
Hole motion in the Ising antiferromagnet: An application of the recursion method

Oleg A. Starykh* and George F. Reiter
Texas Center for Superconductivity and Physics Department, University of Houston, Houston, Texas 77204-5932

~Received 11 July 1995!

We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path
approximation we find the hole’s Green’s function as well as its wave function for arbitrary values oft/Jz . The
effect of small transverse interaction also is taken into account. Our results provide some additional insight into
the self-consistent Born approximation.

I. INTRODUCTION

The problem of the hole motion in a quantum antiferro-
magnet has become one of the central issues in developing
the theory of high-Tc superconductivity. The problem is an
old one,1,2 but only recently has a good understanding of it
been reached~for a review see, e.g., Ref. 3!. The self-
consistent Born approximation4,5 turns out to be extremely
successful in predicting the energy of the quasiparticle,6,7

mainly due to the vanishing of the low-order vertex
corrections.6 Results obtained within this approximation
agree well with exact diagonalization studies on small
clusters.8 The basic feature is that hole motion is strongly
renormalized by the cloud of spin excitations~distortions! it
causes and results in a narrow~of the order of the superex-
change constantJ! band with minima at the (6p/2,6p/2)
points on the boundary of the magnetic Brillouin zone. More
recent work by one of us9 has obtained the wave function of
the hole within the same approximations and is also in agree-
ment with exact diagonalization results.10

If the radius of the magnetic polaron is small enough,
which happens atJ;t, its wave function can be constructed
variationally in direct space,11,12and the bandwidth becomes
of order t2/J.

It was found long ago that hole motion in an antiferro-
magnet with strong Ising anisotropy produces a string of the
overturned spins, which confines the hole to the origin of its
path,2 making the hole’s motion completely incoherent. The
possibility of curing the spin background by the hole going
one and a half times around an elementary loop on the
lattice13 does not change this picture significantly, as the ef-
fective mass of such coherent motion is extremely high. Sur-
prisingly, the string picture seems to survive the limit of the
isotropic Heisenberg model, where quantum fluctuations that
can cure overturned spins are most effective. This shows up
in the subleading peaks above the quasiparticle peak in the
hole spectral function.6,8

The subject of the present work is to study the hole mo-
tion in an antiferromagnet with strong Ising anisotropy using
the recursion method. The method, also known as Lanczos
technique, was developed initially for the electronic structure
calculations of disordered systems,14,15 and later generalized
for the finite-lattice calculations of the strongly correlated
systems.8,16 We show that the method is particularly well
suited for the problem at hand and derive many of the
known, as well as some new, results within its framework. To

keep things as simple as possible, we treat thet-J model
within the linear spin-wave approximation, which has no for-
mal justification in the Ising limit. Nevertheless, we show
that the physics of the problem remains essentially un-
changed by this drastic approximation. Moreover, the spin-
wave formalism permits us an important direct comparison
with the results of the self-consistent Born approximation
approach.5

The recursion method consists in the following.14 Given
the Hamiltonian and the initial vectoru1&, it generates a new
basis of vectors according to the rule

un11&5Hun&2anun&2bn
2un21&, ~1!

with u0&50, andb1
25^1u1&. The coefficients in the recur-

rence are calculated from

an5
^nuHun&

^nun&
, bn

25
^nun&

^n21un21&
. ~2!

Remarkably, in the new basis the Hamiltonian has a tridiago-
nal form

Hnn5an , Hn21,n5Hn,n215bn ,

Hnm50 for all un2mu.1, ~3!

and thus describes a fictitious semiline of ‘‘atoms’’ with local
orbitals un&, diagonal energiesan , and hopping elements
bn to the n11 atom. Then the diagonal Green’s function
G11(v)5^1u(v2H)21u1& takes the form of a continued
fraction

G11~v!5
b1
2

v2a12
b2
2

v2a22 . . .

. ~4!

We derive analytical expressions for the hole’s Green’s func-
tion and wave function in the next section. The effect of a
small transverse interactionJ' is taken into account in Sec.
III. We find that hole motion becomes coherent and describe
it for different limits of t/Jz ratio. Comparison with previous
works is done in the Conclusion.

