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The Hamiltonian for a four-sublattice Heisenberg ferrimagnet or ferromagnet with different exchange con-
stants (Jab5JcdÞJbc5Jda) was established. An extended Bogoliubov transformation was developed by solv-
ing an equation group, consisting of 20 equations and 20 unknowns. The procedure for solving the equation
group was carried out by introducing a simple way of reducing the numbers of the equations and the un-
knowns. The spin-wave spectra in the present system have been determined by performing the standard
Holstein-Primakoff transformation and the Bogoliubov one. It has been found that the spin-wave spectra of the
present system depend on the exchange constants and that the degeneracy of the spin-wave spectra remains.
The results for a special case (Jab5Jbc), i.e., an antiferromagnet, are discussed briefly. The spin-wave spectra
of the four-sublattice Heisenberg antiferromagnet are found to be degenerative also and they are linear ink for
small k.

I. INTRODUCTION

Spin waves have been investigated extensively in mag-
netic systems, since the early work of Bloch1 and Holstein
and Primakoff2 on ferromagnets, and its extension to antifer-
romagnets by Anderson3 and Kubo.4 At first, spin waves
have been considered as elementary excitations from which
one can derive the thermodynamic properties of magnetic
systems at low temperatures. Second, spin waves can be used
to calculate various time-dependent properties of magnetic
systems, such as dynamic response functions and correlation
functions.5,6

Many results of the previous work have been obtained by
using the boson formalism of Holstein and Primakoff2 and
expanding the Hamiltonian in powers of the occupation
numbers, or by using the Dyson-Maleev formalism.7,8 The
former procedure can lead to incorrect results for small val-
ues of the spinS, but the difficulties are avoided ifS21 is
formally treated as a small parameter and calculations are
performed consistently to each order inS21. For diagonaliz-
ing the quadratic part of the Hamiltonian, the Bogoliubov
transformation9 is usually introduced. However, the attention
of most work has been focused on the two-sublattice sys-
tems.

On the other hand, the rare-earth (R) –transition-metal
(T) intermetallics have attracted great interest due to their
outstanding permanent magnetic properties,10–12 which can
be usually explained by a two-sublattice model.13,14 del
Moral used the spin-wave theory to analyze the spin reorien-
tations in the rare-earth–transition-metal intermetallics
(R8xR12x)2Fe14B and (R8xR12x)Co5.

15 But in some
compounds,10,11,15 the existence of different rare-earth and
transition-metal sites results in the necessity of a multisub-
lattice model. These give an impetus to theoretical investiga-
tion on the spin waves of the multisublattice Heisenberg an-
tiferromagnets, ferrimagnets and/or ferromagnets. The
application of the spin-wave approximation to the multisub-

lattice system is a very formidable problem.15,16 To our
knowledge the attempts to deal with the spin-wave excita-
tions in the systems with multiple structurally ordered mag-
netic sublattices were done by various authors in the later
1950’s and early 1960’s.16–25Kaplan studied the wave func-
tions and the energy spectrum for the spin-wave problem in a
normal spinel.16 Sáenz17 and Wallace18 paid attention to a
lattice which has an arbitrary number of magnetic atoms, or
spins, in each magnetic unit cell. Sa´enz proved that there
exists at least one ‘‘acoustic’’ branch among the<n distinct
branches of the spin-wave spectrum when the magnetic an-
isotropy and magnetic-field contributions vanish.17 Wallace
gave explicitly the transformations which diagonalize the
Hamiltonian of the complex lattices in terms of harmonic
oscillator formalism.18 Meyer and Harris19 as well as
Douglass20 used the approximations of Anderson in calculat-
ing the spin-wave spectrum of yttrium-iron-garnet~YIG!. A
common fact is that with the exception of completely ferro-
magnetic exchanges when the lattice is complicated, i.e., the
cases when number of spins per magnetic unit cell is more
than two, the problem cannot be solved explicitly in terms of
the elements of the matrices for eachk and it will generally
be necessary to use numerical methods to solve the
problem.18–20Another fact is that contradictory results were
obtained by these authors by proceeding with different
methods.16,21–25

The aim of the present paper is to study the spin-wave
spectra at low temperatures of a four-sublattice Heisenberg
ferrimagnet or ferromagnet with different exchange constants
(Jab5JcdÞJbc5Jda), in terms of creation and annihilation
operators. In the present work, to simplify, we shall only deal
with the case with the same spin amplitudes for the different
sublattices. Since the linear-spin-wave theory3,4 ~the leading
term in the 1/S expansion! gives fairly good results for the
quantum corrections to various physical quantities, we shall
treat the spin fluctuations within the linear-spin-wave theory.
In Sec. II, the Hamiltonian and formalism will be repre-
sented. For diagonalizing the Hamiltonian, the extended Bo-
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goliubov transformation will be developed by establishing an
equation group consisting of 20 equations and 20 unknowns.
The spin-wave spectra will be obtained in Sec. III by solving
the equation group developed and consequently by perform-
ing the new transformation. In Sec. IV, the results for a spe-
cial case (Jab5Jbc), i.e., an antiferromagnet, will be dis-
cussed briefly. Section V is for concluding remarks. The
results, obtained in this work, might be suitable for the four-

sublattice systems with exchange constants
(Jab'JcdÞJbc'Jda).

