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Temperature dependence of the transition-metal magnetic susceptibilities
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We present a method for calculating accurate Brillouin zone integrals of the Lindhard function at tempera-
tures other than absolute zero. Within the linear tetrahedron method our expression is exact for the imaginary
part and accurate to any arbitrary precision for the real part. We apply our method to calculate the temperature-
dependent contribution to the bulk susceptibility for a range of transition metals as a function of temperature
using linear muffin-tin orbitalLMTO) bands. For paramagnets our results follow the expeEtatkpendence.
However our results for ferromagnets deviate qualitatively from the quadratic law. The different behavior is
attributed to interband and matrix element effects. Our results for Fe exhibit two distinct behaviors. We discuss
the implications for calculation of anomalies arising from spin fluctuations.

I. INTRODUCTION being able to calculate quantities at finitecannot be over-
emphasized. For example the critical temperatures for mag-
With increasing understanding of the processes and physietic and superconducting phase transitions are obtained
ics of the ground state properties of condensed matter, exrom the divergence of the susceptibilities and thmatrix,
perimenters are turning to excitation and correlation properrespectively. For nearly and weakly ferromagnetic systems
ties in their efforts to probe the physics of solid statevarious authofs®have discussed the specific heat anomalies
materials. To the theorist the simplest quantities to calculateue to spin fluctuations using the temperature dependence of
are the generalized susceptibilitigs ~ and thet matrix  x derived from simple band structures. In addition, for mag-
which deal with diagonal and off-diagonal long range orderspetic systems the relative importance of collectiipin-
respectively. Although ground state calculations are now rouwave and single-particle(Stonej excitations at nonzero
tinely performed within the local density approximation temperatures is not well understood. The difficulty here
(LDA) in density functional theorfDFT), the correlation arises because of a multitude of temperature behaviors the
properties are a further level more complex and require parsingle-particle theories preditf quadratic, T2, for weak
allel computing with supercomputelé.For the case of tran- ferromagnets and paramagnets; exponential,
sition metals, the essential problems are the Brillouin zond *%exp(—c/T), for strong ferromagnets; or fractiondl®’?,
sums and the treatment of the Fermi functions at finite temfor materials near the transition.
peratures. At finite temperatures, the geometric approach, which re-
In a recent papénwe presented a formulation of the tet- lies on a sharp Fermi cutoff in energy, is no longer appli-
rahedron method for calculating Lindhard sum§ at0. Us-  cable. Consequently there are few calculations don& at
ing an analytic approach rather than the usual geometric in# 0. Indeed we know of no first principles susceptibility cal-
terpretation, we obtained a general algebraic form for theculations done at finite temperatures. Our nongeometric ap-
integral which is much more compact and less complicategroach, however, makes it generalizable to finite tempera-
than the geometric approach and involves the minimum ofures. In this paper we shall extend our wbtlon the linear-
calculation. With this form we were able to compute thetetrahedron method to the case of a temperature-dependent

