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A theory for the tunneling spectroscopy of a normal-metal—insulator—anisotropic-supercon@+6y
junction is presented. In anisotropic superconductors, the effective pair potential felt by the quasiparticles
depends on their wave vectors in contrast to the case of isotsepave superconductors. By introducing the
effect into the Blonder-Tinkham-Klapwidjk formula, a conductance formula for N-I-S junctions is obtained. It
is shown that the conductance spectra are a function not only of the amplitudes of pair potentials but also of
their phases. Tunneling conductance spectra calculated for various symmetries strongly depend on the relation
between the tunneling direction and crystalline axes. In some crystalline angle regidnsavke supercon-
ductors, a zero-energy peak in the conductance spectra is calculated. This conductance peak reflects the
existence of anomalous bound states around the insulator—anisotropic-superconductor interface. The relation
between the tunneling conductance spectra and the local density of states of superconductors is discussed.

I. INTRODUCTION d,,~wave superconductors are also obtained by Green’s func-
tion method:®~8 All these results demand that we should
Tunneling spectroscopy has been accepted to be one oéstudy the tunneling spectroscopy for superconductors by
the most sensitive probes of electronic states of supercortorrectly taking account of the surface states which are origi-
ductors. Its validity has been verified and established throughated from the anisotropy of the pair potential.
many experimental and theoretical worké.However, they In this paper, we will extensively investigate the tunneling
are based on the discussion about isotr@pizave supercon- conductance spectrum of a normal-metal—insulator—
ductors and the anisotropy of pair potentialkrnspace has superconductofN-I-S) junction for spin singlet anisotropic
not been taken into account except in a few cdsés. superconductors. One of the important purposes of this paper
Nowadays, the electronic structure of high-supercon- is to clarify what kind of physical quantities the tunneling
ductors is a controversial problem. There exist growing evispectroscopy is detecting. In Sec. I, a conductance formula
dences fod-wave symmetry in the pair potential of high- for an N-I-S junction is derived. We will solve the
superconductors.® As for tunneling spectroscopy measure- Bogoliubov—de Genne&dG) equations for an anisotropic
ments, many groups have tried to clarify the gap structuresuperconductor in an N-I-S configuration. Using a two-
but their results are not yet converged. In addition to the gagomponent wave-function description in the equations, the
structure, zero-bias conductance pedkK8CP’s) are fre- reflection amplitudes for electrons injected from the normal
qguently observed, which cannot be explained in terms ofnetal to the insulator are obtained. The conductance spec-
traditional tunneling theories:! We believe that the main trum of the junction is calculated from the reflection ampli-
difficulty in this area ascribes to the lack of the theory to treatudes using the Blonder-Tinkham-Klapwidjk(BTK)
anisotropic superconductors. Koyareaal. calculated the formulal®In Sec. Ill, the physical origin of the conductance
quasiparticle transport between the normal-metaldsmcive  peaks is discussed. It is shown that the energy level giving
superconductor, although their results are restricted to a spéie conductance peak is determined by a quantum condition
cial caset? of the bound quasiparticles in a pseudoquantum well. In Sec.
Recently, H&® predicted the existence of dispersionlesslV, the tunneling conductance spectra are calculated for su-
half filled states exactly at the Fermi level on the surface of gperconductors having different symmetries. The effect of the
d,,-wave superconductdequivalent to the case when tee  difference in Fermi wave numbers of the two electrodes is
axis of ad,2_y2-wave superconductor is tilted by/4 from  also discussed. In Sec. V, the tunneling conductance spectra
the surface normal Later, we discussed the tunneling spec-are compared with the local density of staté®OS) ob-
tra of d-wave superconductors and showed the appearance tined by Green’s function method. In Sec. VI, we will sum-
ZBCP’s when thea axis of thed,2_2-wave superconductors marize our results.
are tilted from the surface norm#l.The comparison be- Throughout this paper, the pair potentials are assumed to
tween the experimental data of scanning tunneling microsbe spatially constant in superconductors, and the self-
copy (STM) and the theoretical calculation showed goodconsistency of the spatial distribution in the pair potential is
agreement® Anomalous surface states on the surface ofignored for simplicity. The temperature is fixed to 0 K. The
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Fermi wave numbers il and S are assumed to He- and Apotential
ke, respectively. The effective massis assumed to be the (a) H 8x)
same in the two electrodes. The impurity scattering in the AP OX)
system and random reflection at the interfaces are ignored.
N S
Il. CONDUCTANCE FORMULA \ -
The conductance spectrum of the N-I-S junction is calcu- 0 I X
lated from the reflection amplitudes of the electrons injected
from the normal side. There are two types of reflection pro- (b)
cesses: (i) the injected electron is reflected as a h@elled insulator
as Andreev reflection proceSs (i) the electron is reflected electron P
as an electrorfcalled as normal reflection procg¢s3o cal- = ------- ] ,-—--F§—-ELQ
culate the reflection amplitudes of the two processes, we start \$ + Y
from the BdG equation for anisotropic superconductors. Vol b5 |be) a(x)
In superconductors, the quasiparticles are expressed by . . a
two-component wave functiow(r), hole /,— \{{LQ X
s N
f(r) A ke d 2. 2-wave
W(r)= . (1) ES *y
a(r ) electron superconductor
Using f(r) andg(r) the BAG equation is written s anisotropic
normal metal superconductor
Ef(ry)=ho(ryf(ry)+ J dry Ay(rq,r2)g(ry),
2) FIG. 1. (a) Potential model of N-I-S junction used in the calcu-
lation. The insulator is described bysdunction whose amplitude is
Eg(r1)=—ho(r)g(ry)+ f dry A3 (ry,rp)f(ra). H. The pair potential is expressed Byy)©®(X) where®(X) is the

