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A theory for the tunneling spectroscopy of a normal-metal–insulator–anisotropic-superconductor~N-I-S!
junction is presented. In anisotropic superconductors, the effective pair potential felt by the quasiparticles
depends on their wave vectors in contrast to the case of isotropics-wave superconductors. By introducing the
effect into the Blonder-Tinkham-Klapwidjk formula, a conductance formula for N-I-S junctions is obtained. It
is shown that the conductance spectra are a function not only of the amplitudes of pair potentials but also of
their phases. Tunneling conductance spectra calculated for various symmetries strongly depend on the relation
between the tunneling direction and crystalline axes. In some crystalline angle regions ofd-wave supercon-
ductors, a zero-energy peak in the conductance spectra is calculated. This conductance peak reflects the
existence of anomalous bound states around the insulator–anisotropic-superconductor interface. The relation
between the tunneling conductance spectra and the local density of states of superconductors is discussed.

I. INTRODUCTION

Tunneling spectroscopy has been accepted to be one of
the most sensitive probes of electronic states of supercon-
ductors. Its validity has been verified and established through
many experimental and theoretical works.1–2 However, they
are based on the discussion about isotropics-wave supercon-
ductors and the anisotropy of pair potential ink space has
not been taken into account except in a few cases.3–4

Nowadays, the electronic structure of high-Tc supercon-
ductors is a controversial problem. There exist growing evi-
dences ford-wave symmetry in the pair potential of high-Tc
superconductors.5–8 As for tunneling spectroscopy measure-
ments, many groups have tried to clarify the gap structure,
but their results are not yet converged. In addition to the gap
structure, zero-bias conductance peaks~ZBCP’s! are fre-
quently observed, which cannot be explained in terms of
traditional tunneling theories.9–11 We believe that the main
difficulty in this area ascribes to the lack of the theory to treat
anisotropic superconductors. Koyamaet al. calculated the
quasiparticle transport between the normal-metal andd-wave
superconductor, although their results are restricted to a spe-
cial case.12

Recently, Hu13 predicted the existence of dispersionless
half filled states exactly at the Fermi level on the surface of a
dxy-wave superconductor~equivalent to the case when thea
axis of adx22y2-wave superconductor is tilted byp/4 from
the surface normal!. Later, we discussed the tunneling spec-
tra ofd-wave superconductors and showed the appearance of
ZBCP’s when thea axis of thedx22y2-wave superconductors
are tilted from the surface normal.14 The comparison be-
tween the experimental data of scanning tunneling micros-
copy ~STM! and the theoretical calculation showed good
agreement.15 Anomalous surface states on the surface of

dxy-wave superconductors are also obtained by Green’s func-
tion method.16–18 All these results demand that we should
restudy the tunneling spectroscopy for superconductors by
correctly taking account of the surface states which are origi-
nated from the anisotropy of the pair potential.

In this paper, we will extensively investigate the tunneling
conductance spectrum of a normal-metal–insulator–
superconductor~N-I-S! junction for spin singlet anisotropic
superconductors. One of the important purposes of this paper
is to clarify what kind of physical quantities the tunneling
spectroscopy is detecting. In Sec. II, a conductance formula
for an N-I-S junction is derived. We will solve the
Bogoliubov–de Gennes~BdG! equations for an anisotropic
superconductor in an N-I-S configuration. Using a two-
component wave-function description in the equations, the
reflection amplitudes for electrons injected from the normal
metal to the insulator are obtained. The conductance spec-
trum of the junction is calculated from the reflection ampli-
tudes using the Blonder-Tinkham-Klapwidjk~BTK!
formula.19 In Sec. III, the physical origin of the conductance
peaks is discussed. It is shown that the energy level giving
the conductance peak is determined by a quantum condition
of the bound quasiparticles in a pseudoquantum well. In Sec.
IV, the tunneling conductance spectra are calculated for su-
perconductors having different symmetries. The effect of the
difference in Fermi wave numbers of the two electrodes is
also discussed. In Sec. V, the tunneling conductance spectra
are compared with the local density of states~LDOS! ob-
tained by Green’s function method. In Sec. VI, we will sum-
marize our results.

Throughout this paper, the pair potentials are assumed to
be spatially constant in superconductors, and the self-
consistency of the spatial distribution in the pair potential is
ignored for simplicity. The temperature is fixed to 0 K. The
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Fermi wave numbers inN andS are assumed to bekFN and
kFS, respectively. The effective massm is assumed to be the
same in the two electrodes. The impurity scattering in the
system and random reflection at the interfaces are ignored.

