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A strong-coupling expansion for the phase boundary of the~incompressible! Mott insulator is presented for
the Bose-Hubbard model. Both the pure case and the disordered case are examined. Extrapolations of the series
expansions provide results that are as accurate as the Monte Carlo simulations and agree with the exact
solutions. The shape difference between Kosterlitz-Thouless critical behavior in one-dimension and power-law
singularities in higher dimensions arises naturally in this strong-coupling expansion. Bounded disorder distri-
butions produce a ‘‘first-order’’ kink to the Mott phase boundary in the thermodynamic limit because of the
presence of Lifshitz’s rare regions.

I. INTRODUCTION

Strongly interacting bosonic systems have attracted a lot
of recent interest.1–4 Physical realizations include short-
correlation-length superconductors, granular superconduct-
ors, Josephson arrays, the dynamics of flux lattices in type-II
superconductors, and critical behavior of4He in porous me-
dia. The bosonic systems are either tightly bound composites
of fermions that act like effective bosonic particles with soft
cores or correspond to bosonic excitations that have repul-
sive interactions. For this reason, these systems are modeled
by soft-core bosons which are described most simply by the
Bose Hubbard model. Various aspects of this model were
investigated analytically by mean-field theory,1,5 by renor-
malization group techniques,1,3 and by projection methods.6

The Bose Hubbard model has also been studied with quan-
tum Monte Carlo ~QMC! methods by Scalettar and
co-workers2 in one dimension~111! and by Krauth and
Trivedi,7 van Otterlo and Wagenblast,8 and Batrouniet al.9 in
two dimensions~211!. In this contribution, the Mott-phase
diagram is obtained from a strong-coupling expansion that
has the correct dependence on spatial dimensionality, is as
accurate as the QMC calculations, and agrees with the
known exact solutions. Preliminary results for the pure case
have already appeared.10

The Bose Hubbard model is the minimal model which
contains the key physics of the strongly interacting Bose
systems—the competition between kinetic and potential en-
ergy effects. Its Hamiltonian is
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wherebi is the boson annihilation operator at sitei , t i j is the
hopping matrix element between the sitei and j , e i is the
local site energy,U is the strength of the on-site repulsion,
andm is the chemical potential. The hopping matrix is as-

sumed to be a real symmetric matrix (t i j5t j i ) and the lattice
is also assumed to be bipartite; i.e., the lattice may be sepa-
rated into two sublattices~theA sublattice and theB sublat-
tice! such thatt i j vanishes wheneveri and j both belong to
the same sublattice~in particular, this impliest i i50). The
local site energye i is a quenched random variable chosen
from a distribution of site energies that is symmetric about
zero and satisfies( ie i50. The pure case corresponds to all
site energies vanishing (e i50).

The form of the zero-temperature (T50) phase diagram
can be understood by starting from the strong-coupling or
‘‘atomic’’ limit. 1,11,12In this limit, the kinetic energy vanishes
(t i j50) and every site is occupied by a fixed number of
bosons,n0 . In the pure case, the ground-state boson occu-
pancy (n0) is the same for each lattice site, and is chosen to
minimize the on-site energy. If the chemical potential
m5(n01d)U is parametrized in terms of the deviationd
from integer filling n0 , then the on-site energy is
E(n0)52dUn02

1
2Un0(n011), and the energy to add a

boson onto a particular site satisfiesE(n011)2E(n0)
52dU. Thus for a nonzerod, a finite amount of energy is
required to move a particle through the lattice. The bosons
are incompressible and localized, which produces a Mott in-
sulator. Ford50, the ground-state energies of the two dif-
ferent boson densities are degenerate@E(n0)5E(n011)#
and no energy is needed to add or extract a particle; i.e., the
compressibility is finite and the system is a conductor. As the
strength of the hopping matrix elements increases, the range
of the chemical potentialm about which the system is incom-
pressible decreases. The Mott-insulator phase will com-
pletely disappear at a critical value of the hopping matrix
elements. Beyond this critical value oft i j the system is a
superfluid.

In the disordered case, a Mott-insulating phase may or
may not exist depending upon the strength of the disorder.
The energy to add a boson onto sitei becomes
E(n011)2E(n0)5e i2dU, so that the system is compress-
ible if a site i can be found which satisfiese i5dU. If the
disorder is assumed to be symmetrically bounded about zero
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(ue i u<DU), then a Mott-insulator exists whenever
D,1/2 . The ground-state boson occupancy is uniformly
equal ton0 within the Mott-insulating phase which extends
from 2D>d>D21 ~when t i j50). Once again, the bosons
are incompressible within the Mott phase and the system is
insulating. As the hopping matrix elements increase in mag-
nitude, the range of the chemical potential within which the
system is incompressible decreases until the Mott phase van-
ishes at a critical value of the hopping matrix elements. The
compressible phase will typically also be an insulator and is
called a Bose glass,1 but it has been conjectured that in some
cases the transition proceeds directly from the Mott insulator
to the superfluid.1,3