enhanced dynamical susceptibilitie§+‘(ﬁ,w)l using ab Fermi function. To perform the tetrahedron integral we
initio linear muffin-tin orbital(LMTO) band structures. Our Present an expansion of the Fermi function which is highly
calculational methods therefore now make it practicable t¢onvergent for all energies in contrast with the very slowly
calculate from first principles a whole range of interestingconvergent but commonly used Matsubara expansion. With
physical properties dependent on Lindhard-like sums. Fopur method we are able to calculate the dynamical suscepti-
instance our recent calculationshow that, with LMTO bilities y* ~(q, ) at finite temperatures using first principles
band structures and the corresponding electron-hole interactidrand structures. The approach we use is general and may be
arising from the exchange and correlation potential, there iseadily applied to a range of spectral functions beside the
an optic branch for Fe but not for Ni in the spin wave spec-susceptibilities.
tra. In this paper, as a test bed for ol 0 formulas we shall
The stage is now set to compute from first principlesalso calculateT dependence of the bulk magnetic suscepti-
physical quantities at finite temperatures. The importance dfility of a number of transition metals and discuss the rela-
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tive importance of the excitations. For metals at low tem-antiferromagnetic exhibiting a maximum in the susceptibility
peratures a Sommerfeld expansion gives:di dependence  at |q|+0. The larger energies involved in the transitions re-
for the temperature contribution of the bulk susceptibility. sylt in an expected lesser dependence on temperature. For
The coefficientz depends on the derivatives of the densitiesthis reason, as well as the failure of LDA DFT to correctly
of states(DOS). For metals with narrow bandg.g., transi-  optain antiferromagnetic groundstatese, e.g., Moruzzi and
tion metalg accurate determination of these derivatives ismarcus?, we will limit this investigation to paramagnetic
difficult and impractical due principally to the complexities and ferromagnetic materials.
arising from the range of possible inter- and intraband tran- |n our investigation we will examine the fcc paramagnets
sitions. We shall investigate to what extent the quadratic bepd, Ag, and Cu and the ferromagnets bcc Fe and Mn as well
havior is valid and discuss the relationship betweenThe as fcc Ni. Of particular interest among these is Ni. Examina-
dependence and the structure of the DOS. tion of the magnetization of Ni at low temperatures has ei-
At this point, a brief discussion of the choice of matel’ia'Sther been ambiguoﬂ;ﬂsor has indicated that the Stoner exci-
we shall investigate is needed. Thermal effects in the suscepations obey a2 law and so Ni is, contrary to de Haas—van
tlblllty are ||ke|y to be most prominent when a flat band is A|phen experimenta| resu“}g,in this respect a weak ferro-
coincident with the Fermi level. The Fermi level pinning magnet. For a more complete discussion of this problem see,
position in transition metals may be considered to be one ofor example, Mitchell and Padf The bcc Mn is chosen to
two broad classes: The Fermi level is pinned at or near @jlow an intermediate strength ferromagnet. Mn in the body-
maximum in the denSity of states; the Fermi level is pinne%entered_cubic phase is pred|c1|éb5 to be ferromagnetic
at a minimum in the DOS between two peaks. In the first ofyith a magnetic moment strongly dependent on the lattice
these the pinning position corresponds to the position of arameter. In these calculations we use bcc Mn at the
very flat band and so the eintations are dominated by smajlMTO-DFT equilibrium spacing which results in a magnetic
energy (intraband and smallq transitions. These materials moment of 0.83g.
tend to be paramagnetic or ferromagnetic and exhibit a large

susceptibility ajg|=0 which asymptotically decreases with
|g|. When the Fermi level is pinned between peaks in the

DOS, the susceptibility is dominated by larger enefigyer- The general expression for the unenhanced transverse sus-
band and nonzerq@ transitions and the materials tend to be ceptibility may be written as a BZ integral

Il. FORMALISM

f(fn/R+a)— f(EnIZ)

€ni— Enirgt@+i07 (nkle @5 In"k+q)(n'k+qle™ @ €IS |nk), (1)
n n'k+q
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: 5 (0,w)== d3k
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wheres.. are the spin ladder operatogwhose action is sim- . 1 — L.
ply to ensure that the are associated with states of sgin Xg. g (Q,0)=— —2, A (9;G,G")
while then’ states are associated with spinandf(e) is the n.n

Fermi function. In the future we will represent the product of
the overlap matrices byZ, ,/(q;G,G’) for brevity.

The calculation of thesab initio matrix elements may be f(eni) —f(enrisq)
performed using eigenstates in a humber of different repre- X - ft
sentations. In our calculations we have uabdnitio LMTO
eigenstates evaluated within LDA DFT. The formalism
for evaluating the overlap matrices,
(nk1|e @+ ®)Tn’k+ql), using LMTO basis states has wheret labels the individual tetrahedra comprising the BZ
been presented by us befdr&he Brillouin zone(BZ) inte-  gnd %n n,(a;é,ér) is the average of the matrix element
gral is usually evaluated aT=0 K using the linear- gyer the tetrahedron.
tetrahedron method or the joint density of statd®O9 At T=0 K this integral over the Lindhard term has been
method? rahedron method, developed originally by Jepsonconsidered before using a geometric analysis by Rath and
and Anderset? and also Lehman and Tafitfor calculating  Freemaf® and also by Lindgaré® Within their treatments
the density of states, the BZ is divided into a number ofthe partial integral of a single Fermi functigtaken to be a
tetrahedra over which the eigenvalues are assumed to behaygp function is examined geometrically and the tetrahedron
linearly and so are a simple function of the values at thefyrther subdivided into a number of smaller tetrahedra, all of
vertices. For a sufficiently finE-point mest® we may then  which are fully occupied. The integral over the denominator
make the approximation in Eq. (2) is then performed analytically and the partial sums

