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We present a method for calculating accurate Brillouin zone integrals of the Lindhard function at tempera-
tures other than absolute zero. Within the linear tetrahedron method our expression is exact for the imaginary
part and accurate to any arbitrary precision for the real part. We apply our method to calculate the temperature-
dependent contribution to the bulk susceptibility for a range of transition metals as a function of temperature
using linear muffin-tin orbital~LMTO! bands. For paramagnets our results follow the expectedT2 dependence.
However our results for ferromagnets deviate qualitatively from the quadratic law. The different behavior is
attributed to interband and matrix element effects. Our results for Fe exhibit two distinct behaviors. We discuss
the implications for calculation of anomalies arising from spin fluctuations.

I. INTRODUCTION

With increasing understanding of the processes and phys-
ics of the ground state properties of condensed matter, ex-
perimenters are turning to excitation and correlation proper-
ties in their efforts to probe the physics of solid state
materials. To the theorist the simplest quantities to calculate
are the generalized susceptibilitiesx12 and the t matrix
which deal with diagonal and off-diagonal long range orders,
respectively. Although ground state calculations are now rou-
tinely performed within the local density approximation
~LDA ! in density functional theory~DFT!, the correlation
properties are a further level more complex and require par-
allel computing with supercomputers.1,2 For the case of tran-
sition metals, the essential problems are the Brillouin zone
sums and the treatment of the Fermi functions at finite tem-
peratures.

In a recent paper3 we presented a formulation of the tet-
rahedron method for calculating Lindhard sums atT50. Us-
ing an analytic approach rather than the usual geometric in-
terpretation, we obtained a general algebraic form for the
integral which is much more compact and less complicated
than the geometric approach and involves the minimum of
calculation. With this form we were able to compute the
enhanced dynamical susceptibilitiesx12(qW ,v)1 using ab
initio linear muffin-tin orbital~LMTO! band structures. Our
calculational methods therefore now make it practicable to
calculate from first principles a whole range of interesting
physical properties dependent on Lindhard-like sums. For
instance our recent calculations2 show that, with LMTO
bandstructuresand thecorrespondingelectron-hole interaction
arising from the exchange and correlation potential, there is
an optic branch for Fe but not for Ni in the spin wave spec-
tra.

The stage is now set to compute from first principles
physical quantities at finite temperatures. The importance of

being able to calculate quantities at finiteT cannot be over-
emphasized. For example the critical temperatures for mag-
netic and superconducting phase transitions are obtained
from the divergence of the susceptibilities and thet matrix,
respectively. For nearly and weakly ferromagnetic systems
various authors4–6have discussed the specific heat anomalies
due to spin fluctuations using the temperature dependence of
x derived from simple band structures. In addition, for mag-
netic systems the relative importance of collective~spin-
wave! and single-particle~Stoner! excitations at nonzero
temperatures is not well understood. The difficulty here
arises because of a multitude of temperature behaviors the
single-particle theories predict:7,8 quadratic,T2, for weak
ferromagnets and paramagnets; exponential,
T3/2exp(2c/T), for strong ferromagnets; or fractional,T3/2,
for materials near the transition.

At finite temperatures, the geometric approach, which re-
lies on a sharp Fermi cutoff in energy, is no longer appli-
cable. Consequently there are few calculations done atT
Þ0. Indeed we know of no first principles susceptibility cal-
culations done at finite temperatures. Our nongeometric ap-
proach, however, makes it generalizable to finite tempera-
tures. In this paper we shall extend our work9,3 on the linear-
tetrahedron method to the case of a temperature-dependent
Fermi function. To perform the tetrahedron integral we
present an expansion of the Fermi function which is highly
convergent for all energies in contrast with the very slowly
convergent but commonly used Matsubara expansion. With
our method we are able to calculate the dynamical suscepti-
bilities x12(qW ,v) at finite temperatures using first principles
band structures. The approach we use is general and may be
readily applied to a range of spectral functions beside the
susceptibilities.

In this paper, as a test bed for ourTÞ0 formulas we shall
also calculateT dependence of the bulk magnetic suscepti-
bility of a number of transition metals and discuss the rela-
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tive importance of the excitations. For metals at low tem-
peratures a Sommerfeld expansion gives anaT2 dependence
for the temperature contribution of the bulk susceptibility.
The coefficienta depends on the derivatives of the densities
of states~DOS!. For metals with narrow bands~e.g., transi-
tion metals! accurate determination of these derivatives is
difficult and impractical due principally to the complexities
arising from the range of possible inter- and intraband tran-
sitions. We shall investigate to what extent the quadratic be-
havior is valid and discuss the relationship between theT
dependence and the structure of the DOS.