II. CONDUCTANCE FORMULA

The conductance spectrum of the N-I-S junction is calcu-
lated from the reflection amplitudes of the electrons injected
from the normal side. There are two types of reflection pro-
cesses: ~i! the injected electron is reflected as a hole~called
as Andreev reflection process20!; ~ii ! the electron is reflected
as an electron~called as normal reflection process!. To cal-
culate the reflection amplitudes of the two processes, we start
from the BdG equation for anisotropic superconductors.

In superconductors, the quasiparticles are expressed by
two-component wave functionC~r !,

C~r !5F f ~r !g~r !G . ~1!

Using f ~r ! andg~r ! the BdG equation is written as4

Ef~r1!5h0~r1! f ~r1!1E dr2 Da~r1 ,r2!g~r2!,

~2!

Eg~r1!52h0~r1!g~r1!1E dr2 Da* ~r1 ,r2! f ~r2!.

Here,Da is a pair potential,h0~r !52\2¹r
2/2m2m1V~r !, m

the chemical potential,V~r ! a Hartree potential in the N-I-S
system, andE the energy measured from the Fermi energy
EF . These equations reduce to the usual Schro¨dinger equa-
tions in the absence of the pair potential. The pair potential
used in the above equations is a function of two position
coordinatesr1 and r2, and can be transformed to

Db~s,r !5Da~r1 ,r2!, ~3!

wheres5x2x8 and r5~x1x8!/2. In the Fourier transformed
form for s,

Dc~k,r !5E ds exp~2 iks!Db~s,r !. ~4!

In the weak coupling limit, the wave vectork is fixed on the
Fermi surface,

D~g,r !5Dc~k,r !, ~5!

whereg is a unit vector,

g5
k

uku
5

k

kFS
. ~6!

Thus the pair potential is transformed into the function of the
position and the direction of the traveling quasiparticle. Us-
ing D~g,r !, the BdG equations for anisotropic superconduct-
ors are approximated as

Ef~g,r !5h0~r ! f ~g,r !1D~g,r !g~g,r !,

Eg~g,r !52h0~r !g~g,r !1D* ~g,r ! f ~g,r !. ~7!

To avoid atomic-scale oscillation, we use two envelope func-
tions,u~g,r ! andn~g,r !,

f ~g,r !5u~g,r !exp~ ikFSg–r !,
~8!

g~g,r !5n~g,r !exp~ ikFSg–r !.

In the framework of a quasiclassical approximation, we ob-
tain the BdG equations as

]u~g,r !

]r
5S 2 i\2kF

m D 21

g@$E2V~r !%u~g,r !

2D~g,r !n~g,r !#,
~9!

]n~g,r !

]r
5S i\2kF

m D 21

g@$E2V~r !%n~g,r !

2D* ~g,r !u~g,r !#.

Figure 1~a! shows the schematic illustration of the N-I-S
junction used here. The interfaces are assumed to be per-
fectly flat, and theX axis is taken to be parallel to the normal
of the interface. The barrier potential is located atX50, and

FIG. 1. ~a! Potential model of N-I-S junction used in the calcu-
lation. The insulator is described by ad function whose amplitude is
H. The pair potential is expressed byD~g!Q(X) whereQ(X) is the
a Heaviside-step function.~b! Schematic illustration of transmission
and reflection processes in the N-I-S junction. The wave-vector
components parallel to the interface are conserved for all the pro-
cesses. Since electronlike quasiparticles~ELQ! and holelike quasi-
particles ~HLQ! have different wave vectors~kFS

1 and kFS
2 !, they

experience different effective pair potentials. The inset shows the
pair potential for adx22y2-wave superconductor in the case ofab-
plane tunneling~see Sec. IV and Fig. 9!.
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assumed to have a delta-functional formHd(X). The pair
potential has a step function formD~g!Q(X), whereQ(X) is
the Heaviside step function. Suppose an electron having a
wave vector with angleuN to the interface normal
~2p/2,uN,p/2! and energyE is injected from the normal
side. Four trajectories are possible:~a! reflected as holes,
~b! reflected as electrons,~c! transmitted to the superconduc-
tor as electronlike quasiparticles~ELQ!, and~d! transmitted
to the superconductor as holelike quasiparticles~HLQ!.
Since the system has a translational invariance for the direc-
tion parallel to the interface, the wave-vector components
along these directions are conserved. All the above trajecto-
ries are on the same plane, which we define asXY plane as
shown in Fig. 1~b!. The wave-vector components out of the
plane for all the trajectories become zero. As a result, the
three-dimensional motion reduces to the two-dimensional
one. Since the ELQ and HLQ have different wave vectors
~kFS