The phase boundary between the incompressible phase
~Mott insulator! and the compressible phase~superfluid or
Bose glass! is determined here in a strong-coupling expan-
sion by calculating both the energy of the Mott insulator and
of a defect state~which contains an extra hole or particle! in
a perturbative expansion of the single-particle terms,
2( i j t i j bi

†bj1( ie i n̂i . At the point where the energy of the
Mott state is degenerate with the defect state, the system
becomes compressible. In the pure case, the compressible
phase is also superfluid, but in the disordered case, the com-
pressible phase is a Bose glass~except possibly at the tip of
the Mott lobe!.1,3

There are two distinct cases for the defect state:d,0
corresponds to adding aparticle to the Mott-insulator phase
~with n0 bosons per site!, andd.0 corresponds to adding a
hole to the Mott-insulator phase~with n011) bosons per
site. Of course, the phase boundary depends upon the num-
ber of bosons per site,n0 , of the Mott insulator phase.

To zeroth order int i j /U the Mott-insulating state is given
by

uCMott~n0!&
~0!5)

i51
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1
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~bi

†!n0u0&, ~2!

where n0 is the number of bosons on each site,N is the
number of sites in the lattice, andu0& is the vacuum state.
The defect state is characterized by one additional particle
~hole! which moves coherently throughout the lattice. To ze-
roth order in the single-particle terms the wave function for
the ‘‘defect’’ state is determined by degenerate perturbation
theory:
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where thef i is the eigenvector of the corresponding single-
particle matrixSi j

(part)(n0)[2t i j1d i j e i /(n011)@Si j
(hole)(n0)

[2t i j2d i j e i /n0# with the lowest eigenvalue~the hopping
matrix is assumed to have a nondegenerate lowest eigenval-
ue!. It is well known that the minimal eigenvalue of the
single-particle matrixSi j is larger than the sum of the mini-
mal eigenvalue of the hopping matrix plus the minimal ei-
genvalue of the disorder matrix. However, it has been dem-
onstrated that as the system size becomes larger and larger,

the minimal eigenvalue approaches the sum of the minimal
eigenvalues of the hopping matrix and of the disorder matrix
as closely as desired13 ~because of the existence of arbitrarily
large ‘‘rare regions’’ where the system looks pure with
e i52DU or with e i5DU). Therefore, in the thermody-
namic limit, the perturbative energy of each defect state be-
comes

Edef
~part!~n0!2EMott~n0!52d~part!U1lmin~n011!

2DU1•••, ~4!

Edef
~hole!~n0!2EMott~n0!5d~hole!U1lminn02DU1•••,

~5!

to first order inS, wherelmin is the minimal eigenvalue of
the hopping matrix2t i j . In the case of nearest-neighbor
hopping on a hypercubic lattice ind dimensions, the number
of nearest neighbors satisfiesz52d and the minimal eigen-
value isl min52zt.

The boundary between the incompressible phase and the
compressible phase is determined when the energy difference
between the Mott insulator and the defect state vanishes~the
compressibility is assumed to approach zero continuously at
the phase boundary!. Thus two branches of the Mott lobe can
be found depending upon whether the defect state is an ad-
ditional hole or an additional particle. The two branches of
the Mott-phase boundary meet when

d~part!~n0!115d~hole!~n0!. ~6!

The additional one on the left hand side arises becaused is
measured from the pointm/U5n0 . Equation ~6! may be
used to estimate the critical value of the hopping matrix el-
ement beyond which no Mott-insulator phase exists. Letx
denote the combinationdt/U and consider the first-order ex-
pansions in Eqs.~4! and~5!. The critical value ofx satisfies

xcrit~n0!5
122D

2~2n011!
, ~7!

which vanishes when the disorder strength becomes too large
(D>1/2). Note that the critical value ofx is independent
of the dimension of the lattice;the dimensionality first
enters at second order in t. The slopes of the phase bound-
aries about the point m5n0U are equal in
magnitude @ limx→0(d/dx) d (part)(n0 ,x)52 limx→0(d/
dx) d (hole)(n011, x)], but change their magnitude as a func-
tion of the densityn0 , implying that the Mott-phase lobes
always have an asymmetrical shape. Note further that the
presence of disorder shifts the phase boundaries uniformly
by D, but the slope isindependentof the disorder distribu-
tion.

The Bose Hubbard model in the absence of disorder is
examined by a strong-coupling expansion through third order
in the single-particle matrixS in Sec. II. The exact solution
for an infinite-dimensional lattice1 is examined and various
different extrapolation techniques are employed that do and
do not utilize additional information of the scaling analysis
of the critical point. Section III describes the similar results

2692 53J. K. FREERICKS AND H. MONIEN



for the disordered Bose Hubbard model and a discussion
follows in Sec. IV.