At this point, a brief discussion of the choice of materials
we shall investigate is needed. Thermal effects in the suscep-
tibility are likely to be most prominent when a flat band is
coincident with the Fermi level. The Fermi level pinning
position in transition metals may be considered to be one of
two broad classes: The Fermi level is pinned at or near a
maximum in the density of states; the Fermi level is pinned
at a minimum in the DOS between two peaks. In the first of
these the pinning position corresponds to the position of a
very flat band and so the excitations are dominated by small
energy~intraband! and smallqW transitions. These materials
tend to be paramagnetic or ferromagnetic and exhibit a large
susceptibility atuqW u50 which asymptotically decreases with
uqW u. When the Fermi level is pinned between peaks in the
DOS, the susceptibility is dominated by larger energy~inter-
band! and nonzeroqW transitions and the materials tend to be

antiferromagnetic exhibiting a maximum in the susceptibility
at uqW uÞ0. The larger energies involved in the transitions re-
sult in an expected lesser dependence on temperature. For
this reason, as well as the failure of LDA DFT to correctly
obtain antiferromagnetic groundstates~see, e.g., Moruzzi and
Marcus10!, we will limit this investigation to paramagnetic
and ferromagnetic materials.

In our investigation we will examine the fcc paramagnets
Pd, Ag, and Cu and the ferromagnets bcc Fe and Mn as well
as fcc Ni. Of particular interest among these is Ni. Examina-
tion of the magnetization of Ni at low temperatures has ei-
ther been ambiguous11 or has indicated that the Stoner exci-
tations obey aT2 law and so Ni is, contrary to de Haas–van
Alphen experimental results,12 in this respect a weak ferro-
magnet. For a more complete discussion of this problem see,
for example, Mitchell and Paul.13 The bcc Mn is chosen to
allow an intermediate strength ferromagnet. Mn in the body-
centered-cubic phase is predicted14,15 to be ferromagnetic
with a magnetic moment strongly dependent on the lattice
parameter. In these calculations we use bcc Mn at the
LMTO-DFT equilibrium spacing which results in a magnetic
moment of 0.88mB .

II. FORMALISM

The general expression for the unenhanced transverse sus-
ceptibility may be written as a BZ integral

xGW ,GW 8
12

~qW ,v!5
1

N(
n,n8

E
BZ
d3kF f ~en8kW1qW !2 f ~enkW !

enkW2en8kW1qW1v1 i01G^nkW ue2 i ~qW 1GW !•rWŝ1un8kW1qW &^n8kW1qW ue1 i ~qW 1GW 8!•rWŝ2unkW &, ~1!

whereŝ6 are the spin ladder operators~whose action is sim-
ply to ensure that then are associated with states of spin↑
while then8 states are associated with spin↓) and f (e) is the
Fermi function. In the future we will represent the product of
the overlap matrices byMn,n8(q

W ;GW ,GW 8) for brevity.
The calculation of theseab initiomatrix elements may be

performed using eigenstates in a number of different repre-
sentations. In our calculations we have usedab initio LMTO
eigenstates evaluated within LDA DFT. The formalism
for evaluating the overlap matrices,

^nkW↑ue2 i (qW 1GW )•rWun8kW1qW↓&, using LMTO basis states has
been presented by us before.2 The Brillouin zone~BZ! inte-
gral is usually evaluated atT50 K using the linear-
tetrahedron method or the joint density of states~JDOS!
method.9 rahedron method, developed originally by Jepson
and Andersen16 and also Lehman and Taut17 for calculating
the density of states, the BZ is divided into a number of
tetrahedra over which the eigenvalues are assumed to behave
linearly and so are a simple function of the values at the
vertices. For a sufficiently finekW -point mesh18 we may then
make the approximation

xGW ,GW 8
12

~qW ,v!52
1

N(
n,n8

Mn,n8~q
W ;GW ,GW 8!

3(
t
E
t

f ~enkW !2 f ~en8kW1qW !

enkW2en8kW1qW1v1 i01 d3k,

~2!

where t labels the individual tetrahedra comprising the BZ
andMn,n8(q

W ;GW ,GW 8) is the average of the matrix element
over the tetrahedron.