a Heaviside-step functioiib) Schematic illustration of transmission
Here, A, is a pair potentialhy(r)=—#4%V,%2m—pu+V(r), »  and reflection processes in the N-I-S junction. The wave-vector
the chemical potential(r) a Hartree potential in the N-I-S components parallel to the interface are conserved for all the pro-
system, ancE the energy measured from the Fermi energycesses. Since electronlike quasipartidEsQ) and holelike quasi-
Er. These equations reduce to the usual Sdimger equa-  particles (HLQ) have different wave vectorékfs and kgg), they
tions in the absence of the pair potential. The pair potentiagxperience different effective pair potentials. The inset shows the
used in the above equations is a function of two positiorPair potential for ady._2-wave superconductor in the caseads-

coordinates ; andr,, and can be transformed to plane tunnelingsee Sec. IV and Fig.)9
Ap(sr)=A,(rq1,r5), 3 .
(&) =4a(r1,r2) ® (90 = Ul exikesy r),
wheres=x—x" andr=(x+x")/2. In the Fourier transformed (8)
form for s,

9(71r): V(Yir)exqikFSY'r)'
Ac(k,r)zf ds exp(—iks)Ay(s,r). (4)

. o o In the framework of a quasiclassical approximation, we ob-
In the weak coupling limit, the wave vectéris fixed onthe  4in the BdG equations as

Fermi surface,

A(‘y,f)ZAc(k,r), (5) ﬁU(’)/,r) —iﬁzkp -1
where y is a unit vector, o Tm A{E=V(N}u(yr)
L. ©) —A(ynr(vn],
kI Kes ©
Thus the pair potential is transformed into the function of the ov(yr)  [ihi%Kke| "t
position and the direction of the traveling quasiparticle. Us- Y. :( F) HVIE=V(r)}v(y,r)
ing A(y,r), the BdG equations for anisotropic superconduct- ar m

ors are approximated as —A*(y,0)u(y,0)].

Ef(y.r)=ho(r)f(yr)+A(y.rg(rr),
__ * Figure Xa) shows the schematic illustration of the N-I-S
Eg(rr) ho(NglyN+A (10T (%.0). ™ junction used here. The interfaces are assumed to be per-
To avoid atomic-scale oscillation, we use two envelope funcfectly flat, and theX axis is taken to be parallel to the normal
tions, u(y,r) and v(y,r), of the interface. The barrier potential is locatedXat0, and
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assumed to have a delta-functional fo5(X). The pair w1
potential has a step function for&(y)®(X), where®(X) is W(r)=e | 4
the Heaviside step function. Suppose an electron having a

+ a(E)e”‘FNr( 2) + b(E)eikENr( (1)) ,

wave vector with angledy to the interface normal R
(—ml2<6y<wl2) and energyE is injected from the normal \Ifs(r)=c(E)e‘k;S’( 7i¢E+Q+/2E )

side. Four trajectories are possiblgia) reflected as holes, e '"vrVE-Q,/2E

(b) reflected as electrong;) transmitted to the superconduc- o F— 0O JoF

tor as electronlike quasiparticl€¢ELQ), and(d) transmitted +d(E)e—isz'(e E Q‘/ZE),

to the superconductor as holelike quasiparticlef Q). VE+Q _I2E

Since the system has a translational invariance for the direc- 12

tion parallel to the interface, the wave-vector components , . 2mE . , . 2mQ.
along these directions are conserved. All the above trajecto- |Kgy= Ken®t 2 ~Ken, |ked = Kes™—2—

ries are on the same plane, which we definéX&splane as

shown in Fig. 1b). The wave-vector components out of the ~Kes,
plane for all the trajectories become zero. As a result, the
three-dimensional motion reduces to the two-dimensional Q. =E—|A.2

one. Since the ELQ and HLQ have different wave vectors

(kis and —kgs, respectively, they feel different effective The ratio of Fermi wave numbex, is defined by

pair potentialsA, andA_, respectively,

+ . k

AL=A(*kidkeg =|A|explie-), (10 )\OEk—FS.
FN

whereg, and¢_ are the phases of the effective pair poten- . S .

