). It is well known that the minimal eigenvalue of the in the single-particle matri6 in Sec. Il. The exact solution
single-particle matrixS;; is larger than the sum of the mini- for an infinite-dimensional lattideis examined and various
mal eigenvalue of the hopping matrix plus the minimal ei-different extrapolation techniques are employed that do and
genvalue of the disorder matrix. However, it has been demedo not utilize additional information of the scaling analysis
onstrated that as the system size becomes larger and largef,the critical point. Section Il describes the similar results

1
[Wae o)) hole= =22 17D W an(n0)) . 3
0
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for the disordered Bose Hubbard model and a discussion 1
follows in Sec. IV. Ewmo(No) =N| — 8Ung— 5 Ung(np+1)

2

Il. PURE CASE - NZ ﬁno(no+ 1), 8
ij

The Bose Hubbard model in Eql) is studied in the \which is proportional to the number of lattice sitds, Note
absence of disordere(=0). The many-body version of that the odd-order terms i /U vanish in the above expan-
Rayleigh-Schrdinger perturbation theory is employed sion (odd-order terms may enter for nonbipartite lattjces
throughout. To third order im;; /U, the energy of the Mott The energy difference between the Mott insulator and the
state withn, bosons per site becomes defect state with an additional particlé<€0) satisfies

1
Ei%éflm(no) EMott(nO)__ part)u+)\m|n(n0+1)+zuz t|] ]n0(5n0+4)_u minl! (n0+1)

)\mlnz t|] J (4n0+2 2 ft” e (9)

1 3 25
+ mno(noJr )| (2ng+ )N in— 4
to third order int;; /U, while the energy difference between the Mott-insulating phase and the defect phase with an additional
hole (6>0) satisfies

1 1
Eqer (o) ~ Enor(N0)= 8"**U + Xnflo 55524 (o +1)(5M+ 1)~ A finNo(No + 1)

25
(2n0+ DAin— | 7 Mo+ 7 |A mn2) = (4no+2) 2 fitf). (10

min~

1
U2 No(No+1)

The eigenvectof; is the minimal eigenvector of the hopping matrix;; with eigenvaluex ,;, and is identical in the particle
and hole sectors. These results have been verified by small-cluster calculations on two- and four-site clusters. Note that the
energy difference in Eqg9) and (10) is independenbf the lattice sizeN, indicating that QMC simulations should not have
a very strong dependence on the lattice size.

In the case of nearest neighbor hopping ord-@limensional hypercubic lattice, the minimum eigenvalue satisfies
Amin= —Zt, the sumE,,tI f2 becomegt?, and the sunt;; ft,JfJ equalszt®. Equationg9) and(10) can then be solved for the
shift in the chemical potentladi at which the system becomes compressible as a function of the paramedéfU. The
results for the upper boundary are given by

1
gpam(no,x):_zx(no'i‘ 1)+aX2n0(5n0+4)—4X2n0(n0+ 1)+2X3n0(n0+ 1) -8+ n0+

73]

2d d? d d?
(11)

to third order inx, and the lower boundary is given by

1
5M9¥(ng,x)=2xng— ax2(n0+ 1)(5ny+ 1) +4x2ng(ng+1) — 2x3ng(ng+ 1)

25 4 4 11 2
Tod @Mt T T @)

(12
|
to third order inx. Mott-phase boundary may be expressed as
As a further check on the accuracy of the Mott-phase
boundaries in Eqg11) and(12), we compare the perturba- 1 1
tive expansion to the exact solution on an infinite- ﬁ_noz —5x* \/xz—x(2n0+ 1)+ n (13

dimensional hypercubic lattitewhich corresponds to the U
mean-field solution Note that the solution in Ref. 1 was for