At T50 K this integral over the Lindhard term has been
considered before using a geometric analysis by Rath and
Freeman19 and also by Lindgard.20 Within their treatments
the partial integral of a single Fermi function~taken to be a
step function! is examined geometrically and the tetrahedron
further subdivided into a number of smaller tetrahedra, all of
which are fully occupied. The integral over the denominator
in Eq. ~2! is then performed analytically and the partial sums
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added to give the integral for the entire original tetrahedron.
The manner in which the Fermi surface cuts the original
tetrahedron defines the number of smaller tetrahedra pro-
duced in this method, giving a maximum of three terms. For
other topologies this approach becomes increasingly com-
plex. The intersection of the Fermi surface with, e.g., a cubic
microzone can be a still larger range of polygons up to a
hexagon and consequently the approach is usually limited to
tetrahedra.

The major drawback of the geometric approach for ther-
mal excitations is its reliance on the Fermi function being a
step function and cannot be extended to nonzero tempera-
tures as the smooth Fermi function atTÞ0 results in no
unique method of defining occupied or unoccupied regions.
In a recent work we have presented an alternative approach
to theT50 K tetrahedron method in which the integral is
performed algebraically by converting the integrand into a
sum over exponentials. For a step function, the algebraic
approach proves a much more useful method, being less
cumbersome, faster, and permitting a wider range of topolo-
gies. For nonzero temperature, we show here how the
method may be extended to allow us to perform algebraic
integration of the integrand.

We will consider the most general partial integral in Eq.
~2! which we may write in a vector form as

I5E
tet

f ~c01dW 0•kW !

a01bW 0•kW
d3k. ~3!

The values ofa0 , bW 0 , c0 , anddW 0 are defined by the energies
at the vertices of the tetrahedron. For brevity, we will con-
sider a dimensionless Fermi function and hence treat the
1/kBT coefficient as being subsumed within thec0 and dW 0
values. The linearity of the functions withkW means we may
affine transform the tetrahedron to a unit right-handed tetra-
hedron

I5VE
r150

11 E
r250

12r1E
r350

12r12r2 f ~c1dW •rW !

a1bW •rW
d3r , ~4!

where V5kW1•(kW23kW3), $kW i% are the vector edges of the
original tetrahedron anda, bW , c anddW are defined to repro-
duce the energies at the vertices of the tetrahedron.

The Fermi function here must be written in a tractable
form. A number of forms has been given forf (e), e.g.,
Goedecker21 and the Sommerfeld expansion,22 of which, per-
haps, the most commonly used is the Matsubara
representation.23 This form expandsf (e) as a sum over the
poles of the function and although straightforward is very
slowly convergent when ueu@kBT. In our algebraic
approach3 to theT50 K integral we convert the integrand to
an integral over exponential functions and so here, following
our previous work, we choose such a representation for the
nonzeroT Fermi function and write

f ~x!5
1

11ex
.Q~x!1 (

s52

1

s fN~sx!Q~2sx!, ~5!

whereQ(x) is a step function defined to be 1 ifx,0 and 0
otherwise andf N(x) is our approximation to the Fermi func-
tion defined for positivex in the Appendix to be a sum over
exponentials.

We may thus writeI in ~4! as the sum of two partsI 1 and
I 2 ,

I 15VE
r150

11 E
r250

12r1E
r350

12r12r2Q~c1dW •rW !

a1bW •rW
d3r ,

I 25V (
s52

1

sE
r150

11 E
r250

12r1E
r350

12r12r2

3
f N„s~c1dW •rW !…Q„2s~c1dW •rW !…

a1bW •rW
d3r . ~6!