tials. The reflection coefficients are obtained by solving theThe momentum conservation law ft direction is written

(13

BdG equation, Eq(9), under the boundary condition, as
W(r)|x=0+=Pn(r)|x=0- KesSinds= Kppsingy (14
11
d¥g(r) dWy(r) 2mH {0 where —7/2<6s<w/2. When \y<<1, total reflection takes
dx T dx Y Ws(r)]x=0+ place at the N-I interface fdmy|>sin"* \,. Coefficients of
X=0+ X=0- the Andreev reflection proces§E) and the normal reflec-
where tion process(E) for a given gy are expressed as

INT , exp(—igy)

B = T N7 a2 (1 N2 48T T explie o))’
. . . (15
b(E) = —(1-N\2-4i2—-4Z%{1-T . I'_explio_—ip,)}
( )_(1+x)2+422—{(1—>\)2+422}r+r, explio_—i@,)’
[
where ) 1+ oy T 4[24 (oy—1)|T,T_|?
oSBT G DT T explie —Te )P
E-Q. CoYg Zo 17
.= A.] MN=Nocowy' 4T cosy’
- N N where
2 _ mH a\
° h ke INT (1N az (18

According to the BTK formula, the conductance of the Here, oy is the conductance for an N-I-N junction in the
junction o5(E) is calculated from the probability amplitudes same geometrical configuration and indicates the probability

of the two processe's, distribution of tunneling electrons ik space. Equatiofl7)
reduces to the BTK formula by settidg. =I"_ and¢,=¢_.
os(E)=1+|a(E)|>—|b(E)|2. (16)  Since Eq(17) is not symmetric with respect to the exchange

of the suffix + and —, the conductance spectog(E) is not
This formulation is a revised version of the Landauer-symmetric for injection anglegy and —6y .
type formulation of conductance for an N-S structtfé? We define two types of conductance spectra for conve-
Using this relation, the conductaneg(E) for a givenéy is  nience. The normalized conductance spectii(E) is de-
written as fined for a fixedéy,
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_osB) _ 1+opl P+ (oy—DIT. T2

on |1+ (on—DT. T explio_—ig,)|*
(19

oR(

)

N

Although ox(E) is a function ofE, oy, A, , andA_, it can
also be regarded as a functionBfand 6 in a given junc-
tion configuration, i.e., for give#Zy, \y, and the pair poten-
tial form of the superconductor. In a real N-I-S junction con-
figuration, total tunneling conductance spectrum(E)
includes the integration over the solid angle,

o

Normalized conductance og(E)
n

£y Jdo og(E)cosy  [dw oncosyor(E)
or(B)= fdw oncosy  [dw oncOSy

(20 "2 3
Here, y is the angle between andX axis, and the integra- Normalized energy  £/4,

tion is performed over the Fermi surfa@®alf-spherg In the
case of two dimension, it reduces to the integration over the FIG. 2. Calculatedog(E) for Z=0, 1.5, and 5 when(a)

injection angledy, A,=A_=A; and (b) A,=—A_=A,. As Z becomes larger, peak
structures are enhanced. The peak existAgin (a) and at zero
™2 d6y os(E)cosy energy in(b).
or(E)= ™2 ,d6y oncosd
—m20ON INEESUN From the condition that the numerator of E@3) di-
fﬁ’ﬁmd Oy oNCOHNTR(E) verges for large, the equation giving the peak energy level
= . (21 E is written as

72
J 206N onCOoy

Note thator(E) can be regarded as the expectation value of F+F,|E:Ep=exp(| P+ i), (24)

or(E) with the probability distribution ofrycosty . Under this condition, the conductaneg(E=E,)=2 inde-

It is important to note that the tunneling conductancependent ofz value, that is, the tunneling probability is not
spectrum depends not only on the amplitudes but also on thgfluenced by the barrier height &=E, just like the reso-
phases of pair potentials. The effect of the phase has longance tunneling proce$$?*Then, the peak heightr(E) at
been overlooked, because most theories are based on isotf9= E,is 2(1+2?) which diverges in the limit of large barrier

pic s-wave superconductors. height. In this limit, we can estimaterz(E)—0 when
E<min{lA,|, |A_[} and E#E,, and or(E)—1 when
Ill. PEAK IN CONDUCTANCE SPECTRA E>|A.| andES|A_|.