II. PURE CASE

The Bose Hubbard model in Eq.~1! is studied in the
absence of disorder (e i50). The many-body version of
Rayleigh-Schro¨dinger perturbation theory is employed
throughout. To third order int i j /U, the energy of the Mott
state withn0 bosons per site becomes

EMott~n0!5NF2dUn02
1

2
Un0~n011!

2
1

N(
i j

t i j
2

U
n0~n011!G , ~8!

which is proportional to the number of lattice sites,N. Note
that the odd-order terms int i j /U vanish in the above expan-
sion ~odd-order terms may enter for nonbipartite lattices!.
The energy difference between the Mott insulator and the
defect state with an additional particle (d,0) satisfies

Edef
~part!~n0!2EMott~n0!52d~part!U1lmin~n011!1

1

2U(
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3 2S 254 n01
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3 f j G , ~9!

to third order int i j /U, while the energy difference between the Mott-insulating phase and the defect phase with an additional
hole (d.0) satisfies
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The eigenvectorf i is the minimal eigenvector of the hopping matrix2t i j with eigenvaluelmin and is identical in the particle
and hole sectors. These results have been verified by small-cluster calculations on two- and four-site clusters. Note that the
energy difference in Eqs.~9! and ~10! is independentof the lattice sizeN, indicating that QMC simulations should not have
a very strong dependence on the lattice size.

In the case of nearest-neighbor hopping on ad-dimensional hypercubic lattice, the minimum eigenvalue satisfies
lmin52zt, the sum( i j t i j

2 f j
2 becomeszt2, and the sum( i j f i t i j

3 f j equalszt
3. Equations~9! and~10! can then be solved for the

shift in the chemical potentiald at which the system becomes compressible as a function of the parameterx[dt/U. The
results for the upper boundary are given by

d~part!~n0 ,x!522x~n011!1
1

d
x2n0~5n014!24x2n0~n011!12x3n0~n011!F S 281

25

2d
2

4

d2Dn01S 241
7

d
2

2

d2D G ,
~11!

to third order inx, and the lower boundary is given by

d~hole!~n0 ,x!52xn02
1

d
x2~n011!~5n011!14x2n0~n011!22x3n0~n011!F S 281

25

2d
2

4

d2Dn01S 241
11

2d
2

2

d2D G ,
~12!

to third order inx.
As a further check on the accuracy of the Mott-phase

boundaries in Eqs.~11! and ~12!, we compare the perturba-
tive expansion to the exact solution on an infinite-
dimensional hypercubic lattice1 ~which corresponds to the
mean-field solution!. Note that the solution in Ref. 1 was for
the infinite-range-hopping model; this solution isidentical to
that on an infinite-dimensional lattice in the pure case. The

Mott-phase boundary may be expressed as

m

U
2n052

1

2
2x6Ax22x~2n011!1

1

4
, ~13!

where the plus sign denotes the upper branch to the Mott
lobe (d (part)), and the minus sign corresponds to the lower
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branch (d (hole)21). The critical point can also be determined
as the value ofx where the square root vanishes. One finds

xcrit5n01
1

2
2An0~n011!, ~14!

which depends onn0 as 1/n0 in the limit of largen0 . The
strong-coupling expansions~11! and ~12! agree with the ex-
act solution~13! when the latter is expanded out to third
order in x, providing an independent check of the algebra.
Note further that the exact solution uniquely determines the
expansion coefficients of the powers ofx that do not involve
inverse powers ofd and the perturbation expansion is only
required to determine the 1/d corrections.

The strong-coupling expansion for thex, m phase dia-
gram in one dimension is compared to the QMC results of
Scalettar and co-workers2 in Fig. 1. The solid lines indicate
the phase boundary between the Mott-insulator phase and the
superfluid phase at zero temperature as calculated from Eq.
~11! and Eq.~12!. The solid circles are the results of the
QMC calculation2 at a small but finite temperature
(T'U/2). The dotted line is an extrapolation from the series
calculation that will be described below. Note that the overall
agreement of the two calculations is excellent. For example,
the critical value of the hopping matrix element for the first
Mott lobe (n0) is xcrit50.215, while the QMC calculations
found2 xcrit50.21560.01. A closer examination of Fig. 1
shows a systematic deviation of the lower branch for larger
values of x. We believe that this is most likely a finite-
temperature effect, since the Mott-insulator phase becomes
more stable at higher temperatures,5 and the systematic er-
rors of the QMC calculation due to finite lattice size and
finite Trotter error are easily controlled.14

It is known from the scaling theory of Fisheret al.1 that
the phase transition at the tip of the Mott lobe is in the
universality class of the (d11)-dimensionalXY model. Al-
though a finite-order perturbation theory cannot describe the
physics of the tricritical point correctly, we find that the den-
sity fluctuations dominate the physics of the phase transition
even close to the tricritical point. Note how the Mott lobes

have a cusplike structure in one dimension, mimicking the
Kosterlitz-Thouless behavior of the critical point.

