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We have numerically investigated the doped ladder using exact diagonalization. We have studied both
the limit of strong interchain coupling and isotropic coupling. The ladder scales to the Luther-Emery liquid
regime in the strong interchain coupling limit. In this strong coupling limit there is a simple picture of the
excitation spectrum that can be continued to explain the behavior at isotropic couplidg= B\twe have
indications of a ferromagnetic ground state. At a ladge the ladder is phase separated into holes and a
Heisenberg ladder. At intermediate coupling the ground state shows hole pairing with a mdelfimee
symmetry. The excitation spectrum separates into a limited number of quasiparticles which carry charge
+|e| and spin3 and a triplet magnon mode. At half filling the former vanish but the latter evolves continu-
ously into the magnon band of the spin liquid. At low doping the quasiparticles form a dilute Fermi gas with
a strong attraction but simultaneously the Fermi wave vector, as would be measured in photoemission, is large.
The dynamical structure factors are calculated and are found to be very similar to calculations on two-
dimensional clusters.

I. INTRODUCTION tion of the excitation spectrum, a discussion of phase sepa-
ration, and the calculation of the superconducting order pa-
The properties of strongly correlated electrons confined téameter and of the form factor of the Cooper pairs.
a ladder(or double chaipand described by-J or Hubbard We find clear evidence of hole pairing and a modified
models have been the subject of intensive investigatio§-wave RVB state in lightly doped systems in agreement
recently!~” The reason lies in the unusual spin liquid natureWith the mean-field theory. An interesting difference, how-
of the undoped parent systerfi-* Another reason for spe- €Ver, IS the discontinuous evolution of the excitation spec-
cial interest is weakly coupled ladder compounds likeffum upon doping. New “quasiparticle” excitations appear
SrCy,0; and (VOLP,0,.1518 Recent measurements of the CarTying both charge and spin. These excitations are in addi-
magnetic susceptibility and the nuclear spin relaxation rate iion t0 @ band of magnons which evolve continuously away
these materials show the existence of a finite spin gap.  10m the undoped spin liquid. This separation of the excita-
The key question in the current study is the evolution oftion Spectrum into bound holon-spinon quasiparticles and
the finite gap in the spin excitation spectrum upon doping_collectlve magnon excitation con'trasts.w[th the full spin-
The spin gap remains in other spin liquids systems and is §1arge separation found in a Luttinger liquid.

sign of strong superconducting fluctuatidig® Thet-J ladder Hamiltonian is
A recent analysis of thé-J ladder using a mean-field
theory with Gutzwiller renormalization of the matrix ele- .%/':—t.E .'?(C;aygcjﬂlafr H.c.)7
ments to account for the strong correlations gave a continu- lo.a
ous evolution of the spin gap with dopiAd-he short range
resonance valence bo(iEVB) state evolves into a supercon- —t’z .@(c}rllvacjyzygr H.c.)7
o

ductor with modifiedd-wave symmetry within this mean-
field approximation. A tendency towards modifidewave

superconductivity was also found in a bosonization +JZ (S,a Sj+1a— %nj,anjﬂa)
approach and in a recent numerical study of the Hubbard la
ladder?
We have investigatettJ ladders up to a size of 202 +J’2 (S5~ %n,—ylnjvz), (1)
]

sites using a Lanczos diagonalization method. First results
have been published in Ref. 3. Here we report in more detaivherej runs overl rungs, andr (=17,]) anda (=1,2) are
our results for larger lattices including a detailed investiga-spin and leg indices. TheJ ladder is sketched in Fig. 1. The
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tJ to a Luther-Emery liquid. The single-particle excitations are
—O oO—O0—----- a=2 discussed in Sec. VII. Overall we find a remarkable similar-
v I I ity between the ladder and two-dimensio2D) clusters.
y O o—0—----- a=1
i=1 2 3 4 | L

