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Hole motion in the Ising antiferromagnet: An application of the recursion method

Oleg A. Starykhi and George F. Reiter
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(Received 11 July 1995

We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path
approximation we find the hole’s Green'’s function as well as its wave function for arbitrary valtids oThe
effect of small transverse interaction also is taken into account. Our results provide some additional insight into
the self-consistent Born approximation.

[. INTRODUCTION keep things as simple as possible, we treat ttHdemodel
within the linear spin-wave approximation, which has no for-
The problem of the hole motion in a quantum antiferro-mal justification in the Ising limit. Nevertheless, we show
magnet has become one of the central issues in developirifat the physics of the problem remains essentially un-
the theory of high¥, superconductivity. The problem is an changed by this drastic approximation. Moreover, the spin-
old onel? but only recently has a good understanding of itwave formalism permits us an important direct comparison
been reachedfor a review see, e.g., Ref.).3The self- with the results of the self-consistent Born approximation
consistent Born approximatidn turns out to be extremely approactt.
successful in predicting the energy of the quasiparfiéle, ~ The recursion method consists in the followitfgGiven
mainly due to the vanishing of the low-order vertex the Hamiltonian and the initial vectt), it generates a new
correction®. Results obtained within this approximation basis of vectors according to the rule
agree well with exact diagonalization studies on small >
cluster€ The basic feature is that hole motion is strongly [n+1)=H|n)—ay|n)—bj[n—1), 1)
renormalized by the cloud of spin excitatioftstortions it with |0)=0, andb?=(1|1). The coefficients in the recur-
causes and results in a n_arro?m_f ?he order of the superex- ance are calculated from
change constant) band with minima at the £ 7/2,* 7/2)

points on the boundary of the magnetic Brillouin zone. More (n|H|n) ) (n|n)

recent work by one of Jshas obtained the wave function of "y O (n—1n—-1) @

the hole within the same approximations and is also in agree- _ ) 0 o
ment with exact diagonalization resulfs. Remarkably, in the new basis the Hamiltonian has a tridiago-

If the radius of the magnetic polaron is small enough,nal form
which happens ai~t, its wave function can be constructed
variationally in direct spact;*?and the bandwidth becomes
of ordert?/J.

It was found long ago that hole motion in an antiferro-
magnet with strong Ising anisotropy produces a string of theand thus describes a fictitious semiline of “atoms” with local
overturned spins, which confines the hole to the origin of itsorbitals |n), diagonal energies,, and hopping elements
path? making the hole’s motion completely incoherent. Thep, to the n+1 atom. Then the diagonal Green’s function
possibility of curing the spin background by the hole goingG,(w)=(1|(w—H) 1) takes the form of a continued
one and a half times around an elementary loop on théaction
lattice® does not change this picture significantly, as the ef-
fective mass of such coherent motion is extremely high. Sur- b3
prisingly, the string picture seems to survive the limit of the Gu(w)= b2 ' 4)
isotropic Heisenberg model, where quantum fluctuations that w—a;— 2
can cure overturned spins are most effective. This shows up
in the subleading peaks above the quasiparticle peak in thg/e derive analytical expressions for the hole’s Green’s func-
hole spectral functioft? tion and wave function in the next section. The effect of a

The subject of the present work is to study the hole mosmall transverse interactiah is taken into account in Sec.
tion in an antiferromagnet with strong Ising anisotropy usingj||. We find that hole motion becomes coherent and describe

the recursion method. The method, also known as Lanczagfor different limits of t/J, ratio. Comparison with previous
technigque, was developed initially for the electronic structurgyorks is done in the Conclusion.

calculations of disordered systeis?’ and later generalized

for the f|r116|te-latt|ce calculations of the _strong_ly correlated II. THE ISING LIMIT

system$1® We show that the method is particularly well

suited for the problem at hand and derive many of the Let us consider the motion of the hole coupled to the
known, as well as some new, results within its framework. Toocalized spins on the lattice’ In the linear spin-wave ap-

Hon=ay,, Hnfl,n:Hn,nfl:bna

Hyn=0 forall |n—m|>1, (3

w_az_ P
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proximation, the Hamiltonian of theJ model reads”’ exception occurs whew(q) is momentum independent, i.e.,
in the Ising (@=0) case. In that case one has=J, and

H=2t3, $(K,a)(Cy Ci_q@q+Ci_qCidy)
ka |3>=(zt)2(§ $(P,q) $(P—0,d1)Cp_q—q,3q,3q Va0,
el