) ) Next, we discuss the physical meaning of E2f}) using a
In this section, the conductance speagE) are calcu-  gjmple model. Suppose a one-dimensional superconductor—
lated by settingA,, A_, and Z valuesa priori, and the  ,4rma|-metal—superconductt8-N-S structure in which the
physmal origin of the peak in thg conductance spectra I$air potentials of superconductors are=|A ., lexpli ¢, ) and
discussed. Throughout this section, we asswkpg=Kes A —|A |expli¢_), respectively. The width of the normal re-
(Ao=1), whereoy and ogr(E) are written as gion is assumed to bel,. The quasiparticles in the
pseudoquantum wellnormal region are confined if their
(22) energies are less than the amplitudes of both pair potentials
(E<min{|A.]|, |A_[}).?*7?° The bound quasiparticles travels
along a closed path by repeating the Andreev reflections at
(1+Z5{1+|T )2+ Z2%(1—|T . T_|*}} S-N interfaces. The Andreev reflection accompanies energy
or(E)= T Z41-T.T_ exie el (23 dependent phase shift through the reflection process. By
summing up the phase shift along one round of the closed
path, we obtain a quantum condition of the phase for the
bound quasiparticle®;*®

1
N7

Figures 2 showsrg(E) when(a) A,=A_=A; and (b)
A =—A_=A, for variousZ values. In both casesig(E)
equals 2 forE<|A,| whenZ=0, which means that the An- T3 7 =2
dreev reflection takes place with the probability amplitude 1. _ arctar( M) _ arctarﬁ M) — g+ 20y
With the increment o, the peak structures emerge. For the E E
case(a), or(E) has energy gap structure whose shape is —2jm (25)
similar to the BCS density of statd®OS) having a sharp ’
peak atA, and clear gap below,. However, in the cas), Here, 4=, —¢_, on=md,E/(A%kgy), andj is an integer.
when the signs oA, andA_ are opposite, a peak appears atThis condition is the generalization of that for de Gennes—
zero-energy level. It becomes sharper and higher with inSaint James bound statéd! and reduces to Eqb) of Table
crease ofZ, and diverges in the larg& limit. The latter | in Ref. 15 by settindA,|=|A_|. Whengy=, Eq. (25) is
spectra are completely different from what we expect forsatisfied byE =0 independent oér (midgap states'® When
superconductors based on conventional tunneling theory. the normal region thickness is zerd,& ¢y=0), Eg. (25
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© bound states b 0
N
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FIG. 3. Quasiparticle trajectory around I-S interface. The in- g
jected quasiparticle from the bulk is elastically reflected at the in- Z 2 © T
sulator. Accordingly, the effective pair potential felt by the quasi- L
particle changes. The bound states are formed at the node of pair :
potentials. 0 1 > : 3

Normalized energy ElA,

becomes equivalent to Eq24). Based on these consider-
ations, the physical origin of the conductance peak is inter- £ 5 Normalized conductance spectra(E) as a function of
preted as follows. The quasiparticles injected from the bulk, in the case ofA;|=|A)=A; (@ ¢g=0, (b) gg=12, (C) ¢g=,
of the supercpnductor to the I-S .|nter.face are elast|ca_1IIy r€and(d) py=3m/2. The peak energy levels clearly correspond to the
flected at the interface. The quasiparticles change their wavgound states shown in Fig. 4. For the casepgt, the bound
vectors through the reflections fromkeg to kfs (Fig. 3. states move beneath the Fermi level, then the peak structures in the
Accordingly, the effective pair potential felt by them also spectra disappear.
changes from\(—kr9=A_ to A(kfg9=A, at the insulator.
The interface can be regarded as the node of pair potentiinction of ¢4, when the amplitudes of the two pair potentials
for the quasiparticles, and the bound states are formed at thge different(2|A |=|A_|=A,). Since the energy level of the
node whose energy level is given by Eg4). The tunneling  phound states must satisfig,<min{|A, |, [A_[}, they exist
electrons fromN to S flow via the bound states just like the only when 7/3<¢@u<5m/3. Figure 7 shows the normalized
resonant tunneling process. Thus the conductance peak dgnductance spectesy(E) corresponding to the lines in Fig.
formed at the energy levels of the bound states. 6. It is important to note that, whep,=, the bound states