Il. FERROMAGNETISM FOR J=0

X The t model {-J model withJ=0) is equivalent to the
infinite-U Hubbard model. In single chains the ground state
FIG. 1. Thet-J ladder with two legs andl rungs. The couplings  of thet model is degenerate in the spin degrees of freedom.
along the legs aré, J and those along the rungs, J'. In two dimensions, on the other hand, the ground state of the
t model doped with one hole is ferromagnéficThis is
called the Nagaoka effect.
The extension of the proof by Nagaoka to finite hole dop-

first two terms are the kinetic energies and théJ’) are
exchange couplings along the laddeangs9. Unless noted

otherwise we sett’'=t. The projection operator . e ep
7=I1; o(1-1; 21N a,) Prohibits double occupancy of a M9 N the thermodynamic limit proved to be difficult. Actu-

site. Periodic or antiperiodic boundary conditiorgsc, ally the ground state of the two-dimensiori@D) square-
APBC) are used along the ladder. The wave vectoratticet-model doped wititwo holes isnot f(_err_omagnetu?.

k= (ky,ky) is consequently well define#, andk, being the For finite densities in the thermodynamic limit there are con-
momenta along the ladder and rungs. The transverse mometfiadicting results. Variational estimates for thle=c Hub-
tum ky takes 0n|y the values 0 and, Corresponding to bard model indicate that the fully polarized ferromagnetic
bonding and antibonding states. state is stable until a critical dopind,=0.2922 High tem-

At half filling the t-J ladder is equivalent to the Heisen- perature series expansions by Putikéial, on the other
berg ladder, which was investigated in earlierhand, show evidence that the fully polarized ferromagnetic
publicationst>°~1%The ground state of the Heisenberg lad- ground state does not survive at any finite doping. Instead
der is a short range RVB state with a spin gapAstJ/2  they find evidence for a partially polarized ferromagnetic
(Refs. 1,11,13,14at isotropic coupling)’=J. state at low hole doping. A fully polarized ferromagnetic

The strong coupling limit)’/J—o is a good starting state at finite doping was found only fdk 0.2
point to describe the system as there a simple description of |n this context it is of interest to study the occurrence of
the spectrum is availablé.In that limit, each eigenfunction  ferromagnetism in the ladder models. While the proof by
of the total system can be written as a direct product of\agaoka cannot be applied to the one-dimensional chain it
one-rung states, which are either spin singlets or one of thg yalid for the ladder. The proof relies on the existence of
triplets, and the ground state is that with all singlets. The firsgoseq 1oops on the lattice. Such loops exist in 2D lattices
excited multiplet consists of the states with one triplet ruNg.and on ladders, but cannot be formed on single chains. The

A small but finite value of] I|f_ts t.he degeneracy of these o, state of the ladder doped with one hole is thus ferro-
states. The one-magnon excitations then form a threefol agnetic

spin degenerate band with dispersiof=J"+J cos, We have numerically studied the ladder with
+3(J%13')(3—2 cosX) up to second order id. Ithasa | —p3 . 19 rungs, doped with two holes. In Fig. 2 we

minimum gapA=J'—J+ % J%J’ atk,=x.'° The momen- show the ground-state energies of the ladders for both PBC's
tum perpendicular to the chainskg= 7. The higher excited and APBC's. We find that the ground state is always ferro-

states form a continuum of excited states and its minimum isnagnetic for APBC and an even number of rungs and for

at k=(0,0) with energies slightly larger than twice the gapPBC and an odd number of rungs. For the other boundary
2A. With increasingJ the collective excitation branch conditions the ground state is a spin singlet.

crosses into the continuum, but the qualitative description is An important point is that the ferromagnetic state always

still valid. has the lower energy for a ladder with at least four rungs.

In this paper we study the effects of doping holes intoThe singlet state is very close in energy and deserves a more
such a ladder. Although the isotropic caseé/J=1, is of detailed investigation. In Fig. 3 we plot the real-space spin
most interest, we also study the lindit>J,t, which can be correlations(S*(0)S*(r)) of the lowest singlet state of the
easily understood. In this limit the problem reduces to a syst =10 ladder. These spin correlations show that the singlet
tem of weakly coupled rungs. The properties can be continustate actually consists of two ferromagnetic domains with
ously followed down to the isotropic poidt=J". opposite magnetization.