The first of these,I 1 , is simply theT50 K form of the
linear-tetrahedron integral and has been performed algebra-
ically by the authors.3 It reduces to

I 15
Vz

2 (
tuv

e tuv
bu
bt

~a1bt!
2@Q~c!ln~ uau!2Q~c1dt!lnua1btu#

2
Vn

2d1d2d3
(
tuv

e tuv
dt
bt

bu
du

@Q~c!2Q~c1dt!#S a2c
bt
dt

D 2lnUa2c
bt
dt
U

1
Vj

2 (
tuv

e tuv
1

mu

Q~c1dt!

dtmu2bt
S du2dv
mu2mv

D @a1bt2mu~c1dt!#
2lnua1bt2mu~c1dt!u, ~7!

wheree tuv is the permutation tensor whose indices run from 1 to 3 andm i5(( jke i jkbj )/(( jke i jkdj ). The constant prefactors
are 1/z5(b12b2)(b22b3)(b32b1), 1/j5(d12d2)(d22d3)(d32d1), and 1/n5(b1 /d12b2 /d2)(b2 /d22b3 /d3)
1/n5(b1 /d12b2 /d2)(b2 /d22b3 /d3)(b3 /d32b1 /d1).

The second term may now be tackled by replacing all the functions by their exponential forms:
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Q~x!52
i

2pEp52`

1` e2 ipx

p2 id1
dp,

1

x
52

i

2(
z52

1

zE
l50

1`

el~ izx2d2!dl,

f N~x!5 (
n51

N

ane
2nx, ~8!

where the limit ofd1→0 andd2→0 is implied throughout. Using these inI 2 gives us

I 252
V

4p (
s52

1

s(
z52

1

z(
n51

N

ane
2sncE

l50

1`

eizla2ld2E
h52`

1` eisch

h2 id1
V „izlbW 1~ ish2ns!dW …dhdl, ~9!

whereV (xW ) is as defined below. The importance of the exponential form of the spatial integrand in this approach is that such
an integral is readily performed using the identity

V ~vW !5E
r150

11 E
r250

12r1E
r350

12r12r2
ev

W
•rWd3r5

1

~v12v2!~v22v3!~v32v1!
(
tuv

e tuv
vu
v t

~12ev t!, ~10!

thus giving us

I 252
i jV

4p (
s52

1

(
z52

1

z(
n51

N

ane
2nsc(

tuv
e tuv

du
dt
E

l50

1`

eizal2d2lI h~s,z,n;l!dl,

I h~s,z,n;l!5E
h52`

1` eisch2eis~c1dt!h1 izbtl2nsdt

~h2 id1!P j~h1 in1szlm j !
S h1 in1szl ~bu/du!

h1 in1szl ~bt/dt!
Ddh. ~11!

The evaluation of I h is now performed by summing the poles in the upper or lower half-plane, giving us
I 25I 2

(1)1I 2
(2)1I 3

(3) , where

I 2
~1!5

j

2m1m2m3
(
s52

1

s(
z52

1

(
n51

N

an(
tuv

e tuv
bu
bt
E

l50

1` 1

P j~l1 iszn/m j !
S l1 iszn~du/bu!

l1 iszn~dt/bt!
D

3@Q~2sc!e2nsc1 izal2Q„2s~c1dt!…e
2ns~c1dt!1 izl~a1bt!#dl, ~12!

I 2
~2!5

j

2(
s52

1

s(
z52

1

(
n51

N

an(
tuv

e tuv
~bu/bt 2 du/dt!

) j~m j2 bt/dt!
@Q~sc!2Q„s~c1dt!…#E

l50

1` 1

l2

eizl~a2cbt/dt!

l1 insz~dt/bt!
dl, ~13!

and

I 2
~3!52

jf

2 (
s52

1

s(
z52

1

(
n51

N

an(
tuv

e tuv(
pqr

epqr
mq

mp
S bu2dump

bt2dtmp
D E

l50

1` 1

l2

1

l1 iszn/mp

3@Q~sc!eizl~a2cmp!2Q„s~c1dt!…e
izl„a1bt2~c1dt!mp…#dl. ~14!

The l integrals in these terms may be recognized as a number of exponential integral functions and the final forms are
obtained by taking the limit as the lower range of the integral goes to zero. This leads us, after some rearrangement~see
Appendixes B and C in Charlesworth and Yeung3!, to the resultI 25D11D2 where
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D15j(
tuv

e tuvmu

bt2dtmu
S du2dv
mu2mv

D sgn~c1dt! (
n51

N
an

n2 F lnua1bt2mu~c1dt!u

1e2nuc1dtuF „2nsgn~c1dt!~a1bt!/mu…2F Xnsgn~c1dt!S 1mu
~a1bt!2~c1dt! D CG , ~15!