1 and 2kFS
2 , respectively!, they feel different effective

pair potentialsD1 andD2 , respectively,

D6[D~6kFS
6 /kFS!5uD6uexp~ iw6!, ~10!

wherew1 andw2 are the phases of the effective pair poten-
tials. The reflection coefficients are obtained by solving the
BdG equation, Eq.~9!, under the boundary condition,

CS~r !uX5015CN~r !uX502

~11!
dCS~r !

dx U
X501

2
dCN~r !

dx U
X502

5
2mH

\2 CS~r !uX501 ,

where

CN~r !5eikFN
1 r S 10D1a~E!eikFN

2 r S 01D1b~E!e2 ikFN
1 r S 10D ,

CS~r !5c~E!eikFS
1 r S AE1V1/2E

e2 iw1AE2V1/2E
D

1d~E!e2 ikFS
2 r S eiw2AE2V2/2E

AE1V2/2E
D ,

~12!

ukFN
6 u5AkFN

2 6
2mE

\2 'kFN, ukFS
6 u5AkFS

2 6
2mV6

\2

'kFS,

V65AE22uD6u2.

The ratio of Fermi wave numberl0 is defined by

l0[
kFS
kFN

. ~13!

The momentum conservation law forY direction is written
as

kFSsinuS5kFNsinuN , ~14!

where 2p/2,uS,p/2. When l0,1, total reflection takes
place at the N-I interface foruuNu.sin21 l0. Coefficients of
the Andreev reflection processa(E) and the normal reflec-
tion processb(E) for a givenuN are expressed as

a~E!5
4lG1 exp~2 iw1!

~11l!214Z22$~12l!214Z2%G1G2 exp~ iw22 iw1!
,

~15!

b~E!5
2~12l224iZ24Z2!$12G1G2 exp~ iw22 iw1!%

~11l!214Z22$~12l!214Z2%G1G2 exp~ iw22 iw1!
,

where

G65
E2V6

uD6u
, l5l0

cosuS
cosuN

, Z5
Z0

cosuN
,

Z05
mH

\2kFN
.

According to the BTK formula, the conductance of the
junctionsS(E) is calculated from the probability amplitudes
of the two processes,19

sS~E!511ua~E!u22ub~E!u2. ~16!

This formulation is a revised version of the Landauer-
type formulation of conductance for an N-S structure.21,22

Using this relation, the conductancesS(E) for a givenuN is
written as

sS~E!5sN

11sNuG1u21~sN21!uG1G2u2

u11~sN21!G1G2 exp~ iw22 iw1!u2
,

~17!

where

sN[
4l

~11l!214Z2
. ~18!

Here, sN is the conductance for an N-I-N junction in the
same geometrical configuration and indicates the probability
distribution of tunneling electrons ink space. Equation~17!
reduces to the BTK formula by settingG15G2 andw15w2 .
Since Eq.~17! is not symmetric with respect to the exchange
of the suffix1 and2, the conductance spectrasS(E) is not
symmetric for injection anglesuN and2uN .

We define two types of conductance spectra for conve-
nience. The normalized conductance spectrumsR(E) is de-
fined for a fixeduN ,
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sR~E!5
sS~E!

sN
5

11sNuG1u21~sN21!uG1G2u2

u11~sN21!G1G2 exp~ iw22 iw1!u2
.

~19!

AlthoughsR(E) is a function ofE, sN , D1 , andD2 , it can
also be regarded as a function ofE anduN in a given junc-
tion configuration, i.e., for givenZ0, l0, and the pair poten-
tial form of the superconductor. In a real N-I-S junction con-
figuration, total tunneling conductance spectrumsT(E)
includes the integration over the solid angle,

sT~E!5
*dv sS~E!cosx

*dv sNcosx
5

*dv sNcosxsR~E!

*dv sNcosx
.

~20!

Here,x is the angle betweenv andX axis, and the integra-
tion is performed over the Fermi surface~half-sphere!. In the
case of two dimension, it reduces to the integration over the
injection angleuN ,

sT~E!5
*2p/2

p/2 duN sS~E!cosuN
*2p/2

p/2 duN sNcosuN

5
*2p/2

p/2 duN sNcosuNsR~E!

*2p/2
p/2 duN sNcosuN

. ~21!

Note thatsT(E) can be regarded as the expectation value of
sR(E) with the probability distribution ofsNcosuN .

23

It is important to note that the tunneling conductance
spectrum depends not only on the amplitudes but also on the
phases of pair potentials. The effect of the phase has long
been overlooked, because most theories are based on isotro-
pic s-wave superconductors.