II. THE ISING LIMIT

Let us consider the motion of the hole coupled to the
localized spins on the lattice.1,2 In the linear spin-wave ap-
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proximation, the Hamiltonian of thet-J model reads5–7

H5zt(
k,q

f~k,q!~ck
1ck2qaq1ck2q

1 ckaq
1!

1Jz(
k

v~k!ak
1ak ,

f~k,q!5uqgk2q1vqgk , v~k!5A12a2gq
2 ,

gq5
1

2
@cos~qx!1cos~qy!#, ~5!

where we absorbed a factorzS in our definition ofJ (z is a
number of nearest neighbors!, uq andvq are the usual Bogol-
ubov coefficients

uq5A11v~q!

2v~q!
, vq52sgn~gq!A12v~q!

2v~q!
, ~6!

anda[J' /Jz . Each hopping of the hole produces emission
or absorption of the spin excitations.

For the problem of single-hole motion in an antiferromag-
net, it is natural to choose as a starting vector the state with
one hole and no spin deviations, i.e.,u1&5cp

1uvac&, where
uvac& denotes vacuum for both hole and magnon operators.
Thus uvac& is simply the Ne´el state. The next vector is then

u2&5Hu1&5Htu1&5zt(
q

f~p,q!cp2q
1 aq

1uvac&. ~7!

Clearly, ^1u2&50, andb2
25 ^2u2&/^1u1&5(zt)2(qf

2(p,q).
Acting by H on u2&, one finds

Htu2&5~zt!2(
q

f2~p,q!cp
1uvac&1~zt!2

3(
q,q1

f~p,q!f~p2q,q1!cp2q2q1
1 aq1

1 aq
1uvac&,

HJu2&5ztJ(
q

v~q!f~p,q!cp2q
1 aq

1uvac&, ~8!

a25J
(qv~q!f2~p,q!

(qf
2~p,q!

.

Following the formula described in the Introduction, one ob-
tains

u3&5~zt!2(
q,q1

f~p,q!f~p2q,q1!cp2q2q1
1 aq1

1 aq
1uvac&

1ztJ(
q

S v~q!2
(qv~q!f2~p,q!

(qf
2~p,q! D

3f~p,q!cp2q
1 aq

1uvac&. ~9!

The procedure becomes untractable very quickly because of
the branching: each action ofH on a state withn magnons
produces again a state withn magnons (HJ term! as well as
states with (n11) and (n21) magnons (Ht term!, whose
coefficients have a complicated momentum dependence. The

exception occurs whenv(q) is momentum independent, i.e.,
in the Ising (a50) case. In that case one hasa25Jz and

u3&5~zt!2(
q,q1

f~p,q!f~p2q,q1!cp2q2q1
1 aq1

1 aq
1uvac&,

~10!

where nowf(p,q)5gp2q , anduq51, vq50. The norm of
this state is

^3u3&5~zt!4(
q,q1

(
l ,l1

f~p,q!f~p2q,q1!f~p,l !

3f~p2 l ,l 1!^vacualal1aq1
1 aq

1uvac&

5~zt!4(
q,q1

f2~p,q!f2~p2q,q1! ~11!

because of the property(q1
gp2q1

gp2q2q1
2 50. Thus, among

two possible pairings ofa operators in~11! only the ‘‘diag-
onal’’ one (l 15q1 ,l5q) contributes. Note also that
(q1

gp2q2q1
2 5 1/z, and henceb3

25zt2. Continuing one finds

a35Jz
(q,q1

@v~q!1v~q1!#f
2~p,q!f2~p2q,q1!

(q,q1
f2~p,q!f2~p2q,q1!

52Jz ,

u4&5~zt!3 (
q,q1 ,q2

f~p2q2q1 ,q2!f~p2q,q1!

3f~p,q!cp2q2q12q2
1 aq2

1 aq1
1 aq

1uvac&. ~12!

Now, however, in addition to the ‘‘diagonal’’ pairing
( l i5qi) a new one (l5q2 ,l 15q1 ,l 25q) appears, for ex-
ample,

^4u4&5~zt!6H S 1zD 3
1 (

q,q1 ,q2
gp2qgp2q2

gp2q12q2
gp2q2q1

gp2q2q12q2
2 J .

~13!

