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We have numerically investigated the dopedt-J ladder using exact diagonalization. We have studied both
the limit of strong interchain coupling and isotropic coupling. The ladder scales to the Luther-Emery liquid
regime in the strong interchain coupling limit. In this strong coupling limit there is a simple picture of the
excitation spectrum that can be continued to explain the behavior at isotropic coupling. AtJ50 we have
indications of a ferromagnetic ground state. At a largeJ/t the ladder is phase separated into holes and a
Heisenberg ladder. At intermediate coupling the ground state shows hole pairing with a modifiedd-wave
symmetry. The excitation spectrum separates into a limited number of quasiparticles which carry charge
1ueu and spin12 and a triplet magnon mode. At half filling the former vanish but the latter evolves continu-
ously into the magnon band of the spin liquid. At low doping the quasiparticles form a dilute Fermi gas with
a strong attraction but simultaneously the Fermi wave vector, as would be measured in photoemission, is large.
The dynamical structure factors are calculated and are found to be very similar to calculations on two-
dimensional clusters.

I. INTRODUCTION

The properties of strongly correlated electrons confined to
a ladder~or double chain! and described byt-J or Hubbard
models have been the subject of intensive investigation
recently.1–7 The reason lies in the unusual spin liquid nature
of the undoped parent system.1,8–14Another reason for spe-
cial interest is weakly coupled ladder compounds like
SrCu2O3 and (VO)2P2O7.

15,16 Recent measurements of the
magnetic susceptibility and the nuclear spin relaxation rate in
these materials show the existence of a finite spin gap.

The key question in the current study is the evolution of
the finite gap in the spin excitation spectrum upon doping.
The spin gap remains in other spin liquids systems and is a
sign of strong superconducting fluctuations.17,18

A recent analysis of thet-J ladder using a mean-field
theory with Gutzwiller renormalization of the matrix ele-
ments to account for the strong correlations gave a continu-
ous evolution of the spin gap with doping.5 The short range
resonance valence bond~RVB! state evolves into a supercon-
ductor with modifiedd-wave symmetry within this mean-
field approximation. A tendency towards modifiedd-wave
superconductivity was also found in a bosonization
approach6 and in a recent numerical study of the Hubbard
ladder.2

We have investigatedt-J ladders up to a size of 1032
sites using a Lanczos diagonalization method. First results
have been published in Ref. 3. Here we report in more detail
our results for larger lattices including a detailed investiga-

tion of the excitation spectrum, a discussion of phase sepa-
ration, and the calculation of the superconducting order pa-
rameter and of the form factor of the Cooper pairs.

We find clear evidence of hole pairing and a modified
d-wave RVB state in lightly doped systems in agreement
with the mean-field theory. An interesting difference, how-
ever, is the discontinuous evolution of the excitation spec-
trum upon doping. New ‘‘quasiparticle’’ excitations appear
carrying both charge and spin. These excitations are in addi-
tion to a band of magnons which evolve continuously away
from the undoped spin liquid. This separation of the excita-
tion spectrum into bound holon-spinon quasiparticles and
collective magnon excitation contrasts with the full spin-
charge separation found in a Luttinger liquid.

The t-J ladder Hamiltonian is

H52t (
j ,s,a

P ~cj ,a,s
† cj11,a,s1H. c. !P

2t8(
j ,s

P ~cj ,1,s
† cj ,2,s1H. c. !P

1J(
j ,a

~Sj ,a•Sj11,a2
1
4 nj ,anj11,a!

1J8(
j

~Sj ,1•Sj ,22
1
4 nj ,1nj ,2!, ~1!

where j runs overL rungs, ands (5↑,↓) anda (51,2) are
spin and leg indices. Thet-J ladder is sketched in Fig. 1. The
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first two terms are the kinetic energies and theJ (J8) are
exchange couplings along the ladder~rungs!. Unless noted
otherwise we set t85t. The projection operator
P[) i ,a(12ni ,a,↑ni ,a,↓) prohibits double occupancy of a
site. Periodic or antiperiodic boundary conditions~PBC,
APBC! are used along the ladder. The wave vector
k5(kx ,ky) is consequently well defined,kx andky being the
momenta along the ladder and rungs. The transverse momen-
tum ky takes only the values 0 andp, corresponding to
bonding and antibonding states.

At half filling the t-J ladder is equivalent to the Heisen-
berg ladder, which was investigated in earlier
publications.1,5,10–14The ground state of the Heisenberg lad-
der is a short range RVB state with a spin gap ofD'J/2
~Refs. 1,11,13,14! at isotropic coupling,J85J.

The strong coupling limitJ8/J→` is a good starting
point to describe the system as there a simple description of
the spectrum is available.19 In that limit, each eigenfunction
of the total system can be written as a direct product of
one-rung states, which are either spin singlets or one of the
triplets, and the ground state is that with all singlets. The first
excited multiplet consists of the states with one triplet rung.
A small but finite value ofJ lifts the degeneracy of these
states. The one-magnon excitations then form a threefold
spin degenerate band with dispersionek5J81J coskx
1 1

4 (J
2/J8)(322 cos2kx) up to second order inJ. It has a

minimum gapD5J82J1 1
2 J

2/J8 at kx5p.19 The momen-
tum perpendicular to the chains isky5p. The higher excited
states form a continuum of excited states and its minimum is
at k5(0,0) with energies slightly larger than twice the gap
2D. With increasing J the collective excitation branch
crosses into the continuum, but the qualitative description is
still valid.

In this paper we study the effects of doping holes into
such a ladder. Although the isotropic case,J8/J51, is of
most interest, we also study the limitJ8@J,t, which can be
easily understood. In this limit the problem reduces to a sys-
tem of weakly coupled rungs. The properties can be continu-
ously followed down to the isotropic pointJ5J8.

This paper is organized as follows. In Sec. II we briefly
discuss the occurrence of ferromagnetism in the ladder doped
with one or two holes atJ50 and discuss the relationship
with the occurrence of ferromagnetism in two dimensions.
Next in Sec. III we discuss the pairing of holes doped into
the ladder and the occurrence of phase separation. To under-
stand the excitation spectra we start from the single hole case
in Sec. IV and go on to the two-hole case in Sec. V. Section
VI discusses long range correlations, in particular the inter-
esting question of the symmetry of the pairs and the mapping

to a Luther-Emery liquid. The single-particle excitations are
discussed in Sec. VII. Overall we find a remarkable similar-
ity between the ladder and two-dimensional~2D! clusters.

II. FERROMAGNETISM FOR J50

The t model (t-J model with J50! is equivalent to the
infinite-U Hubbard model. In single chains the ground state
of the t model is degenerate in the spin degrees of freedom.
In two dimensions, on the other hand, the ground state of the
t model doped with one hole is ferromagnetic.20 This is
called the Nagaoka effect.

The extension of the proof by Nagaoka to finite hole dop-
ing in the thermodynamic limit proved to be difficult. Actu-
ally the ground state of the two-dimensional~2D! square-
lattice t-model doped withtwo holes isnot ferromagnetic.21

For finite densities in the thermodynamic limit there are con-
tradicting results. Variational estimates for theU5` Hub-
bard model indicate that the fully polarized ferromagnetic
state is stable until a critical dopingdcr50.29.22 High tem-
perature series expansions by Putikkaet al., on the other
hand, show evidence that the fully polarized ferromagnetic
ground state does not survive at any finite doping. Instead
they find evidence for a partially polarized ferromagnetic
state at low hole doping. A fully polarized ferromagnetic
state at finite doping was found only forJ,0.23

In this context it is of interest to study the occurrence of
ferromagnetism in the ladder models. While the proof by
Nagaoka20 cannot be applied to the one-dimensional chain it
is valid for the ladder. The proof relies on the existence of
closed loops on the lattice. Such loops exist in 2D lattices
and on ladders, but cannot be formed on single chains. The
ground state of the ladder doped with one hole is thus ferro-
magnetic.