d3k,
@

€nk— Enk+gt@+i0”
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added to give the integral for the entire original tetrahedronwhere () =k; - (k,x k3), {k} are the vector edges of the
The manner in which the Fermi surface cuts the original

original tetrahedron and, b, c andd are defined to repro-
tetrahedron defines the number of smaller tetrahedra PrYuce the energies at the vertices of the tetrahedron

duced in this (“etho.d' giving a maximum Of. three terms. For The Fermi function here must be written in a tractable
other topologies this approach becomes increasingly cony.

orm. A number of forms has been given fé(e), e.g.,
plex. The intersection of the Fermi surface with, e.g., a CUbI(‘Goedeckél and the Sommerfeld expansiéhof which, per-
microzone can be a still larger range of polygons up to

h d tlv th h v i td?naps; the most commonly used is the Matsubara
exagon and consequently the approach is usually limite Ppresentatiof"n3 This form expandd(e) as a sum over the

tetrahedra.
poles of the function and although straightforward is very
The major drawback of the geometric approach for ther slowly convergent when|e[>ksT. In our algebraic

mal excitations is its reliance on the Fermi function being a pproachto theT =0 K integral we convert the integrand to

step function and cannot be extended to nonzero temper%n integral over exponential functions and so here, following

tunries afntrj[ﬁ Zmofodthﬁlr:]ﬁ]rml func?odn Er#?] resul}sdmr n? N our previous work, we choose such a representation for the
unique method ot detining occupled or UNOCCUpIed regions, ,,; o 41 Fermi function and write

In a recent work we have presented an alternative approach

to the T=0 K tetrahedron method in which the integral is

performed algebraically by converting the integrand into a 1 +

sum over exponentials. For a step function, the algebraic f(x)= Tre —==0(x)+ 2 sf(sX)O(—sXx), (5)
approach proves a much more useful method, being less

cumbersome, faster, and permitting a wider range of topoloyhere®(x) is a step function defined to be 150 and 0
gies. For nonzero temperature, we show here how thgtherwise and y(x) is our approximation to the Fermi func-
method may be extended to allow us to perform algebraigion defined for positivex in the Appendix to be a sum over
integration of the integrand. exponentials.

We will consider the most general partial integral in Eq. e may thus writd in (4) as the sum of two parts and

(2) which we may write in a vector form as ),

f(co+do-k
:f “.—eoe)dsk. 3) 1,-0 jl r1J’1 ri—r20( c+d- r)d?’l’
tet 89+ hy-k ry=0Jr a+tb-r ,

The values oy, b, o, andd, are defined by the energies
at the vertices of the tetrahedron. For brevity, we will con- N
sider a dimensionless Fermi function and hence treat the L=a> s Jl ’1J'1 r1-re
1/kgT coefficient as being subsumed within thg and &0 2 E T aols
values. The linearity of the functions withmeans we may
affine transform the tetrahedron to a unit right-handed tetra- N(S(C+d )0 (-s(c+d- r)) ®)
hedron atb-r

11y (1or-raf(c+d-F) The first of these], is simply theT=0 K form of the
=0 f 1f iref(ctd-r HETED ey, (4) linear-tetrahedron integral and has been performed algebra-
ri=0Jr, a+b-r ically by the authors.It reduces to

QO
752 € (a+b)2[o )In(|a])— O (c+dy)Inja+by]
tuv

Qv E dt bu ) +d ; 2| bt
" 2d,d,d5t b, d_u[ (c)=O(ctdy]|a cg | na-cg
Q¢ 1 @(c+dt>(du—dv
+— v a+b,— uy(c+d)]%nja+b,— py(c+dy)l, 7
2 % u My ey =B \ g = py [ ¢ Ml 01%n| = Myl ol 7

wheree,,, is the permutation tensor whose indices run from 1 to 3 apd(Z € b;)/ (2 j«€ijcd;). The constant prefactors
are  1f=(b;—by)(by—bg)(bs—by), 1/§=(d;—d;)(d—d3)(d3—d;), and 1b=(b;/d;—b,/d;)(by/d;—bs/dy)
1/V=(blldl_b2/d2)(b2/d2_b3/d3)(b3/d3_b1/dl).