Next we discuss the dependencese{E) and the bound exist at zero-energy level independently from of the ampli-
state level E;) as a function of the phase differenag  tude of pair potentials reflecting the existence of midgap
(0<¢q<2m). Figure 4 shows the dependencef on ¢q stated:3
when|A,[=|A_[=A,. In the case ofp3=0, the bound states  The above bound states converge to the surface states in
are formed afy. As ¢y increases toward, the bound state  the large barrier-height limit. As will be verified in Sec. V,
level becomes lower toward 0. Whepy exceedsw, the  the surface states differ from the bulk states except when
bound state level moves beneath the Fermi level, and doe§, =A . Now, the physical origin of surface states is clear.
not contribute to the current flow. Figure 5 shows the nor-n anisotropic superconductors, different pair potentials are
malized conductance spectra(E) corresponding to the folded ink space. The quasiparticles change their wave vec-
phase differencéa)—(d) in Fig. 4 whenZ=5. The spectrum tors at the surface. Accordingly the effective pair potential
4(a) has the form of BCS DOS. Agy becomes larger felt by the quasiparticles also change at there. Then the
[curves 4b) and 4c)], the peak position moves toward the hound states are formed between the two different pair po-
zero energy. Then, the peak disappears whgexceedsm  tentials, that is, the effective pair potentials before and after
[curves 4d)]. Figure 6 shows the bound state levels as ane reflection. Of course, equivalent effects are expected to

[
3 ] g : ]
Wl ; iy : :
s | : s | a
3 of , y s OfF , .
L 5 : R :
g : ' ® : !
2 L f LY : : :
g I (a) g ;(a) (b) (c) E(d)
o ) | H ' . ) ¢
B | = S i 0 Q -4 : | : =
©7'% 1 > @9 1 >

Phase difference [normalized by ] Phase difference {normalized by

FIG. 4. Dependence of the bound state levelgiin the case of FIG. 6. Dependence of bound state levels¢gnin the case of
|A4|=]A,/=Aq. When g4=, the bound states are formed just at 2JA_|=|A_|=A,. The bound states exist only wheti3< ¢y<57/3.
zero-energy levelmidgap states In the cases opy=0 and 27, the ~ When ¢y=, the bound states are formed just at zero-energy level
bound states exist atA,. As for lines(a)—(d), see text and Fig. 5. (midgap states As for lines(a)—(d), see text and Fig. 7.
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1
NS
B
i

Conductance

% E > 3

Normalized energy  E/max]A(k)|

Normalized conductance oRr(E)

L | FIG. 8. Conductance spectsag(E) of c-axis tunneling for vari-
% 0 5 3 ous symmetries(a) s wave yvith Aj=Ag; (b) dy2_y2 wave with
Normalized energy EA A;=Ay; (c) extends wave with A;=0.7A; and A,=0.3Ag; (d) s
0 +idy2_y2 wave withA;=0.7A; and A,=0.3A,.

FIG. 7. Normalized conductance specirg E) as a function of
¢q in the case oflAL|=2/A_|=Aq; (@ @4=0, (b) eq=/2, (C)
¢q=m, and(d) ¢4=37/2. Appearance of the peak mg(E) coin-
cides with that of the bound states as shown in Fig. 6.

plane(ab-plane tunnelingof the superconductors as shown
in the inset of Fig. (b). In this case, the integration is done
in the two-dimensional Fermi surface for simplicity. Since
A, =A_is not generally satisfied, various typesmf(E) are
expected. Especially, the spectra depend strongly atich

1§ the angle betweea axis and the interface normét =/2
<a<mf2). Ford,z_,2-wave superconductors with gively ,

A, =A;cos 205—a) andA_=A;cos - 65—a). If ais zero

IV. CONDUCTANCE SPECTRA or m, A_=A, applies for allg . Otherwise, the signs af |
FOR VARIOUS SYMMETRIES andA_ are opposite for somé, region. Whena==/4, their

i signs are opposite for all . In such cases, the zero-energy
The total tunneling conductance specwg(E) of an  heak appears io((E). Figure 9 shows the calculated-(E)
N-I-S junction include the integration over the injection ¢ d,2_.2-wave superconductors when=0, /8, m/4. The
angle. In this sectiong(E) is actually calculated for vari- zero-enyergy peak is clearly reproduced. The inset of Fig. 9
ous symmetries in real junction configurations. In view of shows the dependence of zero-energy peak heiglat dine
high-T, superconductors, we restrict ourselves to tWO'peak height is enhanced asvaries form 0, and has a maxi-
dimensional symmetric superconductors. In such case, them ata=+=/4. The peak height reflects the amoun®gf
e_ffective pair potent_ial is a function d&f, andk, , wherek; where the signs oA, andA_ are opposite, in the integral
(i=x,y andz) is thei component of the wave vectér The  reqion + /2. The spectra fod,,-wave symmetry are calcu-
functional _ lated by simply addingw/4 to a. For the extended-wave
form used here is wave {A(k)=Ay}, d,2—,2 wave 1AKK)  gyperconductorsr.(E) drastically changes whethé>A,
=A;c08%,}, extended s wave {A(K)=A;+AxC084%.},  or not. Figure 10 shows the spectra whign>A, andA; <A,
and s+id,>_ > wave {A(k)=A;+iA,cosZ,}. Here, 6, IS \ith o=m/8. Only in the latter case, the pair potential