+3,>, w(k)a] ay, (10)
K where nowe(p,q) =y, g, andug=1, v,=0. The norm of
this state is
(KA =UgVi_qtvg¥, @(K)=V1-a®y],
1 (313)=(20*2 2. ¢(p,a)¢(P—0,01) $(P.1)
Yq=5[coda,) +coday)], ©) RN
X ¢p(p—1,11)(vadaya,_a; a;|vac
where we absorbed a factein our definition ofJ (z is a 1(vada 11% qvaQ
number of nearest neighbgrsi, andv , are the usual Bogol- A 5 5
ubov coefficients =(zt) qEq: $°(p, ) $“(P—0q.,d1) (11
A1
. / . w(Q), P w(Q)’ ®) because _of the properlglqup,qup,q,ql 0. Thus, ?mong
w(q) 2w(q) two possible pairings o& operators in(11) only the “diag-
anda=J, /J,. Each hopping of the hole produces emissionOnal 2 one _(|1:Q1’| =d) cozn_tnbgtes. l_\lot_e also _that
or absorption of the spin excitations. 4, Yp-q-q, = 1/z, and hencés=zt". Continuing one finds

For the problem of single-hole motion in an antiferromag- B B
net, it is natural to choose as a starting vector the state with_ _ 2q,0,L@(A) T (1) ]7(p.q) $*(P—0,01) s
one hole and no spin deviations, i.el)=c,|vac), where 3z 2q,q,%°(P,q)#*(P—0,01) -
|[vac) denotes vacuum for both hole and magnon operators.
Thus|vag is simply the Nel state. The next vector is then

14y=(z)® X $(p—q—a1,92) $(P—0,qy)

9.91.92
12)=H|1)=H{|1)=2t> $(p,q)c,_43q4Ivad. (7)
! 3 o™ X ¢(P,4)Cp_q-q, -q,Rq,2q,2q [VAO- (12)
Clearly, (1/2)=0, andb§=_<2|2>/<1|1>=(zt)22q¢2(p,q). Now, however, in addition to the “diagonal” pairing
Acting by H on|2), one finds (li=q;) a new one kK=q,,l,=0;,l,=0q) appears, for ex-

ample,
Hil2)=(z0° #(p,a)c; |vag +(z? 13
! <4|4>=<zt>6‘ (;)

+

X 2 $(P.a)#(P—.01)C5 q-q,34,3q Va0,
a1 2
+ 2 Yp—aYp-a,Yp-a;-0a,Yp-a-a,Yp-q-q;—q, |

d.d1.42
Hil2)=203) (@) ¢(p.a)cs gaglvag, (8 (13
This pairing describes a hole jumping around an elemen-
_JEqw(Q)¢2(D,Q) tary loop (a plaquette on a square lattice.5 times'® The
A= zq¢2(p,q) ' triple integral in (13) is calculated to give

, . , ) (1/2)34[ 2+ cosp,— py)[2+cosfp+py)]. It describes an ef-
Following the formula described in the Introduction, one ob-factive hole hopping along the same sublattice. The hopping

tains is maximal for p=(0,0) and minimal forp=(,0) or
(0,7r). Propagation via closed loops was studied in great
|3>=(zt)22 ¢(D,Q)¢(p—q,Q1)Cgfq7qla;1a§|VaC> detail in Ref. 17. Fod,>t the effectlvg hopplng corresponds
CILE to the tunneling through a potential barriét scales as

exf —4.6(J,/t)*?]*) and leads to the band with minima at
p=(0,0). In the opposite limitte>J,) the hole can travel
very far before noticing the confining potential because of
x d(p,a)ct_.a the finiteJ,, and the weight of the closed-loop paths among

BRI the long self-retraceable paths is very small. This point of
The procedure becomes untractable very quickly because sfew is supported by the results of Ref. 18, where it was
the branching: each action &f on a state witm magnons found that the ground-state energy of the one-hole system
produces again a state withmagnons (; term) as well as  scales as]§’3 in a wide range ofl,/t (1>J,/t>5x10"3),
states with (+1) and f—1) magnons Ifl; term), whose which is a characteristic feature of the retraceable-path ap-
coefficients have a complicated momentum dependence. Theoximation(see our discussion below

3 q0(q) 6%(p,q)
+th§ 0(Q) —2—2q¢(p,q)

qlvao. (9)
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Based on these arguments we will omit all closed-loop G(w)w—zt?G(w—J,)]=1, (19
contributions in the following. This corresponds to solving
the problem on a Bethe lattice or in the limit of infinite
dimensionality:® Diagrammatically this approximation con-
sists in neglecting the vertex correctidis.

