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Vortex structure around a magnetic dot in planar superconductors
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The problem of the giant vortex state around a magnetic dot which is embedded in a superconducting film
is investigated. The full nonlinear, self-consistent Ginzburg-Landau equations are solved numerically in order
to calculate the free energy, the order parameter of the host superconductor, the internal magnetic field due to
the supercurrents, the corresponding current density, the magnetization probed in the vicinity of the dot, and the
normal electron density as a function of the various parameters of the system. We find that, as we increase the
magnetic moment of the dot, higher flux quanta vortex states become energetically more favorable, as they can
better compete with the external magnetic field via the Meissner effect. In addition to that, they progressively
become closer to each other in energy with direct experimental consequences, i.e., physical quantities like
magnetization may fluctuate when measured, for example, as a function of a uniform external magnetic field.

[. INTRODUCTION In the present work, we focus on the later system and
study in detail via the Ginzburg-Land&GL) formalism how

It is well known that a crucial factor determining the use-the superconducting film is perturbed in the neighborhood of
fulness of a superconductor in practical applications is théhe magnetic dots. The paper is organized as follows: In the
maximum current at which it can Operdt@‘iticaj Curren)_ following Sec. Il we describe the model on which our StUdy
This current is very small for type-I superconductors_ Inis based. Section Il discusses the technicalities of the nu-
type-1l superconducting materials, however, large criticalmerical integration of the nonlinear Ginzburg-Landau equa-
currents have been measured which makes them more favdions. In Sec. IV, we present and discuss our results. Our
able for applications in, e.g., superconducting magnets. Ifiesults are summarized in Sec. V.
those materials the magnetic field lines partially penetrate the
superconductor and transform it into the Abrikosov state by Il. MODEL

forming a hexagonal lattice of vorticé€.The magnetic field ) i i
lines penetrate the core of each vortex where the material js 10 better understand the behavior of this system, experi-

in the normal state, whereas, the rest of the system remaif@entally studied by van Rogt al,* we start from the sim-
superconducting. The application of a bias voltage results iR!eSt possible theoretical model that, we believe, captures the
motion of these vortices giving rise to dissipation which isdualitative aspects of the physics involved. We consider a
now the limiting factor for the largeness of the critical cur- Single magnetic dot of radiug embedded in a planar super-
rent of the superconductdf conduct_or occupying the infinite-y plane and characterized

To get around the above problem, and substantially enPy @ Ginzburg-Landau parameter=A/¢, and thermody-
hance the critical current, it is required to pin the Abrikosovha@mic critical fieldH.. \ is the penetration depth of the
lattice as strongly as possible. Defects in the crystal of size i§uPerconducting material in question afids its coherence
the order of the superconducting coherence leggihe very length. The or)ly source of external fleld.apphed to the su-
effective in vortex pinning.Experimentally, several types of Perconductor is provided by the magnetic dot whose mag-
defects have been utilized so far in studying vortex pinningetic momentm is directed along the positive axis and
e.g., point defecfsand amorphous columnar defddxre- ~ Which gives rise to a vector potential which, on they
ated after bombarding the superconducting material wittPlane, takes the form
high energy ions.

Since a full control over pinning is desirable, artificially A7) — X =
fabricated submicrometer holes in superconducting films Ao(N)=(Heh) 2KA°(r)e"’ @
have been recently studied experimentdllffor certain
“matching” fields, where the period of the Abrikosov vortex
lattice and that of the lattice of holes were multiple of each
other, a strong pinning of vortices was found which resulted B ( 2m) 41 “ kz)
) " : Ag(n)=|—7 |+ —=||1-=]|K(k)—E(k)
in a strong enhancement of the critical current and in sharp X7k r 2
peaks in the magnetization curvesn alternative route ex-
ploited by van Royet al1° was to grow a lattice of magnetic Here and further we shall use the unit vectors of the polar
dots made ofr-MnAl on top of the superconducting film. At coordinate systen®g,, €,, andé,. In the above expression,
temperatures close to the transition temperaiiyre strong as well as in the rest of this work, we express distance in
increase in the magnetization was measured, when the dotsits of the radius of the dd®= x¢ (x is the dimensionless
were magnetized, indicating an enhanced pinning of the fluxradius of the dot in units of the superconducting coherence
oids by the modulated magnetic field of the dots. length ¢), the magnetic field in units oH., and the