the angle betweer axis and the vectork k,,0). There is  changes its sign ik space. As the result, the zero-energy
nothing to say that the calculation is naturally extended tqyeak™ appears only in the latter case. For the

gen(_aral t_h(ee-dlmen5|onal supercor_1ductors. Throughout t_h§+idxz,yz-wave superconductors, since A=A,
section, it is assumed that the barrier has the delta-function
form (Z,=5). Although the effect of Fermi-wave number dif-
ference in the two electrodes is discussed in the latter part of
this section\y=1 is assumed unless described explicitly.
Suppose that the tunneling direction is parallel to the
axis of the crystalc-axis tunneling. Since the wave-vector

occur in various situations, such as, around the non-magnet
impurities and inside the vortex corés.

or(E)

components parallel to the interface are conserdeds A _ §

is satisfied independent of injection angle for all the symme- g

tries mentioned above. Theang(E) for a fixed 6y has the 3

form similar to the BCS DOS as shown in Figab In this 5

case, we can easily understand thq{E) converges to the ©

bulk DOS in the limit of large barrier heighiZ ,—). Figure

8 shows the calculated+(E) of the c-axis tunneling for Normalized energy El4,

various symmetries. The gap structuredin(E) ascribes to

the distribution of the superconducting gagkispace. In the FIG. 9. Conductance spectea(E) for thed,_,> wave super-
case of d,2_,2>-wave superconductors, the well-known conductor in the case d&) a=0, (b) #/8, and(c) m/4. The inset
V-shaped gap structure is obtained. shows the dependence of zero-bias peak heightrofihe peak

Next, we assume that the tunneling direction is indlie  height has maximum at==7/4.
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T T T .
On=sin-1(hy)
oy . 1 (a)
a0 s N O S
° -
o
o
g2 8
3
g (b) normal metal superconductor
)
£ L N 1
% 1 2 3 (b) /2 Bg=sin"1(1/Ag)

Normalized energy  F/(A+45)

A A
FIG. 10. Conductance spectea(E) for the extendeds-wave , ‘v
superconductor in the case af=/8. The pair potentials aré)
A;=0.7A5 and A,=0.3A, and(b) A;=0.33; and A,=0.7A,. The
inset shows the dependence of zero-bias peak height on

normal metal superconductor

+r:A2CO§.?f@S_a)’ band A’zhAl—HAZCQS 2_05_.0;)’. the FIG. 12. Schematic illustration of the Fermi surface in both
phase dilierence between the two pair potentials Is not Ialectrodes. To conserve the wave vector component parallel to the

stricted to a multiple ofr. Thus the_peak position moves interface, the effective Fermi surface is restricted to shaded region
between 0 and m{fA.[|A_[} depending on the relation of it (3 Ay<1 and(b) Ag>1.

A,, A_ and « Figure 11 shows o(E) for the

+i - ith= . i o .
s+id,z_y2-wave superconductors wiiti=/4. In this case, fhe distribution of tunneling electrons come to concentrate

the peaks exist at the energy levels corresponding to the a on the region that satisfieg<sin 1(1/\,). The total tunnel-

plitude of s-wave components. ing conductance spectrum(E) is influenced by\y mainly
i i i 0
Finally, we discuss the effect of the Fermi-wave numberthrough the dependence af, on 6, . Figure 13 shows+(E)

difference in the two electrodes. As stated previously, th r the ab-plane tunneling of thel -wave superconduc-
wave vector component parallel to the interface is conserve%j : P 9 x2—y2 I P .
or with «=0. Clearly, the effect of Fermi-wave number dif-

through the tunneling process. As a result, the effec:“V(?erence is serious only in caseXxf>1. As\q increases from

Fermi surface contributing to the electron transfer friinto 1, the directionality of tunneling probability becomes promi-
S is restricted?? Figure 12 shows the schematic illustration Y g p Y P
ent and the gap structure o (E) comes to have a flat

of the Fermi surface of the two electrodes and the shade ottom
regions correspond to the effective Fermi surface. The distri- :
bution of tunneling electron probabilityexpressed by distri-

bution of o) is finite only in the shaded region. The inset in V. TUNNELING SPECTRA AND LOCAL DENSITY

Fig. 13 shows the dependen(_:eotn‘ on 6 for variousig. In OF STATES
the case of\y<1, total reflection(oy=0) occurs at the N-I|
interface when the injection angle is larger than $in,). The tunneling conductance spectrum has long been re-