This pairing describes a hole jumping around an elemen-
tary loop ~a plaquette on a square lattice! 1.5 times.13 The
triple integral in ~13! is calculated to give
(1/z)3 1

16@21cos(px2py)#@21cos(px1py)#. It describes an ef-
fective hole hopping along the same sublattice. The hopping
is maximal for p5(0,0) and minimal for p5(p,0) or
(0,p). Propagation via closed loops was studied in great
detail in Ref. 17. ForJz@t the effective hopping corresponds
to the tunneling through a potential barrier„it scales as
exp@24.6(Jz /t)

1/2#17… and leads to the band with minima at
p5(0,0). In the opposite limit (t@Jz) the hole can travel
very far before noticing the confining potential because of
the finiteJz , and the weight of the closed-loop paths among
the long self-retraceable paths is very small. This point of
view is supported by the results of Ref. 18, where it was
found that the ground-state energy of the one-hole system
scales asJz

2/3 in a wide range ofJz /t (1.Jz /t.531023),
which is a characteristic feature of the retraceable-path ap-
proximation~see our discussion below!.
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Based on these arguments we will omit all closed-loop
contributions in the following. This corresponds to solving
the problem on a Bethe lattice or in the limit of infinite
dimensionality.19 Diagrammatically this approximation con-
sists in neglecting the vertex corrections.6,7

With this simplification in mind, the procedure can be
iterated infinitely, and results in the following expression for
the coefficients of the recursion

an5~n21!Jz , bn
25zt2, for anyn>2. ~14!

As should be clear by now, linearn dependence ofan comes
from the simple fact thatHJun&5(n21)Jzun&. On the other
hand, then independence ofbn is caused by the particular
form of the couplinggp2q . The strong momentum depen-
dence of this coupling favors only one particular pairing out
of (n21)! possible at thenth step of the recursion proce-
dure. This particular pairing is nothing but the retraceable-
path approximation of Brinkman and Rice:1 first the last ex-
cited magnon is absorbed, then the one before last, etc. If the
hole-boson coupling is momentum independent, as happens,
for example, in the Holstein model, the outlined procedure
leads tobn

2;n,20 and, as a result, to a different physics.
So far we have found that HamiltonianH has a simple

tridiagonal form in the space spanned by the vectorsun& @see
Eq. ~3!#. Then, for any vectoruC&5(nCnun& of this space,
the Schrodinger equationHuC&5EuC& holds, or

~E2an!Cn2bn21Cn212bn11Cn1150, ~15!

with boundary conditionC050 ~remember thatu0&50 by
construction!. In the small-J ~large-n! limit we may use a
continuum approximation to find

6Azt
]2Cn

]n2
62AztCn1~n21!JzCn5ECn , ~16!

which is just the Schro¨dinger equation for a particle on a
semiline in the linear potential. Interestingly, indexn plays
the role of coordinate along the path of the hole—this corre-
spondence is exact because we neglected all closed loops.
The1 (2) sign in ~16! corresponds to choosing energyE
close to the upper~lower! edge of the band. At the bottom of
the band one findsJz

2/3 behavior:

En522Azt2Jz1bnJz
2/3~Azt!1/3. ~17!

Here2bn are the zeros of the Airy function. It is known that
the spin-wave approximation overestimates the bandwidth,5

and more accurate treatment of the constraint leads to the
replacement ofAz by theAz21 in the formulas above. The
result obtained is by no means new and goes back to the
1960s.2

We would like to demonstrate a different approach here.
Consider the one-hole Green’s function, which has a contin-
ued fraction form@see Eq.~4!#.

G11~v!5
1

v2
zt2

v2Jz2
zt2

v22Jz2•••

. ~18!

A little thinking shows that it is equivalent to

G~v!@v2zt2G~v2Jz!#51, ~19!

which coincides with the self-consistent Born approxima-
tion,5 in agreement with our expectations. Let us try the
ansatz21

G~v!52
1

Azt
Y~v!

Y~v1Jz!
. ~20!

Then Eq.~19! takes the form of the difference equation

Y~v2Jz!1Y~v1Jz!52
v

Azt
Y~v!, ~21!

which is a well-known recursion relation for the Bessel
functions,22 and henceY(v)5AJ2v/Jz

(2Azt/Jz). This im-
mediately gives, for the Green’s function,

G11~v!52
1

Azt

J2v/Jz
~2Azt/Jz!