The second term may now be tackled by replacing all the functions by their exponential forms:
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i [te e P
®(X):_E p=7:>op_i61

dp,

_:__2 (izx— 62)d)\

A= 0

N
(=2, ane™™, ®)
n=1
where the limit of§;—0 and§,—0 is implied throughout. Using these In gives us

Q< o o glse ] ]
l,=—— sz 22 ane S”Cf e'z"a*’“SZf > 7(iz\b+ (isp—ns)d)dndX, 9)
A=0 7

dms=t =— =—x—101

where7(x) is as defined below. The importance of the exponential form of the spatial integrand in this approach is that such
an integral is readily performed using the identity

1-rq (1-rq—Ty - - 1 v
o= T e S e t(1-e, (10
r ) t

(v1—va)(va—v3)(v3—v1)im

thus giving us

| Q i .
g E > 22 e ”SCE €rup = f:Oe'za”“SZ"l,?(s,z,n;)\)d)\,

Ts=— z=—

+o eiscn_eis(c+dt)n+izbt>\fnsq

I,(s,z,n\)= - -
o ) p=—(p=i8)I(p+in+S2Au;)

11)

n+in+san(b,/d,)
n+in+s2n (b/d,)

The evaluation ofl, is now performed by summing the poles in the upper or lower half-plane, giving us
=10 +12+1), where

+ + N ;
by [t= 1 N+iszn(d,/b
Wyt 363 S a o e
2Uhofhas=r =~ Ai=1 tww by Ja=ollj(N+iszn ;) \ N+iszn(di/by)
X[@(_Sc)e—nscﬂza)\_@(_S(C+ dt))e—ns(c+dt)+iz>\(a+bl)]d)\, (12)
¢ + + (b /bt d /dt) f glz\(a—cby/dy)
19=32 s n21 2 € T~ bydy LO(SO OGN | 7 e rap O (13

and

B — E E E S Etuuz 6pqr“Q(MH+wi 1

- z=—n=1 tuw b, dt/J,p x:o)\z)\+|szn’,u,p

X [@(sc)eiz)\(afc,u.p) _ (S(C+ dt))eiz)\(a+ btf(c+dt),u.p)]d)\. (14)

The \ integrals in these terms may be recognized as a number of exponential integral functions and the final forms are
obtained by taking the limit as the lower range of the integral goes to zero. This leads us, after some rearraisgement
Appendixes B and C in Charlesworth and Yetingo the resuli ,=A;+ A, where
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€ty | du—d, )
sgnc+d
gtLJEu —diuy ( My~ ot )2

|n|a+ by— py(c+dy)|

)} ) (15

1
+e7Ne+dd 7(—nsgnc+d,)(a+ bt)/Mu)—i(nsgr(w d,) ﬂ—(a+ b,) — (c+d,)
u

d;
.'7(nsgr(c) ab——c>) In
t
A =
nsgrnc+dy)|a——c¢
t

] (16)

N

b,b,b
e 32 tuvb z n;(sgr(c)
un

= a—C—
2 2d2d3tuv

dt

—sgr(c+dy)|.7

_ d;
e "7 —nsgnc)a—
b,

nja— cdt
and.7(x)=e *Ei(x). We may finally rewrite this in a more compact form by noting that were we to have represgrbgd
an infinite sum, then we would have a simple Taylor series for whigh (—1)"*. The simple summation terms ik, and
A, may thus be evaluated to give us

e‘””dt'f(— nsgr(c+d,)(a+b,)— )