However, this component has no serious effect on the depemgarded to reflect the bulk DOS of the superconductors. In the
dence ofoy and 6. On the contrary, wheiR,>1, the depen- previous section, we have shown the existence of bound
dence ofoy on 65 is seriously affected by the value . As  states at the I-S interface of the anisotropic superconductors.
Ao increases from 1, the directionality is enhanced. That is|t is revealed that the tunneling spectroscopy is seriously
affected by the bound states, and unable to observe the bulk
states. At this stage, there arises another question what kind

m
~ 4_ .
&
[ ] g, ]
g | 3
3 2 1 i ]
3 [ 8
3 ; g o |
St i - g
mm I " 1 . e
% i 2 3 S () g
. o F - 4
Normalized energy £/[A,2+A,2 </ {© | ‘ . ‘
% 1 > 3
Normalized energy ElA,

FIG. 11. Conductance specteg(E) for the s+id,2_,2 wave
superconductor in the case af=m/4. The pair potentials aré)
A;=0.7A, and A,=0.3A, and(b) A;=0.33; and A,=0.7A,. The FIG. 13. Conductance specia(E) for d2_,> wave supercon-
peaks exist at the energy levels corresponding to the amplitudes afuctors witha=0; (a) \y=0.5, (b) \g=1, and(c) \y=2. The inset
s-wave components. shows the dependence @f; on 6.
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LDOS  p(E, X)

LDOS  py(E)

Normalized energy E/A,

FIG. 14. Local density of states of a N-I-S junction of the
d,2_,2 wave superconductor with ab-plane tunneling configura- Normalized energy EA
tion (a=ml4, Zy=5): (8) X=0, (b) X=0.6&,, and (c) X=2&,. The 0
inset shows the spatial dependence of zero-bias leffe+0, X).

The zero-energy states decay into the bulk with length sgale FIG. 15. Dependence @4(E) onZ when(a) A, =A_=Aq, and

(b) A,=—A_=Aq. The values oZ are set to 0, 1.5, and 5. A%

. . . . . becomes larger, the peak structures are enhanced.
of physical quantity the tunneling spectroscopy is detecting.

To clarify it, we compare the conductance spectra with the s 5

LDOS in the N-I-S junction configuration, and discuss the po(E) = 1-(on—1) |F+.F—| _ _

relation lying between those two physical quantities. 0 |1+ (on—1D)T,T_ explio_—ig,)|?
The normalized LDOS(E,X) of S side of the N-I-S

junction [shown in Fig. 1a8)] is calculated by Green’s func- Figure 15 shows the dependence gfE) on Z when (a)

tion method. The insulator is assumed to have a deltaA,=A_=A; and (bh) A,=—A_=A,. When Z=0, py(E)

function potential form andy=1. In the case of two dimen- shows a flat metallic behavior, which is completely different

(29

sion, LDOS is given b{f from that of ox(E) as shown in Fig. 2. However, & be-
comes larger, the peak structures gradually grow and their

1 (=2 forms become similar to those o&(E). The equation giving
pr(E,X)= p f /2d 0s p(E,X), X=>0, (26)  the energy level of the peaks in LDOS is obtained from the

denominator ofpy(E) which is equivalent to Eq(23). This

fact indicates that LDOS also has peaks at the energy level of
where the bound statesH),). To see clearly the difference between
po(E) and or(E), the dependence @fz(E) —po(E) on Z is

E 2iX shown in Fig. 16. WheiZ is small (=0), the discrepancy is
P(E'X):R%zgh 1+F, exp(z)] evident. However, ag becomes larger, the difference be-
comes smaller except aroul=E,. This behavior is simi-
2iX lar to that of Andreev reflection amplitudga(E)|? in Eq.
toq | 1TF- ex ik (27 (15). In fact, we obtain a relation foE<|A |,

:|At| (=o' explie_—ip,)—T 3 ' ' l
T E 1+(on—-DILT_ expio_—ig,)’

_ 1h%kescOShg
=T mQL

(28)

By comparing Eq(26) with Eq. (19), pr(E,X) is regarded as
the expectation value qi(E,X) with the probability distri-
bution 1. Figure 14 shows the calculaiedE, X) for various
X for the dy2_y2-wave superconductd@b-plane tunneling
configuration with a=w/4. The peak at zero-energy level
originates from the bound states at the I-S interface as dis-
cussed in the previous section. The inset shows the spatial Normalized energy Eldy
dependence of zero-bias peak heightg(E=0X)]. It is
easy to understand that the bound states are localized aroundF|G. 16. Difference of LDOS and conductance spectra,
the I-S interface, and they decay into the bulk with a lengthy;(E) — po(E), as a function oz when(a) A, =A_=A,, and(b)
scale of coherent lengtiy[=7i’keg/(MA 1)]. A,=—A_=A;. The values ofZ are set to 0, 1.5, and 5. A
We concentrate on LDOS at the I-S interface becomes larger, the difference becomes smaller exceft=d,
po(E)[=p(E,X=0+)] which is expressed as where the difference is always(1:|a(Ep)|2; see text