III. PEAK IN CONDUCTANCE SPECTRA

In this section, the conductance spectrasR(E) are calcu-
lated by settingD1 , D2 , and Z valuesa priori, and the
physical origin of the peak in the conductance spectra is
discussed. Throughout this section, we assumekFN5kFS
~l051!, wheresN andsR(E) are written as

sN5
1

11Z2
, ~22!

sR~E!5
~11Z2!$11uG1u21Z2~12uG1G2u2!%
u11Z2$12G1G2 exp~ iw22 iw1!%u2

. ~23!

Figures 2 showssR(E) when ~a! D15D25D0 and ~b!
D152D25D0 for variousZ values. In both cases,sR(E)
equals 2 forE,uD0u whenZ50, which means that the An-
dreev reflection takes place with the probability amplitude 1.
With the increment ofZ, the peak structures emerge. For the
case~a!, sR(E) has energy gap structure whose shape is
similar to the BCS density of states~DOS! having a sharp
peak atD0 and clear gap belowD0. However, in the case~b!,
when the signs ofD1 andD2 are opposite, a peak appears at
zero-energy level. It becomes sharper and higher with in-
crease ofZ, and diverges in the largeZ limit. The latter
spectra are completely different from what we expect for
superconductors based on conventional tunneling theory.

From the condition that the numerator of Eq.~23! di-
verges for largeZ, the equation giving the peak energy level
Ep is written as

G1G2uE5Ep
5exp~ iw12 iw2!. ~24!

Under this condition, the conductancesS(E5Ep)52 inde-
pendent ofZ value, that is, the tunneling probability is not
influenced by the barrier height atE5Ep just like the reso-
nance tunneling process.14,24Then, the peak heightsR(E) at
E5Ep is 2~11Z2! which diverges in the limit of large barrier
height. In this limit, we can estimatesR(E)→0 when
E,min$uD1u, uD2u% and EÞEp , and sR(E)→1 when
E@uD1u andE@uD2u.

Next, we discuss the physical meaning of Eq.~24! using a
simple model. Suppose a one-dimensional superconductor–
normal-metal–superconductor~S-N-S! structure in which the
pair potentials of superconductors areD15uD1uexp~iw1! and
D25uD2uexp~iw2!, respectively. The width of the normal re-
gion is assumed to bedn . The quasiparticles in the
pseudoquantum well~normal region! are confined if their
energies are less than the amplitudes of both pair potentials
~E,min$uD1u, uD2u%!.25–29 The bound quasiparticles travels
along a closed path by repeating the Andreev reflections at
S-N interfaces. The Andreev reflection accompanies energy
dependent phase shift through the reflection process. By
summing up the phase shift along one round of the closed
path, we obtain a quantum condition of the phase for the
bound quasiparticles,28,29

2arctanSAuD1u22E2

E D 2arctanSAuD2u22E2

E D 2wd12wN

52 jp. ~25!

Here,wd5w12w2 , wN5mdnE/~\
2kFN!, and j is an integer.

This condition is the generalization of that for de Gennes–
Saint James bound states30,31and reduces to Eq.~b! of Table
I in Ref. 15 by settinguD1u5uD2u. Whenwd5p, Eq. ~25! is
satisfied byE50 independent ofsN ~midgap states!.13When
the normal region thickness is zero (dn5wN50), Eq. ~25!

FIG. 2. CalculatedsR(E) for Z50, 1.5, and 5 when~a!
D15D25D0 and ~b! D152D25D0. As Z becomes larger, peak
structures are enhanced. The peak exists atD0 in ~a! and at zero
energy in~b!.
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becomes equivalent to Eq.~24!. Based on these consider-
ations, the physical origin of the conductance peak is inter-
preted as follows. The quasiparticles injected from the bulk
of the superconductor to the I-S interface are elastically re-
flected at the interface. The quasiparticles change their wave
vectors through the reflections from2kFS

2 to kFS
1 ~Fig. 3!.

Accordingly, the effective pair potential felt by them also
changes fromD~2kFS

2 !5D2 to D~kFS
1 !5D1 at the insulator.

The interface can be regarded as the node of pair potential
for the quasiparticles, and the bound states are formed at the
node whose energy level is given by Eq.~24!. The tunneling
electrons fromN to S flow via the bound states just like the
resonant tunneling process. Thus the conductance peak is
formed at the energy levels of the bound states.