2 N

d, T an
| sare+dy Shnla+b—uy(ctd)|+ 2 —

d,—

€tup My
1=62 —
tuv tMu \ Mu

e netdl Z(—nsgr(c+dy) (a+by)/ ) — 7(nsgr(c+dt) 1(a+bt) (c+d,)

j

(17
and

N

1435
n=1 N

acd

. d,
)— e ”|C|.7f< - nsgr{c)ag)
t

d, i d,
a——c||-e "l 7| —nsgr(c+d,)(a+b,)—
b, by

1b2b3
v dzd% etuUb [sgr(c+d> sgr(c)]in

d
x{sgr(c) .?‘(nsgr{c)(ab—t—c —sgr(c+d,)
t

X .7{nsgr(c+ dy) ] ) (18

It may be noted that the denominajey,— «, does not pose a problem iy as the permutation tensor does not penmity .
The corresponding imaginary part of the BZ of the Lindhard function, which is important for excited state lifetimes when
w70, may be readily deduced in the same manner. The general form of

f(EnR)_f(En'Eﬂi)
Im f g3k 19
tetEnR—Enr|2+a+w+|0+ (19
may be written as
=f f(Co+do- k) 8(ag+by-k)d3k. (20)
tet

Replacingf in (20) with the form given in(5) and transforming the tetrahedron to a right-handed orthonormal basis, we may
once more considdrto be made of two parts;, the term involving the step function and essentially evaluate=ad K;
the integral over the remaining correction to the Fermi functlgn,The 6 function may be written in an integral represen-
tation remarkably similar to that of the X form in (8),

1o (=

d(X)=5=2> J e %2)d), (21)

2m/=_ Jy=o0

and so little extra work need be performed. The equations for the imaginary part differ from thd2e amd (13) by simply

a factor ofiz/# and this requires just a different approach to xhategrals.
As before, the integral for th€=0 K step function has been performed beféte give us
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|1:L2 etuvﬂ[a2®(c)sgr(a)—(a+ b,)20 (c+d,)sgna+by)]
4M1M2M3tuw bt

3 etuvﬂvﬂtlﬂu( du_dv

2 O(c+dy[a+b— u,(c+dy)]*sgia+b;— u,(c+d
4tuv bt_Mudt IU’U_MU) ( t)[ t /-Lu( t)] gl’[ t /-Lu( t)]

S € E a—cB 2s a—cE (22
4d,d,dy s b, d,) 59 d.)’

For theT+#0 K case, most of the derivation is similar to that of the real part and resultséramstresult,| ,, comprising two
partsl,=A;+ A, with

_ Vblb2b3 du (772 bt
Al—WE EtuUb—u Esg a—cd—t [sgnc+dy)—sgnc)]

3tuv

b,
d—u[®(0)—®(c+dt)]

(C)] —0®(a)|+sgnc+d;)|O(at+b;)—06

2l o

+2Liy(—e1a(d/b) —Cl)[ sgr(c)

by
a Cd—t
and

2
pS9natb—py(ct+dy)]

A, 3 €tup Mu (du_dv

B 2w bi—diuy \ my—uy

)Sgr(0+ dy)

+2Liz(—e—<a+bt>’ﬂu—<°+dt>)[@(a+bt>—®(a+bt—uu(c+dt>>—sgrmu>sgr(c+d»]}, (24)

where Lp(x) is the second-order polylogarithm. The imagi- These two corrections for nonzero temperatu(&g), and
nary case, being a simpler integrand than that of the real on¢18) and (23) and (24), in conjunction with the zero-

is exact within the linear scheme of the tetrahedron approachemperature result$7) and(22), give us a method to evalu-
The nonzero temperature Fermi function is treated exactlyte exactly the BZ integral at any temperature. In the case of
and no series expansion is necessary as the Taylor serig, req integral, the accuracy is limited only by the size of

terms are resummable into polylogarithms. the expansion used to represent the Fermi function which is
Although in the calculations presented here we have con

centrated on the real part of the integral, it has become Cuss_hown in the Appendlx to have exceedmgly rgplq conver-
tomary inT=0 K susceptibility calculations to evaluate the 96NCe- For the imaginary case, even this limitation is not
simpler imaginary term and derive the real term through thd’résent and the integrals are exact. _
Kramers-Kronig relationship. The exact result presented in 1he generality of this approach must be stressed. The in-
(23) and (24) allows this method to be readily extended to tegrals evaluated3) and(20), are due to the Green’s func-
nonzero temperatures_ tion derivation of most excitation prOperUeS, a constituent of