D25n
b1b2b3
d1
2d2

2d3
2(
tuv

e tuv
du
bu

(
n51

N
an

n2 H sgn~c!FF Xnsgn~c!S a dtbt 2cD C2 lnUa2c
bt
dt
U

2e2nucuF S 2nsgn~c!a
dt
bt

D G2sgn~c1dt!FF Xnsgn~c1dt!S a dtbt 2cD C
2e2nuc1dtuF X2nsgn~c1dt!~a1bt!

dt
bt
C2 lnUa2c

bt
dt
UGJ , ~16!

andF (x)5e2xEi(x). We may finally rewrite this in a more compact form by noting that were we to have representedf N by
an infinite sum, then we would have a simple Taylor series for whichan5(21)n11. The simple summation terms inD1 and
D2 may thus be evaluated to give us

D15j(
tuv

e tuvmu

bt2dtmu
S du2dv

mu2mv
D sgn~c1dt!H p2

12
lnua1bt2mu~c1dt!u1 (

n51

N
an

n2

3Fe2nuc1dtuF „2nsgn~c1dt!~a1bt!/mu…2F Xnsgn~c1dt!S 1mu
~a1bt!2~c1dt! D CG J

~17!

and

D25n
b1b2b3
d1
2d2

2d3
2(
tuv

e tuv
du
bu

Xp2

12
@sgn~c1dt!2sgn~c!# lnUa2c

bt
dt
U1 (

n51

N
an

n2

3H sgn~c!FF Xnsgn~c!S a dtbt 2cD C2e2nucuF S 2nsgn~c!a
dt
bt

D G2sgn~c1dt!

3FF Xnsgn~c1dt!S a dtbt 2cD C2e2nuc1dtuF S 2nsgn~c1dt!~a1bt!
dt
bt

D G J C. ~18!

It may be noted that the denominatormu2mv does not pose a problem inD1 as the permutation tensor does not permitu5v.
The corresponding imaginary part of the BZ of the Lindhard function, which is important for excited state lifetimes when

vÞ0, may be readily deduced in the same manner. The general form of

ImF E
tet

f ~enkW !2 f ~en8kW1qW !

enkW2en8kW1qW1v1 i01 d3kG ~19!

may be written as

I5E
tet
f ~c01dW 0•kW !d~a01bW 0•kW !d3k. ~20!

Replacingf in ~20! with the form given in~5! and transforming the tetrahedron to a right-handed orthonormal basis, we may
once more considerI to be made of two parts:I 1 , the term involving the step function and essentially evaluated atT50 K;
the integral over the remaining correction to the Fermi function,I 2 . The d function may be written in an integral represen-
tation remarkably similar to that of the 1/x form in ~8!,

d~x!5
1

2p (
z52

1 E
l50

1`

el~ izx2d2!dl, ~21!

and so little extra work need be performed. The equations for the imaginary part differ from those in~12! and~13! by simply
a factor ofiz/p and this requires just a different approach to thel integrals.

As before, the integral for theT50 K step function has been performed before24 to give us
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I 15
j

4m1m2m3
(
tuv

e tuv
bu
bt

@a2Q~c!sgn~a!2~a1bt!
2Q~c1dt!sgn~a1bt!#

2
j

4(tuv
e tuvmvm t /mu

bt2mudt
S du2dv
mu2mv

DQ~c1dt!@a1bt2mu~c1dt!#
2sgn@a1bt2mu~c1dt!#

2
n

4d1d2d3
(
tuv

e tuv
dt
bt

bu
du

@Q~c!2Q~c1dt!#S a2c
bt
dt

D 2sgnS a2c
bt
dt

D . ~22!

For theTÞ0 K case, most of the derivation is similar to that of the real part and results in anexactresult,I 2 , comprising two
partsI 25D11D2 with

D15
nb1b2b3
2d1

2d2
2d3

2(
tuv

e tuv
du
bu

Xp2

12
sgnS a2c

bt
dt

D @sgn~c1dt!2sgn~c!#

12Li2~2e2ua ~dt/bt! 2cu!H sgn~c!FQS a2c
bt
dt

D2Q~a!G1sgn~c1dt!FQ~a1bt!2QS a2c
bt
dt

D G J C ~23!

and

D25
j

2(tuv
e tuvmu

bt2dtmu
S du2dv
mu2mv

D sgn~c1dt!Fp2

12
sgn@a1bt2mu~c1dt!#

12Li2~2e2u~a1bt!/mu2~c1dt!u!@Q~a1bt!2Q„a1bt2mu~c1dt!…2sgn~mu!sgn~c1dt!#G , ~24!

where Li2(x) is the second-order polylogarithm. The imagi-
nary case, being a simpler integrand than that of the real one,
is exact within the linear scheme of the tetrahedron approach.
The nonzero temperature Fermi function is treated exactly
and no series expansion is necessary as the Taylor series
terms are resummable into polylogarithms.