We have numerically studied thet ladder with
L52,3, . . . ,10 rungs, doped with two holes. In Fig. 2 we
show the ground-state energies of the ladders for both PBC’s
and APBC’s. We find that the ground state is always ferro-
magnetic for APBC and an even number of rungs and for
PBC and an odd number of rungs. For the other boundary
conditions the ground state is a spin singlet.

An important point is that the ferromagnetic state always
has the lower energy for a ladder with at least four rungs.
The singlet state is very close in energy and deserves a more
detailed investigation. In Fig. 3 we plot the real-space spin
correlations^Sz(0)Sz(r )& of the lowest singlet state of the
L510 ladder. These spin correlations show that the singlet
state actually consists of two ferromagnetic domains with
opposite magnetization.

The results show clear evidence for a ferromagnetic
ground state of thet ladder (L>4) doped with two holes. In
the thermodynamic limit however two holes is not a finite
density. Extrapolations of our small-cluster results at finite
doping to the thermodynamic limitL→` are hard to obtain.
But one may speculate that the existence of a ferromagnetic
ground state of thet ladder with 2 holes andL>4 could
indicate a ferromagnetic state for dopingsd,dcr'0.25.
Similar results were obtained by Hirsch and
Müller-Hartmann.24

FIG. 1. Thet-J ladder with two legs andL rungs. The couplings
along the legs aret, J and those along the rungst8, J8.
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III. HOLE PAIRING AND PHASE SEPARATION

A. Hole pairing

In this section we will discuss the pairing of holes doped
into the t-J ladder and the occurrence of phase separation at
large values ofJ/t. We will start from the simple limit
J8@J,t. In this limit the undoped ladder consists of weakly
coupled rungs, as is sketched in Fig. 4~a!.

In this limit two holes doped into the ladder will go onto
the same rung in order to minimize the number of broken
singlet bonds. This state is graphically shown in Fig. 4~c!. In
order to study the occurrence of hole pairing at smaller val-
ues ofJ8 and down to the isotropic pointJ5J8 we calculate
the binding energy and the hole-hole correlation function.
We find that even at isotropic coupling the holes still form a
bound pair, although the pair is more spread out there.

The binding energyEB is defined as

EB[2Eg.s.~2L21!2Eg.s.~2L !2Eg.s.~2L22!, ~2!

whereEg.s.(N) is the ground-state energy forN electrons, the
boundary conditions are chosen between PBC and APBC to
give the lowest energy.

In the largeJ8 region the binding energy can easily be
estimated. A single hole doped into a Heisenberg ladder
breaks one bond with energy lossJ8, but can gain kinetic
energy2t along the ladder~see the next section for details!
and 2t8 along the rung. It follows that
Eg.s.(2L21)'Eg.s.(2L)1J82t2t8. Two holes on the same
rung also break one bond, but the kinetic energy of such a
bound pair is much smaller, of order24t2/J8, as will be
calculated later. Thus we estimate Eg.s.(2L22)
'Eg.s.(2L)1J8, and a binding energy:

EB'J822t22t8 for J8@J,t,t8. ~3!

Figure 5 showsEB as a function ofJ8. It remains positive
and thus shows binding down to the isotropic value,
J/t5J8/t50.3. The same holds for a largerJ/t50.5.

Additional evidence for pairing is provided by the hole-
hole correlation functions

^nh~0!nh~r !&[^~12ni ,a!~12ni1r ,a8!&, ~4!

measured on the same lega5a8 and on different legs
aÞa8 in the ground state. They are plotted in Fig. 6 for
J/t50.3 andJ8/J51 and 10. ForJ8/J@1 the two holes are
predominantly on the same rung and the correlation function
shows a clear exponential decay. At the isotropic point the
pair is more extended. The maximum of the correlation func-
tion is now at a distance 1 along the legs and on different
legs, but it again decays at large distances. We can calculate

FIG. 2. Ground-state energies for thet ladder (t-J ladder with
J5J850) with two holes. Results are shown for systems with
L52,3, . . . ,10 rungs and periodic~PBC! as well as antiperiodic
~APBC! boundary conditions. The ferromagnetic state always has
the lowest energy forL>4 rungs.

FIG. 3. Real-space spin correlations for the singlet ground state
of the t ladder with two holes.L510 and PBC’s are used. The two
ferromagnetic domains can clearly be seen.

FIG. 4. Graphical representation of the low-lying states of the
t-J ladder in the strong coupling limitJ8@J,t. ~a! The undoped
case.~b! One hole goes into either the bonding orbital or the anti-
bonding orbital on one rung.~c! In the ground state for two holes
both holes are on the same rung.~d! Scattering states of two holes.
~e! At higher energies there is the triplet excitation similar to the
undoped ladder.
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the size of the hole pair by fitting the interchain correlations
to an exponential form̂nh(0)nh(r )&;e2r /j1e2(L2r )/j for
the two largest distances,L/2 andL/221. The inset of Fig. 6
shows the sizej of the hole pair as a function of the inter-
chain couplingJ8/t. The pair is very tightly bound for
J8@J. At the isotropic point the pair is still bound, with a
diameter of about two lattice spacings. Note the oscillation
of the radius with respect toL. The size seems to converge
to a value in between theL58 and theL510 result at the
isotropic point.

B. Effective boson model for the largeJ8 limit

We may say that the system belongs to the Luther-Emery
universality class of 1D correlated systems,25 in the sense

that the spin excitations acquire a finite gap while the charge
excitations remain gapless. In the limit of largeJ8, however,
the picture that tightly bound hole pairs are moving in a
background of singlet rungs is more appropriate than weak
coupling approaches likeg-ology. Considering these hole
pairs as hard core bosons, we can determine the long-range
correlations by a mapping to an effective boson model.

The pair hopping matrix element to second order in per-
turbation theory is

t*5
2t2

J824t82/J8
. ~5!

There is a weak attractionV* between two hole pairs on
neighboring rungs, which again to second order takes the
form

V*[2
J

2
2
3J2

8J8
1

4t2

J824t82/J8
, ~6!

where the first, attractive, term comes from the charge part of
the J-term in the Hamiltonian. Ast* ,V*!J8 we can map
the low-energy part of thet-J ladder onto an effective hard-
core boson model on a chain with nearest neighbor interac-
tion:

H*52t*(
i

~Bi
†Bi111 H.c.!1V*(

i
NiNi11 , ~7!

where the hard-core boson creation operatorBi
† creates a

hole pair at the rungi andNi[Bi
†Bi is its number operator.

There is a hard-core repulsion since only one hole pair can
be created on any given rung.

Our effective boson model is equivalent to theXXZ
model in a magnetic field, which has been solved exactly by
a bosonization approach and conformal field theory.26 For
V*,22ut* u the system is phase separated. This is the case
for J8.JPS8 , where

JPS8 5
16t2

J
2
J

2
1OS J3t2 D , ~8!

again to second order perturbation theory. For physically rea-
sonable values ofJ/t phase separation occurs only at very
large values of J8: JPS8 /t553.2 for J/t50.3 and
JPS8 /t531.8 for J/t50.5. Note that the dominant attractive
part of the interaction comes from the charge part

2 1
4Jnj ,anj11,a of the J term.
Next we will discuss the region where the system is not

yet phase separated butJ8 is still large (J,t!J8,J PS8 ).
There we can determine the dominant correlations from the
effective boson model. The correlation exponents have been
calculated indirectly by Bethe ansatz.26 Both the charge den-
sity wave correlations and the superconducting correlations
show a power-law decay at large distances:

^NrN0&;const3r221const3cos~2kFr !r2Kr, ~9a!

^Br
†B0&;r21/Kr. ~9b!