Next we discuss the dependence ofsR(E) and the bound
state level (Ep) as a function of the phase differencewd
~0,wd,2p!. Figure 4 shows the dependence ofEp on wd
when uD1u5uD2u5D0. In the case ofwd50, the bound states
are formed atD0. As wd increases towardp, the bound state
level becomes lower toward 0. Whenwd exceedsp, the
bound state level moves beneath the Fermi level, and does
not contribute to the current flow. Figure 5 shows the nor-
malized conductance spectrasR(E) corresponding to the
phase difference~a!–~d! in Fig. 4 whenZ55. The spectrum
4~a! has the form of BCS DOS. Aswd becomes larger
@curves 4~b! and 4~c!#, the peak position moves toward the
zero energy. Then, the peak disappears whenwd exceedsp
@curves 4~d!#. Figure 6 shows the bound state levels as a

function ofwd when the amplitudes of the two pair potentials
are different~2uD1u5uD2u5D0!. Since the energy level of the
bound states must satisfyEp,min$uD1u, uD2u%, they exist
only whenp/3,wd,5p/3. Figure 7 shows the normalized
conductance spectrasR(E) corresponding to the lines in Fig.
6. It is important to note that, whenwd5p, the bound states
exist at zero-energy level independently from of the ampli-
tude of pair potentials reflecting the existence of midgap
states.13

The above bound states converge to the surface states in
the large barrier-height limit. As will be verified in Sec. V,
the surface states differ from the bulk states except when
D15D2 . Now, the physical origin of surface states is clear.
In anisotropic superconductors, different pair potentials are
folded ink space. The quasiparticles change their wave vec-
tors at the surface. Accordingly the effective pair potential
felt by the quasiparticles also change at there. Then the
bound states are formed between the two different pair po-
tentials, that is, the effective pair potentials before and after
the reflection. Of course, equivalent effects are expected to

FIG. 3. Quasiparticle trajectory around I-S interface. The in-
jected quasiparticle from the bulk is elastically reflected at the in-
sulator. Accordingly, the effective pair potential felt by the quasi-
particle changes. The bound states are formed at the node of pair
potentials.

FIG. 4. Dependence of the bound state level onwd in the case of
uD1u5uD2u5D0. When wd5p, the bound states are formed just at
zero-energy level~midgap states!. In the cases ofwd50 and 2p, the
bound states exist at6D0. As for lines~a!–~d!, see text and Fig. 5.

FIG. 5. Normalized conductance spectrasR(E) as a function of
wd in the case ofuD1u5uD2u5D0; ~a! wd50, ~b! wd5p/2, ~c! wd5p,
and~d! wd53p/2. The peak energy levels clearly correspond to the
bound states shown in Fig. 4. For the case ofwd.p, the bound
states move beneath the Fermi level, then the peak structures in the
spectra disappear.

FIG. 6. Dependence of bound state levels onwd in the case of
2uD1u5uD2u5D0. The bound states exist only whenp/3,wd,5p/3.
Whenwd5p, the bound states are formed just at zero-energy level
~midgap states!. As for lines~a!–~d!, see text and Fig. 7.
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occur in various situations, such as, around the non-magnetic
impurities and inside the vortex cores.29

IV. CONDUCTANCE SPECTRA
FOR VARIOUS SYMMETRIES

The total tunneling conductance spectrasT(E) of an
N-I-S junction include the integration over the injection
angle. In this section,sT(E) is actually calculated for vari-
ous symmetries in real junction configurations. In view of
high-Tc superconductors, we restrict ourselves to two-
dimensional symmetric superconductors. In such case, the
effective pair potential is a function ofkx andky , whereki
~i5x, y andz! is thei component of the wave vectork. The
functional
form used here iss wave $D~k!5D1%, dx22y2 wave $D~k!
5D1cos2ua%, extended s wave $D~k!5D11D2cos4ua%,
and s1 idx22y2 wave $D~k!5D11iD2cos2ua%. Here, ua is
the angle betweena axis and the vector (kx ,ky,0). There is
nothing to say that the calculation is naturally extended to
general three-dimensional superconductors. Throughout this
section, it is assumed that the barrier has the delta-function
form ~Z055!. Although the effect of Fermi-wave number dif-
ference in the two electrodes is discussed in the latter part of
this section,l051 is assumed unless described explicitly.

Suppose that the tunneling direction is parallel to thec
axis of the crystal~c-axis tunneling!. Since the wave-vector
components parallel to the interface are conserved,D15D2

is satisfied independent of injection angle for all the symme-
tries mentioned above. ThensR(E) for a fixed uN has the
form similar to the BCS DOS as shown in Fig. 5~a!. In this
case, we can easily understand thatsT(E) converges to the
bulk DOS in the limit of large barrier height~Z0→`!. Figure
8 shows the calculatedsT(E) of the c-axis tunneling for
various symmetries. The gap structure insT(E) ascribes to
the distribution of the superconducting gap ink space. In the
case of dx22y2-wave superconductors, the well-known
V-shaped gap structure is obtained.