With this simplification in mind, the procedure can be
iterated infinitely, and results in the following expression for
the coefficients of the recursion 1 Y(o)

G(0)=— —— =
a,=(n—1)J,, b2=zt?, foranyn=2. (14 (@) Jzt Y(o+3y)

which coincides with the self-consistent Born approxima-
tion® in agreement with our expectations. Let us try the
ansatz’

(20

As should be clear by now, lineardependence ai,, comes ) _
from the simple fact thati ;|n)=(n—1)J,|n). On the other Then Eq.(19) takes the form of the difference equation
hand, then independence db, is caused by the particular

form of the couplingy,_4. The strong momentum depen-

dence of this coupling favors only one particular pairing out Y(o—3,)+Y(0+Jd,)=—
of (n—1)! possible at thenth step of the recursion proce- Jzt
dure. This particular pairing is nothing but the retraceable-

path approximation of Brinkman and Ricdirst the last ex- \vnich is a well-known recursion relation for the Bessel

cited magnon is absorbed, then the one before last, etc. If thfe S22 _ -
OS50 ) tinctions?? and henceY (w)=AJ_,,; (24zt/J,). This im-

hole-boson coupling is momentum independent, as happens, | ) , 2\

for example, in the Holstein model, the outlined procedurénediately gives, for the Green’s function,

leads tob2~n,?° and, as a result, to a different physics.

So far we have found that Hamiltonid# has a simple J (24213,

tridiagonal form in the space spanned by the vedoydsee Gyy(w)=— i —el; z . (22)

Eq. (3)]. Then, for any vectofW) == W,[n) of this space, VZUI_ (i3 y13,(2VZH3,)

the Schrodinger equatiad|¥)=E|W¥) holds, or

(O]

Y(w), (21

(E—a,)¥,—b,_ ¥, 1— b, 1¥,.1=0, (15) This form is a direct consequence of the linear dependence of
) » a, onn (see Ref. 28 which, in turn, is an intrinsic feature of
with boundary conditiort¥,=0 (remember thal0)=0 by  the retraceable-path approximation. A similar expression was
constructiop. In the smalld (largen) limit we may use a  gptained within the retraceable-path approximateithout

continuum approximation to find using spin-wave transformatipin Ref. 24. Notice that en-
pene ergy appears only in the indexes of the Bessel functions.
+ [zt 2” +2\zt¥ +(n—1)J,¥ ,=E¥,, (16) Let us look at thet/.]z>_1 limit first. Here we _need the

an double asymptotic expansion of the Bessel function at a large

which is just the Schidinger equation for a particle on a Vvalue of the argument and indféx

semiline in the linear potential. Interestingly, indexplays

the role of coordinate along the path of the hole—this corre- 5 -
spondence is exact because we neglected all closed Ioops.JM cog( )~ \ [——— cos{ u(sing— 6 cosh)— — 1,
The + (—) sign in(16) corresponds to choosing energy 7 SINg 4

close to the uppeilower) edge of the band. At the bottom of
the band one findg2” behavior:

En=—2\zt—J,+ B2z "2, (17)
Somewhat lengthy calculations give an expected answer
Here — B,, are the zeros of the Airy function. It is known that gty ¢ P

the spin-wave approximation overestimates the bandwidth,

u>0, 0<o<w/2. (23

and more accurate treatment of the constraint leads to the J, < 1
replacement of/z by the yz—1 in the formulas above. The Gu(w)= 7{ ZO oo
result obtained is by no means new and goes back to the ztv= Y
1960s?

We would like to demonstrate a different approach here.
Consider the one-hole Green’s function, which has a contin-
ued fraction formsee Eq.(4)].

w,=—2zt=3,+ B,z ", (24

in complete agreement with the results of the Sdhnger

Gyw)= 1 (19) equation(17). Notice that residue of the poles isindepen-
= 7t ' dent and is given by,/\/zt, supporting the “dominant-
= 712 pole” approximation of Ref. 5. We note in passing that the
w=J,— o2d—... quasiclassical expression for the zeros of the Airy function
z

B,=[3m2 (v+2)]?® works extremely well even for=0:
A little thinking shows that it is equivalent to it gives ~2.32, compared to the exact valpg=2.34.
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In the oppositet/J,<1 limit one can use the standard to find the perturbation theory resultGq(w)

small argument expansion =(w+2zt33,)" .
, o . o Recently, one of Usderived a wave function that corre-
3 (x)=< f) (—1) (f) 25 sponds exactly to the self-consistent Born approximation
K 2) &EokT(p+k+1)\2) (SCBA),

W -

cl+ N—Wg 2tp(K,) Gy g €~ wg)C_q@q + - + N2

X 2 (z)"¢(k,q)Gy_q(€x— wg)- - (k—q—Gy— - - —Un-2,0n-1)
q.91, - Up—1
XGyq-q,—---—q, (€ @q— - —qu_l)c;,q,ql,_”,qn_lag~ . -a;rn_l |vac. (26)

Heree, =2 (¢) is the quasiparticle energy aix is the self-energy in the SCBA. The quasiparticle spectral weight is given
by (z,)%=(1- &Ek(w)/aw|msz)*l. Clearly, in our case the role of the momentuns played by the index. The specific

form of the Green'’s functioi22) immediately gives us that the chain product of the Green’s function in the last equation has

a simple form
-1\" 2zt 2zt
G(w—J)G(w—23)--Glo—nd)=|—| J_,_ b AN IR et
(w=J3,)G(w—2J,) (@w=nJy) (\/Et) ( nJZ)/JZ( 3, )/ /JZ( Jz)