53 THEORY FOR TUNNELING SPECTROSCOPY OF ANISOTR@PI. . 2675

or(E)—po(E)=|a(E)|? converges to LDOS at the surface weighted by tunneling
) probability distributionoycosgy . Of course, fors-wave su-
_ onll 4 [? perconductors, the effect afy is negligible and thewr(E)
|1+ (on—DT T _ explio_—ig,)|? converges to the usual BCS DOS.

At this stage, we can analyze the experimental data based
(E<|A_]). (30)  on Eq.(33). The most serious difficulty lies in the point how
to estimateoy corresponding to the real experimental situa-
tion. By replacingE with E+il" in Egs.(27) and (28), we
can introduce a possible lifetime broadening effécthe
finite value ofl" is sometimes convenient to avoid unphysical
divergence of the peak.

The peak heights of the two functions aréZ2+1) for
or(Ep) and Z2+1 for po(Ep). The difference is just 1
(=|a(Ep)|2) independent of the barrier height.

In the limit of large barrier heighfp,(E) converges to the
surface DOS of isolated superconducta(E),

ps(E)= lim pg(E) VI. SUMMARY
on—0
N In this paper the features and physics of tunneling con-
A, A_|2—|(E-Q,)(E-Q_)|? ductance spectra are extensively investigated. The most im-
- [ALA_[—(E-Q.)(E-Q _)explig_—i¢.)|? portant result is that the conductance spectra are sensitive not

only to the amplitude but to the phase of pair potential. In the
31 case ofd,2_,2-wave superconductors, the zero-energy con-
y
The ps(E) is equal to the BCS DOS wheh,=A_. This  ductance peaks are calculated in addition to Wehaped

fact indicates that the surface DOS agrees with that of th@ap structure. The physical origin of conductance peaks in
bulk only if A,=A_ is satisfied for allfs. In the limit of  the spectra is understood in terms of a quantized energy level

large barrier height, we can easily verify formed between two different pair potentials. By comparing
the conductance spectra with LDOS, we obtain an approxi-
lim or(E)=ps(E). (32 mated equation that the conductance spectra converge to the
oN—0 LDOS weighted by a tunneling probability distribution in the

Apparently, Eq.(32) implies that, in this limit, the normal- large barrier-height limit. . . .

ized conductance spectrum is sensitive to the surface DOS The ZBCP’s are widely observed in the tunneling experi-

and insensitive to the depth profile inside the bulk of thements of hight. superconductors. We have investigated

superconductor. The information about the depth profile igheir origin in terms of thed-wave symmetry of the pair

indirectly reflected on the conductance spectra through theotential:> Further detailed comparison between the theory

change of the surface DOS. and experiments will elucidate important information about
Finally, based on the above discussion, we obtain an aghe electronic structures of high: superconductors.

proximated relation of the total tunneling conductance spec- Through the study of the tunneling spectroscopy, it is
trum O-T( E) When the junction has Sufﬁcienﬂy |arge barrier shown that the anomalous bound states exist at the I-S inter-

height (low conductancer,~0), from Egs.(21) and(32), faces of anisotropic superconductors. The existence of bound
states seriously affect the electrical properties of Josephson
J™2,d6y oncoHnps(E) junctions. This effect is investigated elsewh&tdrecently,
or(E)~ [77 A0y oncody (33)  the possibility of breaking time-reversal symmetry at the sur-

face ofd,2_y2-wave superconductors is suggested Intro-
Although ps(E) is given as a function obs, the relation  duction of this effect into the calculation will strongly affect
betweends and 6y is explicitly given by Eq(14). In most of  the conductance spectra, which will be carried out in the near
the experimental situation, we implicitly assurmg~0, and  future.
the conductance spectrum of teavave superconductor is
assumed to coincide with the BCS DOS. Since the same
assumption is used in the approximation of E§3), this
equation is applicable to most of the tunneling experiments. One of the authoréY.T.) was supported by a Grant-in-Aid
It is important to note that Eq.33) is consistent with our for Scientific Research in Priority Areas, “Quantum Coher-
intuition based on “Golden rule,” that is, in the large barrier- ent Electronics, Physics and Technology,” from the Ministry
height limit, the total tunneling conductance spectraH(E) of Education, Science and Culture of Japan.
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