the infinite-range-hopping model; this solutioridenticalto ~ where the plus sign denotes the upper branch to the Mott
that on an infinite-dimensional lattice in the pure case. Thdobe (6Pa@) and the minus sign corresponds to the lower
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FIG. 1. Thex, u phase diagram of the Bose Hubbard model in 5 ! ' —
one dimensiond=1). The solid lines give the phase boundaries of } . o extrap
the Mott insulator to the superfluid state as determined from a third- _ .
. X o . 50.75 |- . +«QMC
order strong-coupling calculation. The dotted line is the constrained =
fit to a Kosterlitz-Thouless form. The circles are the result of the & .
QMC calculation of Scalettar and co-workdRef. 2. § 05 | ‘.
] .
branch ¢{"°®—1). The critical point can also be determined 'EO . | L 1
as the value ok where the square root vanishes. One finds r .
-y .
© (b)
1 o) 1 1 1
Xerit=No+ 5 Vno(ng+1), (14 0 0.05 0.1 0.15 0.2

Hopping Integral y,=n,dt/U

which depends omg as 1hg in the limit of largeny. The )

strong-coupling expansiorid1) and(12) agree with the ex-  FIG. 2. (&) Thex, u phase diagram of the Bose Hubbard model
act solution(13) when the latter is expanded out to third N Wo dimensions ¢=2). The solid lines give the phase bound-
order inx, providing an independent check of the algebra aries of the Mott insulator to the superfluid state as determined from
Note further that the exact solution uniquely determines thé: third-order strong-coupling calculation. The dotted line is the con-
expansion coefficients of the powersxothat do not involve str_auned fitto a .pov."er'law fom.' V‘.”.th equnemzzl 3. T.he point
inverse powers ofl and the perturbation expansion is only (with error bar$ indicates the ftricritical point as determined by the
required to determine thed korrections QMC calculation of Krauth and Trivedi{Ref. 7 (no value for

. . . Keir Was given in Ref. ¥ (b) They,, u phase diagram for the
The strong-coupling expansion for the w phase dia- guantum rotor model in two dimensions. The solid lines are the

gram in one dimension is compared to the QMC results ofertyrpative results to third order and the dotted lines are the con-
Scalettar and co-workéfsn Fig. 1. The solid lines indicate  sirained extrapolation fit. The dots are the QMC results of van Ot-
the phase boundary between the Mott-insulator phase and thg&io and WagenblagRef. 8. The disagreement between the QMC
superfluid phase at zero temperature as calculated from Egnd the extrapolated results most likely arises from the use of the
(11) and Eq.(lZ). The solid circles are the results of the villain approximation in the former.
QMC calculatioR at a small but finite temperature
(T=~U/2). The dotted line is an extrapolation from the serieshave a cusplike structure in one dimension, mimicking the
calculation that will be described below. Note that the overallKosterlitz-Thouless behavior of the critical point.
agreement of the two calculations is excellent. For example, Figure Za) presents the strong-coupling expansion for the
the critical value of the hopping matrix element for the firstx, u phase diagram in two dimensions. For comparison, the
Mott lobe (ng) is X¢i=0.215, while the QMC calculations tricritical point of the first Mott-insulator lobe as obtained by
found® x.;=0.215-0.01. A closer examination of Fig. 1 the QMC simulations of Krauth and Trivéds marked by a
shows a systematic deviation of the lower branch for largesolid circle with error bargthe chemical potential for the tip
values ofx. We believe that this is most likely a finite- of the Mott lobe was not reported in Ref. 7, and so we fixed
temperature effect, since the Mott-insulator phase becomdsto be ). The solid line is the strong-coupling expansion
more stable at higher temperatuPeand the systematic er- truncated to third order, while the dotted line is an extrapo-
rors of the QMC calculation due to finite lattice size andlation described below. Their simulation gives a critical
finite Trotter error are easily controlléd. value ofx.;=0.122+0.006, whereas our calculation yields
It is known from the scaling theory of Fishet all that  xg;=~0.136 which is in reasonable agreement. Note that the
the phase transition at the tip of the Mott lobe is in thequalitative shape of the Mott lobes has changed from one
universality class of thed+ 1)-dimensionalXY model. Al-  dimension to two dimensions, mimicking the power-law
though a finite-order perturbation theory cannot describe theritical behavior of theXY model in three or larger dimen-
physics of the tricritical point correctly, we find that the den- sions.
sity fluctuations dominate the physics of the phase transition Figure 2b) shows the corresponding figure for the
even close to the tricritical point. Note how the Mott lobes ny— < limit corresponding to the quantum rotor model. The
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FIG. 3. Thex, u phase diagram of the Bose Hubbard model in G, 4. The critical-point extrapolation method in infinite di-
infinite dimensions ¢— ). The solid lines give the phase bound- nensjons. The solid circles are the resultsXgg calculated at first,
aries of the Mott insulator to the superfluid state as determined f"on?,econd, and third order. The solid line is the linear extrapolation to
a third-order strong-coupling calculation. The dashed lines are thgyfinite order. The open circles are the exact result. Three cases are
result of the mean-field calculation of Fisher al. (Ref. 1). The shownny=1 (top), no=2 (middle), andn,= 3 (bottom). Note that
dotted lines are the chemical-potential extrapolation described "&Ithough the three points have a correlation coefficient larger than
the text. 0.9999 the accuracy of the extrapolated critical point is only on the