where we introduced the dimensionless vector potential

. 2
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magnitude of the magnetic momemt of the dot in units of should be solved self-consistently with the appropriate
mo=H¢(7&3%). K(k) andE(k) are complete elliptic integrals boundary conditions. For a superconductor-insulator inter-
of the first and second kind, respectively, with face, the theory of Ginzburg and Landau requires the super-
k=4r/(1+r)2. We should notice that on the plane of the current across the interface to vanish, that is
superconductor the corresponding magnetic field
Ho(r)=V X Ay(r) points along the negative axis, for this
; ; ; S 2 . 2e.

particular choice of the magnetic momemi=me, of the (-IﬁV— —A(r)) #=0. (5)
dot. In order to limit the number of parameters we assumed c
an infinite thin magnetic dot when we calculated the vector
potential (2).

We consider the magnetic dot, on top of the superconduct- For the sake of convenience we write the total internal
ing plane, to be made of a hard magnet of uniform magnetiyector potentialA(r) in the superconductor as
zation and that the structure of its internal diamagnetic cur-
rents, which gives rise to its macroscopic magnetic moment
m, is not affected by the possible presence of nearby circu- R X 1
lating supercurrents. That is, we realize a magnetic dot with A(V)Z(Hc)\)(z) [Ao(f)Jr T ()
rigid magnetic properties which serves only as a source for
the external nonuniform field,(r) on the superconducting
plane. The magnetic lines of this field penetrate the plane ofvhere the dimensionless functia#(r) is obtained from the
the superconductor normally, have a radial symmetry, andelf-consistent solution of the Ginzburg-Landau equations,
decrease in strength as we move away from the dot givingnd is directly related to the vector potential created by the
rise to a magnetic dipole fielfH(r)~m/r®] at large dis- internal currents in the superconductbiThe corresponding
tances. Near the vicinity of the dot, however, the radial detotal magnetic fieldH(r)=V X A(r) is given by
pendence of this nonuniform field on tley plane is more
complicated, and is given by a combination of elliptic inte- 1d
grals[see Eq.(2)], whereas at the edge of the disk is loga- H(r)=H (Ho(r)+ 1d¢
rithmically divergent, since both the superconductor and the ¢ 2r dr
magnetic dot are realized on the saxag plane. An alterna-
tive way to create the same magnetic field is by using avhere the second term on the right-hand side of the above
circular loop with the same radiuR carrying a current equation is the magnetic field created by the supercurrents.
| =md/(7R?). The advantage of the later system is that this The radially symmetric magnetic field(r) created by
externally imposed magnetic field can be tuned in a conthe magnetic dot gives rise to superconducting vortices with
trolled way by changing the current on the loop. The fabri-size determined by the size of the dot. These vortices corre-
cation of such current loops should be feasible nowadayspond to circulating currents around the dot and form the
with the advances in nanolithographic techniques. so-called “giant vortex state{Refs. 11,12 which is closely

The physical properties of the superconductor under conrelated to the superconducting surface state. It differs from
sideration are well described by the Ginzburg-Landauthe mixed state since it can carry a total current, whereas the

n

€9, (6)

&, )

theory"? which reduces to the equations ideal Abrikosov statgwithout pinning centepscannot!314
Because of the circular symmetry of our problem we take the
o\ 2 order parameter of the forny(r,8)=F(r)exp(L 6). The

i( iRv_ ziA‘ 3) single valueness o} forces the constarit to be an integer.