J2~v1Jz!/Jz
~2Azt/Jz!

. ~22!

This form is a direct consequence of the linear dependence of
an onn ~see Ref. 23!, which, in turn, is an intrinsic feature of
the retraceable-path approximation. A similar expression was
obtained within the retraceable-path approximation~without
using spin-wave transformation! in Ref. 24. Notice that en-
ergy appears only in the indexes of the Bessel functions.

Let us look at thet/Jz@1 limit first. Here we need the
double asymptotic expansion of the Bessel function at a large
value of the argument and index22

Jm cosu~m!;A 2

pm sinu
cosH m~sinu2u cosu!2

p

4 J ,
m.0, 0,u,p/2. ~23!

Somewhat lengthy calculations give an expected answer

G11~v!5
Jz

Azt (n50

`
1

v2vn
,

vn522Azt2Jz1bnJz
2/3~Azt!1/3, ~24!

in complete agreement with the results of the Schro¨dinger
equation~17!. Notice that residue of the poles isn indepen-
dent and is given byJz /Azt, supporting the ‘‘dominant-
pole’’ approximation of Ref. 5. We note in passing that the
quasiclassical expression for the zeros of the Airy function
bn5@3p/2 (n1 3

4)]
2/3 works extremely well even forn50:

it gives;2.32, compared to the exact valueb052.34.
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In the oppositet/Jz!1 limit one can use the standard
small argument expansion

Jh~x!5S x2D
h

(
k50

`
~21!k

k!G~h1k11! S x2D
2k

, ~25!

to find the perturbation theory resultG11(v)
5(v1 zt2/Jz)

21.
Recently, one of us9 derived a wave function that corre-

sponds exactly to the self-consistent Born approximation
~SCBA!,

uCk
SCBA&5zkS ck11N21/2(

q
ztf~k,q!Gk2q~ek2vq!ck2q

1 aq
11•••1N2n/2

3 (
q,q1 ,•••,qn21

~zt!nf~k,q!Gk2q~ek2vq!•••f~k2q2q12•••2qn22 ,qn21!

3Gk2q2q12•••2qn21
~ek2vq2•••2vqn21

!ck2q2q12•••2qn21

1 aq
1
•••aqn21

1 D uvac&. ~26!

Hereek5Sk(ek) is the quasiparticle energy andSk is the self-energy in the SCBA. The quasiparticle spectral weight is given
by (zk)

25(12 ]Sk(v)/]vuv5ek
)21. Clearly, in our case the role of the momentumk is played by the indexn. The specific

form of the Green’s function~22! immediately gives us that the chain product of the Green’s function in the last equation has
a simple form

G~v2Jz!G~v22Jz!•••G~v2nJz!5S 21

AztD
n

J2~v2nJz!/JzS 2AztJz
D YJ2v/JzS 2AztJz

D .
Using again asymptotic expansion of the Bessel functions, we find for the hole in lowest staten50 (t/Jz@1)

uCk
SCBA&;A Jz

AztS ck12N21/2(
q

Azgk2qck2q
1 aq

11•••1N2n/2

3 (
q,q1 ,•••,qn21

~21!nzn/2ngk2q•••gk2q2•••2qn21
ck2q2q12•••2qn21

1 aq
1
•••aqn21

1 D uvac&, ~27!

for n!(Azt/Jz)1/3.

III. SMALL J' LIMIT

A virtue of the present approach is that we can include the effect of the small transverse interactionJ' , J'5aJz!Jz . As
was already discussed in Ref. 5, analytical consideration is possible if one restricts oneself to linear ina accuracy. Then
v(q)511O(a2), uq511O(a2), but vq52 1

2agq . Hence,

f~p,q!5gp2q2
1

2
agqgp1O~a2!. ~28!

One finds for firsta andb coefficients

a150, a25Jz , b2
25~zt!2(

q
~gp2q

2 2agpgqgp2q!5zt2~12agp
2!. ~29!