order of 2%.

QMC results are from van Otterlo and Wagenbfagthe

horizontal axis has been rescaledyto=lim, _...nox. We  grders are then extrapolatedrto— = in order to estimate the
believe that the relatively large difference between the QMCerror in the critical point and to test the linear-extrapolation
and the strong-coupling perturbation theory arises from théyypothesis. The error estimate is chosen to be 1.5 times as
use of the Villain approximation in the QMC simulations. |arge as the difference between the two different extrapola-

Finally the strong-coupling expansion is compared to th&jons. Figure 4 plots the critical hopping matrix elements
exact calculation in infinite dimensiofdn infinite dimen- Xqi Versus Ih for the infinite-dimensional case and

sions, the hopping matrix element must scale inversely Wmho:l 2.3. The solid dots are the results of the strong-

. . 5 4% * _ £ . .
]'Eh?ddtgnensmﬁ, Tt_g‘ éd’1t3 _lf'ng.e’ gr;)hdumtng the melgn— coupling expansion truncated tath order and the solid line
leld-theory result of Eq(13). In Fig. € strong-coupling s the Jinear extrapolant. The open circles are the exact solu-

expanS|or}(soI|d ling) is compared to the. exact so_lutlon tions from Eq.(14). Note that although the linear correlation
(dashed ling and to an extrapolated solutiqotted ling L , . o
coefficient is very close to 1, the error in the critical point is

which will be described below. Even in infinite dimensions, 0 . . .
the agreement of the strong-coupling expansion with the exgbout 2 A)_. The results for the critical-point extrapolation are
act results is quite good. recorded in Table |. _ _ ,

As a general rule, the truncated strong-coupling expan- The critical-point extrapolation does not yield any mfpr—
sions appear to be more accuratdower dimensions, which Mation on the shape of the Mott lobes, but only determines
implies that the density fluctuations of the Bose Hubbardhe critical point. An alternate extrapolation technique, called
model are also more important in lower dimensions. the Chemical-potential extrap()lation methOd, will determine