II. HAMILTONIAN AND FORMALISM

In the present work, we consider the four-sublattice
Heisenberg ferrimagnet and/or ferromagnet with different
isotropic exchange constants between spins in the different
sublattices, modeled by the following Hamiltonian:

H52(̂
l ,i &

Jl ,i ; l ,i1dSl ,i•Sl ,i1d52(
i ,d

JabSa,i•Sb,i1d2(
j ,d

JbcSb, j•Sc, j1d2(
m,d

JcdSc,m•Sd,m1d2(
n,d

JdaSd,n•Sa,n1d

~ l5a,b,c,d!, ~1!

wherel denotes four sublatticesa, b, c, andd. In the case of
ferrimagnet the exchange constants are negative whereas in
the case of the ferromagnet they are positive.d represents
that only the exchanges between the nearest neighbors are
taken into account. The number of the nearest neighbors is
Z. Si5^Si

x ,Si
y ,Si

z& are operators belonging to the spin-S
representation, whose commutation relations are

@Si
6 ,Sj

z#57d i j Si
6 ; @Si

1 ,Sj
2#52d i j Si

z ~2!

with

Si
6[Si

x6 iSi
y .

To simplify, in this work we shall study the case of
Jab5JcdÞJbc5Jda and we shall only deal with the case of
the same spin amplitudes for the different sublattices. We
restrict ourselves to the low-temperature region ofT!Tc .
The initial state is assumed to be of the completely ordered
state, in which all spins couple antiparallel or parallel along
the z axis for the ferrimagnet or the ferromagnet, respec-
tively. By use of the Holstein-Primakoff transform2 and the
linear spin-wave approximation,3,4 retaining terms up to the
second order in the boson operatorsa i

1, ai ; b j
1, bj ; cm

1, cm ;
d n

1 anddn for the sublatticesa, b, c, andd, respectively, we
have

H522NZS2~ uJabu1uJbcu!1ZS~ uJabu1uJbcu!F(
i
ai

1ai1(
j
bj

1bj1(
m

cm
1cm1(

n
dn

1dnG1SF uJabu(
id

~aibi1d

1ai
1bi1d

1 !1uJbcu(
jd

~bjcj1d1bj
1cj1d

1 !1uJabu(
md

~cmdm1d1cm
1dm1d

1 !1uJbcu(
nd

~dnan1d1dn
1an1d

1 !G ~3a!

and

H522NZS2~Jab1Jbc!1ZS~Jab1Jbc!F(
i
ai

1ai1(
j
bj

1bj1(
m

cm
1cm1(

n
dn

1dnG1SFJab(
id

~ai
1bi1d1aibi1d

1 !

1Jbc(
jd

~bj
1cj1d1bjcj1d

1 !1Jab(
md

~cm
1dm1d1cmdm1d

1 !1Jbc(
nd

~dn
1an1d1dnan1d

1 !G ~3b!

for the ferrimagnet and the ferromagnet, respectively.
The Hamiltonians are rewritten by introducing the Fourier transforms of the boson operators in the reduced Brillouin zone:

H522NZS2~ uJabu1uJbcu!1ZS~ uJabu1uJbcu!(
k

@ak
1ak1bk

1bk1ck
1ck1dk

1dk#1ZS(
k

gk@ uJabu~ak
1bk

11akbk!

1uJbcu~bk
1ck

11bkck!1uJabu~ck
1dk

11ckdk!1uJbcu~dk
1ak

11dkak!# ~4a!

and

H522NZS2~Jab1Jbc!1ZS~Jab1Jbc!(
k

@ak
1ak1bk

1bk1ck
1ck1dk

1dk#1ZS(
k

gk@Jab~ak
1bk1akbk

1!1Jbc~bk
1ck1bkck

1!

1Jab~ck
1dk1ckdk

1!1Jbc~dk
1ak1dkak

1!#. ~4b!
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Here

gk5
1

Z (
d

eik•d.

Usually, at this step, one needs to perform the Bogoliubov
transformation9 for eliminating the nondiagonal terms in the
Hamiltonian. In the present case, the Bogoliubov transforma-
tion should be extended so that it is applicable for the four-
sublattice systems. The new transformation may be written
as the following matrixes:

F ak
1

bk

jk
1

hk

G5F a1ka2k
a3k
a4k

a2k
a5k
a6k
a7k

a3k
a6k
a8k
a9k

a4k
a7k
a9k
a10k

GF ak1bkck1
dk

G ~5a!

and

F ak
1

bk
1

jk
1

hk
1

G5F a1ka2k
a3k
a4k

a2k
a5k
a6k
a7k

a3k
a6k
a8k
a9k

a4k
a7k
a9k
a10k

GF ak1bk1ck1
dk

1

G ~5b!

for the ferrimagnet and the ferromagnet, respectively, and
consequently their reversed transformation can be written as

F ak1bkck1
dk

G5F A1k

A2k

A3k

A4k

A2k

A5k

A6k

A7k

A3k

A6k

A8k

A9k

A4k

A7k

A9k

A10k

GF ak
1

bk

jk
1

hk

G ~6a!

and

F ak1bk1ck1
dk

1

G5F A1k

A2k

A3k

A4k

A2k

A5k

A6k

A7k

A3k

A6k

A8k

A9k

A4k

A7k

A9k

A10k

GF ak
1

bk
1

jk
1

hk
1

G . ~6b!