This paper is organized as follows. In Sec. Il we briefly The results show clear evidence for a ferromagnetic
discuss the occurrence of ferromagnetism in the ladder dopegiound state of the ladder ( =4) doped with two holes. In
with one or two holes af=0 and discuss the relationship the thermodynamic limit however two holes is not a finite
with the occurrence of ferromagnetism in two dimensionsdensity. Extrapolations of our small-cluster results at finite
Next in Sec. lll we discuss the pairing of holes doped intodoping to the thermodynamic limit—c are hard to obtain.
the ladder and the occurrence of phase separation. To unddsut one may speculate that the existence of a ferromagnetic
stand the excitation spectra we start from the single hole cagground state of thé ladder with 2 holes and. =4 could
in Sec. IV and go on to the two-hole case in Sec. V. Sectionindicate a ferromagnetic state for dopin@gs< é.~0.25.

VI discusses long range correlations, in particular the interSimilar  results were obtained by Hirsch and
esting question of the symmetry of the pairs and the mappinillller-Hartmanr?*
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FIG. 2. Ground-state energies for théadder ¢-J ladder with =
J=J'=0) with two holes. Results are shown for systems with _?_? 1 ?_?_?_? . + *_
L=23,..., 10 rungs and periodiPBC) as well as antiperiodic (e) .
(APBC) boundary conditions. The ferromagnetic state always has _\t_i i_i_i_i * ib

the lowest energy fot.=4 rungs.
FIG. 4. Graphical representation of the low-lying states of the
[ll. HOLE PAIRING AND PHASE SEPARATION t-J ladder in the strong coupling limii’>J,t. (a) The undoped
case.(b) One hole goes into either the bonding orbital or the anti-
bonding orbital on one rungc) In the ground state for two holes
In this section we will discuss the pairing of holes dopedboth holes are on the same rurid) Scattering states of two holes.
into thet-J ladder and the occurrence of phase separation dg) At higher energies there is the triplet excitation similar to the
large values ofl/t. We will start from the simple limit undoped ladder.
J'>J,t. In this limit the undoped ladder consists of weakly
coupled rungs, as is sketched in Figa)4 whereEg s(N) is the ground-state energy fbirelectrons, the
In this limit two holes doped into the ladder will go onto boundary conditions are chosen between PBC and APBC to
the same rung in order to minimize the number of brokergive the lowest energy.
singlet bonds. This state is graphically shown in Fig)4in In the largeJ’ region the binding energy can easily be
order to study the occurrence of hole pairing at smaller valestimated. A single hole doped into a Heisenberg ladder
ues ofJ’ and down to the isotropic poidt=J" we calculate breaks one bond with energy lod$, but can gain kinetic
the binding energy and the hole-hole correlation functionenergy—t along the laddefsee the next section for details
We find that even at isotropic coupling the holes still form aand —t’ along the rung. It follows that
bound pair, although the pair is more spread out there. Egs(2L—1)~Eg4(2L)+J'—t—t’. Two holes on the same
The binding energ¥g is defined as rung also break one bond, but the kinetic energy of such a
bound pair is much smaller, of order4t?/J’, as will be
Eg=2Eys(2L—1)—E45(2L)—E4s(2L—2), (2)  calculated later. Thus we estimate Eg.&(2)
~Eg.s.(4d)+Jr, and a binding energy

A. Hole pairing

0.1 Eg~J —2t—2t' for J’>J,t,t’. ©)
2 x 10 sites
ilpglﬁ’s/t " Figure 5 show$g as a function ofl’. It remains positive
and thus shows binding down to the isotropic value,
‘ J/It=J'/t=0.3. The same holds for a largéft=0.5.

0.0 Additional evidence for pairing is provided by the hole-

hole correlation functions

<S*(0)S*(r)>

L« intra-chain (NR(O)NR(r))=((1—n; H)(1—Njsra)), (4)

G—=© inter-chain measured on the same leg=a’ and on different legs

01 ! , a#a’ in the ground state. They are plotted in Fig. 6 for
0 1 2 3 4 5 J/t=0.3 andJ’'/J=1 and 10. Fod’'/J>1 the two holes are
r predominantly on the same rung and the correlation function
shows a clear exponential decay. At the isotropic point the
FIG. 3. Real-space spin correlations for the singlet ground stat@air is more extended. The maximum of the correlation func-
of thet ladder with two holesL =10 and PBC'’s are used. The two tion is now at a distance 1 along the legs and on different
ferromagnetic domains can clearly be seen. legs, but it again decays at large distances. We can calculate