At this point we turn our attention to techniques which an extrapolated Mott-phase lobe and critical point. The idea
enable us to extrapolate the strong-coupling expansions t to fix the magnitude of the hopping matrix elements and
infinite order in hopes of determining a more accurate phasdetermine the value of the chemical potential from H@3)
diagram. The simplest method is called critical-point ex-and(12) for the upper and lower branches of the Mott lobe.
trapolation. The critical point g¢it.Xeit) 1S calculated at  The chemical potential is determined from a first-, second-,
each order ifh) of the strong-coupling expansion and is ex- and third-order calculation and then extrapolated to infinite
trapolated to infinite ordernj— ). The ansatz that the ex- order assuming the ansatz of a linear dependence upon
trapolation is linear in Ih can be checked by determining 1/m. This procedure determines an extrapolated Mott lobe
the correlation coefficient of the critical points(a value of  that should be more accurate than the truncated strong-
[r| that is near 1 indicates a linear correlajiohhe correla-  coupling series. The result for the infinite-dimensional case
tions are found to be most linear for large dimensionsis presented as a dotted line in Fig. 3. Note that the critical
(Ir[=0.999 99 in infinite dimensions for the first Mott lobe point is not determined as accurately by this technique as it
but remain fairly linear even in one dimensiojr|¢>0.995 was in the critical-point extrapolation method. The chemical-
for the X extrapolation andr|>0.95 for theu; extrapo-  potential extrapolation method fails in one dimension since
lation). Since the second- and third-order expansions are exhe extrapolated branches of the extrapolated Mott lobe do
pected to be more accurate than the first-order calculatiomot close.
we adopt the following strategy for performing the extrapo- A third approach is to use the results of the scaling
lations: The results of the second- and third-order expansiortheory! The critical point is that of ad+ 1)-dimensional
are extrapolated ton—~ to determine the estimate for the XY model, and therefore, has a Kosterlitz-Thouless shape in
critical point, and the results of the first, second, and thirdone dimension and a power-law shape in higher dimensions.
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TABLE I. Results for the critical-point extrapolation method described in the text. The critical point is
recorded for the first three Mott lobes in one, two, three, and infinite dimensions. Where possible the results
from other calculation techniques are displayed in the last column.

Dimension No Mecrit Xerit X crir(€Xac)
1 1 0.255-0.11 0.245:-0.012 0.21%0.016
2 1.359+0.06 0.145-0.009 0.136:0.020%
3 2.400:0.04 0.103:0.006 0.104:0.020%
2 1 0.388-0.05 0.114-0.013 0.122-0.006
2 1.435:0.03 0.0670.006
3 2.454+0.02 0.048-0.004
3 1 0.40G6:0.03 0.10%0.008
2 1.441-0.02 0.06G-0.004
3 2.458+0.01 0.042-0.002
o 1 0.416:0.001 0.08430.001 0.0858
2 1.451+0.002 0.0494:0.002 0.0505
3 2.465:0.001 0.035%0.001 0.0359

8Ref. 2 (Monte Carlo simulation at finite temperatire
bRef. 7 (Monte Carlo simulation at finite temperatire
‘Ref. 1[exact solution from Eq(14)].

Examination of the exact result for infinite dimensiqis) Xeit=0.265), (1.319,0.155), and (2.371,0.111) fige=1, 2,

leads one to propose the following ansatz for the Mott lobeand 3, respectively. These critical points occur at larger val-

ind=2: ues ofx than predicted by the QMC simulatiofdut it is
difficult to gauge whether the extrapolated series expansions

K are more or less accurate than the QMC simulations because
— —Ng=A(X) = B(X)(X¢it— X)?, 15 . . :
u ° 00 B() (Xeri—X) (15 of the finite-temperature effects in the latter. The constrained-
extrapolation results in two dimensions are plotted with a
where A(x)=a+bx+cx?+--- and B(X)=a+ X b P

2 lar f . of (which should b dotted line in Figs. @) and Zb). The values of the critical
yx®+ - are regular functions of (which should be ac- g are (0.375,0.117), (1.426,0.069), and (2.448,0.049)
curately approximated by their power-series expansiand for ng=1, 2, and 3, respectively. The agreement with the

zv is the critical exponent for thed(+ 1)-dimensionalXY 5\ simylationd is excellent. Similarly, the extrapolated
model. In the unconstra|r_1ed—scal|ng—analy3|s eXtrapOIat'o'Eritical point for the 2-d rotor model is (0.5,0.171) which
meth(_)d the exponenty 1S determined by the strong- also agrees well with the QMC. In this latter c4fég. 2(b)]
coupling expansion in addition tp the parameta;‘e,c and the errors between the extrapolated series expansion and the
@B,y This provides a perturbgﬂve_ estimate of the exponenbMC can be traced to the use of the Villain approximation in
zv which can be che_zcked agallnst its WeII-Known values. e |atter. When the constrained-scaling-analysis extrapola-
the constrained-scaling-analysis extrapolation metwds i, method is applied to the infinite-dimensional case the
fixed at its predicted valuesf zv~2/3 in two dimensions yeg it is indistinguishable from the exact solution when the
andzy=0.5 in higher dimensions. In direct analogy to EQ. yyo gre plotted on the same graph.
(15), we propose the Kosterlitz-Thouless form The extrapolation techniques work besthigher dimen-
sions, virtually producing the exact result in infinite dimen-
(16) sions. This gives us confidence that the extrapolated results
of the series expansions can produce numerical answers that