From the relationship between the parametersaik and Ajk
~i51,2,...10 andj51,2,...10!, one obtains ten equations~here
we omit them to simplify!. The commutation relations of the
new operators,

@ak ,ak8
1

#5dkk8 ,

@bk ,bk8
1

#5dkk8 ,

@jk ,jk8
1

#5dkk8 ,

@hk ,hk8
1

#5dkk8 ,

lead to four equations

a1k
2 1a3k

2 2a2k
2 2a4k

2 51, ~7a!

a5k
2 1a7k

2 2a2k
2 2a6k

2 51, ~8a!

a3k
2 1a8k

2 2a6k
2 2a9k

2 51, ~9a!

a7k
2 1a10k

2 2a4k
2 2a9k

2 51 ~10a!

or

a1k
2 1a3k

2 1a2k
2 1a4k

2 51, ~7b!

a5k
2 1a7k

2 1a2k
2 1a6k

2 51, ~8b!

a3k
2 1a8k

2 1a6k
2 1a9k

2 51, ~9b!

a7k
2 1a10k

2 1a4k
2 1a9k

2 51. ~10b!

For eliminating the nondiagonal terms, i.e.,akbk1a k
1b k

1,
akj k

11jka k
1, akhk1a k

1h k
1, bkjk1b k

1j k
1, bkh k

1

1hkb k
1, and jkhk1j k

1h k
1 for the ferrimagnet ora k

1bk
1akb k

1, a k
1jk1akj k

1, a k
1hk1akh k

1, b k
1jk1bkj k

1,
b k

1hk1bkh k
1, and j k

1hk1jkh k
1 for the ferromagnet, one

needs to establish the following six equations, respectively:

~Jab1Jbc!@A1kA2k1A2kA5k1A3kA6k1A4kA7k#

1gk@Jab~A1kA5k1A2k
2 1A3kA7k1A6kA4k!

1Jbc~A2kA6k1A5kA3k1A4kA2k1A7kA1k!#50,

~11!

~Jab1Jbc!@A1kA3k1A2kA6k1A3kA8k1A4kA9k#

1gk@Jab~A1kA6k1A3kA2k1A3kA9k1A8kA4k!

1Jbc~A2kA8k1A6kA3k1A4kA3k1A9kA1k!#50,

~12!

~Jab1Jbc!@A1kA4k1A2kA7k1A3kA9k1A4kA10k#

1gk@Jab~A1kA7k1A4kA2k1A3kA10k1A9kA4k!

1Jbc~A2kA9k1A7kA3k1A4k
2 1A10kA1k!#50, ~13!

~Jab1Jbc!@A2kA3k1A5kA6k1A6kA8k1A7kA9k#

1gk@Jab~A2kA6k1A3kA5k1A6kA9k1A8kA7k!

1Jbc~A5kA8k1A6k
2 1A7kA3k1A9kA2k!#50, ~14!

~Jab1Jbc!@A2kA4k1A5kA7k1A6kA9k1A7kA10k#

1gk@Jab~A2kA7k1A4kA5k1A6kA10k1A9kA7k!

1Jbc~A5kA9k1A7kA6k1A7kA4k1A10kA2k!#50,

~15!

~Jab1Jbc!@A3kA4k1A6kA7k1A8kA9k1A9kA10k#

1gk@Jab~A3kA7k1A4kA6k1A8kA10k1A9k
2 !

1Jbc~A6kA9k1A7kA8k1A4kA9k1A10kA3k!#50.

~16!

Although Eqs.~11!–~16! are suitable for both ferrimagnet
and ferromagnet, the different commutation relations shown
in Eqs. ~7!–~10! will result in that the solutions for the pa-
rametersaik andAjk will be quite different for both cases.

Then the Hamiltonian can be written as follows:
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H5H01H081H1 , ~17!

where

H0522NZS2~uJabu1uJbcu!, ~18a!

H085ZS(
k

$2~ uJabu1uJbcu!~A2k
2 1A4k

2 1A6k
2 1A9k

2 !1@ uJabu~A1kA2k1A2kA5k1A3kA6k1A4kA7k1A3kA4k1A6kA7k1A8kA9k

1A9kA10k!1uJbcu~A2kA3k1A5kA6k1A6kA8k1A7kA9k1A4kA1k1A7kA2k1A9kA3k1A10kA4k!#gk%, ~19a!

H15ZS(
k
„$~ uJabu1uJbcu!~A1k

2 1A2k
2 1A3k

2 1A4k
2 !12@ uJabu~A1kA2k1A3kA4k!1uJbcu~A2kA3k1A4kA1k!#gk%ak

1ak1$~ uJabu

1uJbcu!~A2k
2 1A5k

2 1A6k
2 1A7k

2 !12@ uJabu~A2kA5k1A6kA7k!1uJbcu~A5kA6k1A7kA2k!#gk%bk
1bk1$~ uJabu1uJbcu!~A3k

2

1A6k
2 1A8k

2 1A9k
2 !12@ uJabu~A3kA6k1A8kA9k!1uJbcu~A6kA8k1A9kA3k!#gk%jk

1jk1$~ uJabu1uJbcu!~A4k
2 1A7k

2 1A9k
2

1A10k
2 !12@ uJabu~A4kA7k1A9kA10k!1uJbcu~A7kA9k1A10kA4k!#gk%hk

1hk… ~20a!

for the ferrimagnet and

H0522NZS2~Jab1Jbc!, ~18b!

