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The problem of the giant vortex state around a magnetic dot which is embedded in a superconducting film
is investigated. The full nonlinear, self-consistent Ginzburg-Landau equations are solved numerically in order
to calculate the free energy, the order parameter of the host superconductor, the internal magnetic field due to
the supercurrents, the corresponding current density, the magnetization probed in the vicinity of the dot, and the
normal electron density as a function of the various parameters of the system. We find that, as we increase the
magnetic moment of the dot, higher flux quanta vortex states become energetically more favorable, as they can
better compete with the external magnetic field via the Meissner effect. In addition to that, they progressively
become closer to each other in energy with direct experimental consequences, i.e., physical quantities like
magnetization may fluctuate when measured, for example, as a function of a uniform external magnetic field.

I. INTRODUCTION

It is well known that a crucial factor determining the use-
fulness of a superconductor in practical applications is the
maximum current at which it can operate~critical current!.
This current is very small for type-I superconductors. In
type-II superconducting materials, however, large critical
currents have been measured which makes them more favor-
able for applications in, e.g., superconducting magnets. In
those materials the magnetic field lines partially penetrate the
superconductor and transform it into the Abrikosov state by
forming a hexagonal lattice of vortices.1,2 The magnetic field
lines penetrate the core of each vortex where the material is
in the normal state, whereas, the rest of the system remains
superconducting. The application of a bias voltage results in
motion of these vortices giving rise to dissipation which is
now the limiting factor for the largeness of the critical cur-
rent of the superconductor.3,4

To get around the above problem, and substantially en-
hance the critical current, it is required to pin the Abrikosov
lattice as strongly as possible. Defects in the crystal of size in
the order of the superconducting coherence lengthj are very
effective in vortex pinning.5 Experimentally, several types of
defects have been utilized so far in studying vortex pinning:
e.g., point defects6 and amorphous columnar defects7,8 cre-
ated after bombarding the superconducting material with
high energy ions.

Since a full control over pinning is desirable, artificially
fabricated submicrometer holes in superconducting films
have been recently studied experimentally.9 For certain
‘‘matching’’ fields, where the period of the Abrikosov vortex
lattice and that of the lattice of holes were multiple of each
other, a strong pinning of vortices was found which resulted
in a strong enhancement of the critical current and in sharp
peaks in the magnetization curves.9 An alternative route ex-
ploited by van Royet al.10 was to grow a lattice of magnetic
dots made oft-MnAl on top of the superconducting film. At
temperatures close to the transition temperatureTc a strong
increase in the magnetization was measured, when the dots
were magnetized, indicating an enhanced pinning of the flux-
oids by the modulated magnetic field of the dots.

In the present work, we focus on the later system and
study in detail via the Ginzburg-Landau~GL! formalism how
the superconducting film is perturbed in the neighborhood of
the magnetic dots. The paper is organized as follows: In the
following Sec. II we describe the model on which our study
is based. Section III discusses the technicalities of the nu-
merical integration of the nonlinear Ginzburg-Landau equa-
tions. In Sec. IV, we present and discuss our results. Our
results are summarized in Sec. V.

II. MODEL

To better understand the behavior of this system, experi-
mentally studied by van Royet al.,10 we start from the sim-
plest possible theoretical model that, we believe, captures the
qualitative aspects of the physics involved. We consider a
single magnetic dot of radiusR embedded in a planar super-
conductor occupying the infinitex-y plane and characterized
by a Ginzburg-Landau parameterk5l/j, and thermody-
namic critical fieldHc . l is the penetration depth of the
superconducting material in question andj is its coherence
length. The only source of external field applied to the su-
perconductor is provided by the magnetic dot whose mag-
netic momentmW is directed along the positivez axis and
which gives rise to a vector potential which, on thex-y
plane, takes the form

AW 0~rW !5~Hcl!
x

2k
A0~r !eW u , ~1!