W
VXcrit ™ X i X
) ] ) ] ~are at least as accurate as the QMC simulations.
for the constrained-extrapolation-method in one dimension.

When the unconstrained-scaling-analysis extrapolation
method is carried out, one finds that there is no solution for
the critical exponent in one dimensidwhich is consistent The most common type of disorder distribution that has
with Kosterlitz-Thouless behaviprthat in d=2 the expo- been considered in relationship to the “dirty” boson problem
nent satisfiezr~0.58, ind=3 the exponent izv~0.54, is the Anderson moddkontinuous disorder distributionin
and in infinite dimensiongr~0.5. There is a slighhy de-  the Anderson model the distributigi(€) for the on-site en-
pendence to the exponents that are calculated in this methogigies{¢;} is continuous and flat, satisfying
but that arises from the truncation of the series to such a low
order. In general, the unconstrained-extrapolation method
produces an accuracy of about 15% in the expomen@and p(e)=0(A—€)0(A+e) A" (17)
the method appears to work best in higher dimensions.

The results for the constrained-extrapolation method ardhe symbolA denotes the maximum absolute value that the
plotted with a dotted line in Fig. 1 for the one-dimensionalsite energye; can assume for a givelbounded distribution
case. The values of the critical points arg.=0.186, (]ej|<AU). This disorder distribution is symmetric

%— no=A(X)=* B(x)ex;{ -

Ill. DISORDERED CASE
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[p(—€)=p(€)] and in particular it satisfieX;e;=0. The 3 : : : : ,
results presented in this contribution d@rsensitiveto the 2 ~ n.=3 —— Pure
actual shape of the disorder distribution; all we require is a 225 —_‘?/\ o T Disorder T
symmetric distribution wit ;| <AU. o F T — — Finite
We begin by reexamining the exact solution of the § 2 * Pure ]
infinite-range-hopping modéllf all energies are measured S 15 [ 23 N ng=2 o Disorder |
in units of the boson-boson repulsith then the analysis of E R
Ref. 1 derives an equation that relates the hopping matrix 3 -
elements to the chemical potential at the Mott-phase bound- ‘€ ~ o o=
ary: Qo5 w0 .
(@] R A .
| 1 i |

0
0 005 0.1 015 0.2 025 0.3
Hopping Integral x=dt/U

n0+l+ 0
yt+e y+lte

1 f ®

2X  J_
with y=—ng+ u/U the chemical potential ane( €) the dis- FIG. 5. Phase diagram in one dimension with disorder. The per-
order distribution. This solution assumes that the phase trarurbative approximations are plotted with solibtted lines for the
sition from the Mott phase to the Bose glass isexond- pure (disorderegl cases in the thermodynamic limit. Three cases of
order phase transition. disorder are included:X=0.125,0.25,0.375). The dashed line is

When Eq.(18) is solved for the Anderson model distribu- the perturbative results for a finite system with 256 lattice sites. The

tion (17), one finds that the chemical potential for the solid dots are the quantum Monte Carlo results from Ref. 2 in the
lower branches of the Mott lobe behaves like Pure case, and the open dots are for the disordered case with
y=—A—exq—1/2(ny+ 1)] for smallx. This result isnon- A=0.25 (the disordered calculations were performed on lattice