H085ZS(
k

$@Jab~A1kA2k1A2kA5k1A3kA6k1A4kA7k1A3kA4k1A6kA7k1A8kA9k1A9kA10k!1Jbc~A2kA3k1A5kA6k

1A6kA8k1A7kA9k1A4kA1k1A7kA2k1A9kA3k1A10kA4k!#gk%, ~19b!

H15ZS(
k
„$~Jab1Jbc!~A1k

2 1A2k
2 1A3k

2 1A4k
2 !12@Jab~A1kA2k1A3kA4k!1Jbc~A2kA3k1A4kA1k!#gk%ak

1ak1$~Jab1Jbc!

3~A2k
2 1A5k

2 1A6k
2 1A7k

2 !12@Jab~A2kA5k1A6kA7k!1Jbc~A5kA6k1A7kA2k!#gk%bk
1bk1$~Jab1Jbc!~A3k

2 1A6k
2 1A8k

2

1A9k
2 !12@Jab~A3kA6k1A8kA9k!1Jbc~A6kA8k1A9kA3k!#gk%jk

1jk1$~Jab1Jbc!~A4k
2 1A7k

2 1A9k
2 1A10k

2 !

12@Jab~A4kA7k1A9kA10k!1Jbc~A7kA9k1A10kA4k!#gk%hk
1hk… ~20b!

for the ferromagnet. They are the Hamiltonians for the initial
state, the zero-point vibrating and the spin waves, respec-
tively.

Now the problem becomes to solve the equation group,
mentioned above, consisting of 20 equations and 20 un-
knowns~i.e., parametersaik andAjk!. As soon as the equa-
tion group is solved, the transformation developed above can
be performed and consequently the spin-wave spectra of the
present system can be obtained. In the next section, the pro-
cedure of solving the equation group will be carried out.

III. PROCEDURE FOR SOLVING THE EQUATION
GROUP

Following the analysis in the last section, one obtains an
equation group consisting of 20 equations and 20 unknowns.
In this section, we will try to find the solution of the equation
group so that the spin-wave spectra for the present system
may be calculated.

The equation group, established in the last section, is very
complex and hard to be solved. In order to solve this equa-
tion group, we suggest an easy way to find out the simplest
form of the transformation matrixes and to reduce the num-

ber of unknowns and equations. For the present system, it
can be proved that it is necessary to establish an equation
group, including eight equations and eight unknowns.

In this case, the transformation matrixes are

F ak
1

bk

jk
1

hk

G5F a1ka2k
a3k
a4k

a2k
a1k
a4k
a3k

a3k
a4k
a1k
a2k

a4k
a3k
a2k
a1k

GF ak1bkck1
dk

G ~21a!

and

F ak1bkck1
dk

G5F A1k

A2k

A3k

A4k

A2k

A1k

A4k

A3k

A3k

A4k

A1k

A2k

A4k

A3k

A2k

A1k

GF ak
1

bk

jk
1

hk

G ~22a!

for the ferrimagnet, and
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F ak
1

bk
1

jk
1

hk
1

G5F a1ka2k
a3k
a4k

a2k
a1k
a4k
a3k

a3k
a4k
a1k
a2k

a4k
a3k
a2k
a1k

GF ak1bk1ck1
dk

1

G ~21b!

and

F ak1bk1ck1
dk

1

G5F A1k

A2k

A3k

A4k

A2k

A1k

A4k

A3k

A3k

A4k

A1k

A2k

A4k

A3k

A2k

A1k

GF ak
1

bk
1

jk
1

hk
1

G ~22b!

for the ferromagnet, respectively. Comparing the matrixes
~21! and ~22! with the matrixes~5! and ~6!, one has the
relations between the parameters:

~1! a1k5a5k5a8k5a10k , a2k5a9k , a3k5a7k ,

a4k5a6k ;

and

~2! A1k5A5k5A8k5A10k , A2k5A9k , A3k5A7k ,

A4k5A6k .

Then the commutation relations of the new operators be-
come one equation,

a1k
2 1a3k

2 2a2k
2 2a4k

2 51 ~23a!

for the ferrimagnet or

a1k
2 1a3k

2 1a2k
2 1a4k

2 51 ~23b!

for the ferromagnet. Equations~11!–~16! are reduced to the
following three equations:

2~Jab1Jbc!~A1kA2k1A3kA4k!1gk@Jab~A1k
2 1A2k

2 1A3k
2

1A4k
2 !12Jbc~A1kA3k1A2kA4k!#50, ~24!

~Jab1Jbc!~A1kA3k1A2kA4k!1gk@Jab~A1kA4k1A2kA3k!

1Jbc~A1kA2k1A3kA4k!#50, ~25!