The key property(qgp2qgk2q
2 50 ensures that the retraceable-path approximation is exact at low order, i.e., that

(
q,q1

f~p,q1!f~p2q1 ,q!f~p2q,q1!f~p,q!501O~a2!. ~30!

Moreover, one can find
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I n[ (
q,q1 ,•••,qn21

f2~p,q!f2~p2q,q1!•••f
2~p2q2q12•••2qn22 ,qn21!

5 (
q,q1 ,•••,qn22

f2~p,q!f2~p2q,q1!•••f
2~p2q2q12•••2qn23 ,qn22! (

qn21

f2~p2q2q12•••2qn22 ,qn21!

5
1

z
I n212

a

z S 1zD
n22

(
q

gq
4 . ~31!

As a result

bn
25zt2~12azB!1O~a2!, n>3,

B5(
q

gq
45

9

64
. ~32!

At the same time, there are no changes inan ,
an5(n21)Jz . Because of the difference betweenb2

2 and
bnÞ2
2 , the continued fraction expression for the Green’s
function is now equivalent to the following system of two
equations:

G11~v!5
1

v2zt2~12agp
2!G22~v!

,

~33!

G22~v!5
1

v2Jz2zt̃2G22~v2Jz!
.

We introducedt̃ 25t2(12azB) here. Comparing the last
equation of~33! with Eqs. ~19! and ~22! of the preceding
section one finds the answer

G22~v!52
1

Azt̃

J2~v2Jz!/Jz
~2Azt̃/Jz!

J2v/Jz
~2Azt̃/Jz!

. ~34!

In the Jz! t̃ limit, expression~34! takes the familiar form

G22~v!5
Jz

Azt̃ (n50

`
1

v2v̄n

,

~35!

v̄n522Azt1bnJz
2/3~Azt̃!1/3.

We want to consider the lowest hole state and thus may
approximate

(
n50

`
1

v2v̄n

.
1

v2v̄0

1 (
nÞ0

1

v̄02v̄n

5
1

v2v̄0

1S 3pJz
2 D 22/3

~Azt̃!21/3

3 (
nÞ0

1

n1/3~n13/2!1/3
. ~36!

The last sum can be approximated by the integral from 0 to
some nm , which, in turn, is determined by the condition
v̄nm

.2Azt̃ ~upper edge of the incoherent band atJz50). In

this way we find that the last sum is given by24/pJz . We
substitute the result just found forG22(v) into the first of
Eqs.~33! and find, after some algebra,

G11~v!5
p2

4~p22!

Jz

Azt̃
1

v2ṽ
,

~37!

ṽ522Azt̃12.34Jz
2/3~Azt̃!1/32

pJz
2~p22!

~12agp
2!.

The pole atṽ describes a narrow, coherent band of band-
width ;1.38J' with minima atgp50, i.e., along the bound-
ary of the magnetic Brilloin zone.5 Note that residue of the
pole remains unaffected. It is a matter of short calculation to
find out that in the opposite limit (Jz@ t̃) the answer is

G11~v!5
1

v1~zt̃2/Jz!~12agp
2!
. ~38!

The bandwidth is much smaller,zt̃2J' /Jz
2 , and goes to the

correct perturbative answer;zt2/J at the isotropic point
J'5Jz (a51).

IV. CONCLUSIONS

A simple recursion method was used to calculate a single-
particle Green’s function for the hole moving in the antifer-
romagnet with strong Ising anisotropy. By neglecting closed-
loop contributions we reduced the problem to an exactly
solvable one. In the Ising limit we find, in agreement with
known results, that the hole is confined to the origin of its
path by the effective linear potential due to the overturned
spins. We then take into account the small transverse inter-
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action between spins and find that the hole motion becomes
coherent. We calculate the hole’s spectrum and Green’s func-
tion to the first order inJ' /Jz . This calculation explains the
‘‘dominant-pole’’ approximation of Ref. 5. We argue that the
spin-wave approximation, employed in this paper, does not
affect the essence of the problem, as can be seen, for ex-
ample, from the comparison of our expression~22! for the
hole’s Green’s function with formula~4! of Ref. 24. Overall,
our approach can be considered as another way to arrive at
the self-consistent Born approximation5 at least in the case of

strong Ising anisotropy. Our results become exact in the limit
of infinite dimension.
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