Next, we assume that the tunneling direction is in theab

plane~ab-plane tunneling! of the superconductors as shown
in the inset of Fig. 1~b!. In this case, the integration is done
in the two-dimensional Fermi surface for simplicity. Since
D15D2 is not generally satisfied, various types ofsT(E) are
expected. Especially, the spectra depend strongly ona which
is the angle betweena axis and the interface normal~2p/2
,a,p/2!. Fordx22y2-wave superconductors with givenuN ,
D15D1cos 2~uS2a! andD25D1cos 2~2 uS2a!. If a is zero
or p, D25D1 applies for alluN . Otherwise, the signs ofD1

andD2 are opposite for someuN region. Whena5p/4, their
signs are opposite for alluN . In such cases, the zero-energy
peak appears insT(E). Figure 9 shows the calculatedsT(E)
of dx22y2-wave superconductors whena50, p/8, p/4. The
zero-energy peak is clearly reproduced. The inset of Fig. 9
shows the dependence of zero-energy peak height ona. The
peak height is enhanced asa varies form 0, and has a maxi-
mum ata56p/4. The peak height reflects the amount ofuN ,
where the signs ofD1 andD2 are opposite, in the integral
region6p/2. The spectra fordxy-wave symmetry are calcu-
lated by simply addingp/4 to a. For the extendeds-wave
superconductors,sT(E) drastically changes whetherD1.D2
or not. Figure 10 shows the spectra whenD1.D2 andD1,D2
with a5p/8. Only in the latter case, the pair potential
changes its sign ink space. As the result, the zero-energy
peak appears only in the latter case. For the
s1 idx22y2-wave superconductors, since D15D1

FIG. 7. Normalized conductance spectrasR(E) as a function of
wd in the case ofuD1u52uD2u5D0; ~a! wd50, ~b! wd5p/2, ~c!
wd5p, and ~d! wd53p/2. Appearance of the peak insR(E) coin-
cides with that of the bound states as shown in Fig. 6.

FIG. 8. Conductance spectrasT(E) of c-axis tunneling for vari-
ous symmetries:~a! s wave with D15D0; ~b! dx22y2 wave with
D15D0; ~c! extends wave withD150.7D0 andD250.3D0; ~d! s
1 idx22y2 wave withD150.7D0 andD250.3D0.

FIG. 9. Conductance spectrasT(E) for thedx22y2 wave super-
conductor in the case of~a! a50, ~b! p/8, and~c! p/4. The inset
shows the dependence of zero-bias peak height ona. The peak
height has maximum ata56p/4.
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1iD2cos2(uS2a!, and D25D11iD2cos 2~2uS2a!, the
phase difference between the two pair potentials is not re-
stricted to a multiple ofp. Thus the peak position moves
between 0 and min$uD1u,uD2u% depending on the relation of
D1 , D2 and a. Figure 11 shows sT(E) for the
s1 idx22y2-wave superconductors witha5p/4. In this case,
the peaks exist at the energy levels corresponding to the am-
plitude of s-wave components.

Finally, we discuss the effect of the Fermi-wave number
difference in the two electrodes. As stated previously, the
wave vector component parallel to the interface is conserved
through the tunneling process. As a result, the effective
Fermi surface contributing to the electron transfer fromN to
S is restricted.32 Figure 12 shows the schematic illustration
of the Fermi surface of the two electrodes and the shaded
regions correspond to the effective Fermi surface. The distri-
bution of tunneling electron probability~expressed by distri-
bution ofsN! is finite only in the shaded region. The inset in
Fig. 13 shows the dependence ofsN on uS for variousl0. In
the case ofl0,1, total reflection~sN50! occurs at the N-I
interface when the injection angle is larger than sin21~l0!.
However, this component has no serious effect on the depen-
dence ofsN anduS . On the contrary, whenl0.1, the depen-
dence ofsN onuS is seriously affected by the value ofl0. As
l0 increases from 1, the directionality is enhanced. That is,

the distribution of tunneling electrons come to concentrate
on the region that satisfiesuS,sin21~1/l0!. The total tunnel-
ing conductance spectrumsT(E) is influenced byl0 mainly
through the dependence ofsN on us . Figure 13 showssT(E)
for theab-plane tunneling of thedx22y2-wave superconduc-
tor with a50. Clearly, the effect of Fermi-wave number dif-
ference is serious only in case ofl0.1. Asl0 increases from
1, the directionality of tunneling probability becomes promi-
nent and the gap structure insT(E) comes to have a flat
bottom.