2m c The correspondence &f to the orbital angular momentum

quantum number, considering(r,#) to be a wave function

and in the Schrdinger-like Eq.(3), is evident, and, in our sys-
tem, it can be associated with the number of fluxoids pen-
o 462 etrating the superconducting annulus region defined by the

f= .—(1/;*Vﬁﬁ— IN W) — — g l’m_ (4) edge Qf the .magnetlc dot and Fhe cwgulatlng giant vortex.

Im mc A circulating current loop, with radius and current den-

sity j(r), gives atr +x rise to a magnetic fielti(r +x) such

that |oh,/ar|/|oh, 1 dz|~ 1/x, with x—0. Therefore, for our
rticular problem of the giant vortex state, which results
rom a circulating current density, we can safely reduce Max-

i+ ay+ Blyl2y=0

The first equation gives the order paramateand the sec-
ond one the supercurrefdiamagnetic respongef the su-
perconductor. In the absence of any external fields, the ord
parameter takes the constant valfie s, which is deter- _ Ll N
mined by the densityi; of Cooper pairs in the system. The Well's equation VXh(r)=(4=/c)j(r) to —oh,/or=
second equation, which is nothing more than the usua{47/c)j(r), and write the two Ginzburg-Landau equations
quantum-mechanical expression for the current in an externdp the final dimensionless form

field, should be coupled to the Maxwell equation

ﬁxﬁ=(4w/c)f. For a complete and consistent description 1 d ( dF(r)) 2
r

2
F(r)

2

1
Ao(r)+ Z[ (1) ~B]

X
of the properties of the superconducting plane under the exL qr dr

S 242
ternal fieldAy(r) the two nonlinear Ginzburg-Landau equa- V2x
tions, coupled together with the above Maxwell equation, —XZF(r)[l—FZ(r)] (8)
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and d 1

aFn‘Fl:FGn‘Fl’

i(3d¢(r))—(5)z[A (4 216N —BI|F2(1), © d
drir dr K ° r , aGn+1:aOOFn+1+a01q)n+1+:80v

with B= (2\/§K/X2)L. In our model the magnetic dot serves d
only as the source of the external, nonuniform field acting on ar
the superconductor which is bounded by the magnetic disk.
Thus we assume hard wall boundary conditions between the d
magnetic dot and the superconductor, and no magnetic field d_xan: a1oF i1t ap®nirt Br (12
lines due to supercurrents are allowed to penetrate it. If we r
notice that the magnetic field of a current loop is much stronyith
ger close to the circumference of the loop, and drops fast, as ®.(r)2
we move towards the center of the loop, we expect that this aoo=ra(A0(r)+ n ) —rx2[1-3F1)],
is not such a bad approximation, which greatly facilitates our
calculation.

Under these assumptions, the boundary condition ex- ag =2«
pressed by Eq(5) is translated intaF(r)/dr=0 atr=R.
From Eq.(6), however, it follows that the vector potential
A4(r) due to supercurrents i4(r)~®(r)/r and, in accor- aj0= 2B<Ao(f)+
dance with our assumptions for the properties of the hard
wall at the edge of the dot, the usual definition of the mag-
netic flux ®s= jAdl atr=R gives $(R)=0. At large dis-
tances from the edge of the dot the normalized order param-
eter F(r) assumes the full value of the complete Meissner D, (1) 93
superconducting state, that i¥r)=1, whereas, from the Bo=—2a| Ag(r)+ — — |Fa(r) @n(r) —2r xFp(r),
asymptotic expansion of Eqg€8) and (9) we find, for
r>R, ¢(r)—B~(27m/x%)/r?. The corresponding field
Hy(r) created by the supercurrents becomes B1= —B(Ao(r)+2
Ho(r)~(2mm/x%)/(2r3), and exactly cancels the field
Ho(r) of the magnetic dot. Matching the numerical solutionswhere® ,= ¢,— B, a:[XZ/(z\/EK)], andB=(x/«)?. The
of the above equations to these asymptotic expressions Bbundary condition§10) and(11) are linear and they remain
r>R we naturally recover the complete Meissner state of thehe same for the above iterative scheme.