Although in the calculations presented here we have con-
centrated on the real part of the integral, it has become cus-
tomary inT50 K susceptibility calculations to evaluate the
simpler imaginary term and derive the real term through the
Kramers-Kronig relationship. The exact result presented in
~23! and ~24! allows this method to be readily extended to
nonzero temperatures.

We may note at this stage that for the temperature range
which interests us~i.e., below a few hundred kelvin! the
inclusion of the 1/kBT term withinc anddW can lead to some
numerical instability in the calculation due to the greatly
differing magnitudes of, e.g.,bt /dt anddt /bt . To avoid such
an instability, we found it more prudent to observe that we
could equally have incorporated the thermal energy scale in
the n terms and consequently we may see that should we
consider thec anddW terms to give the energies at the tetra-
hedron vertices, then the temperature may be included in
~17! and ~18! and ~23! and ~24! by multiplying theD terms
by (kBT)

2 and replacing then terms in the exponentials and
F 0(nx) terms~but not the 1/n2 term! by n/kBT.

For very low temperatures we were able to further sim-
plify ~17! and ~18! by replacingF 0(x) with the first few
terms of the asymptotic limit

lim
x→6`

F 0~x!→(
m51

1`
~m21!!

xm
.
1

x
1

1

x2
1

2

x3
1•••.

~25!

These two corrections for nonzero temperatures,~17! and
~18! and ~23! and ~24!, in conjunction with the zero-
temperature results,~7! and~22!, give us a method to evalu-
ate exactly the BZ integral at any temperature. In the case of
the real integral, the accuracy is limited only by the size of
the expansion used to represent the Fermi function which is
shown in the Appendix to have exceedingly rapid conver-
gence. For the imaginary case, even this limitation is not
present and the integrals are exact.

The generality of this approach must be stressed. The in-
tegrals evaluated,~3! and ~20!, are due to the Green’s func-
tion derivation of most excitation properties, a constituent of
most excitation processes. Our results may be readily applied
to, e.g., the superconductivityt matrix as well as the mag-
netic multilayer interaction function.

III. RESULTS AND DISCUSSION

As previously mentioned in the Introduction the formulas
derived in the preceding section may be used to calculate the
dynamical susceptibilitiesx(qW ,v). For brevity and to com-
municate our results quickly, however, we shall only present
here our calculations on the unenhanced bulk susceptibility
for a number of transition metals. The parametersGW , GW 8,
qW , andv are therefore all zero. In this particular case the
overlap matrix element simplifies tônkW↑un8kW↓&. For a para-
magnet the up and down wave functions are the same and the
overlap matrices are therefore diagonal in the band indicesn
andn8 and the~unenhanced! bulk susceptibility is related to
the density of states. Indeed using a Sommerfeld expansion
one obtains for the temperature contribution26
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Dx12~T!

T2
5

p2

12
kB
2h~m!

]2lnh~e!

]e2 U
e5m

1O ~T2!, ~26!

whereh(e) is the density of states for a particular spin~half
the total density of states!.

The results for the paramagnets Pd, Ag, and Cu are given
in Fig. 1. All calculations have been performed with the
LMTO formalism using 19 683kW points in the BZ and were
converged to rms errors in the charge density of less than 1
part in 108 to ensure full convergence. The formalism for
such susceptibility calculations has been published before.2

The lattice parameters used were 7.351, 7.729, and 6.822
a.u. for Pd, Ag, and Cu, respectively. The procedure we em-
ployed in our calculations was to use a converged LMTO
band structure and Fermi level calculated atT50 K and to
evaluate the thermal deviation of the susceptibility assuming
a fixed Fermi level. For comparison with the usual ussumed
Sommerfeld result,~26!, we have neglected the temperature
dependence of the chemical potential. In principle this effect
may be included by using our formulas~17! and~18!, with a
constant denominator in the self-consistent calculation of the
DOS. However, we may observe that for materials such as
Ag and Cu, the flat DOS results in a negligible dependence
onm and for Fe and Ni the high DOS nearm results in only
a weak effect.