We may note at this stage that for the temperature rang@0st excitation processes. Our results may be readily applied
which interests ugi.e., below a few hundred kelvinthe to, e.g., the superconductivitymatrix as well as the mag-
inclusion of the T term withinc andd can lead to some Netic multilayer interaction function.
numerical instability in the calculation due to the greatly
differing magnitudes of, e.gh;/d; andd,/b;. To avoid such
an instability, we found it more prudent to observe that we ll. RESULTS AND DISCUSSION
could equally have incorporated the thermal energy scale in . ) . .
the n terms and consequently we may see that should we As prgwously men_tloned in the Introduction the formulas

. ~ . . derived in the preceding section may be used to calculate the

consider thec andd terms to give the energies at the tetra- i N - _
hedron vertices, then the temperature may be included ifynamical susceptibilitieg(q,»). For brevity and to com-
(17) and (18) and (23) and (24) by multiplying theA terms municate our resglts quickly, however, we shall only pre;gnt
by (kgT)? and replacing the terms in the exponentials and here our calculations on the unenhanced bulk sgscgpnblhty
Zo(nx) terms(but not the 1h? term) by n/kgT. for a number of transition metals. The parametérsG’,

For very low temperatures we were able to further Sim—ﬁ, and w are therefore all zero. In this particular case the
plify (17) and (18) by replacing.7o(x) with the first few  gyerlap matrix element simplifies tmk{|n’k| ). For a para-
terms of the asymptotic limit magnet the up and down wave functions are the same and the

+oo (m-1)! 1 1 2 overlap matrices are therefore diagonal in the band indices
im Fo(X)— O ——— ==t . andn’ and the(unenhancedbulk susceptibility is related to
X %o m=1 X X X=X the density of states. Indeed using a Sommerfeld expansion

(25 one obtains for the temperature contribuffon



2612 J. P. A. CHARLESWORTH AND W. YEUNG 53
In|Axo(T)| Ay (T))|
0 ° 0
[ ]
25 o ® 2.5 -
. *®
o .'.‘.'. St -
_e * e °
729 7.5} "o
- - p®
10 10 = o
25 s ‘4““: A
= feot o
" ,‘-"é“"ﬁ? - / <
175 o= = /6"
A A75F LT ®
/ 0 I 2 3 4 . <1 o . . .
ln(T) -1 0 I 2 3 4
In(T)

FIG. 1. Plot of InAx* ~) against InT) for the paramagnetic
materials Pdcircles, Ag (triangles, and Cu(rectangles The lines
are aids to the eye showing the best linear fit.

FIG. 2. Plot of InAx* ™) against InT") for the ferromagnetic
materials Fecircleg, Mn (triangles, and Ni(rectangles The lines
are aids to the eye showing the best linear fit. That for Fe is for the
Axt(T) =2 entire range. At largeT the gradient becomes 3.

#’Iny(e)
—Tz = Ekéﬂ u

2| TOT), (@28

e=u quite well. Fitting the data obtained to the formula
xT(T)=x""(0)(1—T#T2), we obtain theT parameters

the total density of states given in Table I. We note the difference between Pd and Ag

The results for the paramagnets Pd, Ag, and Cu are givef/hiChhh""(\j/.‘]:;'r positive andf rrl]eglative. ﬁogffigiemé _cominfg .
in Fig. 1. All calculations have been performed with the "0 the differing signs of the logarithmic derivatives of the