Figure 2~a! presents the strong-coupling expansion for the
x, m phase diagram in two dimensions. For comparison, the
tricritical point of the first Mott-insulator lobe as obtained by
the QMC simulations of Krauth and Trivedi7 is marked by a
solid circle with error bars~the chemical potential for the tip
of the Mott lobe was not reported in Ref. 7, and so we fixed
it to bemcrit). The solid line is the strong-coupling expansion
truncated to third order, while the dotted line is an extrapo-
lation described below. Their simulation gives a critical
value ofxcrit50.12260.006, whereas our calculation yields
xcrit'0.136 which is in reasonable agreement. Note that the
qualitative shape of the Mott lobes has changed from one
dimension to two dimensions, mimicking the power-law
critical behavior of theXY model in three or larger dimen-
sions.

Figure 2~b! shows the corresponding figure for the
n0→` limit corresponding to the quantum rotor model. The

FIG. 1. Thex, m phase diagram of the Bose Hubbard model in
one dimension (d51). The solid lines give the phase boundaries of
the Mott insulator to the superfluid state as determined from a third-
order strong-coupling calculation. The dotted line is the constrained
fit to a Kosterlitz-Thouless form. The circles are the result of the
QMC calculation of Scalettar and co-workers~Ref. 2!.

FIG. 2. ~a! Thex, m phase diagram of the Bose Hubbard model
in two dimensions (d52). The solid lines give the phase bound-
aries of the Mott insulator to the superfluid state as determined from
a third-order strong-coupling calculation. The dotted line is the con-
strained fit to a power-law form with exponentzn52/3. The point
~with error bars! indicates the tricritical point as determined by the
QMC calculation of Krauth and Trivedi~Ref. 7! ~no value for
mcrit was given in Ref. 7!. ~b! The y` , m phase diagram for the
quantum rotor model in two dimensions. The solid lines are the
perturbative results to third order and the dotted lines are the con-
strained extrapolation fit. The dots are the QMC results of van Ot-
terlo and Wagenblast~Ref. 8!. The disagreement between the QMC
and the extrapolated results most likely arises from the use of the
Villain approximation in the former.

2694 53J. K. FREERICKS AND H. MONIEN



QMC results are from van Otterlo and Wagenblast.8 The
horizontal axis has been rescaled toy`5 limn0→`n0x. We
believe that the relatively large difference between the QMC
and the strong-coupling perturbation theory arises from the
use of the Villain approximation in the QMC simulations.

Finally the strong-coupling expansion is compared to the
exact calculation in infinite dimensions.1 In infinite dimen-
sions, the hopping matrix element must scale inversely with
the dimension,15 t5t* /d, t*5finite, producing the mean-
field-theory result of Eq.~13!. In Fig. 3 the strong-coupling
expansion~solid line! is compared to the exact solution
~dashed line! and to an extrapolated solution~dotted line!
which will be described below. Even in infinite dimensions,
the agreement of the strong-coupling expansion with the ex-
act results is quite good.

As a general rule, the truncated strong-coupling expan-
sions appear to be more accurate inlowerdimensions, which
implies that the density fluctuations of the Bose Hubbard
model are also more important in lower dimensions.

At this point we turn our attention to techniques which
enable us to extrapolate the strong-coupling expansions to
infinite order in hopes of determining a more accurate phase
diagram. The simplest method is called critical-point ex-
trapolation. The critical point (mcrit ,xcrit) is calculated at
each order (m) of the strong-coupling expansion and is ex-
trapolated to infinite order (m→`). The ansatz that the ex-
trapolation is linear in 1/m can be checked by determining
the correlation coefficientr of the critical points~a value of
ur u that is near 1 indicates a linear correlation!. The correla-
tions are found to be most linear for large dimensions
(ur u50.999 99 in infinite dimensions for the first Mott lobe!
but remain fairly linear even in one dimension (ur u.0.995
for the xcrit extrapolation andur u.0.95 for themcrit extrapo-
lation!. Since the second- and third-order expansions are ex-
pected to be more accurate than the first-order calculation,
we adopt the following strategy for performing the extrapo-
lations: The results of the second- and third-order expansions
are extrapolated tom→` to determine the estimate for the
critical point, and the results of the first, second, and third

orders are then extrapolated tom→` in order to estimate the
error in the critical point and to test the linear-extrapolation
hypothesis. The error estimate is chosen to be 1.5 times as
large as the difference between the two different extrapola-
tions. Figure 4 plots the critical hopping matrix elements
xcrit versus 1/m for the infinite-dimensional case and
n051,2,3. The solid dots are the results of the strong-
coupling expansion truncated tomth order and the solid line
is the linear extrapolant. The open circles are the exact solu-
tions from Eq.~14!. Note that although the linear correlation
coefficient is very close to 1, the error in the critical point is
about 2%. The results for the critical-point extrapolation are
recorded in Table I.