where we introduced the dimensionless vector potential

A0~r !5S 2mx3 D 4k 1

Ar
F S 12

k2

2 DK~k!2E~k!G . ~2!

Here and further we shall use the unit vectors of the polar
coordinate system:eW x, eW u, andeW z . In the above expression,
as well as in the rest of this work, we express distance in
units of the radius of the dotR5xj (x is the dimensionless
radius of the dot in units of the superconducting coherence
length j), the magnetic field in units ofHc , and the

PHYSICAL REVIEW B 1 FEBRUARY 1996-IVOLUME 53, NUMBER 5

530163-1829/96/53~5!/2677~9!/$06.00 2677 © 1996 The American Physical Society



magnitude of the magnetic momentm of the dot in units of
m05Hc(pj3). K(k) andE(k) are complete elliptic integrals
of the first and second kind, respectively, with
k54r /(11r )2. We should notice that on the plane of the
superconductor the corresponding magnetic field
HW 0(r )5¹W 3AW 0(r ) points along the negativez axis, for this
particular choice of the magnetic momentmW 5meW z of the
dot. In order to limit the number of parameters we assumed
an infinite thin magnetic dot when we calculated the vector
potential~2!.

We consider the magnetic dot, on top of the superconduct-
ing plane, to be made of a hard magnet of uniform magneti-
zation and that the structure of its internal diamagnetic cur-
rents, which gives rise to its macroscopic magnetic moment
m, is not affected by the possible presence of nearby circu-
lating supercurrents. That is, we realize a magnetic dot with
rigid magnetic properties which serves only as a source for
the external nonuniform fieldA0(r ) on the superconducting
plane. The magnetic lines of this field penetrate the plane of
the superconductor normally, have a radial symmetry, and
decrease in strength as we move away from the dot giving
rise to a magnetic dipole field@H0(r );m/r 3# at large dis-
tances. Near the vicinity of the dot, however, the radial de-
pendence of this nonuniform field on thex-y plane is more
complicated, and is given by a combination of elliptic inte-
grals @see Eq.~2!#, whereas at the edge of the disk is loga-
rithmically divergent, since both the superconductor and the
magnetic dot are realized on the samex-y plane. An alterna-
tive way to create the same magnetic field is by using a
circular loop with the same radiusR carrying a current
I5mc/(pR2). The advantage of the later system is that this
externally imposed magnetic field can be tuned in a con-
trolled way by changing the current on the loop. The fabri-
cation of such current loops should be feasible nowadays
with the advances in nanolithographic techniques.

The physical properties of the superconductor under con-
sideration are well described by the Ginzburg-Landau
theory1,2 which reduces to the equations

1

2m
S 2 i\¹W 2

2eAW

c
D 2c1ac1bucu2c50 ~3!

and

jW5
e\

im
~c*¹W c2c¹W c* !2

4e2

mc
c*cAW . ~4!

The first equation gives the order parameterc and the sec-
ond one the supercurrent~diamagnetic response! of the su-
perconductor. In the absence of any external fields, the order
parameter takes the constant valuec5c0 which is deter-
mined by the densityns of Cooper pairs in the system. The
second equation, which is nothing more than the usual
quantum-mechanical expression for the current in an external
field, should be coupled to the Maxwell equation
¹W xHW 5(4p/c) jW. For a complete and consistent description
of the properties of the superconducting plane under the ex-
ternal fieldAW 0(rW) the two nonlinear Ginzburg-Landau equa-
tions, coupled together with the above Maxwell equation,

should be solved self-consistently with the appropriate
boundary conditions. For a superconductor-insulator inter-
face, the theory of Ginzburg and Landau requires the super-
current across the interface to vanish, that is

S 2 i\¹W 2
2e

c
AW ~r ! D

n

c50. ~5!