It is seen in Fig. 1 that the temperature contributions to
the paramagnetic susceptibility obey the quadratic power law

quite well. Fitting the data obtained to the formula
x12(T)5x12(0)(12T2/TF

2), we obtain theTF parameters
given in Table I. We note the difference between Pd and Ag
which have positive and negative coefficientsTF

2 coming
from the differing signs of the logarithmic derivatives of the
DOS at the Fermi energy.

For a ferromagnet theunkW↓& andunkW↑& wave functions in
the overlap matrix elements,^nkW↑un8kW↓&, are different. This
has essentially two effects: first, the off-diagonal elements
for nÞn8 no longer vanish and we have therefore interband
effects. Second, these overlap matrix elements have akW and
hence an energy dependence which profoundly modifies the
temperature dependence. Therefore the bulk susceptibility is
no longer simply related to the DOS and we can no longer
expect aT2 dependence. We compute the thermal contribu-
tions forx for the ferromagnets Fe, Ni, and Mn. The lattice
parameters used were 5.4057, 6.6520, and 5.2824, a.u., re-
spectively. For the case of Mn, the lattice parameter was
taken to be the equilibrium lattice spacing of the bcc struc-
ture as calculated by LMTO-DFT calculations. The magnetic
moments of Fe, Mn and Ni were calculated to be
2.299mB/atom, 0.8855mB/atom, and 0.606mB /atom, respec-
tively. The susceptibility calculations were performed using
nonrelativistic LMTO theory; scalar relativistic LMTO
theory typically changes the magnetic moment of ferromag-
netic materials by; 1–2%.

The temperature dependence ofx12 for the ferromagnets
is given in Fig. 2. The best fit gives temperature power laws
of T2.03 for Mn, T2.34 for Ni. It is evident that the temperature
dependences of these materials are completely different to
that found for paramagnets. For Fe at low temperatures we
could not fit its susceptibility to a single power law although
at largeT the susceptibility varies most closely toT3.

If we ignore the overlap matrix elements, the Lindhard
sum may be thought to be over two bands separated by an
energy gap related to the magnetization. In this case we
would expect an exponential type of temperature depen-
dence. However, our results do not appear to fit easily to an

FIG. 2. Plot of ln(Dx12) against ln(T) for the ferromagnetic
materials Fe~circles!, Mn ~triangles!, and Ni~rectangles!. The lines
are aids to the eye showing the best linear fit. That for Fe is for the
entire range. At largerT the gradient becomes 3.

TABLE I. The temperature parameter of paramagnetic and ferro-
magnetic materials. The susceptibilities are in units ofmB /Ry and
the temperatures are in units of K.

Metal x12(T50) TF
2

Ag 1.734 25.69131017

Cu 2.017 8.76331017

Pd 16.198 1.08631015

Fe 14.550 N/A
Ni 13.433 5.57131016

Mn 13.204 1.22831017

FIG. 1. Plot of ln(Dx12) against ln(T) for the paramagnetic
materials Pd~circles!, Ag ~triangles!, and Cu~rectangles!. The lines
are aids to the eye showing the best linear fit.
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exponential form. This implies that the matrix elements have
a profound influence25 on the susceptibility even in the bulk
case.

IV. SUMMARY

We have demonstrated in this paper how it is possible to
perform accurateab initio calculations of temperature-
dependent correlation functions. This allows a number of
problems to be addressed which have been, up until now,
beyond the grasp ofab initio calculations. The method we
have detailed here for performing the BZ integral of the
Lindhard function is exact~within the linear tetrahedron
method! for the imaginary part and accurate to any arbitrary
precision for the real part.