The critical-point extrapolation does not yield any infor-
mation on the shape of the Mott lobes, but only determines
the critical point. An alternate extrapolation technique, called
the chemical-potential extrapolation method, will determine
an extrapolated Mott-phase lobe and critical point. The idea
is to fix the magnitude of the hopping matrix elements and
determine the value of the chemical potential from Eqs.~11!
and ~12! for the upper and lower branches of the Mott lobe.
The chemical potential is determined from a first-, second-,
and third-order calculation and then extrapolated to infinite
order assuming the ansatz of a linear dependence upon
1/m. This procedure determines an extrapolated Mott lobe
that should be more accurate than the truncated strong-
coupling series. The result for the infinite-dimensional case
is presented as a dotted line in Fig. 3. Note that the critical
point is not determined as accurately by this technique as it
was in the critical-point extrapolation method. The chemical-
potential extrapolation method fails in one dimension since
the extrapolated branches of the extrapolated Mott lobe do
not close.

A third approach is to use the results of the scaling
theory.1 The critical point is that of a (d11)-dimensional
XY model, and therefore, has a Kosterlitz-Thouless shape in
one dimension and a power-law shape in higher dimensions.

FIG. 3. Thex, m phase diagram of the Bose Hubbard model in
infinite dimensions (d→`). The solid lines give the phase bound-
aries of the Mott insulator to the superfluid state as determined from
a third-order strong-coupling calculation. The dashed lines are the
result of the mean-field calculation of Fisheret al. ~Ref. 1!. The
dotted lines are the chemical-potential extrapolation described in
the text.

FIG. 4. The critical-point extrapolation method in infinite di-
mensions. The solid circles are the results forxcrit calculated at first,
second, and third order. The solid line is the linear extrapolation to
infinite order. The open circles are the exact result. Three cases are
shownn051 ~top!, n052 ~middle!, andn053 ~bottom!. Note that
although the three points have a correlation coefficient larger than
0.9999 the accuracy of the extrapolated critical point is only on the
order of 2%.
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Examination of the exact result for infinite dimensions~13!
leads one to propose the following ansatz for the Mott lobe
in d>2:

m

U
2n05A~x!6B~x!~xcrit2x!zn, ~15!

where A(x)[a1bx1cx21••• and B(x)[a1bx
1gx21••• are regular functions ofx ~which should be ac-
curately approximated by their power-series expansions! and
zn is the critical exponent for the (d11)-dimensionalXY
model. In the unconstrained-scaling-analysis extrapolation
method the exponentzn is determined by the strong-
coupling expansion in addition to the parametersa,b,c and
a,b,g. This provides a perturbative estimate of the exponent
zn which can be checked against its well-known values. In
the constrained-scaling-analysis extrapolation methodzn is
fixed at its predicted values1 of zn'2/3 in two dimensions
and zn50.5 in higher dimensions. In direct analogy to Eq.
~15!, we propose the Kosterlitz-Thouless form

m

U
2n05A~x!6B~x!expF2

W

Axcrit2x
G ~16!

for the constrained-extrapolation-method in one dimension.
When the unconstrained-scaling-analysis extrapolation

method is carried out, one finds that there is no solution for
the critical exponent in one dimension~which is consistent
with Kosterlitz-Thouless behavior!, that in d52 the expo-
nent satisfieszn'0.58, in d53 the exponent iszn'0.54,
and in infinite dimensionszn'0.5. There is a slightn0 de-
pendence to the exponents that are calculated in this method,
but that arises from the truncation of the series to such a low
order. In general, the unconstrained-extrapolation method
produces an accuracy of about 15% in the exponentzn, and
the method appears to work best in higher dimensions.

The results for the constrained-extrapolation method are
plotted with a dotted line in Fig. 1 for the one-dimensional
case. The values of the critical points are (mcrit50.186,

xcrit50.265), (1.319,0.155), and (2.371,0.111) forn051, 2,
and 3, respectively. These critical points occur at larger val-
ues ofx than predicted by the QMC simulations,2 but it is
difficult to gauge whether the extrapolated series expansions
are more or less accurate than the QMC simulations because
of the finite-temperature effects in the latter. The constrained-
extrapolation results in two dimensions are plotted with a
dotted line in Figs. 2~a! and 2~b!. The values of the critical
points are (0.375,0.117), (1.426,0.069), and (2.448,0.049)
for n051, 2, and 3, respectively. The agreement with the
QMC simulations7 is excellent. Similarly, the extrapolated
critical point for the 22d rotor model is (0.5,0.171) which
also agrees well with the QMC. In this latter case@Fig. 2~b!#
the errors between the extrapolated series expansion and the
QMC can be traced to the use of the Villain approximation in
the latter. When the constrained-scaling-analysis extrapola-
tion method is applied to the infinite-dimensional case the
result is indistinguishable from the exact solution when the
two are plotted on the same graph.