Lo
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that the spin excitations acquire a finite gap while the charge
3.0 excitations remain gapless. In the limit of largg however,
P the picture that tightly bound hole pairs are moving in a
? background of singlet rungs is more appropriate than weak

8x2 sites coupling approaches likg-ology. Considering these hole
20 | J/t=0.3 pairs as hard core bosons, we can determine the long-range
- correlations by a mapping to an effective boson model.
= The pair hopping matrix element to second order in per-
§ turbation theory is

| spin excitation 2
1.0 '(32 holes) 7" 2t

bound holes -~ A4 12/ 1/
+ triplet rung 7 spingap (Zholes) .. J' =4t/
- 74

There is a weak attractio* between two hole pairs on

0.0 :  binding energy of 2 holes neighboring rungs, which again to second order takes the
0.0 1.0 2.0 30 form
J/t
. J 3r . 4t? 6
T2 8Y Jy-at'yy ®)

FIG. 5. Binding energy of two holes, spin gap and energy of the
triplet excitation away from the bound hole pailt=0.3 and Where the first, attractive, term comes from the charge part of
0.3<J'/t=<3.0. The size of the ladder Is=8 rungs. the J-term in the Hamiltonian. Ag*,V*<J’ we can map

. . " . . . the low-energy part of the-J ladder onto an effective hard-
the size of the hole pair by fitting the interchain correlations. e poson model on a chain with nearest neighbor interac-

to an exponential forrgn,(0)np(r))~e "é+e ("€ for o
the two largest distancels/2 andL/2— 1. The inset of Fig. 6
shows the siz& of the hole pair as a function of the inter- N
chain couplingJ’/t. The pair is very tightly bound for H*:_t*Ei (BiBis1t H-C-)+V*Z NiNi+1, (7)
J'>J. At the isotropic point the pair is still bound, with a
diameter of about two lattice spacings. Note the oscillationvhere the hard-core boson creation operzﬁércreates a
of the radius with respect tb. The size seems to converge hole pair at the rung and NiEBi’fBi is its number operator.
to a value in between the=8 and thelL =10 result at the There is a hard-core repulsion since only one hole pair can
Isotropic point. be created on any given rung.
Our effective boson model is equivalent to thexXz
model in a magnetic field, which has been solved exactly by
We may say that the system belongs to the Luther-Emerqt bosonization approach and conformal field thébrizor
universality class of 1D correlated systefisn the sense V*<—2[t*| the system is phase separated. This is the case
for 3’ >Jps, where

B. Effective boson model for the larged’ limit

0.06

3 . . N —1&2 J+O JS) (8)
4 ~~~~~~~~~~~~ 6x2 sites e 2 TZ
2| ¢ ——- 8x2 sites . . .
— 1ox2 sites again to second order perturbation theory. For physically rea-
0.04 - nd sonable values of/t phase separation occurs only at very
A b large values of J': Jpdt=53.2 for J/t=0.3 and
% 0 , - Jpdt=31.8 for J/t=0.5. Note that the dominant attractive
= .0 1 2 3 part of the interaction comes from the charge part
& 10x2 sites Ji 1
v 0.02 I 3/'19_68 3 O intra-chain correlations ~ 2N aNj 114 of the J term.
=0 Alnter-chain correlations Next we will discuss the region where the system is not
Tz yet phase separated bdt is still large (,t<J’<J%g).
b T T T T N A There we can determine the dominant correlations from the
- ‘—1‘%@_—_—_—_____% effective boson model. The correlation exponents have been
0.00 - : 5 o 8 8 calculated indirectly by Bethe ans&fzBoth the charge den-
r sity wave correlations and the superconducting correlations
show a power-law decay at large distances:
FIG. 6. Hole-hole correlation functions for the ground state of (NrNO>~ConSt><r*2+ const< cog 2ker)r Ko, (9a)
the t-J ladder with two holesJ/t=0.3, andJ’/J=1 and 10. The
size of the ladder it =10 rungs and APBC’s are used, which have <B:BO>~ r UK, (9b)