The superconducting correlations^Br
†B0& are dominant if

Kr.1. This is the case for most of the phase diagram, except

FIG. 5. Binding energy of two holes, spin gap and energy of the
triplet excitation away from the bound hole pair.J/t50.3 and
0.3<J8/t<3.0. The size of the ladder isL58 rungs.

FIG. 6. Hole-hole correlation functions for the ground state of
the t-J ladder with two holes.J/t50.3, andJ8/J51 and 10. The
size of the ladder isL510 rungs and APBC’s are used, which have
a lower ground state energy than PBC’s. The inset shows the size of
the bound hole pair,j, in the two-hole ground state as a function of
J8 for different ladder sizes.
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for the phase separation regime atV*,22t* . At quarter
filling r51/2 and forV*.2t* the system is in the Ising
limit and shows a long-range charge density wave ground
state. At fillings close to that line and for largeV*.2t*
there is a small region whereKr,1.26

In our effective model we haveV*,0 and there
Kr.2.26 We are thus always in the region of dominant su-
perconducting correlations. Even neglecting the attractive
charge part of theJ term we are still in the superconducting
regime whereKr.1.

In the limit of largeJ8 the equivalence of thet-J ladder
with a Luther-Emery liquid can clearly be seen. Going to
isotropic coupling the spin gap remains finite and the only
low-lying excitation is the collective charge mode, as we will
show in the following sections. Thus also at isotropic cou-
pling the t-J ladder is still a Luther-Emery liquid. In Sec.
VI B, we will develop another approach which relates the
long-range correlations to thermodynamic quantities for
more generalJ’s, based on a bosonization of density fluctua-
tions.

C. Phase separation

Finally we study the occurrence of phase separation at
isotropic couplingJ5J8. We estimate the onset of phase
separation by determining the couplingJ at which the com-
pressibility k diverges. The compressibility per site can be
calculated as usual

k215r2
]2e~r!

]r2
, ~10!

wheree(r) is the energy density per site of the ladder with a
particle density per siter5N/(2L).

In a finite system usually the discrete version

k215
N2

2L FE~N12;L !1E~N22;L !22E~N;L !

4 G ~11!

is used, whereE(N;L) is the ground-state energy of the fi-
nite system withN particles on the ladder withL rungs~vol-
ume 2L!. At small hole doping however this procedure may
not be reliable due to finite size effects caused by frustration
on small lattices. To see this let us consider theL58 ladder
doped with zero, two, or four holes. In the undoped case
there are 8 spins on each leg of the ladder. Two holes doped
into the ladder will predominantly go onto different legs and
there will be seven spins per leg. Thus the antiferromagnetic
configuration on the legs will be frustrated. For four holes
there will be six holes on each leg and the system is again
not frustrated. Conversely on anL59 ladder the undoped
ladder and the ladder doped with four holes will be frus-
trated, while the ladder doped with two holes will be non-
frustrated.

We have thus used a different formula to calculate the
compressibility at small hole doping. We calculate the
ground-state energies for anL58 ladder doped withNh50
and 4 holes and for anL59 ladder doped with 2 and 6 holes.
In all these cases the ladder is not frustrated. Then we esti-
mate the compressibility from these energies using finite dif-
ferences similar to the above Eq.~11!. In the thermodynamic

limit L→` both formulas give the same result, as the frus-
tration appears only on small lattices.

While the finite size effects are quite small at low electron
densities they are much larger at small hole dopings due to
frustration mentioned before. The estimated errors on the
phase separation line may thus be much larger there, about
60.2t.

A comparison with the results obtained with open bound-
ary conditions~OBC! confirms our results. Only at small
doping the OBC results are not reliable since there the holes
are trapped on the ends of the chain.

Figure 7 shows the phase separation line for thet-J ladder
for J5J8, in theJ-r plane. Note that, opposite to the single
chain case,27 the onset of phase separation at small hole dop-
ing is at lower values ofJ/t than at small electron concen-
trations. This resembles the behavior in two dimensions,23

although the precise position of the phase separation line in
two dimensions has not yet been established.

IV. PROPERTIES OF A SINGLE HOLE

In the previous section we have discussed the ground state
of the ladder doped with two holes. In order to understand
the low energy excitations of the ladder it is useful to study
the one-hole problem first.

As mentioned above the limitJ8@J,t is a good starting
point to explore thet-J ladder. There are nine different
states, depicted in Fig. 8. A single electron goes either into
the bonding or antibonding orbital

bi ,s
† 5

1

A2
~ci ,1,s

† 1ci ,2,s
† !, ai ,s

† 5
1

A2
~ci ,1,s

† 2ci ,2,s
† !,

~12!

with energy7t8, respectively. Two electrons on the rung are
either in the singlet state with energy2J8 or in one of the
three triplet states with energy 0. The singlet state expressed
in bonding and antibonding orbitals is

1

A2
~ci ,1,↑

† ci ,2,↓
† 2ci ,1,↓

† ci ,2,↑
† !5

1

A2
~bi ,↑

† bi ,↓
† 2ai ,↑

† ai ,↓
† !. ~13!

Similarly the three triplets can be expressed as combinations
of one bonding and one antibonding electron:

a↑
†b↑

† ,
1

A2
~a↑

†b↓
†1a↓

†b↑
†!, a↓

†b↓
† . ~14!

FIG. 7. The line of phase separation in thet-J ladder determined
from the coupling at which the compressibility diverges.
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Figures 9~a! and 9~b! show the one-hole spectra forL58
for large interchain couplingJ8/J510, calculated by exact
diagonalization for J/t50.3, J8/t53 and J/t50.5,
J8/t55, respectively.

A hole on a single rung can be either in the bonding or the
antibonding orbital. One hole doped into the half filled lad-
der will thus be either in a bonding or antibonding state,
depending on the parity symmetry of the total ladder@see
Fig. 4~b!#. This hole can propagate along the ladder with a
hopping matrix elementt̃51t/2 in first order perturbation
theory. Thus the low energy states are two bands of holes in
the bonding and antibonding orbitals. They are split by the
energy difference 2t8 of the bonding and antibonding states.
These two bands can clearly be seen in the spectra@Figs. 9~a!
and 9~b!#. The minimum of the bands is atkx5p, since the
hopping matrix element for holest̃.0. The bandwidth of
both bands is 4t̃52t in the limit J8@J,t. At finite J the
bandwidth is reduced due to hybridization with the higher
excited states.

DecreasingJ8 to the isotropic pointsJ5J8 changes the
dispersion of these bands@see Figs. 9~c! and 9~d!#. At low
energies we can still see the bands of holes in the bonding
and antibonding orbitals. These bands evolve continuously
from the largeJ8 limit. The minima of the energy bands are
not at kx50 or kx5p, but at a large momentum

kF
B'(6 3

5p,0) for the bonding andkF
A'(6 2

5p,p) for the
antibonding band. We can fit the low-lying hole bands to a
dispersion of the form

E~kx!5E01DE1a1 coskx1a2 cos2kx1a3 cos3kx ,
~15!

corresponding to nearest neighbor (a1), next-nearest neigh-
bor (a2), and third-nearest neighbor (a3) hopping.E0 is the
ground-state energy of the undoped ladder andDE the shift
in energy of the center of the band upon doping. In Fig. 10
we show the bands and the excellent fit. The parameters are
shown in Table I.

The changes in the hole dispersion with decreasingJ8 are
summarized as follows.

~i! The center of the bands shifts downwards byDE,0,
compared to the undoped ladder. The energy gain for one
hole in the case ofJ50 would be just the kinetic energy
2t8. When J.0 we lose magnetic energy by introducing
the hole. The energy gain is therefore smaller at largerJ/t, as
we can also see from the fit parameters.

~ii ! The hole bands are narrowed compared to the large
J8 limit. In that limit the bandwidth of the hole bands was
2t. This bandwidth is renormalized by the stronger polariza-
tion effects at isotropic coupling, and it is now of the same
order as the magnetic energyJ, instead of the kinetic energy
2t.