D=1V,

(1)
r
Dy (r)
r

Ao(r)+ )Fn(f),

)Fn(r),

B
a’llszﬁ(r):

Dp(r)

r

F2(r), (13)

plane superconductor at large distances from the dot. The obtained two point linear boundary problem is much
According to the above consideration we arrived at themore simple. We integrated it straightforwardly using the
following boundary conditions: standard supplementary function techniq(see, for ex-

ample, Ref. 18 Namely, we integrated the above nonhomo-
geneous linear equation set and the analogous homogeneous
equation set twice with the boundary conditions, and then
matched the result with the asymptotic function behavior
and (11). We took particular care at the starting poimt=R)
were the vector potentighy(r) logarithmically diverges. To
properly handle this divergence, we used the asymptotic ex-
pansion of Egs(12) to analytically advance their solution in
the first step of the integration. We found out that the method
was really superconvergent, and that typically five to six it-
IIl. NUMERICAL INTEGRATION erations were sufficient.

dF(r)/dr=0|,—r, ¢(R)=0 (10

F(r)—1 and ¢(r)—B—(27m/x%)/r?, when r —oo.
(11)

We integrated numerically the system of two ordinary dif-
ferential equation$8), (9) with the boundary condition&l0)
and(11). This is a nonlinear two point boundary value prob- A crucial physical quantity that determines the behavior
lem. We discovered that the integration cannot be donef the vortex state around the magnetic dot, as a function of
straightforwardly, and consequently, some kind of iterationthe various parameters of the system, is the difference of the
technigue should be used. total magnetic free energy between the superconducting and

We constructed a superconvergent method which is basatle normal state which is given by
on the relaxation technigugsee, for example, Ref. 15The
details of this method are given in the Appendix, while the Hﬁ )
main result of it is the replacement of the nonlinear set of j QSHdV_J QnpdV= gJ [(H(r)—=Ho(r))
equationg8) and(9) by the following linear set of equations
for the successive approximates: —F4(r)]dV. (14

IV. RESULTS AND DISCUSSION
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-0.37

-0.38 FIG. 1. Free energy difference between the
normal and superconducting state1) of our
system as a function of the magnetic momant
of the dot for various flux quanta numbeks
Go=10°(H2/8) (m&?), mo=H(7&%), and the
magnetic dot has a radilg= ¢.

(G GnH)/Go

-0.39

-0.40

m/m,

In our case, we are interested in the contribution of thewith the quantum numbdr which gives the lower free en-
giant vortex state to the free energy, which we refer to theergy difference is the one that is physically realized. In our
free energy of the uniform superconducting pléwere the  system of a nonuniform external magnetic field, we have
magmtude of that difference acquires the constant value ofhecked that such a state of a minimum total free energy
H2/8 per unit volumeg. Therefore, we calculated the above gives rise to a free energy density which is lowest every-
integral over an annulus region of space defined betweewhere in space. This is shown explicitly in Fig. 2 for the
r=Randr.=20R. All the physics we are interested {gi- m=1 case. From Fig. 1 we see that for a particular value of
ant vortex statetakes place within this region for all sets of m=m,_ the complete Meissner staté £0) ceases to be

parameters we investigated. Our conclusions are not sen énergetlcally the most favored one, and a vortex state con-

tive to the particular choice df; as long as=(r;)=1 (ie., tamln one flux quantum appears. This valuengf corre-
we include all the region spanned by the correspondmg vor- 9 q bp el

tex state, whereas the calculation of the above integral fron§Ponds to the lower critical fielth, we have in the case of

r. to infinity merely would add an unimportant consant  the uniformexternal field. Afurther increase afi eventually
Relevant results for the free energy difference as a funcintroduces one more fluxoid in the system, and so on. From

tion of the magnetic momemn of the dot are shown in Fig. our results we see that in the lom regime the various