For the sake of convenience we write the total internal
vector potentialAW (r ) in the superconductor as

AW ~r !5~Hcl!S x

2k D FA0~r !1
1

r
f~r !GeW u , ~6!

where the dimensionless functionf(r ) is obtained from the
self-consistent solution of the Ginzburg-Landau equations,
and is directly related to the vector potential created by the
internal currents in the superconductor.11 The corresponding
total magnetic fieldHW (r )5¹W 3AW (r ) is given by

HW ~r !5HcSH0~r !1
1

2r

df

dr DeW z , ~7!

where the second term on the right-hand side of the above
equation is the magnetic field created by the supercurrents.

The radially symmetric magnetic fieldH0(r ) created by
the magnetic dot gives rise to superconducting vortices with
size determined by the size of the dot. These vortices corre-
spond to circulating currents around the dot and form the
so-called ‘‘giant vortex state’’~Refs. 11,12! which is closely
related to the superconducting surface state. It differs from
the mixed state since it can carry a total current, whereas the
ideal Abrikosov state~without pinning centers! cannot.13,14

Because of the circular symmetry of our problem we take the
order parameter of the formc(r ,u)5F(r )exp(iLu). The
single valueness ofc forces the constantL to be an integer.
The correspondence ofL to the orbital angular momentum
quantum number, consideringc(r ,u) to be a wave function
in the Schro¨dinger-like Eq.~3!, is evident, and, in our sys-
tem, it can be associated with the number of fluxoids pen-
etrating the superconducting annulus region defined by the
edge of the magnetic dot and the circulating giant vortex.

A circulating current loop, with radiusr and current den-
sity jW(r ), gives atr1x rise to a magnetic fieldhW (r1x) such
that u]hz /]r u/u]hr /]zu;1/x, with x→0. Therefore, for our
particular problem of the giant vortex state, which results
from a circulating current density, we can safely reduce Max-
well’s equation ¹W 3hW (r )5(4p/c) jW(r ) to 2]hz /]r5
(4p/c) j (r ), and write the two Ginzburg-Landau equations
in the final dimensionless form

1

r

d

dr S r dF~r !

dr D 5S x2

2A2k
D 2FA0~r !1

1

r
@f~r !2B#G 2F~r !

2x2F~r !@12F2~r !# ~8!
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and

d

dr S 1r df~r !

dr D5S x

k D 2FA0~r !1
1

r
@f~r !2B#GF2~r !, ~9!

with B5(2A2k/x2)L. In our model the magnetic dot serves
onlyas the source of the external, nonuniform field acting on
the superconductor which is bounded by the magnetic disk.
Thus we assume hard wall boundary conditions between the
magnetic dot and the superconductor, and no magnetic field
lines due to supercurrents are allowed to penetrate it. If we
notice that the magnetic field of a current loop is much stron-
ger close to the circumference of the loop, and drops fast, as
we move towards the center of the loop, we expect that this
is not such a bad approximation, which greatly facilitates our
calculation.

Under these assumptions, the boundary condition ex-
pressed by Eq.~5! is translated intodF(r )/dr50 at r5R.
From Eq. ~6!, however, it follows that the vector potential
As(r ) due to supercurrents isAs(r );F(r )/r and, in accor-
dance with our assumptions for the properties of the hard
wall at the edge of the dot, the usual definition of the mag-
netic fluxFs5 RAW sd lW at r5R givesf(R)50. At large dis-
tances from the edge of the dot the normalized order param-
eterF(r ) assumes the full value of the complete Meissner
superconducting state, that isF(r )51, whereas, from the
asymptotic expansion of Eqs.~8! and ~9! we find, for
r@R, f(r )2B;(2pm/x3)/r 2. The corresponding field
Hs(r ) created by the supercurrents becomes
Hs(r );(2pm/x3)/(2r 3), and exactly cancels the field
H0(r ) of the magnetic dot. Matching the numerical solutions
of the above equations to these asymptotic expressions at
r@R we naturally recover the complete Meissner state of the
plane superconductor at large distances from the dot.