perturbativein the hopping matrix elements and cannot beSiZes ranging from 16 to 256 sites
represented by a simple perturbative theory abcu. The
reason why this happens is that the infinite-range-hoppingp contain rare regions within which the bosons can be de-
model has no localized states for any disorder distributiodocalized.(Finite-size effects can be studied with the strong-
(however, this statement does depend on the disordaroupling expansion which is given to third order in the
distributiont®). Localized states can occur in the infinite- single-particle matrixS in the Appendix)
dimensional limit at the tails of the distribution. Therefore  The most accurate way of calculating the Mott-phase
we expect that the transition will have a different qualitativeboundary is then to take the results of the constrained-
character on a hypercubic lattice with nearest-neighbor interscaling-analysis extrapolation for the pure case and shift the
actions. In fact, the perturbative arguments given in the Inbranches by the strength of the disorder. This is plotted in
troduction show that the phase boundaries havestme Fig. 5 for the one-dimensional case and two different values
slope as they did in the pure case. Furthermore, we expecf disorder A =0,0.25). The thermodynamic limit is repre-
the transition to be first order at the tip of the Mott lobe sented by the solid line for the pure case and dotted lines for
because the states that the bosons initially occupy in ththe disordered case, while the dashed line is the result of an
compressible phase are localized within the rare regions ohnderson-model disorder distribution on a finite lattice with
the lattice(where the site energies are all equaltd\U), 256 sites. The QMC results of Scalettar and co-workeos-
implying that there is no diverging length scale at the transi+espond to lattice sizes ranging from 16 sites to 256 ¢ites
tion. The perturbative expansion for the energy of the Mottdisorder parameter iA=0 for the solid dots and =0.25
phase is unchanged from E@®) in the presence of disorder for the open dots The Mott phase is stabilized on finite-
(if the disorder distribution satisfies;e;=0), while the de- sized systems because they do not possess the rare regions
fect phases have a trivial dependence upon disdidethe  needed to correctly determine the Mott-phase boundary. This
thermodynamic limi(—the energy for a particle or hole de- is clearly seen in the QMC results, which predict a much
fect state is shifted by- AU, and so the effect of the disor- larger region for the Mott phase than strong-coupling pertur-
der is simply to shift the Mott-phase boundaries inward bybation theory does in the thermodynamic limit. The pertur-
AU. The critical point, where the Mott phase disappears, idative results for a finite system are much closer to the QMC
no longer described by a second-order critical pdimt results as expectedNote that the finite-size calculations
which the slope of.(x) becomes infinite at.;] but ratheris  have not been extrapolated, and so they should underestimate
described by a first-order critical poifih which the slope of the stability of the Mott phase in one dimension which is
u(x) changes discontinuously ag]. clearly seen in Fig. 3 Also the slope of the phase boundary
In the thermodynamic limit one can always find a rareapproaches zer@sx— 0) for the finite-size systents.
region of arbitrarily large extent which guarantees the exist- Figure 6 plots the Mott-phase diagram for the disordered
ence of the first-order transition, but the density of these rar8ose Hubbard model in two dimensions and one value of the
regions is an exponentially small function of their size. Fordisorder A =0,0.182) in the thermodynamic limit. The solid
this reason the compressibility at the Mott-phase boundarglot (with error bars is the QMC result (for the pure case
will also be exponentially small. Finite-size effects play awith A=0) and the open dot is the disordered case
much more important role in the disordered cdses impos- (A=0.182). Note that in dimensions larger than one, the
sible to determine the Mott-phase boundary accurately in thdinite-size effects for the tip of the Mott lobe are not as strong
thermodynamic limit by scaling calculations performed onas they are in one dimension.
small lattices, because the lattice size must be large enough We compare in Fig. 7 the differences between the infinite-

p(e)de, (18
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o 5C 0.6 | N =
ot
O 15Fnh =2 . N h
a o._ <] NEAN
o) \:E 0.4 N B
o 1 7 2 A
5 ) 02 b N
2osF n=1" 0 i . '\
[ e e R
0 1 L L . 0 1 ! L 1 ‘
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Hopping Integral x=dt/U Disorder Strength A