The extrapolation techniques work best inhigher dimen-
sions, virtually producing the exact result in infinite dimen-
sions. This gives us confidence that the extrapolated results
of the series expansions can produce numerical answers that
are at least as accurate as the QMC simulations.

III. DISORDERED CASE

The most common type of disorder distribution that has
been considered in relationship to the ‘‘dirty’’ boson problem
is the Anderson model~continuous disorder distribution!. In
the Anderson model the distributionr(e) for the on-site en-
ergies$e i% is continuous and flat, satisfying

r~e!5u~D2e!u~D1e!
1

2D
. ~17!

The symbolD denotes the maximum absolute value that the
site energye i can assume for a given~bounded! distribution
(ue i u<DU). This disorder distribution is symmetric

TABLE I. Results for the critical-point extrapolation method described in the text. The critical point is
recorded for the first three Mott lobes in one, two, three, and infinite dimensions. Where possible the results
from other calculation techniques are displayed in the last column.

Dimension n0 mcrit xcrit x crit~exact!

1 1 0.25560.11 0.24560.012 0.21560.010a

2 1.35960.06 0.14560.009 0.13060.020a

3 2.40060.04 0.10360.006 0.10460.020a

2 1 0.38860.05 0.11460.013 0.12260.006
2 1.43560.03 0.06760.006
3 2.45460.02 0.04860.004

3 1 0.40060.03 0.10160.008
2 1.44160.02 0.06060.004
3 2.45860.01 0.04260.002

` 1 0.41660.001 0.084360.001 0.0858
2 1.45160.002 0.049460.002 0.0505c

3 2.46560.001 0.035160.001 0.0359c

aRef. 2 ~Monte Carlo simulation at finite temperature!.
bRef. 7 ~Monte Carlo simulation at finite temperature!.
cRef. 1 @exact solution from Eq.~14!#.
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@r(2e)5r(e)# and in particular it satisfies( ie i50. The
results presented in this contribution areinsensitiveto the
actual shape of the disorder distribution; all we require is a
symmetric distribution withue i u<DU.

We begin by reexamining the exact solution of the
infinite-range-hopping model.1 If all energies are measured
in units of the boson-boson repulsionU, then the analysis of
Ref. 1 derives an equation that relates the hopping matrix
elements to the chemical potential at the Mott-phase bound-
ary:

1

2x
5E

2`

` F2
n011

y1e
1

n0
y111eGr~e!de, ~18!

with y[2n01m/U the chemical potential andr(e) the dis-
order distribution. This solution assumes that the phase tran-
sition from the Mott phase to the Bose glass is asecond-
order phase transition.

When Eq.~18! is solved for the Anderson model distribu-
tion ~17!, one finds that the chemical potential for the
lower branches of the Mott lobe behaves like
y52D2exp@21/2x(n011)# for smallx. This result isnon-
perturbativein the hopping matrix elements and cannot be
represented by a simple perturbative theory aboutx50. The
reason why this happens is that the infinite-range-hopping
model has no localized states for any disorder distribution
~however, this statement does depend on the disorder
distribution16!. Localized states can occur in the infinite-
dimensional limit at the tails of the distribution. Therefore
we expect that the transition will have a different qualitative
character on a hypercubic lattice with nearest-neighbor inter-
actions. In fact, the perturbative arguments given in the In-
troduction show that the phase boundaries have thesame
slope as they did in the pure case. Furthermore, we expect
the transition to be first order at the tip of the Mott lobe
because the states that the bosons initially occupy in the
compressible phase are localized within the rare regions of
the lattice~where the site energies are all equal to2DU),
implying that there is no diverging length scale at the transi-
tion. The perturbative expansion for the energy of the Mott
phase is unchanged from Eq.~8! in the presence of disorder
~if the disorder distribution satisfies( ie i50), while the de-
fect phases have a trivial dependence upon disorder~in the
thermodynamic limit!—the energy for a particle or hole de-
fect state is shifted by2DU, and so the effect of the disor-
der is simply to shift the Mott-phase boundaries inward by
DU. The critical point, where the Mott phase disappears, is
no longer described by a second-order critical point@in
which the slope ofm(x) becomes infinite atxcrit# but rather is
described by a first-order critical point@in which the slope of
m(x) changes discontinuously atxcrit#.

In the thermodynamic limit one can always find a rare
region of arbitrarily large extent which guarantees the exist-
ence of the first-order transition, but the density of these rare
regions is an exponentially small function of their size. For
this reason the compressibility at the Mott-phase boundary
will also be exponentially small. Finite-size effects play a
much more important role in the disordered case:It is impos-
sible to determine the Mott-phase boundary accurately in the
thermodynamic limit by scaling calculations performed on
small lattices, because the lattice size must be large enough

to contain rare regions within which the bosons can be de-
localized.~Finite-size effects can be studied with the strong-
coupling expansion which is given to third order in the
single-particle matrixS in the Appendix.!