1 for different quantum numbers. Here, we consider a vortex states associated with different flux quabtare en-

superconducting material with a Ginzburg-Landau parametesrgetically well distinct from each other. At larger values,

x=1 and a magnetic dot with radil®&= ¢. The vortex state however, states with differerit are very close together in

0.75
0.50

0.25

FIG. 2. Free energy density difference be-
tween the normal and superconducting state
(k=1) of our system as a function of distance
from the edge of the dot, which has a magnetic
momentm=1, and radiuR= ¢, for various flux
quanta numberk.

0.00 [

-0.25

(Ggp(n)- Guu(n) / (HZ/8m)
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-0.75
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FIG. 3. Order parametdf(r) of our super-
e conducting system witk =1 as a function of the
distance from the edge of the dot, which has a
magnetic momenin=2 (insetm=0), and radius
R= ¢, for various flux quanta numbets

7 8 9 10

energy, and, consequently, the system can easily make tratie edge of the dot the values®(r) for differentL are well
sitions from one vortex state to another one with a differentistinct from each other, and, within a distance of abdRt 5
quantum numbet. This may result in fluctuations when F(r) approaches unity, as is the case for the uniform Meiss-
measuring various physical quantities of the systemagne-  ner state. The transition &(r) to unity is rather broad, and,
tization as a function of some external parameter, i.e., anhe largerL is, the larger the required distance fo(r) to
additional uniform, external magnetic field. In fact, such pe-reach unity. At higher magnetic fieldésee Fig. 3 the state
culiar fluctuations have been observed experimentd#d  \ith L=0 has now a drastically lower order parameter
the mechanism we described could serve as a guide Qfpich is a consequence of the fact that the 0 vortex state
thought in trying to better understand them. This means thag g |onger energetically favorddee Fig. 1 In the case of

at large magnetic moments of the dot, where the resultingjgher fields, we notice that the order parameters for differ-
field is higher, the order parameter of the system is not ant| values are closer to each other, especially the ones for
simple function of ond. component only, but it should be |5rger . The reduction of the superconducting stetever

written as a superposition F(r)] close to the edge of the magnetic dot is more pro-
nounced now, whereas, the transition fr) to unity is
_ iLo noticeably sharper compared to thre=0 case.
v ; Fune™ (15 Figure 4 depicts similar results for the order parameter

F(r), but for a superconductor that has a larger Ginzburg-

The larger the magnetic moment of the dot, the momm-  Landau parametex=3 and a magnetic dot witm=2. We
ponents are expected to have an important contribution in thget qualitative similar behavior with the one we had for the
above summation. In this case, the system has a finite prottewer value ofk=1 at lower magnetic fields, however. For
ability to be in any one of those states characterized by a&xample, we have checked that the results for the order pa-
particular quantum numbér. At low values of the magnetic rameter withm=2 andx=3 show similar qualitative trends
moment of the dot, however, our simple model of keepingto the ones withm=1 at xk=1. That is, increasing, the
only oneL component is more accurate, whereas, at langer behavior of the superconducting system scales at higher
values it still captures all the qualitative aspects of the physmagnetic field values. Thus our model recovers the well
ics involved. known fact that superconductors with a higher Ginzburg-