2~Jab1Jbc!~A1kA4k1A2kA3k!1gk@2Jab~A1kA3k1A2kA4k!

1Jbc~A1k
2 1A2k

2 1A3k
2 1A4k

2 !#50, ~26!

and the relations between the parametersaik andAjk are

A1k5
1

Y
@a1k~a1k

2 2a2k
2 2a3k

2 2a4k
2 !12a2ka3ka4k#, ~27!

A2k5
1

Y
@a2k~a2k

2 2a1k
2 2a3k

2 2a4k
2 !12a1ka3ka4k#, ~28!

A3k5
1

Y
@a3k~a3k

2 2a1k
2 2a2k

2 2a4k
2 !12a1ka2ka4k#, ~29!

A4k5
1

Y
@a4k~a4k

2 2a1k
2 2a2k

2 2a3k
2 !12a1ka2ka3k#. ~30!

Here

Y5a1k
4 1a2k

4 1a3k
4 1a4k

4 18a1ka2ka3ka4k22a1k
2 a2k

2

22a1k
2 a3k

2 22a1k
2 a4k

2 22a2k
2 a3k

2 22a2k
2 a4k

2 22a3k
2 a4k

2 .

~31!

Using the relation of Eq.~23a! or ~23b!, one may rewrite
Eqs.~27!–~30! as

A1k5
1

Y
@a1k12a3k~a2ka4k2a1ka3k!#, ~32a!

A2k52
1

Y
@a2k12a4k~a2ka4k2a1ka3k!#, ~33a!

A3k5
1

Y
@a3k12a1k~a2ka4k2a1ka3k!#, ~34a!

A4k52
1

Y
@a4k12a2k~a2ka4k2a1ka3k!#, ~35a!

or

A1k5
1

Y
@a1k~2a1k

2 21!12a2ka3ka4k#, ~32b!

A2k52
1

Y
@a2k~2a2k

2 21!12a1ka3ka4k#, ~33b!

A3k5
1

Y
@a3k~2a3k21!12a1ka2ka4k#, ~34b!

A4k52
1

Y
@a4k~2a4k21!12a1ka2ka3k#. ~35b!

To simplify, one defines the following parameters:

p1k5a1ka2k1a3ka4k , ~36!

p2k5a1ka4k1a2ka3k , ~37!

p3k5a1ka3k1a2ka4k , ~38!

pk5a2ka4k2a1ka3k , ~39!

qk5a1k
2 1a2k

2 1a3k
2 1a4k

2 . ~40!

Considering Eqs.~32!–~35! above, Eqs.~24! minus Eq.
~26! results in

2pk51 ~41a!

for the ferrimagnet and

2a1k
2 12a3k

2 12a1ka3k22a2ka4k2150 ~41b!

for the ferromagnet, respectively, and/or

~Jab2Jbc!gk~a1k2a3k!
222~Jab1Jbc!~a1k2a3k!~a2k

2a4k!1~Jab2Jbc!gk~a2k2a4k!
250. ~42!

Inserting Eq.~41a! into Eqs.~24!–~26! leads to

53 2573SPIN WAVES IN A FOUR-SUBLATTICE HEISENBERG . . .



p1k1p2k5
gk~qk12p3k!

2
~43!

and

p1k1p2k5
qk12p3k
2gk

, ~44!

which corresponds tog k
2[1 and is not meaningful.

WhenJabÞJbc , Eq. ~42! equals

a1k2a3k5K~a2k2a4k!. ~45!

Here

K5
16A12X2

X
~46!

with

X5
~Jab2Jbc!gk

Jab1Jbc
. ~47!

On the other hand, from Eq.~42!, one may obtain

qk52Fp3k1 p1k2p2k
X G . ~48!

Inserting Eq.~48! into Eq. ~24! and/or~26!, one has

2pk521 ~49!

or

Jabp2k2Jbcp1k2gk~Jab2Jbc!p3k50. ~50!

Combining Eq.~49! with Eq. ~25! results in

qk52@p3k1X~p1k2p2k!#. ~51!

Equations~48! and~51! lead to the relation ofX2[1, namely,

gk
2[

~Jab1Jbc!
2

~Jab2Jbc!
2>1,

which is not meaningful. Thus Eq.~49! should be omitted,
also.

It can be proved that Eq.~41b! is not meaningful either.
WhenJabÞJbc , Eq. ~50! becomes

p3k5
Jabp2k2Jbcp1k
gk~Jab2Jbc!

. ~52!

Due to Eq.~52!, Eq. ~48! can be rewritten as

qk52
Jabp1k2Jbcp2k
gk~Jab2Jbc!

. ~53!

Inserting Eqs.~52! and ~53! into Eq. ~25!, one has

~11gk
2!JabJbc~p1k2p2k!~122pk!

21~12gk
2!@~Jbc

2 p1k

2Jab
2 p2k!~114pk

2!1~Jbc
2 p2k2Jab

2 p1k!4pk#50.

~54!

Now Eqs.~24!–~26! become Eqs.~52!, ~53!, @or Eq.~45!#,
and ~54!. The equation group consists of these three equa-

tions together with Eq.~23! and Eqs.~27!–~30!. Since the
latter four equations are relations between the parametersaik
andAjk , at this step, they are not important to be dealt with
for solving the equation group. Therefore, one is only con-
cerned with a smaller equation group, consisting of Eqs.
~23!, ~52!, ~53! @or Eq. ~45!#, and~54!.