LMTO formalism using 19 68% points in the BZ and were DOS at the Fermi energy. - . .
converged to rms errors in the charge density of less than 1 FOf @ ferromagnet thgak|) and|nkT) wave functions in
part in 18 to ensure full convergence. The formalism for the overlap matrix elementénkt[n’k]), are different. This
such susceptibility calculations has been published béforehas essentially two effects: first, the off-diagonal elements
The lattice parameters used were 7.351, 7.729, and 6.84@r n#n’ no longer vanish and we have therefore interband
a.u. for Pd, Ag, and Cu, respectively. The procedure we emeffects. Second, these overlap matrix elements havead
ployed in our calculations was to use a converged LMTOhence an energy dependence which profoundly modifies the
band structure and Fermi level calculatedlatO K and to  temperature dependence. Therefore the bulk susceptibility is
evaluate the thermal deviation of the susceptibility assumingio longer simply related to the DOS and we can no longer
a fixed Fermi level. For comparison with the usual ussumeaxpect aT? dependence. We compute the thermal contribu-
Sommerfeld result(26), we have neglected the temperaturetions for y for the ferromagnets Fe, Ni, and Mn. The lattice
dependence of the chemical potential. In principle this effecparameters used were 5.4057, 6.6520, and 5.2824, a.u., re-
may be included by using our formulék?) and(18), with a  spectively. For the case of Mn, the lattice parameter was
constant denominator in the self-consistent calculation of theaken to be the equilibrium lattice spacing of the bcc struc-
DOS. However, we may observe that for materials such agure as calculated by LMTO-DFT calculations. The magnetic
Ag and Cu, the flat DOS results in a negligible dependencenoments of Fe, Mn and Ni were calculated to be
on u and for Fe and Ni the high DOS nearresults in only  2.299ug/atom, 0.885h.z/atom, and 0.60&g/atom, respec-

a weak effect. tively. The susceptibility calculations were performed using
It is seen in Fig. 1 that the temperature contributions tononrelativistic LMTO theory; scalar relativistic LMTO
the paramagnetic susceptibility obey the quadratic power lawheory typically changes the magnetic moment of ferromag-

netic materials by~ 1-2%.
TABLE 1. The temperature parameter of paramagnetic and ferro- The temperature dependenceydf~ for the ferromagnets
magnetic materials. The susceptibilities are in unita.gfRy and s given in Fig. 2. The best fit gives temperature power laws
the temperatures are in units of K. of T2%3for Mn, T?34for Ni. It is evident that the temperature

where () is the density of states for a particular spivalf

Metal Y (T=0) T2 dependences of these materials are completely different to
that found for paramagnets. For Fe at low temperatures we
Ag 1.734 —-5.691x10""  could not fit its susceptibility to a single power law although
Cu 2.017 8.76%10"7 at largeT the susceptibility varies most closely 5.
Pd 16.198 1.088 10" If we ignore the overlap matrix elements, the Lindhard
Fe 14.550 N/A sum may be thought to be over two bands separated by an
Ni 13.433 5.57K 10" energy gap related to the magnetization. In this case we
Mn 13.204 1.22&10"7 would expect an exponential type of temperature depen-

dence. However, our results do not appear to fit easily to an
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TABLE Il. Comparison of the errors in the Matsubara and Taylor expansions of the Fermi function with
our fitted form for a range of energies. All series consist of 15 terms. The relative percentage error is given
and is defined to be 100|f,(x)— f(x)|/f(x) wheref((x) is the series representation of the Fermi function,

f(x).

elkgT Matsubara Taylor Fitted
0 0.00x 1¢° 1.00x10"2 0.00x 10°
1075 4.47x 1074 9.99x 10™* 6.66x 101
1073 4.47x10°? 9.85x 10! 4.63x10712
107t 4.70x 10° 2.23x 10" 6.22x10° 13
1¢° 8.28< 10" 3.06x10°4 8.85x 10710
10%? 3.96x 106 2.22x10™ 3.74x10° 1!
10*2 7.32x107%° 3.72x10°* 2.23x10°%

exponential form. This implies that the matrix elements havepect to be able to do better with susceptibilities calculated
a profound influenc® on the susceptibility even in the bulk with proper bands.
case.
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perform accurateab initio calculations of temperature-
dependent correlation functions. This allows a number of
problems to be addressed which have been, up until now, APPENDIX: FERMI FUNCTION EXPANSION
beyond the grasp odb initio calculations. The method we
have detailed here for performing the BZ integral of the
Lindhard function is exaci{within the linear tetrahedron
method for the imaginary part and accurate to any arbitrary
precision for the real part.