Using again asymptotic expansion of the Bessel functions, we find for the hole in loweststatét/J,>1)

Jz
| P RO ~ —(c;—Nl’ZE VZYk-oCi_qac +- - +N"™
Vzt q arkmaTa
X > (—1)"z"?n cp as---a; ||lvag (27)
q,91,*,0n—1 7k7q ’),kiqi“'iqnfl kiqfqlf"'fqnfl q dh-1 ’
A1) G

for n<(yzt/3,)*3,

lll. SMALL J, LIMIT

A virtue of the present approach is that we can include the effect of the small transverse intetaction= aJ,<<J,. As
was already discussed in Ref. 5, analytical consideration is possible if one restricts oneself to limeacdaracy. Then
w(q)=1+0(a?), ug=1+0(a?), butvy=—3ay,. Hence,

1
¢(p:q):7p—q_§a7q7p+o(a2)- (28)
One finds for firsta andb coefficients
a;=0, a,=J,, b§=(2t)2§ (Yaeq— @¥pYa¥p—q) = Z(1—ay})). (29)
The key propertﬁqyp_qyﬁ_qzo ensures that the retraceable-path approximation is exact at low order, i.e., that

% #(p,d1) $(P—d1,9) H(P—a,d1) #(p,q)=0+O(a?). (30)
A1

Moreover, one can find



=, 2 PP ¢ (p-q—i-
= X Ap,A)dAp—a,q1) - dA(P—q—dy—
q.91,° - 0p-2
1 al1\"?’o
il T
As a result

(32

At the same
=(n—-1)J,.

time, there are no changes &,
Because of the difference betwebs and

bﬁiz, the continued fraction expression for the Greens
function is now equivalent to the following system of two

equations:
Giy(w) -
w)= ]
H —2t(1- ay;) Gl )
(33
1
G w)=

w—J,—7t?G o w—J;)

We introducedt?=t?(1— azB) here. Comparing the last

equation of(33) with Eqgs. (19) and (22) of the preceding
section one finds the answer

1 ‘]—(w—JZ)/JZ(Z\/;t/Jz)
vzt 3 ,5(2VZH3,)

G w)=— (34)

In the J,<1 limit, expression(34) takes the familiar form

(39

w,=—2\zt+ B,I2%zH 1
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"'_qnfzvqnfl)
"'_qnf3rqn72)q2 G*(P—d=0G1— —Un—2.0n-1)
n—-1
(3D
[
1 1 1
D+ > ——
=0 w—w, w—wy '*0wy—w,
1 37\ "% .
= — +( z Z) (\/Et)—lls
(,0_(,00
X Y ﬁ—rl 36
=5 V13(V+3/2)13 ( )

The last sum can be approximated by the integral from O to
some v,,, which, in turn, is determined by the condition
~2\/—t (upper edge of the incoherent bandlg& 0). In

th|s way we find that the last sum is given by4/7J,. We
substitute the result just found f@,(w) into the first of
Egs.(33) and find, after some algebra,

2 J,

4(m—2) \/—Nt

=

Guw)=
(37)

TJ
o= —2\/Zt+2.34023(\[zt) 3~ (ﬂ_—_zz)(l—ayg).

The pole atw describes a narrow, coherent band of band-
width ~1.38], with minima aty,=0, i.e., along the bound-
ary of the magnetic Brilloin zon@ Note that residue of the
pole remains unaffected. It is a matter of short calculation to
find out that in the opposite limitJ,;>1) the answer is

1
w+(Zt13,)(1-ay})

Gu(w)= (39

The bandwidth is much smallezt?J, /JZ, and goes to the
correct perturbative answer zt?/J at the isotropic point
J, =3, (a=1).

IV. CONCLUSIONS

A simple recursion method was used to calculate a single-
particle Green’s function for the hole moving in the antifer-
romagnet with strong Ising anisotropy. By neglecting closed-
loop contributions we reduced the problem to an exactly
solvable one. In the Ising limit we find, in agreement with
known results, that the hole is confined to the origin of its

We want to consider the lowest hole state and thus mapath by the effective linear potential due to the overturned

approximate

spins. We then take into account the small transverse inter-
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action between spins and find that the hole motion becomestrong Ising anisotropy. Our results become exact in the limit
coherent. We calculate the hole’s spectrum and Green'’s fun@f infinite dimension.

tion to the first order ind, /J,. This calculation explains the

“dominant-pole” approximation of Ref. 5. We argue that the

spin-wave approximation, employed in this paper, does not ACKNOWLEDGMENTS
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