According to the above consideration we arrived at the
following boundary conditions:

dF~r !/dr50ur5R , f~R!50 ~10!

and

F~r !→1 and f~r !2B→~2pm/x3!/r 2, when r→`.
~11!

III. NUMERICAL INTEGRATION

We integrated numerically the system of two ordinary dif-
ferential equations~8!, ~9! with the boundary conditions~10!
and~11!. This is a nonlinear two point boundary value prob-
lem. We discovered that the integration cannot be done
straightforwardly, and consequently, some kind of iteration
technique should be used.

We constructed a superconvergent method which is based
on the relaxation technique~see, for example, Ref. 15!. The
details of this method are given in the Appendix, while the
main result of it is the replacement of the nonlinear set of
equations~8! and~9! by the following linear set of equations
for the successive approximates:

d

dr
Fn115

1

r
Gn11 ,

d

dr
Gn115a00Fn111a01Fn111b0 ,

d

dr
Fn115rCn11 ,

d

dr
Cn115a10Fn111a11Fn111b1 ~12!

with

a005raSA0~r !1
Fn~r !

r D 22rx2@123Fn
2~r !#,

a0152aSA0~r !1
Fn~r !

r DFn~r !,

a1052bSA0~r !1
Fn~r !

r DFn~r !,

a115
b

r
Fn
2~r !,

b0522aSA0~r !1
Fn~r !

r DFn~r !Fn~r !22rx2Fn
3~r !,

b152bSA0~r !12
Fn~r !

r DFn
2~r !, ~13!

whereFn5fn2B, a5@x2/(2A2k)#, andb5(x/k)2. The
boundary conditions~10! and~11! are linear and they remain
the same for the above iterative scheme.

The obtained two point linear boundary problem is much
more simple. We integrated it straightforwardly using the
standard supplementary function technique~see, for ex-
ample, Ref. 16!. Namely, we integrated the above nonhomo-
geneous linear equation set and the analogous homogeneous
equation set twice with the boundary conditions, and then
matched the result with the asymptotic function behavior
~11!. We took particular care at the starting point (r5R)
were the vector potentialA0(r ) logarithmically diverges. To
properly handle this divergence, we used the asymptotic ex-
pansion of Eqs.~12! to analytically advance their solution in
the first step of the integration. We found out that the method
was really superconvergent, and that typically five to six it-
erations were sufficient.

IV. RESULTS AND DISCUSSION

A crucial physical quantity that determines the behavior
of the vortex state around the magnetic dot, as a function of
the various parameters of the system, is the difference of the
total magnetic free energy between the superconducting and
the normal state which is given by

E VSHdV2E VNHdV5
Hc
2

8pE @„H~r !2H0~r !…2

2F4~r !#dV. ~14!
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In our case, we are interested in the contribution of the
giant vortex state to the free energy, which we refer to the
free energy of the uniform superconducting plane~where the
magnitude of that difference acquires the constant value of
Hc
2/8p per unit volume!. Therefore, we calculated the above

integral over an annulus region of space defined between
r5R and r c520R. All the physics we are interested in~gi-
ant vortex state! takes place within this region for all sets of
parameters we investigated. Our conclusions are not sensi-
tive to the particular choice ofr c as long asF(r c).1 ~i.e.,
we include all the region spanned by the corresponding vor-
tex state, whereas the calculation of the above integral from
r c to infinity merely would add an unimportant constant!.