V. TUNNELING SPECTRA AND LOCAL DENSITY
OF STATES

The tunneling conductance spectrum has long been re-
garded to reflect the bulk DOS of the superconductors. In the
previous section, we have shown the existence of bound
states at the I-S interface of the anisotropic superconductors.
It is revealed that the tunneling spectroscopy is seriously
affected by the bound states, and unable to observe the bulk
states. At this stage, there arises another question what kind

FIG. 10. Conductance spectrasT(E) for the extendeds-wave
superconductor in the case ofa5p/8. The pair potentials are~a!
D150.7D0 andD250.3D0, and ~b! D150.3D0 andD250.7D0. The
inset shows the dependence of zero-bias peak height ona.

FIG. 11. Conductance spectrasT(E) for the s1 idx22y2 wave
superconductor in the case ofa5p/4. The pair potentials are~a!
D150.7D0 andD250.3D0, and ~b! D150.3D0 andD250.7D0. The
peaks exist at the energy levels corresponding to the amplitudes of
s-wave components.

FIG. 12. Schematic illustration of the Fermi surface in both
electrodes. To conserve the wave vector component parallel to the
interface, the effective Fermi surface is restricted to shaded region
with ~a! l0,1 and~b! l0.1.

FIG. 13. Conductance spectrasT(E) for dx22y2 wave supercon-
ductors witha50; ~a! l050.5, ~b! l051, and~c! l052. The inset
shows the dependence ofsN on uS .
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of physical quantity the tunneling spectroscopy is detecting.
To clarify it, we compare the conductance spectra with the
LDOS in the N-I-S junction configuration, and discuss the
relation lying between those two physical quantities.

The normalized LDOSrT(E,X) of S side of the N-I-S
junction @shown in Fig. 1~a!# is calculated by Green’s func-
tion method. The insulator is assumed to have a delta-
function potential form andl051. In the case of two dimen-
sion, LDOS is given by18

rT~E,X!5
1

p E
2p/2

p/2

duS r~E,X!, X.0, ~26!

where

r~E,X!5ReF E

2V1
H 11F1 expS 2iXj1

D J
1

E

2V2
H 11F2 expS 2iXj2

D J G , ~27!

F65
uD6u
E

~12sN!G7 exp~ iw22 iw1!2G6

11~sN21!G1G2 exp~ iw22 iw1!
,

j65
\2kFScosuS

mV6
. ~28!

By comparing Eq.~26! with Eq. ~19!, rT(E,X) is regarded as
the expectation value ofr(E,X) with the probability distri-
bution 1. Figure 14 shows the calculatedrT(E,X) for various
X for the dx22y2-wave superconductor~ab-plane tunneling
configuration! with a5p/4. The peak at zero-energy level
originates from the bound states at the I-S interface as dis-
cussed in the previous section. The inset shows the spatial
dependence of zero-bias peak height [5rT(E50,X)]. It is
easy to understand that the bound states are localized around
the I-S interface, and they decay into the bulk with a length
scale of coherent lengthj0@5\2kFS/~mD1!#.

We concentrate on LDOS at the I-S interface
r0(E)[5r(E,X501)] which is expressed as

r0~E!5
12~sN21!2uG1G2u2

u11~sN21!G1G2 exp~ iw22 iw1!u2
. ~29!

Figure 15 shows the dependence ofr0(E) on Z when ~a!
D15D25D0 and ~b! D152D25D0. When Z50, r0(E)
shows a flat metallic behavior, which is completely different
from that ofsR(E) as shown in Fig. 2. However, asZ be-
comes larger, the peak structures gradually grow and their
forms become similar to those ofsR(E). The equation giving
the energy level of the peaks in LDOS is obtained from the
denominator ofr0(E) which is equivalent to Eq.~23!. This
fact indicates that LDOS also has peaks at the energy level of
the bound states (Ep). To see clearly the difference between
r0(E) andsR(E), the dependence ofsR(E)2r0(E) on Z is
shown in Fig. 16. WhenZ is small ~'0!, the discrepancy is
evident. However, asZ becomes larger, the difference be-
comes smaller except aroundE5Ep . This behavior is simi-
lar to that of Andreev reflection amplitude~ua(E)u2! in Eq.
~15!. In fact, we obtain a relation forE,uD2u,

FIG. 14. Local density of states of a N-I-S junction of the
dx22y2 wave superconductor with anab-plane tunneling configura-
tion ~a5p/4, Z055!: ~a! X50, ~b! X50.6j0, and ~c! X52j0. The
inset shows the spatial dependence of zero-bias levelr~E50, X!.
The zero-energy states decay into the bulk with length scalej0.

FIG. 15. Dependence ofr0(E) onZ when~a! D15D25D0, and
~b! D152D25D0. The values ofZ are set to 0, 1.5, and 5. AsZ
becomes larger, the peak structures are enhanced.