In Fig. 3 we present results for the order paramétgn) Landau parametek exhibit, at higher magnetic fields, the
in the superconducting plane as a function of distance fronsame behavior which othefsvith lower « values show at
the edge of the magnetic dot. Our results refer to a superconewer fields, i.e., assume higher critical magnetic fiétds.
ductor with k=1, and to a dot that has a magnetic moment In Fig. 5 we plot results for the current density of the
m=2 and radiuR=¢. The inset shows similar results but supercurrents as a function of the distance from the magnetic
for m=0. For the above set of parameters, we [Bt) for dot with m=5 (m=1 in the insex over different values of
different values of the flux quantum numbler First of all,  the flux quantum number characterizing the corresponding
we see from the inset of Fig. 3 that for=0, vortex states giant vortex state. First of all, notice that the circulating in-
with lower L values assume a higher value of the order paternal currents change direction at a particular distamce
rameter. We have checked that the state withO has the from being negative to positive. Thus there are two currents
highest order parametef(r)=1, everywhere in space. circulating in opposite direction. This phenomenon is similar
From Fig. 1 we notice that this state gives a lower free ento the behavior of bulk cylindrical superconductors under a
ergy and energetically is the most favorechat 0. Close to  uniform external magnetic fiefth. From our results of Fig. 5
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m=2
k=3
§ m=0 FIG. 4. Order parametdf(r) for the same
x=3 system as in Fig. 3 but now for=3.
6 7
1 .
9 10

we see that, for highan, states with lower flux quanta give states with largeL give rise to circulating currents that bet-
rise to current densities that have a negative sign of circulater screen the external field and more effectively minimize
tion over larger distances, resulting finally in a total currentthe free energy of the superconducting system. Thed

of negative sign. According to the choice of our unit vectors,state is the one with the lowest free energy lioe 5. If we

a negative sign in the internal current indicates that the coreonventionally identify the positive peak of the current den-
responding magnetic field created by the superconductaity as indicating an effective radiug of the system of the
points in the same direction as the external fidlg{r) of the = magnetic dot along with the circulating giant vortex, we find
magnetic dot. Such currents cannot compete and screen ehatr, decreases as the system makes a transition to higher
fectively the external field, and are totally unable to give risestates. According to our results in Fig. 1 these transitions
to the Meissner effect. From Figs. 1 and 5 we notice that, fotake place more easily at higher values and finally results

a particular value ofn, flux states with extensive regions of in fluctuations of the effective radius . Form=5, r, could
negative internal currents are energetically less favored. Fdtuctuate between the states with=4 and 5 resulting in
example, we see from the inset of Fig. 5 thatfer=1 and fluctuations over distances up Ri2, with direct experimen-
L=2 the corresponding current density is positive over artal consequences. For example, the application of an addi-
extensive region of space and gives rise to a total currertional uniform external magnetic field would result in fluc-
which is able to generate the Meissner effect. At the sameuations of the magnetization as a function of the magnitude
time (see Fig. 1 this state is energetically more favored to of this field1°

the one withL=1 which lacks these features. For=>5 The circulating internal currents around the magnetic dot,

0.30

0.15
— 0.00 = _ L
= FIG. 5. Current density profile in the super-
':o conductor as a function of the distance from the
I edge of the dot which has a magnetic moment
< 015 m=5 (insetm=1) and radiusR= ¢ for various
g flux quanta numberk. The corresponding super-
&+ 0.50 conductor has a GL parameter 1.

-0.45
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I 125

1.00

NoL=2

FIG. 6. Magnetic field profile generated by
the supercurrents as a function of distance from
the edge of the dot, which has a magnetic mo-
mentm=2 (insetm=0), and radiusR= ¢, for
various flux quanta numbets. The correspond-
ing superconductor has a GL parameier 1.
The external magnetic fieltHq(r) due to the
magnetic dot is also shown.