The most accurate way of calculating the Mott-phase
boundary is then to take the results of the constrained-
scaling-analysis extrapolation for the pure case and shift the
branches by the strength of the disorder. This is plotted in
Fig. 5 for the one-dimensional case and two different values
of disorder (D50,0.25). The thermodynamic limit is repre-
sented by the solid line for the pure case and dotted lines for
the disordered case, while the dashed line is the result of an
Anderson-model disorder distribution on a finite lattice with
256 sites. The QMC results of Scalettar and co-workers2 cor-
respond to lattice sizes ranging from 16 sites to 256 sites~the
disorder parameter isD50 for the solid dots andD50.25
for the open dots!. The Mott phase is stabilized on finite-
sized systems because they do not possess the rare regions
needed to correctly determine the Mott-phase boundary. This
is clearly seen in the QMC results, which predict a much
larger region for the Mott phase than strong-coupling pertur-
bation theory does in the thermodynamic limit. The pertur-
bative results for a finite system are much closer to the QMC
results as expected.~Note that the finite-size calculations
have not been extrapolated, and so they should underestimate
the stability of the Mott phase in one dimension which is
clearly seen in Fig. 5.! Also the slope of the phase boundary
approaches zero~asx→0) for the finite-size systems.2

Figure 6 plots the Mott-phase diagram for the disordered
Bose Hubbard model in two dimensions and one value of the
disorder (D50,0.182) in the thermodynamic limit. The solid
dot ~with error bars! is the QMC result7 ~for the pure case
with D50) and the open dot is the disordered case
(D50.182). Note that in dimensions larger than one, the
finite-size effects for the tip of the Mott lobe are not as strong
as they are in one dimension.

We compare in Fig. 7 the differences between the infinite-

FIG. 5. Phase diagram in one dimension with disorder. The per-
turbative approximations are plotted with solid~dotted! lines for the
pure~disordered! cases in the thermodynamic limit. Three cases of
disorder are included: (D50.125,0.25,0.375). The dashed line is
the perturbative results for a finite system with 256 lattice sites. The
solid dots are the quantum Monte Carlo results from Ref. 2 in the
pure case, and the open dots are for the disordered case with
D50.25 ~the disordered calculations were performed on lattice
sizes ranging from 16 to 256 sites!.
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dimensional lattice and the infinite-range-hopping model of
Ref. 1. The solid lines correspond to the exact solution with
no disorder, the dotted lines are the infinite-dimensional lat-
tice strong-coupling expansion with disorder (D50.2), and
the dashed lines are the exact solution of the infinite-range-
hopping model. In the case of disorder, the first-order nature
of the transition is evidenced by the jump in the slope of the
Mott phase boundary at the tip of the lobe. The second-order
phase boundaries predict a more stable Mott phase, and their
slopes all approach zero asx→0. We expect in the region in
between the~first-order! infinite-dimensional phase boundary
and that of the~second-order! infinite-range-hopping model
that the compressibility will be exponentially small, and will
only become sizable as the second-order phase boundary is
crossed.

Because the Mott-phase to Bose-glass phase transition is
first order for the disordered case, and since the Bose-glass to

superfluid transition is always second order~because it in-
volves a collective excitation that extends through the entire
lattice!, it is quite unlikely that there would ever be a region
where the Mott phase has a transition directly to the super-
fluid. The presence of the Lifshitz rare regions strongly sup-
ports the picture that the Mott phase is entirely enclosed
within the Bose-glass phase.This result isindependentof
any perturbative arguments, since the rare regions must
dominate the Mott to Bose-glass transition in the exact solu-
tion too.

Finally, we calculate the dependence of the critical value
of x at the tip of the Mott-phase lobe, as a function of the
disorder strength D. Figure 8 plots this value of
xcrit(D)/xcrit(0) versusD for the one-, two-, and infinite-
dimensional cases. The plot is limited to the lowest Mott-
phase lobe withn051. Since the one-dimensional Mott
phase lobes have a cusplike behavior that is removed when
disorder is added to the system, we expectxcrit to decrease
very rapidly for small disorder. This effect is sharply reduced
in higher dimensions. In the strong-disorder limit, the phase
diagram is dominated by the first-order terms in the pertur-
bative expansion, which have a trivial dependence on the
dimensionality, but the slopes of the curves are unequal be-
causexcrit(0) depends strongly upon the dimensionality.

IV. CONCLUSION

We have developed a strong-coupling perturbation-theory
approximation to the Bose-Hubbard model on a bipartite lat-
tice. The perturbative results can be extrapolated in a number
of different ways which either do or do not take into account
the scaling theory of the critical point at the Mott tip. We find
that a perturbative expansion through third order rivals the
accuracy of the QMC simulations, and is likely the best
method for determining the Mott-phase boundary of these
interacting Bose systems.