~iii ! The dispersion changes as longer range hopping pro-
cesses (a2 ,a3) are introduced with decreasingJ8, and the
minima move away fromkx5p. The minima of both bands
are very close in energy, again in contrast to the strong cou-
pling region where they are split by 2t8. In Sec. VII we will

FIG. 8. The nine different states for a single rung.

FIG. 9. Energy spectra for thet-J ladder doped with one hole.
The case of largeJ8 (J8/J510): ~a! J/t50.3 and~b! J/t50.5 with
L58. The isotropic case (J8/J51): ~c! J/t50.3 and~d! J/t50.5
with L510. The results forkx5(n/L)p with evenn are for PBC’s
and with oddn for APBC’s.

FIG. 10. Fit of the lowest lying bands of the one-hole spectra to
the form of Eq.~15!, J/t5J8/t50.3 andJ/t5J8/t50.5. The size is
L510.

TABLE I. Parameters for the fit of the lowest lying bands of the
one-hole spectra to a dispersion of the form of Eq.~15!.

J/t ky DE a1 a2 a3

0.3 0 21.476 0.160 0.103 20.026
0.3 p 21.417 20.192 0.134 0.025
0.5 0 20.865 0.263 0.189 20.007
0.5 p 20.790 20.311 0.225 20.011
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identify the minimakF
B andkF

A with the Fermi points of the
bonding and antibonding quasiparticle bands.

Another interesting question is the behavior of the free
spin that is left over after one hole has been doped into the
ladder. In thet-J chain the spin and charge excitations are
carried by different soliton excitations which are far apart in
space from each other. This is a typical feature of spin-charge
separation and such a system is called a Luttinger liquid. In a
Fermi liquid, on the other hand, they are bound and the ex-
citations are described by quasiparticles carrying both charge
and spin.

We have calculated the hole-spin correlations to answer
the question if spin-charge separation occurs in the ladder.
The real space correlations

^nh,a~ j1r !Sa8
z

~ j !&, ~16!

are shown in Fig. 11. This correlation function is nonzero for

the ground state in the subspace ofStot
z 5 1

2 since there re-
mains one spin unpaired.

The result shows that the hole is tightly bound to the
remaining free spin. At strong interchain couplingJ8@J,t it
is again predominantly on the same rung. At isotropic cou-
pling the spin-hole bound state is more extended. These spin-
hole bound states thus carry both charge and spin. In this
sense they are similar to the quasiparticles in a Fermi liquid.
This is in contrast to the spin-charge separation in the single
chain. We will therefore call the single holes bound to the
free spin ‘‘quasiparticles,’’ although the system has a spin
gap.

V. EXCITATION SPECTRA OF THE LADDER
WITH TWO HOLES

A. Excitation spectra

The ground state of the ladder doped with two holes is, as
discussed above, a bound state of the two holes. This bound
pair coherently propagates along the ladder, giving rise to the
lowest-lying band. WhenJ8@J, this band, spin-singlet
charge excitations, is clearly seen in the numerical results as
shown in Fig. 12.

The higher energy excitations are again understood sim-
ply in the largeJ8 limit. An essential difference from the

lowest-lying singlet band is that two holes are now separate
rather than forming a bound pair. Being separate, they can
gain a larger kinetic energy, but only in return for an even
larger cost of exchange energy;J8 as one more singlet rung
is broken. Thus there are continua of scattering states of the
two holes ~‘‘quasiparticles’’! at higher energies. Since the
residual interactions between the two quasiparticles are
weak, the energy is almost degenerate between theS50 and
S51 spin subspaces. On the finite lattice we naturally do not
see a continuum of scattering states, but only several discrete
bands. These bands, and the fact that the energies of the
triplet and singlet are nearly degenerate~up to boundary ef-
fects! can be seen in the spectra.

There are various combinations of the two quasiparticle
bands in the two quasiparticle continuum of states. The low-
est are scattering states of two bonding quasiparticles, with
ky50. Higher states are scattering states of one bonding and
one antibonding quasiparticle. Having the same transverse
momentum, ky5p these states hybridize with the one-
magnon excitations in the spin background, resulting in a
‘‘bound state’’ below the two-particle continuum. This is
nearly dispersionless and clearly seen in the spectrum. The
continua of two antibonding quasiparticles is much higher in
energy and not included in the figure.

At higher energies there are spin excitations in the spin
background. They are not described by the quasiparticles and
will be discussed in more detail in the next section.

The results in the isotropic case,J8/J51, are shown in
Fig. 13. The energy spectrum is more complicated but the
above description still holds qualitatively.

The ground state is still the bound hole pair. It moves
coherently along the ladder, yielding a gapless band of sin-
glet charge excitations. The band has a linear dispersion
around k5(0,0) compared with quadratic in the largeJ8
case. An important point is that despite its complicated dis-
persion the low energy part is well separated from the other
excitations. Therefore also at isotropic coupling the only
low-energy excitation is the collective charge excitations,

FIG. 11. The hole-spin correlations for the ground state of the
ladder doped with one hole atJ8/J51 and 10. The ladder has
L510 rungs andJ/t50.3. The ground state hasSz51/2.

FIG. 12. Energy spectra for thet-J ladder doped with two holes
for a largeJ8 (J8/J510): J/t50.3 with ~a! PBC’s and~c! APBC’s,
andJ/t50.5 with ~b! PBC’s and~d! APBC’s. The size of the ladder
is L58 rungs. The states are classified according to total spinS and
parity.
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and we may identify the isotropict-J ladder as Luther-
Emery liquid. We will discuss the essential role of these
charge fluctuations concerning superconductivity in Sec.
VI B.

In addition to the gapless band of charge fluctuations,
there are various local minima at higher energies. However,
they can be explained by taking account of the nonmono-
tonic dispersion of the one-hole spectra shown in Fig. 9, and
our quasiparticle picture still holds. More specifically, there
are four local minima in the single-hole spectra at

k'(6 3
5p,0) and k'(6 2

5p,p), which have nearly the
same energy. Thus to construct low-energy two-quasiparticle
excitations there are many possible combinations of different
minima of one-particle states as discussed below. This is the
origin of many local minima in the two-particle spectra and
this is confirmed by the fact that the dependence on the
boundary condition is consistent with this picture.

The ground state of the two-hole spectrum can be con-
structed from holes near6kF in the single-hole spectra. The
other minima can be explained similarly. The minimum in

the PBC spectrum atkx5
4
5p can be identified with the

2kF excitation, where a particle moves from one Fermi point
to the opposite one.@23(63/5)p[(64/5)p.# When us-

ing APBC we do not have thek value of6 3
5 p in the single-

hole spectrum on anL510 ladder. The closestkx points are

6 5
10p and6 7

10p, leading to minima at6p and6 3
5p in the

two-hole spectra. Another feature that can be explained from
the single hole spectra is the minimum atk5(p,p) ~odd
parity, kx5p). Using PBC this state is obtained with one

hole with k5( 35p,0) and one withk5( 25p,p), leading to
the minimum at (p,p).

Using APBC’s we can combine one hole atk5( 3
10p,p)

with one at eitherk5( 5
10p,p) or k5( 7

10p,p). As men-
tioned above these two states are higher in energy than the

minimum at6 3
5p and very similar in energy. Therefore we

expect two states atk5( 45p,p) and k5(p,p) which are
similar in energy but at a higher energy than the correspond-
ing states with PBC. This is exactly what we observe. The
odd parity states nearkx50 can be constructed similarly.

The qualitative features of the three-hole excitation spec-
trum can again be explained similarly.

B. Spin excitations

One of the most interesting properties of thet-J ladder is
that there are two distinct types of spin excitation. Although
it is most easily seen in the largeJ8 limit, the qualitative
distinction remains down to the isotropic point.