Relevant results for the free energy difference as a func-
tion of the magnetic momentm of the dot are shown in Fig.
1 for different quantum numbersL. Here, we consider a
superconducting material with a Ginzburg-Landau parameter
k51 and a magnetic dot with radiusR5j. The vortex state

with the quantum numberL which gives the lower free en-
ergy difference is the one that is physically realized. In our
system of a nonuniform external magnetic field, we have
checked that such a state of a minimum total free energy
gives rise to a free energy density which is lowest every-
where in space. This is shown explicitly in Fig. 2 for the
m51 case. From Fig. 1 we see that for a particular value of
m5mc1

the complete Meissner state (L50) ceases to be

energetically the most favored one, and a vortex state con-
taining one flux quantum appears. This value ofmc1

corre-

sponds to the lower critical fieldHc1
we have in the case of

theuniformexternal field. A further increase ofm eventually
introduces one more fluxoid in the system, and so on. From
our results we see that in the lowm regime the various
vortex states associated with different flux quantaL are en-
ergetically well distinct from each other. At largerm values,
however, states with differentL are very close together in

FIG. 1. Free energy difference between the
normal and superconducting state (k51) of our
system as a function of the magnetic momentm
of the dot for various flux quanta numbersL.
G05103(Hc

2/8p)(pj2), m05Hc(pj3), and the
magnetic dot has a radiusR5j.

FIG. 2. Free energy density difference be-
tween the normal and superconducting state
(k51) of our system as a function of distance
from the edge of the dot, which has a magnetic
momentm51, and radiusR5j, for various flux
quanta numbersL.
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energy, and, consequently, the system can easily make tran-
sitions from one vortex state to another one with a different
quantum numberL. This may result in fluctuations when
measuring various physical quantities of the system~magne-
tization! as a function of some external parameter, i.e., an
additional uniform, external magnetic field. In fact, such pe-
culiar fluctuations have been observed experimentally,10 and
the mechanism we described could serve as a guide of
thought in trying to better understand them. This means that
at large magnetic moments of the dot, where the resulting
field is higher, the order parameter of the system is not a
simple function of oneL component only, but it should be
written as a superposition

c5(
L

FL~r !eiLu. ~15!

The larger the magnetic moment of the dot, the moreL com-
ponents are expected to have an important contribution in the
above summation. In this case, the system has a finite prob-
ability to be in any one of those states characterized by a
particular quantum numberL. At low values of the magnetic
moment of the dot, however, our simple model of keeping
only oneL component is more accurate, whereas, at largerm
values it still captures all the qualitative aspects of the phys-
ics involved.

In Fig. 3 we present results for the order parameterF(r )
in the superconducting plane as a function of distance from
the edge of the magnetic dot. Our results refer to a supercon-
ductor withk51, and to a dot that has a magnetic moment
m52 and radiusR5j. The inset shows similar results but
for m50. For the above set of parameters, we plotF(r ) for
different values of the flux quantum numberL. First of all,
we see from the inset of Fig. 3 that form50, vortex states
with lower L values assume a higher value of the order pa-
rameter. We have checked that the state withL50 has the
highest order parameter,F(r )51, everywhere in space.
From Fig. 1 we notice that this state gives a lower free en-
ergy and energetically is the most favored atm50. Close to

the edge of the dot the values ofF(r ) for differentL are well
distinct from each other, and, within a distance of about 5R,
F(r ) approaches unity, as is the case for the uniform Meiss-
ner state. The transition ofF(r ) to unity is rather broad, and,
the largerL is, the larger the required distance forF(r ) to
reach unity. At higher magnetic fields,~see Fig. 3! the state
with L50 has now a drastically lower order parameter
which is a consequence of the fact that theL50 vortex state
is no longer energetically favored~see Fig. 1!. In the case of
higher fields, we notice that the order parameters for differ-
entL values are closer to each other, especially the ones for
largerL. The reduction of the superconducting state@lower
F(r )# close to the edge of the magnetic dot is more pro-
nounced now, whereas, the transition ofF(r ) to unity is
noticeably sharper compared to them50 case.