FIG. 6. Phase diagram in two dimensions with disorder. The FIG. 8. Plot ofx(A)/X.(0) as a function of dimension. The
perturbative approximations are plotted with sdfitbtted lines for  solid line is for one dimension, the dotted line for two dimensions,
the pure(disordered cases in the thermodynamic limit. The disor- and the dashed line for infinite dimensions. Note that the intitial
der was set equal th=0.182. The solidopen dots are the quan- decrease ok.; is very rapid in one dimension, because of the
tum Monte Carlo results of Ref. 7 for the puf@isorderedi cases.  cusplike shape of the Mott lobe in the pure case, but is much slower

Surprisingly, in two and higher dimensions, the finite-size effects inin higher dimensiongbecause the tip has a power-law behavior in
the disordered regime appear to be weaker. the pure case

dimensional lattice and the infinite-range-hopping model of
Ref. 1. The solid lines correspond to the exact solution with
no disorder, the dotted lines are the infinite-dimensional |at'superf|uid transition is always second ordbecause it in-

tice strong-coupling expansion with disorde¥<0.2), and  yjves a collective excitation that extends through the entire
the dashed lines are the exact solution of the infinite-rangegttice), it is quite unlikely that there would ever be a region
hopping model. In the case of disorder, the first-order naturgnere the Mott phase has a transition directly to the super-
of the transition is evidenced by the jump in the slope of the;yig. The presence of the Lifshitz rare regions strongly sup-
Mott phase boundary at the tip of the lobe. The second-ordesorts the picture that the Mott phase is entirely enclosed
phase boundaries predict a more stable Mott phase,.anq thelithin the Bose-glass phas®&his result isindependenbf
slopes all approach zero &s-0. We expect in the region in 5y perturbative arguments, since the rare regions must

between théfirst-ordey infinite-dimensional phase boundary gominate the Mott to Bose-glass transition in the exact solu-
and that of the(second-orderinfinite-range-hopping model tion too.

that the compr(_assibility will be exponentially small, and will _ Finally, we calculate the dependence of the critical value
only become sizable as the second-order phase boundary g x at the tip of the Mott-phase lobe, as a function of the
crossed. disorder strengthA. Figure 8 plots this value of

_ Because the Mptt-phase to Bose-gla_ss phase transition $8..(A)/x4i(0) versusA for the one-, two-, and infinite-
first order for the disordered case, and since the Bose-glass {inensional cases. The plot is limited to the lowest Mott-

phase lobe withng=1. Since the one-dimensional Mott

5 3 N _3 ' ' ' phase lobes have a cusplike behavior that is removed when
Nl ’a}r:o— — Pure | disorder is added to the system, we expegt to decrease
-1 ... T Disorder very rapidly for small disorder. This effect is sharply reduced
S L= — — Ref. 1 i/ 4 : ; C
=) i in hlgher.d|men.5|ons. In the strong—dlsorder Ilmlt, the phase
IS TR Np=2 diagram is dominated by the first-order terms in the pertur-
£ 15k Ty 8 bative expansion, which have a trivial dependence on the
5 L= 2 dimensionality, but the slopes of the curves are unequal be-
é L pp— - ny=1 ] causeXi#(0) depends strongly upon the dimensionality.
Sosp TN .
o PRSI~ IV. CONCLUSION
] 1 ] |
® 0 0025 0.05 0,075 0.1 0.1250.15 We have developed a strong-coupling perturbation-theory
Hopping Integral x=dt/U approximation to the Bose-Hubbard model on a bipartite lat-

FIG. 7. Phase diagram in infinite dimensions with disorder. ThellCe- The perturbative results can be extrapolated in a number

perturbative approximations are plotted with sdlitbtted lines for  Of different ways which either do or do not take into account
the pure(disordered cases in the thermodynamic limit. The disor- the scaling theory of the critical point at the Mott tip. We find
der was set equal th=0.2. The dashed line is the exact solution of that @ perturbative expansion through third order rivals the
the infinite-range-hopping model from Ref. 1. Note how the Mott@ccuracy of the QMC simulations, and is likely the best
phase is more stable with the infinite-range calculation, and how ifheéthod for determining the Mott-phase boundary of these
has vanishing slope as—0. Interestingly, the location of the tip of interacting Bose systems.