Our susceptibility results suggest reasons for the difficulty
solving the ‘‘hidden excitation problem.’’ The temperature
dependence of the susceptibilities does not always fit the
simple models of the Stoner excitations. For paramagnetic
materials~which may be considered to be an infinitely weak
ferromagnet!, the temperature dependence of the Stoner ex-
citations follows theT2 dependence expected. But as the
moment increases the deviation from the simple temperature
dependence increases. For Ni, the dependence goes as
;T2.3 and for Fe the temperature dependence is much more
involved. The latter has different behaviors for low and high
temperatures with a distinct break at a certain temperature.
The deviation fromT2 behavior is attributable to~1! an in-
terband effect and~2! matrix element effects. Specific heat
anomalies have been discussed in weak ferromagnets using
temperature dependences ofx based on simple bands with
no matrix elements. In light of our calculations in the previ-
ous section we believe that the temperature dependences
would be rather different with more realistic bands. We pro-
pose that new calculations should be made using our method
which is valid for all temperatures. It is well known that even
a first principles band theory like LMTO theory does not
give the correct critical temperature for itinerant magnets.
This is usually attributed to the neglect of fluctuations. By
using the coupling constant integration method one can write
the free energy as an integral involving a susceptibilitylike
type of correlation function~see, e.g., Moriya26!. With this
energy which includes the spin fluctuations Moriya was able
to get a better value for the critical temperature. Since the
latter based his calculations on a single band, we would ex-

pect to be able to do better with susceptibilities calculated
with proper bands.
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APPENDIX: FERMI FUNCTION EXPANSION

The usual form of the dimensionless Fermi function,

f ~x!5
e2x

11e2x , ~A1!

although compact, is not readily treatable within integrals. A
number of approximations may be made to this function with
different ranges of applicability. For a discussion of which
see Goedecker.21 The usual expansion of the Fermi function
uses the Matsubara formula,

f ~x!5
1

2
22x(

n50

1`
1

x21~2n11!2p2 . ~A2!

Although a simple expression, the Matsubara expansion is
very poorly convergent at larger values ofx ~or, equivalently,
at ue2mu@kBT).

In our approach we note that the symmetry off (x) means
we may consider it to comprise aT-independent step func-
tion ~already treatable! plus a T-dependent antisymmetric
term. This antisymmetric term need only be defined in the
regionx.0 and consequently we will consider a series ex-
pansion for just the Fermi function in the regionx.0 and
write the full Fermi function as

f ~x!.Q~x!1 (
s52

1

sQ~2sx! f N~sx!, ~A3!

where f N(x) is our series approximation to the Fermi func-
tion on the positive real axis andQ(x) is the step function
defined to be 1 for negativex and 0 elsewhere.

Along the positive axis the Fermi function is asymptoti-

TABLE II. Comparison of the errors in the Matsubara and Taylor expansions of the Fermi function with
our fitted form for a range of energies. All series consist of 15 terms. The relative percentage error is given
and is defined to be 1003u f s(x)2 f (x)u/ f (x) where f s(x) is the series representation of the Fermi function,
f (x).

e/kBT Matsubara Taylor Fitted

0 0.003100 1.0031012 0.003100

1025 4.4731024 9.9931011 6.66310214

1023 4.4731022 9.8531011 4.63310212

1021 4.703100 2.2331011 6.22310213

100 8.2831011 3.0631024 8.85310210

1011 3.9631016 2.22310214 3.74310211

1012 7.32310145 3.72310244 2.23310237
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cally decreasing from a value of12 at x50 and may be ex-
panded in a Taylor series in powers ofe2x, behaving as
;e2x as x→1`. This series form reproduces well the
largerx region but due to the alternating signs of the expan-
sion coefficients is poorly convergent for smallx. However,
each successive term in the exponential series expansion is
significant over a successively smaller region and we may

note that, providedf N(0)5
1
2 and limx→1` f N(x)→e2x, we

may fit a finite number of coefficients tof (x) to achieve a
greater accuracy than that of the Taylor series alone. We thus
put

f N~x!5 (
n51

N

ane
2nx, ~A4!

with a151 andaN5 1
22(n51

N21an . The remaininga coeffi-
cients are evaluated using the matrix equation

aW 5E21fW , ~A5!

whereEpq5e2qxp and f p5 f (xp). The set of$xp% values at
which the functional form is fitted is chosen to match the
distribution of the basis states and thus in this case is chosen
to have a logarithmic distribution.

The accuracy of this approach is vastly greater than that
of either a truncated Taylor series or of the Matsubara expan-
sion ~see Table II!. A 15-term expansion of our form is ac-
curate to better than 1028% for all values ofx whereas the
Matsubara and Taylor expansions fail at large or small ener-
gies, respectively.

One interpretation of this scheme is of a dampening term
placed within the Fermi function such that, rather than hav-
ing an5(21)n21, we would havean5(211d)n21. In our
method, we also ensure a more rapid convergence at smallx
by having a dense set of fitting points in this region.
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