Figure 4 depicts similar results for the order parameter
F(r ), but for a superconductor that has a larger Ginzburg-
Landau parameterk53 and a magnetic dot withm52. We
get qualitative similar behavior with the one we had for the
lower value ofk51 at lower magnetic fields, however. For
example, we have checked that the results for the order pa-
rameter withm52 andk53 show similar qualitative trends
to the ones withm51 at k51. That is, increasingk, the
behavior of the superconducting system scales at higher
magnetic field values. Thus our model recovers the well
known fact that superconductors with a higher Ginzburg-
Landau parameterk exhibit, at higher magnetic fields, the
same behavior which others~with lower k values! show at
lower fields, i.e., assume higher critical magnetic fields.1,2

In Fig. 5 we plot results for the current density of the
supercurrents as a function of the distance from the magnetic
dot with m55 (m51 in the inset! over different values of
the flux quantum numberL characterizing the corresponding
giant vortex state. First of all, notice that the circulating in-
ternal currents change direction at a particular distancer ,
from being negative to positive. Thus there are two currents
circulating in opposite direction. This phenomenon is similar
to the behavior of bulk cylindrical superconductors under a
uniform external magnetic field.11 From our results of Fig. 5

FIG. 3. Order parameterF(r ) of our super-
conducting system withk51 as a function of the
distance from the edge of the dot, which has a
magnetic momentm52 ~insetm50!, and radius
R5j, for various flux quanta numbersL.
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we see that, for higherm, states with lower flux quanta give
rise to current densities that have a negative sign of circula-
tion over larger distances, resulting finally in a total current
of negative sign. According to the choice of our unit vectors,
a negative sign in the internal current indicates that the cor-
responding magnetic field created by the superconductor
points in the same direction as the external fieldH0(r ) of the
magnetic dot. Such currents cannot compete and screen ef-
fectively the external field, and are totally unable to give rise
to the Meissner effect. From Figs. 1 and 5 we notice that, for
a particular value ofm, flux states with extensive regions of
negative internal currents are energetically less favored. For
example, we see from the inset of Fig. 5 that form51 and
L52 the corresponding current density is positive over an
extensive region of space and gives rise to a total current
which is able to generate the Meissner effect. At the same
time ~see Fig. 1! this state is energetically more favored to
the one withL51 which lacks these features. Form55

states with largerL give rise to circulating currents that bet-
ter screen the external field and more effectively minimize
the free energy of the superconducting system. TheL54
state is the one with the lowest free energy form55. If we
conventionally identify the positive peak of the current den-
sity as indicating an effective radiusr v of the system of the
magnetic dot along with the circulating giant vortex, we find
thatr v decreases as the system makes a transition to higherL
states. According to our results in Fig. 1 these transitions
take place more easily at higherm values and finally results
in fluctuations of the effective radiusr v . Form55, r v could
fluctuate between the states withL54 and 5 resulting in
fluctuations over distances up toR/2, with direct experimen-
tal consequences. For example, the application of an addi-
tional uniform external magnetic field would result in fluc-
tuations of the magnetization as a function of the magnitude
of this field.10

The circulating internal currents around the magnetic dot,

FIG. 4. Order parameterF(r ) for the same
system as in Fig. 3 but now fork53.

FIG. 5. Current density profile in the super-
conductor as a function of the distance from the
edge of the dot which has a magnetic moment
m55 ~insetm51! and radiusR5j for various
flux quanta numbersL. The corresponding super-
conductor has a GL parameterk51.
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which form the giant vortex state, give rise to a magnetic
fieldHs(r ) whose direction depends on that of the associated
supercurrent. The region in space over which the circulating
current inverts direction could also be a pronounced feature
of the corresponding magnetic field profile. To further inves-
tigate this, we show in Fig. 6 the magnetic fieldHs(r ) cre-
ated by these circulating currents as a function of the dis-
tance from the edge of the dot form52 for different flux
quantum numbersL. The inset shows similar results but for
m50. First of all, we notice from the inset form50 that
Hs(r ) decreases monotonously from the edge of the dot,
being lower for lowerL values, and approaching zero at
distances where the corresponding order parameters ap-
proach unity. The picture for the higherm52 field value,
however, looks different in Fig. 6. The magnetic field
Hs(r ) for low values ofL is negative for distances close to
the edge of the magnetic dot, becomes positive at intermedi-
ate, and reduces to zero at larger distances from the dot. A