a lower ground state energy than PBC'’s. The inset shows the size of . ] + ] )
the bound hole paig, in the two-hole ground state as a function of The superconducting correlatiod®,B,) are dominant if
J’ for different ladder sizes. K,>1. This is the case for most of the phase diagram, except
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for the phase separation regime \&t <—2t*. At quarter 1.0
filling p=1/2 and forV*>2t* the system is in the Ising L J=J *
limit and shows a long-range charge density wave ground L
state. At fillings close to that line and for largé* >2t* I * Phase
there is a small region whei¢,<1.2° o Separation
In our effective model we havev*<0 and there @ 05 o o
K,>22% We are thus always in the region of dominant su- I D
perconducting correlations. Even neglecting the attractive i gtfgggg © OD
charge part of thd term we are still in the superconducting N L;8 PBC o
regime wherek ,>1. L L=8 and 9 combined &
In the limit of largeJ’ the equivalence of the-J ladder 0.0 , , , , , , ,
with a Luther-Emery liquid can clearly be seen. Going to o 1 2 3 4
isotropic coupling the spin gap remains finite and the only J/t
low-lying excitation is the collective charge mode, as we will
show in the following sections. Thus also at isotropic cou-
pling the t-J ladder is still a Luther-Emery liquid. In Sec.
VIB, we will develop another approach which relates the|imit | both formulas give the same result, as the frus-
long-range correlations to thermodynamic quantities foryation appears only on small lattices.
more general’s, based on a bosonization of density fluctua-  \while the finite size effects are quite small at low electron
tions. densities they are much larger at small hole dopings due to
frustration mentioned before. The estimated errors on the
C. Phase separation ghgs:ze separation line may thus be much larger there, about
Finally we study the occurrence of phase separation at A comparison with the results obtained with open bound-
isotropic couplingJ=J’. We estimate the onset of phase ary conditions(OBC) confirms our results. Only at small
separation by determining the couplidgat which the com-  doping the OBC results are not reliable since there the holes
pressibility « diverges. The compressibility per site can beare trapped on the ends of the chain.
calculated as usual Figure 7 shows the phase separation line forttlidadder
for J=J’, in theJ-p plane. Note that, opposite to the single
,7%€(p) chain casé/ the onset of phase separation at small hole dop-
EPCA (10 ing is at lower values o8/t than at small electron concen-
P trations. This resembles the behavior in two dimensfdns,
although the precise position of the phase separation line in
two dimensions has not yet been established.

FIG. 7. The line of phase separation in thé ladder determined
from the coupling at which the compressibility diverges.

K71=p

wheree(p) is the energy density per site of the ladder with a
particle density per sitp=N/(2L).

In a finite system usually the discrete version IV. PROPERTIES OF A SINGLE HOLE
N2[E(N+2;L)+E(N—2;L)—2E(N;L) In the previous section we have discussed the ground state
k1= (11 of the ladder doped with two holes. In order to understand

2L 4 the low energy excitations of the ladder it is useful to study

the one-hole problem first.

As mentioned above the limi’'>J,t is a good starting
point to explore thet-J ladder. There are nine different
states, depicted in Fig. 8. A single electron goes either into
Bhe bonding or antibonding orbital

is used, wherd=(N;L) is the ground-state energy of the fi-
nite system withN particles on the ladder with rungs(vol-
ume ). At small hole doping however this procedure may
not be reliable due to finite size effects caused by frustratio
on small lattices. To see this let us consider ithe8 ladder

doped with zero, two, or four holes. In the undoped case 1 1
there are 8 spins on each leg of the ladder. Two holes doped b! =—(cl, +cl,,), al ,=—=(cf  —cl,,),
into the ladder will predominantly go onto different legs and V2 V2

there will be seven spins per leg. Thus the antiferromagnetic (12

configuration on the legs will be frustrated. For four holeswith energy=t’, respectively. Two electrons on the rung are

there will be six holes on each leg and the system is agaieither in the singlet state with energyJd’ or in one of the

not frustrated. Conversely on dr=9 ladder the undoped three triplet states with energy 0. The singlet state expressed

ladder and the ladder doped with four holes will be frus-in bonding and antibonding orbitals is

trated, while the ladder doped with two holes will be non-

frustrated. i(CT CT _ CT CT )= i
We have thus used a different formula to calculate the\/i BLTML2, ML L2 2

compressibility at small hole doping. We calculate the ] o

ground-state energies for an=8 ladder doped wittN,, =0 Similarly the. three triplets can be gxpressed as combinations

and 4 holes and for an=9 ladder doped with 2 and 6 holes. ©f one bonding and one antibonding electron:

In all these cases the ladder is not frustrated. Then we esti- 1

mate the compressibility from these energies using finite dif- alpt —

ferences similar to the above EdJd). In the thermodynamic e V2

(bf;bf,—afal ). (13

(alb{+afbl), albl. (14)
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Energy Energy -6.8

r \DE 2x10 sites Ji=0.3 g
0 vacanc -J ! ingl 1 hole g
y \ singlet 70y
i triplets

-t bonding 0 1 i

+t f { antibonding

E/t

FIG. 8. The nine different states for a single rung. -108 _;/2 (') n}2

Figures 9a) and 9b) show the one-hole spectra fb=8

for large interchain coupling’/J= 10, calculated by exact
diagonalization for J/t=0.3, J'/t=3 and J/t=0.5, FIG. 10. Fit of the lowest lying bands of the one-hole spectra to

J'It=5, respectively. the form of Eq.(15), J/t=J'/t=0.3 andJ/t=J'/t=0.5. The size is

A hole on a single rung can be either in the bonding or the-=10-
antibonding orbital. One hole doped into the half filled lad-
der will thus be either in a bonding or antibonding state,kﬁw(igw,O) for the bonding and(é‘%(i%'n','n') for the
depending on the parity symmetry of the total ladfe®e antibonding band. We can fit the low-lying hole bands to a
Fig. 4(b)]. This hole can propagate along the ladder with adispersion of the form
hopping matrix element= +1t/2 in first order perturbation
theory. Thus the low energy states are two bands of holes in E(k,) =Ey+ AE+ a; cok,+ a, cosXk,+ a; cosX,,
the bonding and antibonding orbitals. They are split by the (15
energy difference € of the bonding and antibonding states.

These two bands can clearly be seen in the spE€igs. 9a) corresponding to nearest neighbar,J, next-nearest neigh-

and gb)]. The minimum of the bands is &=, since the ~POr (¢2), and third-nearest neighbot§) hopping.E, is the
hopping matrix element for holek>0. The bandwidth of 9dround-state energy of the undoped ladder aithe shift
both bands is #=2t in the limit J’>J.t. At finite J the N €nergy of the center of the band upon doping. In Fig. 10
bandwidth is reduced due to hybridization with the higherV& Show the bands and the excellent fit. The parameters are
excited states. shown in Table I.

Decreasing)’ to the isotropic points)=J’ changes the The changes in the hole dispersion with decreasingre

- - : ized as follows.
dispersion of these bandsee Figs. @) and 9d)]. At low  Summarze .
energies we can still see the bands of holes in the bonding (1) The center of the bands shifts downwardsA <0,
and antibonding orbitals. These bands evolve continuouslgomp"‘lrEOI to the undoped ladder. The energy gain for one

from the largeJ’ limit. The minima of the energy bands are N0l€ in the case 08=0 would be just the kinetic energy
not at k,=0 or k=m, but at a large momentum —t’. WhenJ>0 we lose magnetic energy by introducing
the hole. The energy gain is therefore smaller at ladgeras

we can also see from the fit parameters.

(i) The hole bands are narrowed compared to the large
J’ limit. In that limit the bandwidth of the hole bands was
2t. This bandwidth is renormalized by the stronger polariza-
tion effects at isotropic coupling, and it is now of the same
order as the magnetic energyinstead of the kinetic energy
2t.

(@ (¢) Vt=Yir=03 {74 (iii) The dispersion changes as longer range hopping pro-

N T N cesses ,,a3) are introduced with decreasiny, and the
minima move away fronk,= 7. The minima of both bands
are very close in energy, again in contrast to the strong cou-

220

E/t

-24.0

-34.0 -
4 -10.2

S 360 -10.4 pling region where they are split byt2 In Sec. VII we will
380 - e 1m0 -106 TABLE |. Parameters for the fit of the lowest lying bands of the
, , , @ -~ 108 one-hole spectra to a dispersion of the form of Edp).
- -w2 0 w2 -2 0 w2 m
k" K‘ J/t ky AE aq Ay ag