Our susceptibility results suggest reasons for the difficulty

solving the “hidden excitation problem.” The temperature ajthough compact, is not readily treatable within integrals. A
dependence of the susceptibilities does not always fit thgumber of approximations may be made to this function with
simple models of the Stoner excitations. For paramagnetigjfferent ranges of applicability. For a discussion of which

materials(which may be considered to be an infinitely weak see Goedeckét. The usual expansion of the Fermi function
ferromagnet the temperature dependence of the Stoner exgses the Matsubara formula,

citations follows theT? dependence expected. But as the

The usual form of the dimensionless Fermi function,

—X

f(x)= (A1)

1+e %’

moment increases the deviation from the simple temperature Foo
dependence increases. For Ni, the dependence goes as f(x)= E—Zx 1 _ (A2)
~T23and for Fe the temperature dependence is much more 2 o X+ (2n+1)°7*

involved. The latter has different behaviors for low and high

temperatures with a distinct break at a certain temperaturélthough a simple expression, the Matsubara expansion is
The deviation fromT? behavior is attributable t¢l) an in-  very poorly convergent at larger valuesyofor, equivalently,
terband effect and2) matrix element effects. Specific heat at |e— u|>kgT).

anomalies have been discussed in weak ferromagnets using In our approach we note that the symmetryf @f) means
temperature dependences ypfbased on simple bands with we may consider it to comprise Bindependent step func-
no matrix elements. In light of our calculations in the previ-tion (already treatab)eplus a T-dependent antisymmetric
ous section we believe that the temperature dependencésrm. This antisymmetric term need only be defined in the
would be rather different with more realistic bands. We pro-regionx>0 and consequently we will consider a series ex-
pose that new calculations should be made using our methqehnsion for just the Fermi function in the regiai»0 and
which is valid for all temperatures. It is well known that even write the full Fermi function as

a first principles band theory like LMTO theory does not

give the correct critical temperature for itinerant magnets. +
This is usually attributed to the neglect of fluctuations. By f(X)=0(X)+ > sO(—sx)fy(sX), (A3)
using the coupling constant integration method one can write s=-

the free energy as an integral involving a susceptibilitylike

type of correlation functior(see, e.g., Moriy®). With this  wherefy(x) is our series approximation to the Fermi func-
energy which includes the spin fluctuations Moriya was abldion on the positive real axis an@él(x) is the step function
to get a better value for the critical temperature. Since thalefined to be 1 for negative and O elsewhere.

latter based his calculations on a single band, we would ex- Along the positive axis the Fermi function is asymptoti-
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cally decreasing from a value gf at x=0 and may be ex-
panded in a Taylor series in powers ef*, behaving as

a=41, (A5)

~e X as x—+o, This series form reproduces well the Wheregpq:equp andf,=f(x,). The set of{x,} values at
largerx region but due to the alternating signs of the expanwhich the functional form is fitted is chosen to match the

sion coefficients is poorly convergent for smallHowever,

distribution of the basis states and thus in this case is chosen

each successive term in the exponential series expansion s have a logarithmic distribution.
significant over a successively smaller region and we may The accuracy of this approach is vastly greater than that

note that, provided(0)= % and lim_. . ..fy(x)—e %, we
may fit a finite number of coefficients ttx) to achieve a

of either a truncated Taylor series or of the Matsubara expan-
sion (see Table . A 15-term expansion of our form is ac-

greater accuracy than that of the Taylor series alone. We thugirate to better than 16% for all values ofx whereas the

put

N
fN<x>=n§l ae”™, (A4)

with a;=1 anday= :—3\"la,. The remainingx coeffi-
cients are evaluated using the matrix equation

Matsubara and Taylor expansions fail at large or small ener-
gies, respectively.

One interpretation of this scheme is of a dampening term
placed within the Fermi function such that, rather than hav-
ing a,=(—1)""1, we would haver,=(—1+8)""1. In our
method, we also ensure a more rapid convergence at gmall
by having a dense set of fitting points in this region.
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