FIG. 16. Difference of LDOS and conductance spectra,
sR(E)2r0(E), as a function ofZ when ~a! D15D25D0, and~b!
D152D25D0. The values ofZ are set to 0, 1.5, and 5. AsZ
becomes larger, the difference becomes smaller except atE5Ep ,
where the difference is always 1~5ua(Ep)u

2; see text!.
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sR~E!2r0~E!5ua~E!u2

5
sN
2 uG1u2

u11~sN21!G1G2 exp~ iw22 iw1!u2

~E,uD2u!. ~30!

The peak heights of the two functions are 2~Z211! for
sR(Ep) and 2Z211 for r0(Ep). The difference is just 1
~5ua(Ep)u

2! independent of the barrier height.
In the limit of large barrier height,r0(E) converges to the

surface DOS of isolated superconductorrS(E),

rS~E!5 lim
sN→0

r0~E!

5
uD1D2u22u~E2V1!~E2V2!u2

uuD1D2u2~E2V1!~E2V2!exp~ iw22 iw1!u2
.

~31!

The rS(E) is equal to the BCS DOS whenD15D2 . This
fact indicates that the surface DOS agrees with that of the
bulk only if D15D2 is satisfied for alluS . In the limit of
large barrier height, we can easily verify

lim
sN→0

sR~E!5rS~E!. ~32!

Apparently, Eq.~32! implies that, in this limit, the normal-
ized conductance spectrum is sensitive to the surface DOS
and insensitive to the depth profile inside the bulk of the
superconductor. The information about the depth profile is
indirectly reflected on the conductance spectra through the
change of the surface DOS.

Finally, based on the above discussion, we obtain an ap-
proximated relation of the total tunneling conductance spec-
trum sT(E). When the junction has sufficiently large barrier
height ~low conductancesN'0!, from Eqs.~21! and ~32!,

sT~E!'
*2p/2

p/2 duN sNcosuNrS~E!

*2p/2
p/2 duN sNcosuN

. ~33!

Although rS(E) is given as a function ofuS , the relation
betweenuS anduN is explicitly given by Eq.~14!. In most of
the experimental situation, we implicitly assumesN'0, and
the conductance spectrum of thes-wave superconductor is
assumed to coincide with the BCS DOS. Since the same
assumption is used in the approximation of Eq.~33!, this
equation is applicable to most of the tunneling experiments.
It is important to note that Eq.~33! is consistent with our
intuition based on ‘‘Golden rule,’’ that is, in the large barrier-
height limit, the total tunneling conductance spectrumsT(E)

converges to LDOS at the surface weighted by tunneling
probability distributionsNcosuN . Of course, fors-wave su-
perconductors, the effect ofsN is negligible and thensT(E)
converges to the usual BCS DOS.

At this stage, we can analyze the experimental data based
on Eq.~33!. The most serious difficulty lies in the point how
to estimatesN corresponding to the real experimental situa-
tion. By replacingE with E1 iG in Eqs. ~27! and ~28!, we
can introduce a possible lifetime broadening effect.33 The
finite value ofG is sometimes convenient to avoid unphysical
divergence of the peak.

VI. SUMMARY

In this paper the features and physics of tunneling con-
ductance spectra are extensively investigated. The most im-
portant result is that the conductance spectra are sensitive not
only to the amplitude but to the phase of pair potential. In the
case ofdx22y2-wave superconductors, the zero-energy con-
ductance peaks are calculated in addition to theV-shaped
gap structure. The physical origin of conductance peaks in
the spectra is understood in terms of a quantized energy level
formed between two different pair potentials. By comparing
the conductance spectra with LDOS, we obtain an approxi-
mated equation that the conductance spectra converge to the
LDOS weighted by a tunneling probability distribution in the
large barrier-height limit.

The ZBCP’s are widely observed in the tunneling experi-
ments of high-Tc superconductors. We have investigated
their origin in terms of thed-wave symmetry of the pair
potential.15 Further detailed comparison between the theory
and experiments will elucidate important information about
the electronic structures of high-Tc superconductors.

Through the study of the tunneling spectroscopy, it is
shown that the anomalous bound states exist at the I-S inter-
faces of anisotropic superconductors. The existence of bound
states seriously affect the electrical properties of Josephson
junctions. This effect is investigated elsewhere.34 Recently,
the possibility of breaking time-reversal symmetry at the sur-
face ofdx22y2-wave superconductors is suggested.

35,36 Intro-
duction of this effect into the calculation will strongly affect
the conductance spectra, which will be carried out in the near
future.
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