which form the giant vortex state, give rise to a magneticnegative sign of the fielth(r) indicates that its direction is
field H¢(r) whose direction depends on that of the associatethe same as the one of the applied external field. However,
supercurrent. The region in space over which the circulatingnly whenH(r) is positive in sign can it compete with the
current inverts direction could also be a pronounced featurexternal field and give a reduced total internal magnetic field
of the corresponding magnetic field profile. To further inves-(Meissner effegt From Fig. 6, however, and fan=2 we
tigate this, we show in Fig. 6 the magnetic fidtd(r) cre- see that vortex states with a higher flux quantum nuntber
ated by these circulating currents as a function of the disgive rise to a field which is positive over a much larger
tance from the edge of the dot fon=2 for different flux  distance, and, along with their more effective competition
guantum numberk. The inset shows similar results but for with the external magnetic field, they give rise to a lower free
m=0. First of all, we notice from the inset fan=0 that energy of the system. We have, finally, checked that the peak
H(r) decreases monotonously from the edge of the dotin Hi(r) is exactly associated with the point where the cor-
being lower for lowerL values, and approaching zero at responding supercurrent inverts direction. In Fig. 6 we plot
distances where the corresponding order parameters aplso the external magnetic fieldy(r) created by the mag-
proach unity. The picture for the highen=2 field value, netic dot in order to demonstrate how this field is exactly
however, looks different in Fig. 6. The magnetic field canceled at large distances By(r) in order to recover the
H(r) for low values ofL is negative for distances close to complete Meissner state of the uniform planar superconduc-
the edge of the magnetic dot, becomes positive at intermedter. From the energy diagram of Fig. 1 we see that the vortex
ate, and reduces to zero at larger distances from the dot. state withL=2 is the one with the lowest free energy at

0.20
e L=6
5 __________ FIG. 7. Total magnetization in a region de-
otofb TR e fined between the edge of the dot aeg- 10R as
N L a function of the dimensionless magnetic moment
§° ----------------- e T m of the dot, which has a radilR= ¢, for vari-
S sk § e ous flux guanta numbers L.
‘ ST b s 7 47My=10PH(7£?). The vertical lines indicate
S e S the transition points between the different
o T T T e states as dictated by the minimum of the free en-
0.00 ergy.
-0.05
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FIG. 8. Number of normal electrons as a
function of the dimensionless magnetic moment
m of the dot, which has a radil= ¢, for vari-
ous flux quanta numbeis.

m/m0

m=2, and, according with our results in Fig. 6, this statecreases. This shows up in Fig. 8 as an increase of the number
better cancels the external fight}(r) over a larger distance. of normal electrons as we increasm. After a careful com-
The internal circulating currents in the superconductingparison with the energy diagram of Fig. 1, we note that this
region around the magnetic dot give rise to a magnetizatioficrease im always occurs fot states that are physically
A7M(r)=H.(H(r)—Hy(r)). The average value of it, in a realizable(i.e., have a lower free energwt the particular
finite region of space around the dot, can be directly probed@lue ofm we are considering. We also notice that, at small
experimenta”y using a Superconducting quantum interferyames ofm, L states that have the minimum normal electron
ence device. A common outcome of such experimental meglensity are well separated from each other. At largehow-
surements is a hysteretic behavior of the magnetization, as&ver, states with highdr, which according to the results in
function of the externally applied magnetic fiitindicating ~ Fig. 1 are energetically more favored, have normal electron
that the superconducting system prefers to conserve the totdensities closer to each other.
number of flux quanta trapped in it over a finite range of the
external magnetic field. Sometimes this may happen even at V. SUMMARY AND CONCLUSIONS

the cost of overriding the condition of minimum free energy  As a summary, we studied the giant vortex state around a
over a finite range of the external fieftiin Fig. 7 we show  magnetic dot embedded in a superconducting film. We found
results for the total magnetization of a superconducting rethat at low values of the magnetic moment of the dot
gion spanned in a distance up toRL0as a function of the yortex states with a low numbér of flux quanta associated

magnetic momentn of the dot over different flux quanta jth them are energetically more favored and well separated
numbersL. We notice the linear behavior of the magnetiza-from each other in energy. At large values, however, vor-

tion as a function ofn. Transitions between lines of different tey states with a larger are now more favored, whereas,