The first type is the collective magnon excitations inher-
ited from the undoped spin ladder. One of the electron-filled
rungs is now excited to a spin triplet. This local excitation is
what we call ‘‘magnon’’ and it propagates coherently along
the ladder, leading to an energy dispersion with respect to
kx . For a detailed investigation, we have examined the two-
hole spectra in more detail and have calculated the spin-spin
and spin-hole correlations of the low-lying triplet states. We
find that the magnon excitations of the Heisenberg ladder
evolve continuously upon doping. However there discontinu-
ously appears a new kind of spin-triplet excitation at lower
energies, which is not present in the undoped ladder.

The lowest excitation is a different type for which quasi-
particles play an essential role. Therefore, the spin gap, de-
fined as the excitation energy to the lowest triplet, is a dis-
continuous function of the hole doping atd50. This new
type of excitation consists of breaking a pair of holes into
two separate quasiparticles, each carrying charge1ueu and
spin 1/2.28When the two quasiparticles are both in the bond-
ing orbital, their lowest energy, atk5(0,0), is lower than the
lowest magnon excitation. The additional energy gain is eas-
ily understood, since the two separate holes have a larger
kinetic energy of the order oft while the gain of the magnon
kinetic energy is of the order oft2/J8. As was shown in Fig.
5, down to the isotropic point the lowest two-quasiparticle
excitation is lower in energy than the lowest magnon excita-
tion.

The above picture is confirmed by comparing the correla-
tion function between the two different states. The dynamical
spin structure factor gives another confirmation.

Figure 14 shows the equal-time correlations of the two
holes,̂ nh(r )nh(0)&, and of spin and hole,^S

z(r )nh(0)&, cal-
culated for these two types of spin-triplet excitations. The
latter quantity is nonzero since the states withSz51 are used
in the calculation. WhenJ8/J510, the two holes are separate
in space in the lowest state, while tightly bound in the other
state. The position of magnetic excitation is, on the other
hand, close to the hole position in the lowest state, while they
are far apart from each other in the other state. These two
behaviors are what is predicted by our picture explained
above, and despite modification in small detail they are
qualitatively consistent even at the isotropic point.

Our numerical results confirm that the lowest triplet state
is the quasiparticle excitation where the bound hole pair
breaks up. The two holes repel each other and the hole-hole
correlations have the maximum at the largest distanceL/2.

FIG. 13. Energy spectra for thet-J ladder doped with two holes
at the isotropic point (J8/J51): J/t50.3 with ~a! PBC’s and~b!
APBC’s, andJ/t50.5 with ~c! PBC’s and~d! APBC’s. The size of
the ladder isL510 rungs. The lines are only guides for the eye and
do not necessarily connect related states.

258 53MATTHIAS TROYER, HIROKAZU TSUNETSUGU, AND T. M. RICE



Each of the holes is bound to a spin-1/2, as can be seen from
the hole-spin correlation function. This state is sketched in
Fig. 4~d!.

As a typical magnon excitation, we show the correlations
for the state atk5(p,p) that has the main spectral weight in
the dynamical spin structure factor which will be discussed
soon. The hole-hole correlations are similar to the ground
state. The hole-spin correlations show that the triplet carry-
ing spin current is far away from the hole pair. This state is
shown in Fig. 4~e!. Mean field theory5 predicts only this
magnon excitation, which evolves continuously from the
Heisenberg ladder.

In neutron scattering experiments the relevant quantity is
the dynamical spin structure factor

S ~q,v0![(
n

u^nuSk
zu g.s.&u2d~En2Eg.s.2v0!, ~17!

where un& is the complete set of eigenstates with energy
En , u g.s.& is the ground state with energyEg.s. and

Sq
z[

1

A2L(r eiq•rSr
z . ~18!

Figure 15 showsS (q,v) calculated for the Heisenberg
ladder using the Lanczos diagonalization combined with the
continued fraction method.29 It can clearly be seen that the
dominant contributions arise from the collective excitations
near q5(p,p) and there is very little weight in the con-
tinuum of spin excitations at higher energy.

In the doped case the two types of spin excitations have
different contributions to the dynamical spin structure factor.
It can be seen in Fig. 16 that the continuum of spin excita-
tions move towards lower energies. Most of the weight is in
the magnon excitations, consistent with the mean-field
theory,5 and there is very little weight in the lowest triplet
excitation consisting of the two separate quasiparticles.

As in the largeJ8 limit the lowest triplet excitation with
qy5p is a bound state of a spin triplet and the hole pair. At
q5(p,p) this state has no spectral weight, while most of the
weight is in the second excited state, which has the triplet
separated from the bound pair. This is a finite size effect of
the two-hole system. The reason is that atqy50 or p we
have an additional symmetry, reflection invariance in the lad-
der direction. The parity under these reflections is different
for the ground state and the triplet-hole pair ground state,
leading to the vanishing weight.

A significant difference between the two types of spin
excitations is that the largest number of ‘‘quasiparticle’’ ex-
citations is limited by the number of holes. We need at least
two holes to create such an excitation. The number of pos-
sible excitations is thus proportional to the hole dopingd.
On the other hand, the magnon excitations can be excited at
any rung where there are no holes. The number of these
excitations is thus proportional to 12d instead, much larger
for a small dopingd. Therefore with decreasing temperature
the susceptibility will show a large exponential drop at tem-
peratures of the order of the gap of the undoped system
(T;0.5J), followed by a small drop at temperatures around
the spin gap of the doped system.

To summarize we can describe the spin excitations of the
t-J ladders by a simple picture: quasiparticles moving in a
spin liquid background. In the ground state the quasiparticles
are paired. In the excitation spectrum two types of excita-
tions can be distinguished. The first corresponds to the break-
ing of a pair of quasiparticles. This excitation has the lowest
energy, but its number is limited by the number of holes. Of
more importance for measurements of the susceptibility or
inelastic neutron scattering experiments is the second type,
which are magnon excitations in the spin liquid background.
They evolve continuously from the undoped Heisenberg lad-
der. Although the gap for this type of excitation is larger it is
more important since we can excite more of these excita-
tions. Also the weight in the dynamical spin structure factor
is larger.

FIG. 14. Hole-hole@~a! and ~c!# and spin-hole@~b! and ~d!#
correlation functions for the two triplet excitations.L58. Dashed
lines are for the lowest triplet state and dashed-dotted lines for the
lowest state with nonvanishing weight inS @q5(p,p),v#.

FIG. 15. Dynamical spin structure factor,S (q,v), for the un-
doped ladder withL510 rungs. Note that the scale is different for
qy5p.
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C. Charge excitations

Similarly to the calculation of the dynamical spin struc-
ture factor we calculate the dynamical charge structure factor
defined by

N ~q,v0![(
n

u^nurqu g.s.&u2d~En2Eg.s.2v0!, ~19!

whererq is the Fourier transform of the local density fluc-
tuation around the average densityr.

The result of our calculations is shown in Fig. 17. The
main contribution arises from the coherent motion of the
hole pairs. This leads to large peaks at low energies near
q5(0,0). The rest of the weight is distributed incoherently
over a wide region at rather high energies of order 4t. It
arises from interactions of a single hole with the surrounding
spin background. This is similar to results obtained for two
dimensions.30

Recently Tohyamaet al. have calculatedS (q,v) and
N (q,v) for single chains and 2D clusters.31 In the single
chain they find that, as expected from Luttinger liquid theory,
the charge and spin excitations are decoupled in the low
energy region. The dynamical charge structure factor is very

similar to that of spinless fermions, consisting of large peaks
at the energies expected from the cosine band of the spinless
fermions.