From Eqs.~23! and ~45!, one has

a1k5
1

2
K~a2k2a4k!6

AD

4
, ~55!

a3k52
1

2
K~a2k2a4k!6

AD

4
. ~56!

Here

D58a2k
2 18a4k

2 1824K2~a2k2a4k!
2 ~57a!

for the ferrimagnet and

D5828a2k
2 28a4k

2 24K2~a2k2a4k!
2 ~57b!

for the ferromagnet, respectively.
Inserting Eqs.~55! and ~56! into Eqs.~52! and ~54!, one,

respectively, obtains

6AD~a2k1a4k!52gk~a2k1a4k!
21M ~a2k2a4k!

212gk ,
~58!

6AD~a2k1a4k!52
1

N F22~K221!~a2k2a4k!
2

a2k2a4k
G2

~59!

with

M572gkKA12X2, ~60!

N5
~12gk

2!~K221!2~Jbc
2 2Jab

2 !

2K@~Jab
2 1Jbc

2 !~12gk
2!12JabJbc~11gk

2!#
. ~61!

For the convenience, setting a2k5E1F and
a4k52E1F, one has

6ADF54gkF
212ME21gk , ~62!

6ADF52
@122~K221!E2#2

2NE2
. ~63!

After defining u5E2 and v5F2, from Eqs.~62! and ~63!,
one immediately obtains

16~12gk
2!v2116~12gkM2K2!uv18~12gk

2!v24M2u2

24gkMu2gk
250 ~64a!

for the ferrimagnet or

16~11gk
2!v2116~11gkM1K2!uv28~12gk

2!v14M2u2

14gkMu1gk
250 ~64b!

for the ferromagnet and

4@MN1~K221!2#u212@gkN22~K221!#u18gkNuv11

50 ~65!

2574 53ZHANG ZHI-DONG



for both cases. Equation~64! may be reduced to a quartic
equation by using the relation of Eq.~65!:

u41pu31qu21ru1s50, ~66!

where for the ferrimagnet one has

p5
4~K221!

T
@gk

2N222gkN~K221!

22MN22~12gk
2!~K221!2#, ~67a!

q5
1

T
@2gk

2N212gkN~K221!12MN

16~12gk
2!~K221!2#, ~68a!

r52
2~12gk

2!~K221!

T
, ~69a!

s5
12gk

2

4T
~70a!

with

T54@M2N212gkMN2~K221!12MN~K221!2

12gkN~K221!31~12gk
2!~K221!4#, ~71a!

and for the ferromagnet one has

p5
4

T
@2gkMN214gkNK

2~K221!22MN~K221!

2gk
2N2~K211!22~11gk

2!~K221!3#, ~67b!

q5
1

T
@3gk

2N222gkN~5K223!12MN

16~11gk
2!~K221!2#, ~68b!

r5
2

T
@gkN2~11gk

2!~K221!#, ~69b!

s5
11gk

2

4T
~70b!

with

T54@M2N222gkMN2~K211!12MN~K221!2

22gkN~K421!1~11gk
2!~K221!4#. ~71b!

The quartic equation may be reduced to the form26

x41ax21bx1c50, ~72!

by the substitutionu5x2p/4. Here

a5q2
3

8
p2, ~73!

b5r2
1

2
pq1

1

8
p3, ~74!

c5s2
1

4
pr1

1

16
p2q2

3

256
p4. ~75!

Let l , m, andn denote the roots of the resolvent cubic:

t31p8t21q8t1r 850, ~76!

where

p85
a

2
5
1

2 S q2
3

8
p2D , ~77!

q85
1

16
~a224c!5

1

16 S q22qp21
3

16
p424s1pr D , ~78!

r 852
1

64
b252

1

64 S r2
1

2
pq1

1

8
p3D 2. ~79!

The required roots of the reduced quartic are

x151Al1Am1An, ~80!

x251Al2Am2An, ~81!

x352Al1Am2An, ~82!

x452Al2Am1An, ~83!

where the selection of the square root to be attached satisfy

AlAmAn52
b

8
. ~84!

The cubic equation of Eq.~76! may be reduced by the sub-
stitution of t5y2p8/3 to the normal form26

y31a8y1b850, ~85!

where

a85
1

3
~3q82p82!52

1

48
q22

1

4
s1

1

16
pr, ~86!

b85
1

27
~2p8329p8q8127r 8!

52
1

864
q32

1

64
r 21

1

192
pqr1

1

24
sq2

1

64
sp2,

~87!

which has the solutionsy1, y2, andy3:

y15A1B, ~88!

y252
1

2
~A1B!1

i)

2
~A2B!, ~89!

y352
1

2
~A1B!2

i)

2
~A2B!, ~90!

wherei 2521 and,
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A5F2
b8

2
1S b82

4
1
a83

27 D ~1/2!G ~1/3!

, ~91!

B5F2
b8

2
2S b82

4
1
a83

27 D ~1/2!G ~1/3!

. ~92!