the Mott lobe is close for both the infinite-dimensional and the We treated two different cases: the pure case and the dis-
infinite-range calculations. ordered case. In the pure case the tip of the Mott lobe satis-
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fies a scaling relation because it corresponds to a secondimanyi for many useful discussions. We would especially
order phase transition in a 1)-dimensionalXY model. like to thank M. Ma for pointing out that the Mott to Bose-
This is because the compressible phase is also superfluilass phase transition is first order in the disordered case.
which implies there is a diverging length scale at the phasenitial stages of this work were carried out by J.K.F. at the
transition. Calculations in the pure case are insensitive t@njversity of California, Davis in 1994 and were completed
finite-size effects. In the disordered case we argued that thguring a visit to I'Ecole Polytechnique Frale de Lausanne

tip of the Mott-phase lobe corresopnds to a first-order phasg, june 1995. J.K.F. would like to thank the Office of Naval
transition because the initial single-particle excitations ar@kesearcunder Grant No. N00014-93-1-049%r support
localized into the rare regions of the Lifshitz tails for any \nile at UC Davis, and would like to thank the Donors of the
bounded disorder distribution. As a result there is a kink inpg¢roleum Research Fund, administered by the American

the Mott-phase boundary since the slopeugk) has a dis-  cpemical SocietyACS-PRF-29623-GBgfor support while
continuous jump at the tip of the lobe. In this case, there ar t Georgetown

strong finite-size effects because “typical” disorder distribu-
tions on finite lattices do not have Lifshitz tails.

The results of these perturbative calculations have been
compared to the available QMC simulations. We find a re- APPENDIX: FINITE-SIZE EFFECTS FOR THE
markable agreement between the two and are unable to de- DISORDERED CASE

termine which method is more accurate in a quantitative de- 11,4 Rayleigh-Schitinger perturbation theory for the

terw\natlorl[ 0‘;”1? pfj[ﬁse boc;mda_réesd here falls short i case with disorder is straightforward, but rather tedious. In
€ perturbation theory describeéd here Talls Short In ong, o thermodynamic limit, the perturbative expansion simpli-
aspect—it is unable to determine the Bose—glass—superflup

phase transition in the disordered case. It is possible th es because it is dominated by the rare regions of the lattice.

such a calculation could be performed, but since the particl or a'f|n|te—5|zed system', the perturbatlye results are more
density at which it occurs ia priori not known, and since complicated. We summarize here the main results for a third-

the superfluid susceptibility diverges in the Bose-glass phas@,rder strong-couplmg_ expansion in the presence of d|§0rder.
such a calculation may be problematic. _ The (_)nly_assumptpns that are made about 'Fhe disorder
distribution is that it is bounded and symmetric, so that
||<AU and =;e;=0. Restriction is also made to bipartite
lattices.

We would like to thank M. Fisher, Th. Giamarchi, M.  The upper phase boundary for the Mott to Bose-glass
Jarrell, M. Ma, A. van Otterlo, R. Scalettar, R. Singh, and G .transition is found by solving the equation
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for the lower phase boundary of the Mott to Bose-glass tranminimize its disorder energy Such an eigenvector is now
sition. Here we have thaf, is the minimal eigenvector of the separatelyan eigenvector of the kinetic-energy matrix and of
single-particle matrixS{[®®=—t;;—€;/ny, and A is its  the disorder matrix, and so we have I;t;f;=\f;,
corresponding eigenvalue. 2 0;fj=—AUf;, and A=N—AU/(ng+1) with similar

In the thermodynamic limit we know that the minimal formulas for theg eigenvector. Plugging these thermody-
eigenvalue occurs in the rare regions where the disorder igamic limits into Eqs(Al) and (A2) then yields the result
constant and equal to its extreme value. The ground-statiat the Mott-phase boundaries are only shifted uniformly by
eigenvector is delocalized within the rare regiio mini- AU, and all higher-order dependence on the disorder van-
mize its kinetic energyand localized to the rare regidto  ishes.
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