In two dimensions they find different behavior. In the spin
structure factor nearly all of the weight is in a few sharp
peaks at low energies. In the charge structure, on the other
hand, the main weight is at relatively large energies, of the
order of severalt, and is strongly broadened. This is indica-
tive of strong spin-charge interactions. Only at some special
q points are there peaks at low energies. The dynamical
charge structure factor,N (q,v) for the ladder shown in Fig.
17 differs a lot from the single chain but resembles the 2D
cluster. At largeqx , we see the peaks at large energies
;2t–4t. At small qx in the qy50 sector,N (q,v) for the
ladder is dominated by the collective mode of the hole pairs,
and its behavior differs substantially from spinless fermions.
Another similarity to the 2D system is found in the dynami-
cal spin structureS (q,v) where the main weight is in peaks
with energies;J ~see Fig. 16!. We conclude from this com-
parison that the 2D clusters and the ladders are closely
related—a fact which points towards a ‘‘d-wave’’ paired
state for the 2D clusters. A more difficult question is to what
extent this behavior of the finite 2D cluster is a consequence
of the strong tendency of finite clusters to favor singlet
ground states and to what extent it is representative of an
infinite plane.

VI. LONG-RANGE CORRELATIONS

A. Superconducting correlations

A highly intriguing and much debated subject of the high-
Tc superconductors is the internal symmetry of the order
parameter. In this section we study the internal structure of
the pairs in the doped ladders. For thet-J model usually only
nearest neighbor pairs have been considered except for a few
cases. It is reasonable to assume that they are the dominant
pair correlations. However more quantitatively we have cho-
sen the optimal form for the pairs.

Using the Lanczos algorithm we calculate the pairing cor-
relation functions for different pairings. Let us introduce the
operator creating a singlet pair of electrons on sitesr and
r1d,

Pr ,d
† 5

1

A2
~cr ,↑

† cr1d,↓
† 2cr ,↓

† cr1d,↑
† !. ~20!

Using this definition of the pair operator we can calculate the
superconducting order parameter

xd5K g.s.,Nh22 holesU 12L(r Pr ,d
† U g.s.,Nh holesL

~21!

and its Fourier transform

xk5(
k

xde
ik•d

5^ g.s.,Nh22 holesuPk,2k
† u g.s.,Nh holes&, ~22!

wherePk,2k is the Fourier transform of the real space pair
operator with zero total momentum.

FIG. 16. Dynamical spin structure factor,S (q,v), for the
L510 ladder with two holes.J/t5J8/t50.3 ~upper panels! and
0.5 ~lower panels!. PBC’s are used. Note that the scale is different
for aroundq5(p,p).
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Figure 18 shows the superconducting order parameter for
the L58 ladder with PBC’s for several values ofJ/t. The
most obvious properties are that the sign is opposite for pairs
with ky50 andky5p and that the absolute values are very
small near (0,0) and (p,p). This is similar tod-wave pair-
ing in a fully 2D system. The absolute value is largest near
wave vectors which we have identified with the Fermi points
of the quasiparticlesk5(3p/4,0)'kF

B and k5(p/2,p)
'kF

A . At largeJ/t the order parameter is very similar to the
simple coskx2cosky structure of nearest neighbord-wave
pairs.

Consider now pairs with a form factorF:

Pr
†5(

d
Fd*Pr ,d

† , ~23!

whereF is normalized

(
d

uFdu2[1. ~24!

A simple calculation shows that the superconducting ‘‘order
parameter’’

xF5(
d
Fd* xd ~25!

is maximized by the pair with the form factor

Fd5
xd

@( rux ru2#1/2
, ~26!

which is proportional to the order parameterxd . This opti-
mal order parameter then is

x5F(
d

uxdu2G1/2. ~27!

In Fig. 19 we show this maximal order parameter for a
L58 ladder as a function ofJ/t. A clear increase as a func-
tion of J/t can be seen, similar to single chains and 2D
planes where the superconducting correlations are also en-
hanced at largerJ values. We note that the expectation value
of the optimal order parameter is larger for four doped holes
than for two holes. This is a consequence of the strong cor-
relation effect, as any pairing order parameter or fluctuations
should vanish asd→0. The mean-field theory including the
strong correlation effects predicts ad-linear dependence of
the order parameter asd→0:5 i.e., the superfluid density is
proportional to the hole doping. Our results show that the
value for four doped holes is less than twice the value for
two holes. This may be because that in the four hole case the
doping, d50.25, is already large and out of the region of
d-linear dependence. We need further study using larger lat-
tices to clarify this point more quantitatively.

B. Mapping to a Luther-Emery liquid

In Secs. III–V, our numerical results have shown that all
the spin excitations cost a finite energy and the only gapless
excitations are charge fluctuations, i.e., coherent propagation
of bound hole pairs along the ladder direction. We may there-
fore say that the system is a Luther-Emery liquid25 from

largeJ8 limit down to the isotropic coupling. This observa-
tion indicates that the low-energy and long-wavelength prop-
erties of lightly dopedt-J ladders would be entirely de-
scribed by an effective continuum Hamiltonian in terms of
charge degrees of freedom and this model correctly predicts
long-range asymptotic behavior of correlation functions. The
effective model is actually the bosonic Gaussian model pro-
posed by Efetov and Larkin,32

HEL5
p

2E dxH @nB~x!2n̄B#2

pKB
1pKBvs

2F¹uB~x!

p G2J ,
~28!

wherenB(x) represents the density of bound hole pairs at the
rung x with the average valuen̄B[NB /L5d, anduB(x) is
its conjugate phase obeying the canonical commutation rela-
tion, @nB(x),uB(x8)#5 id(x2x8). As shown by the fact that
the q50 mode of the first term in Eq.~28! denotes the
change in the ground-state energy associated with the num-
ber of bound hole pairs,DE}(1/2KB)(DNB)

2, the parameter
KB is given by the compressibility of the hole pairs, which
will be shown afterwards. The second term, on the other
hand, describes the energy change associated with current,
related with the sound velocityvs . Instead of a direct calcu-
lation of the dispersion relation, the sound velocity can also
be obtained numerically by applying an Aharanov-Bohm flux
penetrating in the center of the ladder with PBC’s, since the
flux induces a finite current along the chain direction. Once
the two parameters,vs andKB , are determined in this way, it
is straightforward to calculate the power-law exponents of
correlation functions as follows.

The Efetov-Larkin Hamiltonian is actually identical to the
single-component~i.e., spinless! Luttinger model diagonal-
ized by bosonization, which was studied by Mattis and
Lieb,33 Luther and Peschel,34 and Haldane26 in details. The
Hamiltonian ~28! is immediately solved by rewriting each
Fourier component with a boson operator,

nB,k[A uku
2p

~bk1b2k
† !,

uB,k[ iA p

2uku~
bk
†2b2k!, ~29!

then the result is

HEL5(
uku

vsukubk
†bk1

p

2L
@vN~NB2NB

0 !21vJJB
2 #. ~30!

Here NB is the total number of bound hole pairs and
vN5(pKB)

21 is the charge velocity andvJ5pKBvs
2 is the

current velocity associated with the number of 2kF
SF excita-

tions, JB , obeying the universal relation,vNvJ5vs
2 . Here

kF
SF5pd5p(12r) is the Fermi wave number of spinless
fermions transmuted from the bosonic hole pair operators by
the Jordan-Wigner transformation. The last two terms in Eq.
~30! describe nonbosonic excitations accompanied with the
change in the quantum numbers,NB and JB . Their impor-
tance was first pointed out by Haldane in his Luttinger liquid
concept.26
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The propagator of bound hole pair, i.e., pairing correla-
tion, is then obtained as in the calculation of the Debye-
Waller factor,

G~r !5n̄B^ei @uB~r !2uB~0!#&5n̄Be
2^@uB~r !2uB~0!#2&/2}r21/Kr,

~31!

where the exponent is

Kr52pKBvs5pr2vsk, ~32!

wherer is the electron density per site andk is the electron
compressibility. The relation for the ladder,KB5kr2/2, is
used to obtain the second equality. This result differs from
the one for the chain, which has the numerical factorp/2
instead. It is important to emphasize that this result is the
Luttinger liquid parameter,Kr52(vJ /vN)

1/2, for the single-
component boson systems.