FIG. 9. Energy spectra for theJ ladder doped with one hole. 03 0 —1.476 0.160 0103 —0.026
The case of largd’ (3'/J=10): (a) J/t=0.3 and(b) J/t=0.5 with O3 ™ -1l4l7 —-0192 0.134 0.025
L=8. The isotropic case)(/J=1): (c) J/t=0.3 and(d) J/t=0.5 0.5 0 —0.865 0.263 0.189  —0.007
with L= 10. The results fok,= (n/L)# with evenn are for PBC's 0.5 ™ —-0790  -0311 0225  -0.011
and with oddn for APBC'’s.
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2x10 sites O intra-chain
0.044 1 hole A inter-chain
J/t=03 — J/t=30

I -- J/t=03 ~

L

0.02

<n,(0)S(r)>

= - I | s=o foven)
p > 3 4 5 w  -36 J/t=05 —- - $=0(odd)

......... S=1 (even)
— - - 8=1 (odd)

FIG. 11. The hole-spin correlations for the ground state of the s . : : "
ladder doped with one hole a'/J=1 and 10. The ladder has w2 kO w2 o -w2 0 w2 o=
L=10 rungs and)/t=0.3. The ground state h&$=1/2. x .

. . . B A . FIG. 12. Energy spectra for thel ladder doped with two holes
identify the minimakg andke with the Fermi points of the  for 4 Jarged’ (3'/3=10): J/t=0.3 with (a) PBC’s and(c) APBC’s,
bonding and antibonding quasiparticle bands. andJ/t=0.5 with (b) PBC's and(d) APBC's. The size of the ladder

Another interesting question is the behavior of the freejs | =8 rungs. The states are classified according to total Spind
spin that is left over after one hole has been doped into th@arity.

ladder. In thet-J chain the spin and charge excitations are

carried by different soliton excitations which are far apart in . . .
y P Ié)west—lylng singlet band is that two holes are now separate

separation and such a system is called a Luttinger liquid. In at.her than formmg a bound pair. Being separate, they can
gain a larger kinetic energy, but only in return for an even

Fermi liquid, on the other hand, they are bound and the exI *of h , inalet

citations are described by quasiparticles carrying both charg.@rger cost of exchange energy_] as one more singiet rung

and spin. IS broken. Thus t.here. are contln_ua of scatterlng st.ates of the
We have calculated the hole-spin correlations to answe'© holes (*quasiparticles’) at higher energies. Since the

the question if spin-charge separation occurs in the IaddeF.eSIduaI mteractpns between the two quasiparticles are
The real space correlations weak, the energy is almost degenerate betweesthe and

S=1 spin subspaces. On the finite lattice we naturally do not
. . see a continuum of scattering states, but only several discrete
<nhya(J+l’)S;,(j)>, (16) bands. These bands, and the fact that the energies of the
are shown in Fig. 11. This correlation function is nonzero fort”plet and singlet are nearly degenerésie to boundary ef-
] L fects can be seen in the spectra.
the ground state in the subspaceS§f= since there re- There are various combinations of the two quasiparticle
mains one spin unpaired. o bands in the two quasiparticle continuum of states. The low-
The result shows that the hole is tightly bound to theest are scattering states of two bonding quasiparticles, with
remaining free spin. At strong interchain couplidig>J,t it k,=0. Higher states are scattering states of one bonding and
is again predominantly on the same rung. At isotropic coUpne antibonding quasiparticle. Having the same transverse
pling the spin-hole bound state is more extended. These spipyomentum, k,=m these states hybridize with the one-
hole bound states thus carry both charge and spin. In thigiagnon excitations in the spin background, resulting in a
sense they are similar to the quasiparticles in a Fermi liquidspoynd state” below the two-particle continuum. This is
This is in contrast to the spin-charge separation in the singlgearly dispersionless and clearly seen in the spectrum. The

chain. We will therefore call the single holes bound to thecontinua of two antibonding quasiparticles is much higher in
free spin “quasiparticles,” although the system has a SPiNenergy and not included in the figure.

gap. At higher energies there are spin excitations in the spin
background. They are not described by the quasiparticles and
V. EXCITATION SPECTRA OF THE LADDER will be discussed in more detail in the next section.
WITH TWO HOLES The results in the isotropic cas&’,/J=1, are shown in

Fig. 13. The energy spectrum is more complicated but the
above description still holds qualitatively.