Then one has solutionstg5yg2p8/3 ~g51, 2, and 3! which
correspond to the roots of the cubic equation~76!, namely,l ,
m, andn. Noticing the substitution relation, one also finds
the roots of the quartic equation~66! areuh5xh2p/4 ~h51,
2, 3, and 4!. From Eq.~65!, one obtains the values for the
solutions ofv:

v52
1

8gkNu
~4@MN1~K221!2#u2

12@gkN22~K221!#u11!. ~93!

According to the definitions above, finally, one obtains

a2k56Au6Av, ~94!

a4k57Au6Av, ~95!

or

a2k56Au7Av, ~96!

a4k57Au7Av. ~97!

Thena1k anda3k are determined by Eqs.~55! and ~56! and
Ajk ~j51,2,3,4! are given by Eqs.~27!–~30!, respectively.
Corresponding to the rootsuh ~h51, 2, 3, and 4!, there are
four groups of solutions for the parametersaik and Ajk ~i
51,2,3,4; j51,2,3,4!. It can be proved that the four groups
of the solutions, obtained above, are equal for performing the
transformation and calculating the spin-wave spectra.

After performing the transformation, one obtains the final
form of the Hamiltonian for the present system:

H5H01H081H1 , ~98!

where

H0522NZS2~ uJabu1uJbcu!, ~99!

H0854ZS(
k

$~ uJabu1uJbcu!~A2k
2 1A4k

2 !1@ uJabu~A1kA2k

1A3kA4k!1uJbcu~A1kA4k1A2kA3k!#gk% ~100a!

or

H0854ZS(
k

$@Jab~A1kA2k1A3kA4k!

1Jbc~A1kA4k1A2kA3k!#gk% ~100b!

and

H15ZS(
k

$~ uJabu1uJbcu!~A1k
2 1A2k

2 1A3k
2 1A4k

2 !

12@ uJabu~A1kA2k1A3kA4k!1uJbcu~A2kA3k

1A4kA1k!#gk%@ak
1ak1bk

1bk1jk
1jk1hk

1hk#. ~101!

They are the energies for the initial state, the zero-point vi-
brating, and the spin waves, respectively.

The spin-wave spectrum of the ferromagnet has the same
form as that of the ferrimagnet, but the different commuta-
tion relations of the new operators in the two systems result
in the different parametersp, q, r , ands. It should be noticed
that the zero-point vibrating energies in the ferrimagnetic and
ferromagnetic systems are also different. It is obvious that
the spin-wave spectra depend on the strength of the exchange
constantsJab andJbc . It can be seen from Eq.~101! that, in
the present four-sublattice system with the exchange con-
stants beingJab5JcdÞJbc5Jda , the degeneracy of the spin-
wave spectra exists and that the number of the degeneracy of
the spin-wave spectra is four. There occurs the splitting of
the energy level in the present system. It can be seen from
Eqs. ~98!–~101! that there are four different energy levels.
The different values for the energy levels are ascribed to the
fact that there exist positive and negative signs in the for-
mula of K @see Eq.~46!#, aik @see Eqs.~94! and ~95!# and
thusAjk .

IV. A SPECIAL CASE „Jab5Jbc…: ANTIFERROMAGNET

Following the analysis in the last section, finally, one ob-
tains the spin-wave spectra for the present system, which are
very complicated. In this section, a special and simple case
(Jab5Jbc), i.e., an antiferromagnet, will be discussed briefly.

In this case, it can be proved that it is sufficient and nec-
essary to establish an equation group, including six equations
and six unknowns and that the transformation matrixes can
be taken as

S ak
1

bk

jk
1

hk

D 5S a1k
a2k
a3k
a2k

a2k
a1k
a2k
a3k

a3k
a2k
a1k
a2k

a2k
a3k
a2k
a1k

D S ak
1

bk
ck

1

dk

D ~102!

and

S ak
1

bk
ck

1

dk

D 5S A1k

A2k

A3k

A2k

A2k

A1k

A2k

A3k

A3k

A2k

A1k

A2k

A2k

A3k

A2k

A1k

D S ak
1

bk

jk
1

hk

D .

~103!

Equations~23!–~26! become

a1k
2 1a3k

2 22a2k
2 51, ~104!

4~A1k1A3k!A2k1gk@~A1k1A3k!
214A2k

2 #50, ~105!

~A1kA3k1A2k
2 !1gk~A1k1A3k!A2k50, ~106!

and the relations between the parametersaik andAjk are

A1k5
1

Y
~a1k2a3k!@22a2k

2 1a1k~a1k1a3k!#, ~107!
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A2k52
1

Y
a2k~a1k2a3k!

2, ~108!

A3k5
1

Y
~a1k2a3k!@2a2k

2 2a3k~a1k1a3k!#. ~109!

Here

Y5~a1k2a3k!
2@~a1k1a3k!

224a2k
2 #. ~110!

Now the equation group consists of the six equations listed
above, i.e., Eqs.~104!–~109!. Solving the above equation
group, one immediately obtains the two groups of solutions:

a1k5
1

2
@16A114W2#,

a2k5W

a3k5
1

2
@17A114W2#,

A1k5
1

2 F 1

124W2 6
1

A114W2G , ~111!