Density-density correlations are characterized by a power-
law decay at the wave number 2kF

SF. SincekF
SF is twice the

average of the Fermi wave number of the original electron
bonding and antibonding bands,kF5 (p/2) r, the wave
number 2kF

SF is actually 4kF in the original picture. The ex-
ponent of the 2kF

SF54kF charge-density wave~CDW! fluc-
tuations is calculated using a density-phase duality as was
done in the original paper.32 The density operator has a short-
range 2kF

SFCDW order, but since the value of 2kF
SF is locally

determined by the density at each position, it is fluctuating
around the average value 2pd associated with the density
fluctuations. We therefore may write as

nB~x!5n̄B cos@2kF
SFx12uJ~x!#, ~33a!

]uJ
]x

5p~nB2n̄B!. ~33b!

FIG. 17. Dynamical charge structure
factor,N (q,v), for theL510 ladder with
two holes.J/t5J8/t50.3 ~upper panels!
and 0.5~lower panels!. PBC’s are used.
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Rewriting the Hamiltonian~28! with uJ and its conjugate
operator nJ[ (1/p) ¹uB , we again obtain a Gaussian
model,

HEL5
p

2E dxH vJ@nJ~x!#21vNF¹uJ~x!

p G2J , ~34!

where @nJ(x),uJ(x8)#5 id(x2x8). This duality of the
charge and current operators was also emphasized in
Haldane’s paper.26 Since the density-density correlation is
written as an exponential ofuJ in this representation, its
calculation can be done similarly as before,

NB~r ![^nB~r !nB~0!&'n̄B
2 cos~2kFr !^e2i @uJ~r !2uJ~0!#&

}cos~2kFr !r2Kr. ~35!

Instead of calculating the sound velocity, the value of
Kr is more accurately obtained through the Drude weight
defined by

D[
L

2

]2Eg.s.~f!

]f2 U
f50

, ~36!

whereEg.s.(f) is the total energy of the ground state when
the flux f is penetrating. Assuming the holes propagate in
pair, the relation betweenD andvs for the ladder is obtained
and the result agrees with the one for the chain35 aside from
its numerical factor,

D5
4

p
vJ5

2

p
Krvs . ~37!

Combining this with Eq.~32!, we finally obtain the formula
of the correlation exponent in terms of the compressibility
and the Drude weight:

Kr5prAkD

2
. ~38!

It is noted that this expression is identical to the one for the
chain in terms ofk andD, while they differ by factor 2 in
terms ofk andvs .

In this way, when the energy scale concerned is smaller
than the spin gap, we can predict long-range asymptotic be-
havior of the correlation functions based on the Efetov-
Larkin effective model, and calculate correlation exponents
once the two parameters,vs andKB ~or equivalentlyk and
D!, are numerically determined.

Figure 20 shows the correlation exponent calculated in
this way for the isotropic ladder (J8/J51) with L57 and
two holes as a function ofJ. This corresponds to the electron

density,r5 6
750.857. The necessary quantities are carefully

calculated by using the Lanczos diagonalization. The com-
pressibility,k, is determined from the ground-state energy of
unfrustrated systems in the sense explained before. The
Drude weight,D, is then calculated by Eq.~36!. Combining
these two,Kr is obtained via Eq.~38!.

Near the phase separation boundary,Kr grows rapidly.
This is owing to the divergence of the compressibility at this
boundary. In other words, the collective charge excitations
become softening and the superconducting fluctuations are
enhanced correspondingly.

Recently Haywardet al.36 directly calculated various cor-
relation functions for thet-J ladders by using the density-
matrix renormalization-group method. AtJ/t5J8/t51 and
r50.8, they found a power-law decay of the pairing corre-
lations with the exponent close to unity. This exponent cor-
responds toKr;1, which is larger than our estimate at the
sameJ andJ8, Kr'0.7.7 The discrepancy may be owing to

the larger electron density in our calculation,r5 6
750.857,

but it is not clear if this suffices to account for the difference
until calculation is carried out at the same density. Hayward
et al. also report data on the density-density correlation
function36 but the exponent of the expected power-law decay
of the oscillatory term cannot be easily extracted.

VII. ONE-PARTICLE EXCITATIONS

Finally we discuss the one-particle Green’s function
where we can see the quasiparticle excitations directly. The
electron and hole parts of its spectral function are defined as

FIG. 18. Superconducting order parameter,xk , for Nh52 cal-
culated on theL58 ladder with PBC’s for several values of
J/t5J8/t.

FIG. 19. The order parameter for the optimal pair Eq.~27! as a
function of J/t on an L58 ladder with both PBC and APBC.
Shown are results for 2 and 4 holes.
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Ae,s~k,v![(
n

u^n, 2L21ucks
† ug.s., 2L22&u2

3d@v2En~2L21!1Eg.s.~2L22!1m#,

Ah,s~k,v![(
n

u^n, 2L23ucksug.s., 2L22&u2

3d@v1En~2L23!2Eg.s.~2L22!1m#,

~39!

whereun,N& is an eigenstate forN electrons with the energy
En(N) and ug.s.,N& denotes the ground state withN elec-
trons. Positive~negative! energies correspond to the electron
~hole! part. The chemical potential is defined by

m[ 1
2 @Eg.s.~2L21!2Eg.s.~2L23!#. ~40!

The results for L510 and the isotropic couplings,
J8/J51, are shown in Fig. 21 forJ/t50.3 and 0.5. The wave
vectors along the ladderkx5 2p/L (n) (n: integer! are for

PBC’s andkx5 2p/L (n1 1
2 ) for APBC’s. The ground state

energyEg.s.(2L22) and the chemical potentialm in Eq. ~39!
are the average over both boundary conditions. The results
for L510 are very similar to ourL58 results published
before.3

The spectral function has large weights for the bonding
~B! (ky50) and antibonding~A! (ky5p) orbitals only near
the Fermi energyv50, and they seem to constitute quasi-
particle bands. Away from the Fermi energy, the individual
quasiparticle peaks are much less prominent and there is an
incoherent part with an energy of the order oft.

The quasiparticle part of the spectrum is consistent with
the mean-field theory based on thed-wave RVB state.5 The
undoped ladder consists of local singlets on the rungs. Such
a singlet is the superposition of two electrons in the bonding
orbital and two electrons in the antibonding orbital,
b↑
†b↓

†2a↑
†a↓

†u0&. Holes doped into the half-filled ladder will
go predominantly into the antibonding orbitals to gain a
larger kinetic energy along the rung direction. The bonding
band is occupied by more electrons, while the antibonding
band is occupied by less electrons. The quasiparticle with
energy closest tov50 has a wave vector nearest to the
original Fermi wave number,kF (kx5 3p/5 for bonding and
kx5 2p/5 for antibonding!. Because of the band splitting,
kF
B.kF

A , but the Luttinger sum rule is satisfied,
kF
B1kF

A5(12d)p. This means the Fermi volume is large,
proportional to the electron number rather than the hole num-
ber, and this is consistent with photoemission experiments on
cuprate superconductors.37 It is important to notice that the
quasiparticle peaks near the Fermi energy have their coun-
terparts on the opposite side of the Fermi energy. An elec-
tronic quasiparticle peak at energyv.0 has a shadow hole
peak at energy around2v,0, andvice versa. These peaks
indicate that the quasiparticle excitations are those of the
Bogoliubov quasiparticles as in BCS theory, i.e., mixture of
an electron and a hole (ak

†5ukck↑
† 1vkc2k↓). The weights in

the electron and hole parts are proportional touuku2 and
uvku2. They are holelike aroundkx50 and electronlike
aroundkx5p for both the bonding and antibonding bands.