L take place at certain values af. If the condition for  they are quite close together in energy. We pointed out that
minimum energy dictates the behavior of the magnetizationyhis may result in fluctuating physical quantities when, for
such transitions take place at the valuesnahdicated by the example, we drive the system with some uniform external
vertical dotted lines in Fig. 7. Under the condition of mini- magnetic field. In fact, such peculiar fluctuations may be
mum energy requirement, the magnetization changes revergsiated to the ones which have been observed in magnetiza-

ibly. The same holds over a finite interval wf such that the  tion measurements for a lattice of magnetic dots on top of a
system moves along a line of fixdd If the system, how- superconducting film°

ever, prefers to conserve the number of flux quanta at larger

ranges ofm, even at the cost of overriding the condition for ACKNOWLEDGMENTS

minimum energy imposed by Fig. 1, then a hysteretic behav- | ) ) . ,

ior of the magnetization appears. In that case, an increase of Stmulating discussions with V. V. Moshchalkov and W.
m over an appropriate, finite interval, followed by a decrease/an Roy are acknowledged. This work was supported by the

back to zero leaves a certain number of flux quanta lockef@€!9ian National Science Foundation, by NATO through the
around the magnetic dot. linkage Grant No. 950274, and by the PHANTOMS network

In Flg 8 we pIotn=f°§(l—F2)rdr, which is propor- (ESPR|T Basic Research Action 7360

tional to the total number of normal electrons in tkey
plane, as a function of the magnetic momenover different
guantum numberk. We see that, as we increase the exter-
nally applied non-uniform magnetic fielde., increasam), The nonlinear two point boundary problem is a compli-
the superconducting region around the dot progressively desated numerical problem and cannot be handled straightfor-

APPENDIX: SUPERCONVERGENT RELAXATION
TECHNIQUE
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wardly. Here we present some general consideration whichoundary conditions they can be handled in the same way,
allows to reduce it to a linear iterative scheme. We shaljust replacing them by the relaxation equations analogous to
illustrate our consideration by applying it to a first order Eq. (A2).

nonlinear differential equation set which we formally present Now we shall replace the time derivative in E&\2) by

as the approximate expression

d o  ft+h)—f(t) f(t+1)—"F(t)

&sz(f). (Al) Efw h ~ 1 =f.1—f, (A3
Here, the symboff stands for some vector function with and
components ={f,(x), ...,f,(x)}, andH(f) is some non-
linear function of that vector. We shall also assume that 4 H(f) = dH 9 f~<9H - Ad
proper boundary conditions accompany Ef1). The two ot ()= of ot NE( n+17 fn), (A4)

point boundary conditions are given at the different points
where @H/Jf)f stands for

Xj .

The above equation séAl) is rather general, as every n
system of ordinary differential equations can be reduced to ﬁf:z ﬁf-(x) (A5)
an equivalent set of first order differential equations. More- of = &y oof, T

over, other equation¢e.g., integral equationcan often be

presented in the form analogous to E41). Finally, substituting expression®3) and (A4) into Eq.
The main idea of the relaxation technique is the follow-(A2) and restricting ourselves to linear terms iy (;—f,,)

ing. Instead of solving Eq(A1) defined on thex axis we  only, we obtain the following set of equations:

shall consider another equation q

9 9 9 &fn+l_Hf(fn)fn+1:H(fn)_Hf(fn)fn: (A6)

which is the required linear iteration scheme for our basic

which is defined in thext plane. Whent— o its solution  problem(Al).

converges to the solution of our basic E41). For the sake Now denoting the derivatives oF(r) and ®(r) by

of simplicity we shall assume that the boundary conditions ofG(r)/r and W(r)r, respectively, and applying the above

our basic problem are linear and append them to(Bg).  considerations to Eq$8) and(9), we immediately arrive at

We like to point out, however, that in the case of nonlinearthe iteration scheme given by Eq42).
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