negative sign of the fieldHs(r ) indicates that its direction is
the same as the one of the applied external field. However,
only whenHs(r ) is positive in sign can it compete with the
external field and give a reduced total internal magnetic field
~Meissner effect!. From Fig. 6, however, and form52 we
see that vortex states with a higher flux quantum numberL
give rise to a field which is positive over a much larger
distance, and, along with their more effective competition
with the external magnetic field, they give rise to a lower free
energy of the system. We have, finally, checked that the peak
in Hs(r ) is exactly associated with the point where the cor-
responding supercurrent inverts direction. In Fig. 6 we plot
also the external magnetic fieldH0(r ) created by the mag-
netic dot in order to demonstrate how this field is exactly
canceled at large distances byHs(r ) in order to recover the
complete Meissner state of the uniform planar superconduc-
tor. From the energy diagram of Fig. 1 we see that the vortex
state withL52 is the one with the lowest free energy at

FIG. 6. Magnetic field profile generated by
the supercurrents as a function of distance from
the edge of the dot, which has a magnetic mo-
mentm52 ~insetm50!, and radiusR5j, for
various flux quanta numbersL. The correspond-
ing superconductor has a GL parameterk51.
The external magnetic fieldH0(r ) due to the
magnetic dot is also shown.

FIG. 7. Total magnetization in a region de-
fined between the edge of the dot andr 0510R as
a function of the dimensionless magnetic moment
m of the dot, which has a radiusR5j, for vari-
ous flux quanta numbers L.
4pM05102Hc(pj2). The vertical lines indicate
the transition points between the differentL
states as dictated by the minimum of the free en-
ergy.
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m52, and, according with our results in Fig. 6, this state
better cancels the external fieldH0(r ) over a larger distance.

The internal circulating currents in the superconducting
region around the magnetic dot give rise to a magnetization
4pM (r )5Hc„H(r )2H0(r )…. The average value of it, in a
finite region of space around the dot, can be directly probed
experimentally using a superconducting quantum interfer-
ence device. A common outcome of such experimental mea-
surements is a hysteretic behavior of the magnetization, as a
function of the externally applied magnetic field,17 indicating
that the superconducting system prefers to conserve the total
number of flux quanta trapped in it over a finite range of the
external magnetic field. Sometimes this may happen even at
the cost of overriding the condition of minimum free energy
over a finite range of the external field.11 In Fig. 7 we show
results for the total magnetization of a superconducting re-
gion spanned in a distance up to 10R, as a function of the
magnetic momentm of the dot over different flux quanta
numbersL. We notice the linear behavior of the magnetiza-
tion as a function ofm. Transitions between lines of different
L take place at certain values ofm. If the condition for
minimum energy dictates the behavior of the magnetization,
such transitions take place at the values ofm indicated by the
vertical dotted lines in Fig. 7. Under the condition of mini-
mum energy requirement, the magnetization changes revers-
ibly. The same holds over a finite interval ofm such that the
system moves along a line of fixedL. If the system, how-
ever, prefers to conserve the number of flux quanta at larger
ranges ofm, even at the cost of overriding the condition for
minimum energy imposed by Fig. 1, then a hysteretic behav-
ior of the magnetization appears. In that case, an increase of
m over an appropriate, finite interval, followed by a decrease
back to zero leaves a certain number of flux quanta locked
around the magnetic dot.