We treated two different cases: the pure case and the dis-
ordered case. In the pure case the tip of the Mott lobe satis-

FIG. 6. Phase diagram in two dimensions with disorder. The
perturbative approximations are plotted with solid~dotted! lines for
the pure~disordered! cases in the thermodynamic limit. The disor-
der was set equal toD50.182. The solid~open! dots are the quan-
tum Monte Carlo results of Ref. 7 for the pure~disordered! cases.
Surprisingly, in two and higher dimensions, the finite-size effects in
the disordered regime appear to be weaker.

FIG. 7. Phase diagram in infinite dimensions with disorder. The
perturbative approximations are plotted with solid~dotted! lines for
the pure~disordered! cases in the thermodynamic limit. The disor-
der was set equal toD50.2. The dashed line is the exact solution of
the infinite-range-hopping model from Ref. 1. Note how the Mott
phase is more stable with the infinite-range calculation, and how it
has vanishing slope asx→0. Interestingly, the location of the tip of
the Mott lobe is close for both the infinite-dimensional and the
infinite-range calculations.

FIG. 8. Plot ofxcrit(D)/xcrit(0) as a function of dimension. The
solid line is for one dimension, the dotted line for two dimensions,
and the dashed line for infinite dimensions. Note that the intitial
decrease ofxcrit is very rapid in one dimension, because of the
cusplike shape of the Mott lobe in the pure case, but is much slower
in higher dimensions~because the tip has a power-law behavior in
the pure case!.
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fies a scaling relation because it corresponds to a second-
order phase transition in a (d11)-dimensionalXY model.
This is because the compressible phase is also superfluid
which implies there is a diverging length scale at the phase
transition. Calculations in the pure case are insensitive to
finite-size effects. In the disordered case we argued that the
tip of the Mott-phase lobe corresopnds to a first-order phase
transition because the initial single-particle excitations are
localized into the rare regions of the Lifshitz tails for any
bounded disorder distribution. As a result there is a kink in
the Mott-phase boundary since the slope ofm(x) has a dis-
continuous jump at the tip of the lobe. In this case, there are
strong finite-size effects because ‘‘typical’’ disorder distribu-
tions on finite lattices do not have Lifshitz tails.

The results of these perturbative calculations have been
compared to the available QMC simulations. We find a re-
markable agreement between the two and are unable to de-
termine which method is more accurate in a quantitative de-
termination of the phase boundaries.

The perturbation theory described here falls short in one
aspect—it is unable to determine the Bose-glass–superfluid
phase transition in the disordered case. It is possible that
such a calculation could be performed, but since the particle
density at which it occurs isa priori not known, and since
the superfluid susceptibility diverges in the Bose-glass phase,
such a calculation may be problematic.
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APPENDIX: FINITE-SIZE EFFECTS FOR THE
DISORDERED CASE

The Rayleigh-Schro¨dinger perturbation theory for the
case with disorder is straightforward, but rather tedious. In
the thermodynamic limit, the perturbative expansion simpli-
fies because it is dominated by the rare regions of the lattice.
For a finite-sized system, the perturbative results are more
complicated. We summarize here the main results for a third-
order strong-coupling expansion in the presence of disorder.

The only assumptions that are made about the disorder
distribution is that it is bounded and symmetric, so that
ue i u<DU and( ie i50. Restriction is also made to bipartite
lattices.

The upper phase boundary for the Mott to Bose-glass
transition is found by solving the equation

d~part!~n0!5
L

U
~n011!1
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where f i is the minimal eigenvector of the single-particle matrixSi j
(part)52t i j1e id i j /(n011) andL is its corresponding

eigenvalue. The identity( i j t i j
2 f j

25Zt2 was needed in deriving the above result. A similar calculation yields
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for the lower phase boundary of the Mott to Bose-glass tran-
sition. Here we have thatgi is the minimal eigenvector of the
single-particle matrixSi j

(hole)52t i j2e id i j /n0 and L̃ is its
corresponding eigenvalue.

In the thermodynamic limit we know that the minimal
eigenvalue occurs in the rare regions where the disorder is
constant and equal to its extreme value. The ground-state
eigenvector is delocalized within the rare region~to mini-
mize its kinetic energy! and localized to the rare region~to

minimize its disorder energy!. Such an eigenvector is now
separatelyan eigenvector of the kinetic-energy matrix and of
the disorder matrix, and so we have2( i j t i j f j5l f i ,
( je id i j f j52DUf i , andL5l2DU/(n011) with similar
formulas for theg eigenvector. Plugging these thermody-
namic limits into Eqs.~A1! and ~A2! then yields the result
that the Mott-phase boundaries are only shifted uniformly by
DU, and all higher-order dependence on the disorder van-
ishes.
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