A2k5
W

4W221
,

A3k5
1

2 F 1

124W2 7
1

A114W2G ,
and

a1k52
1

2
@17A114W2#,

a2k52W

a3k52
1

2
@16A114W2#,

~112!

A1k52
1

2 F 1

124W2 7
1

A114W2G ,
A2k5

W

124W2 ,

A3k52
1

2 F 1

124W2 6
1

A114W2G
with

W5
16A12gk

2

2gk
. ~113!

It can be proved that the two groups of the solutions, listed
above, are equal for performing the transformation and cal-
culating the spin-wave spectra. After performing the transfor-
mation, one obtains the final form of the Hamiltonian for the
present system:

H5H01H081H1524NZS2uJu7ZuJuS(
k

gk
2

A12gk
2

12ZuJuS(
k

~16A12gk
2!~ak

1ak1bk
1bk1jk

1jk

1hk
1hk!. ~114!

It can be seen from Eq.~114! that in the four-sublattice sys-
tem, with the same exchange constants and the same spin
amplitudes for different sublattices, there exists the degen-
eracy of the spin-wave spectra. It has been well known that
the value for the number of the degeneracy of the spin-wave
spectra is two in a two-sublattice Heisenberg antiferromag-
net. Thus it is easy to understand that the value for the num-
ber of such degeneracy is four in the present four-sublattice
system. However, on the other hand, it is quite surprising that
there occurs the splitting of the energy level. It can be seen,
from Eq. ~114!, that there are two different energy levels.
The two energy levels are ascribed to the coexistence of the
signs6 in Eq. ~113!. This differs from the situation in the
two sublattice antiferromagnet in which one of the signs6 is
not meaningful and must be omitted during the diagonalizing
process. The sublattice magnetization at low temperature is
an interesting subject of many investigations. At first, one
likes to discuss the ground state at 0 K of thepresent system.
At T50 K, the energy for the ground state is

E0524NZS2uJu2ZuJuS(
k

gk
2

A12gk
2
, ~115!

which is lower than that of the initial state and is not the
same as that of the ground state in the two-sublattice system.
The spin-wave spectrum, corresponding to the ground state,
is

\vk
15~11A12gk

2!. ~116!

Another energy level in Eq.~114! is for the first exciton level
whose effects can be neglected at very low temperatures.

Thus the energy at low temperatures of the four-sublattice
Heisenberg antiferromagnet is

H5H01H081H1524NZS2uJu2ZuJuS(
k

gk
2

A12gk
2

12ZuJuS(
k

~11A12gk
2!~ak

1ak1bk
1bk1jk

1jk

1hk
1hk!. ~117!

It is easy to see that the spin-wave spectrum is linear ink
for smallk. The sublattice magnetization at low temperature
of the present system is similar to that in the system of the
two sublattice antiferromagnet. The temperature depen-
dences of the magnetization and the specific heat of the
present system behave as theT3 laws of an antiferromagnet.
This is the direct result of the assumption of the same ex-
change constants and the same spin amplitudes for different
sublattices.
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V. CONCLUDING REMARKS

In conclusion, the spin-wave spectra at low temperatures
of the four-sublattice Heisenberg ferrimagnet and ferromag-
net with exchange constantsJab5JcdÞJbc5Jda have been
determined by performing the standard Holstein-Primakoff
and an extended Bogoliubov transformation. In order to per-
form the transformation, an equation group consisting of 20
equations and 20 unknowns has been established. The equa-
tion group was solved by reducing the numbers of the equa-
tions and the unknowns. It has been found that in the present
four-sublattice ferrimagnetic or ferromagnetic system the de-
generacy of the spin-wave spectra exists. On the other hand,
there occurs the splitting of the energy level so that atT50
K there are four energy levels. One of which is the ground
state and others are exciton levels. The sublattice magnetiza-
tion at low temperature of the present ferrimagnetic or ferro-
magnetic system behaves as that of the two-sublattice ferri-
magnet or ferromagnet.

The spin-wave spectrum of the ferromagnet has the same
form as that of the ferrimagnet, but the different commuta-
tion relations of the new operators in the two systems result
in the different parametersp, q, r , and s. The zero-point
vibrating energies in the two systems are also different.

A special case (Jab5Jbc), i.e., a four-sublattice Heisen-
berg antiferromagnet, was discussed briefly. In the four-

sublattice system, within the assumption of the same ex-
change constants and the same spin amplitudes for different
sublattices, there also exists the degeneracy of the spin-wave
spectra. There occurs the splitting of the energy level, and at
T50 K there are two energy levels for a ground state and an
exciton level, respectively. The sublattice magnetization at
low temperature of the antiferromagnet is similar to that in
the two-sublattice antiferromagnet. The temperature depen-
dences of the magnetization and the specific heat of the four-
sublattice antiferromagnet satisfy theT3 laws as those in the
two-sublattice antiferromagnet.

The results obtained in this work for the four-sublattice
ferrimagnet and/or ferromagnet with exchange constants
Jab5JcdÞJbc5Jda , might be suitable for the four-sublattice
systems with different exchange constants
(Jab'JcdÞJbc'Jda). The method as well as the transfor-
mation can be applied to other four-sublattice systems or
other multisublattice systems.
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