In Fig. 8 we plot n5*R
`(12F2)rdr , which is propor-

tional to the total number of normal electrons in thex-y
plane, as a function of the magnetic momentm over different
quantum numbersL. We see that, as we increase the exter-
nally applied non-uniform magnetic field~i.e., increasem!,
the superconducting region around the dot progressively de-

creases. This shows up in Fig. 8 as an increase of the number
of normal electronsn as we increasem. After a careful com-
parison with the energy diagram of Fig. 1, we note that this
increase inn always occurs forL states that are physically
realizable~i.e., have a lower free energy! at the particular
value ofm we are considering. We also notice that, at small
values ofm, L states that have the minimum normal electron
density are well separated from each other. At largerm, how-
ever, states with higherL, which according to the results in
Fig. 1 are energetically more favored, have normal electron
densities closer to each other.

V. SUMMARY AND CONCLUSIONS

As a summary, we studied the giant vortex state around a
magnetic dot embedded in a superconducting film. We found
that at low values of the magnetic momentm of the dot
vortex states with a low numberL of flux quanta associated
with them are energetically more favored and well separated
from each other in energy. At largem values, however, vor-
tex states with a largerL are now more favored, whereas,
they are quite close together in energy. We pointed out that
this may result in fluctuating physical quantities when, for
example, we drive the system with some uniform external
magnetic field. In fact, such peculiar fluctuations may be
related to the ones which have been observed in magnetiza-
tion measurements for a lattice of magnetic dots on top of a
superconducting film.10
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APPENDIX: SUPERCONVERGENT RELAXATION
TECHNIQUE

The nonlinear two point boundary problem is a compli-
cated numerical problem and cannot be handled straightfor-

FIG. 8. Number of normal electronsn as a
function of the dimensionless magnetic moment
m of the dot, which has a radiusR5j, for vari-
ous flux quanta numbersL.
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wardly. Here we present some general consideration which
allows to reduce it to a linear iterative scheme. We shall
illustrate our consideration by applying it to a first order
nonlinear differential equation set which we formally present
as

d

dx
f5H~ f !. ~A1!

Here, the symbolf stands for some vector function with
componentsf5$ f 1(x), . . . ,f n(x)%, andH( f ) is some non-
linear function of that vector. We shall also assume that
proper boundary conditions accompany Eq.~A1!. The two
point boundary conditions are given at the different points
xi .

The above equation set~A1! is rather general, as every
system of ordinary differential equations can be reduced to
an equivalent set of first order differential equations. More-
over, other equations~e.g., integral equation! can often be
presented in the form analogous to Eq.~A1!.

The main idea of the relaxation technique is the follow-
ing. Instead of solving Eq.~A1! defined on thex axis we
shall consider another equation

]

]t H ]

]x
f2H~ f !J 52H ]

]x
f2H~ f !J , ~A2!

which is defined in thext plane. Whent→` its solution
converges to the solution of our basic Eq.~A1!. For the sake
of simplicity we shall assume that the boundary conditions of
our basic problem are linear and append them to Eq.~A2!.
We like to point out, however, that in the case of nonlinear

boundary conditions they can be handled in the same way,
just replacing them by the relaxation equations analogous to
Eq. ~A2!.

Now we shall replace the time derivative in Eq.~A2! by
the approximate expression

]

]t
f'

f ~ t1h!2 f ~ t !

h
'
f ~ t11!2 f ~ t !

1
5 f n112 f n ~A3!

and

]

]t
H~ f !5

]H

] f

]

]t
f'

]H

] f
~ f n112 f n!, ~A4!

where (]H/] f ) f stands for

]H

] f
f5(

i51

n
]H

] f i
f i~x!. ~A5!

Finally, substituting expressions~A3! and ~A4! into Eq.
~A2! and restricting ourselves to linear terms in (f n112 f n)
only, we obtain the following set of equations:

d

dx
f n112Hf~ f n! f n115H~ f n!2Hf~ f n! f n , ~A6!

which is the required linear iteration scheme for our basic
problem~A1!.

Now denoting the derivatives ofF(r ) and F(r ) by
G(r )/r and C(r )r , respectively, and applying the above
considerations to Eqs.~8! and ~9!, we immediately arrive at
the iteration scheme given by Eqs.~12!.
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