There exists a finite energy gap in the quasiparticle spec-
tra. The electron and hole branches both come close to the
Fermi energy atkx;p/2, but instead of passing through they
move away from it. The energy gap forJ/t50.3 (0.5) is
0.13t (0.29t) at k5(3p/5,0) and 0.22t (0.39t) at
k5(2p/5,p). This corresponds to a quasiparticle gap
2DQP.0.13t.J/2 for J/t50.3 and 2DQP.0.29t.3J/5 for
J/t50.5.

It is interesting to note that the calculations ofA(k,v) in
2D clusters38,39show similar behavior fork points not along
(1,1) but no shadow peaks forki(1,1), indicatingdx22y2

pairing also.
Figure 22 shows the spectral function of the one-particle

Green’s function of two holes in anL510 ladder summed
over all wave vectors: Ae,s(v)5(kAe,s(k,v), and
Ah,s(v)5(kAh,s(k,v). This quantity is the local density of
states to add and remove electrons. In a strongly correlated
system, the sum rules on the weight~i.e., the integrated val-
ues! of Ae(v) andAh(v) are very different since the former
is given by the number of empty sites and the latter by the
number of filled sites~or equivalently the number of holes
and electrons, respectively!. In a Fermi liquid the values of
Ae(v) andAh(v) for small values ofuv2mu are determined
by quasiparticle weight at the Fermi energy and are continu-
ous. It is interesting therefore to note that Fig. 22 shows
approximately similar values forAe(v2m) andAh(m2v)
aroundv;m, but the sum rule on the total weight is satis-
fied through the large weight in incoherent excitations in
Ah(v) at higher energies,uv2mu.J. The strong correlation
condition is reflected in the much smaller total weight in
Ae(v) which comes about through an effective cutoff in en-
ergy onAe(v). In this respect the system in energy space is
similar to a lightly hole doped band insulator although as we
discussed earlier the location ink space of the coherent qua-
siparticle peaks corresponds to a large Fermi surface to add
and remove electrons.

The momentum distribution for electrons,
ns
e(k)[^ck,s

† ck,s&, and for holes,ns
h(k)[^ck,sck,s

† &, is
shown in Fig. 23. Note because of the strong correlation
condition, these do not add to one but instead their sum is

given by ns
e(k)1ns

h(k)5 1
2 (11d). The strong correlation

condition is also evident in the reduced magnitude of the

FIG. 20. Correlation exponent,Kr , for the L57 ladder with
two holes.
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variation ofns
e(k) as a function ofk. Nonetheless the pres-

ence of an apparent ‘‘Fermi surface’’ in the center of the
Brillouin zone is clear, consistent with the dispersion rela-
tions of the coherent quasiparticles. The difference between
the bonding (ky50) and antibonding (ky5p) bands and the
reduced occupation of the antibonding band arise from the
energy gain in placing the doped holes preferentially in the
antibonding band.

VIII. CONCLUSIONS

The results of our Lanczos diagonalizations confirm ear-
lier studies which concluded that lightly doped two-leg lad-
ders belong to a different universality class from single
chains. The latter are Tomonaga-Luttinger liquids with gap-
less and separated spin and charge excitations. The ladder in
contrast has a finite gap in the spin excitation spectrum and
gapless excitations only in the charge sector. The low energy
excitations evolve continuously from the limit of strong in-
terchain exchange coupling (J8@J,t) and the simplicity of
that limit allows a clear interpretation of our results.

At large J8 the dispersion relation of a single doped hole
consists of two cosine bands corresponding to bonding and
antibonding states on a rung. LoweringJ8 to the isotropic
limit ( J8/J51) and setting bothJ,J8,t changes the disper-
sion relation substantially. The coherent parts of both bands
are centered at energies;21.5t but the width is;J only.
The spin and charge components are still bound but more
loosely and the large magnetic polarizability of the spin
background introduces longer-range hoppings. Remarkably
the form of the bands resembles the noninteracting band
structure so that a photoemission experiment which removes
electrons would measure in effect a large ‘‘Fermi surface’’
with bonding and antibonding pieces. In this regime the qua-
siparticle propagation is strongly influenced by the coupling
to magnetic excitations.

When two holes are added they bind together on a single
rung at largeJ8 and remain bound although the size of the
bound hole pair increases asJ8 approachesJ;t/2. Moreover
the qualitative features of the density-densityN (q,v) and
spin-spin structure factorS (q,v), which are easy to under-
stand at largeJ8, remain similar asJ8 approachesJ;t/2.
N (q,v) near q5(0,0) is dominated by the low energy
mode associated with the motion of hole pairs. At largeqx ,
N (q,v) has a broad peak at high energies (;4t) similar to
that found by Ohta, Eder, and Maekawa for 2D clusters.39

They interpreted this as local excitations of single holes in
the magnetic cloud or spin bag.30 The dynamical spin struc-
ture factor,S (q,v), also resembles 2D clusters and not 1D
chains when we compare to the results of Tohyama, Horsch,
and Maekawa.31 The major weight is at energies;J. The
spin gap evolves discontinuously upon doping through the
quasiparticle excitations that can be made by breaking a hole
pair into two separate single holes. However the major
weight of the spin excitations remains in the collective mag-
non mode whose dispersion evolves continuously from the
d50 limit, although it is influenced by the continuum of
quasiparticle excitations.

We have also investigated the one-particle spectral func-
tions to add and remove electrons from the two-hole ground
state. These show clearly the unusual nature of this ‘‘Fermi

liquid.’’ When electrons are removed~or holes added!, the
spectral weight is spread over a large energy region (;6t),
but the coherent part is limited only to energies;J below
the Fermi energym. The energy dispersion relations show a
large apparent Fermi surface for the coherent quasiparticles
and which matches onto a similar one for adding electrons at
energies greater thanm. Thesek-space features resemble a
metal with a large Fermi surface. The property that re-
sembles a lightly hole doped insulator is the energy depen-
dence of the spectral weight to add an electron. This shows a
low energy cutoff (;d36t) similar to a lightly hole doped
band insulator. The result is an intriguing duality between
metalliclike features ink-space and lightly hole doped insu-
lating features in energy space.

The overall properties of the lightly doped ladder place it
in the Luther-Emery class rather than the Tomonaga-
Luttinger class of 1D systems. The low energy properties of
Luther-Emery liquids are described by interacting hard-core
bosons as shown by Efetov and Larkin. In the present case

FIG. 21. Spectral function of the one-particle Green’s function,
A(k,v), for the L510 ladder with two holes.~a! J/t5J8/t50.3
and ~b! J/t5J8/t50.5. The width of each line represents the
strength of the excitation. Forv.0 we show the spectral function
for addingone electronAe,s(k,v), and forv,0 the spectral func-
tion for removingan electronAh,s(k,v).
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the Efetov-Larkin bosons are bound hole pairs. Two features
distinguish thet-J ladder from the usual Luther-Emery liq-
uids arising from attractive interactions. One is thed-wave
character of the pairing and the second is the presence of
magnon excitations and limited quasiparticle excitations.
Note the magnon excitations cannot be viewed as the collec-
tive mode of quasiparticles since the latter vanish asd→0.
The system is not a standard Fermi liquid, but rather is an
interesting mixture of a dilute attractive Fermi gas in which
the hole binding energy remains finite asd→0, and a dense
Fermi liquid with an apparent large Fermi surface ink space.

Comparing the ladder with the results by Tohyamaet al.,
we see that the ladder is very different from the single chain
but similar to 2D clusters in many respects. Both in ladders
and in 2D clustersd-wave pairs are found down to smallJ/t.
The dynamical charge and spin structure factors look re-

markably similar and the single-particle spectral functions
indicate the existence of Bogoliubov quasiparticles with a
finite superconducting gap. Thus we are lead to the conjec-
ture that thet-J model on 2D clusters is a doped RVB spin
liquid showingd-wave pairing, similar to the ladder.
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