The ground state of the ladder doped with two holes is, as The ground state is still the bound hole pair. It moves
discussed above, a bound state of the two holes. This bourambherently along the ladder, yielding a gapless band of sin-
pair coherently propagates along the ladder, giving rise to thglet charge excitations. The band has a linear dispersion
lowest-lying band. WhenJ'>J, this band, spin-singlet aroundk=(0,0) compared with quadratic in the largé
charge excitations, is clearly seen in the numerical results asase. An important point is that despite its complicated dis-
shown in Fig. 12. persion the low energy part is well separated from the other

The higher energy excitations are again understood simexcitations. Therefore also at isotropic coupling the only
ply in the larged’ limit. An essential difference from the low-energy excitation is the collective charge excitations,

A. Excitation spectra
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expect two states dt=(zm,7) and k=(,7) which are

similar in energy but at a higher energy than the correspond-

ing states with PBC. This is exactly what we observe. The
&0 even) odd parity states ned,=0 can be constructed similarly.

--- $=0(odd) The qualitative features of the three-hole excitation spec-

- 8=1 {even)

o $=1 (odd) trum can again be explained similarly.

E/t

B. Spin excitations

One of the most interesting properties of thé ladder is
that there are two distinct types of spin excitation. Although
it is most easily seen in the largE limit, the qualitative
, , , , , , distinction remains down to the isotropic point.

- w2 0 w2 w2 0 w2 o= The first type is the collective magnon excitations inher-
ited from the undoped spin ladder. One of the electron-filled
rungs is now excited to a spin triplet. This local excitation is

FIG. 13. Energy spectra for tie] ladder doped with two holes what we call “magnon” and it propagates coherently along
at the isotropic pointJ'/J=1): J/t=0.3 with (8) PBC's and(b)  the ladder, leading to an energy dispersion with respect to
APBC's, andJ/t=0.5 with (c) PBC’s and(d) APBC's. The size of i  For a detailed investigation, we have examined the two-
the ladder id = 1_0 rungs. The lines are only guides for the eye andhole spectra in more detail and have calculated the spin-spin
do not necessarily connect related states. and spin-hole correlations of the low-lying triplet states. We

find that the magnon excitations of the Heisenberg ladder
and we may identify the isotropi¢-J ladder as Luther- evolve continuously upon doping. However there discontinu-
Emery liquid. We will discuss the essential role of theseously appears a new kind of spin-triplet excitation at lower
charge fluctuations concerning superconductivity in Secenergies, which is not present in the undoped ladder.
VI B. The lowest excitation is a different type for which quasi-

In addition to the gapless band of charge fluctuationsparticles play an essential role. Therefore, the spin gap, de-
there are various local minima at higher energies. Howevefined as the excitation energy to the lowest triplet, is a dis-
they can be explained by taking account of the nonmonocontinuous function of the hole doping &=0. This new
tonic dispersion of the one-hole spectra shown in Fig. 9, anéype of excitation consists of breaking a pair of holes into
our quasiparticle picture still holds. More specifically, theretwo separate quasiparticles, each carrying chargel and
are four local minima in the single-hole spectra atspin 1/228 When the two quasiparticles are both in the bond-
k~(*2m,0) and k~(=%m,m), which have nearly the ing orbital, their lowest energy, &t=(0,0), is lower than the
same energy. Thus to construct low-energy two-quasiparticlwest magnon excitation. The additional energy gain is eas-
excitations there are many possible combinations of differenily understood, since the two separate holes have a larger
minima of one-particle states as discussed below. This is thkinetic energy of the order dfwhile the gain of the magnon
origin of many local minima in the two-particle spectra andkinetic energy is of the order af/J’. As was shown in Fig.
this is confirmed by the fact that the dependence on th&, down to the isotropic point the lowest two-quasiparticle
boundary condition is consistent with this picture. excitation is lower in energy than the lowest magnon excita-

The ground state of the two-hole spectrum can be contion.
structed from holes neat Kk in the single-hole spectra. The  The above picture is confirmed by comparing the correla-
other minima can be explained similarly. The minimum in tion function between the two different states. The dynamical
the PBC spectrum ak,= 7 can be identified with the Spin structure factor gives another confirmation.
2k excitation, where a particle moves from one Fermi point Figure 14 shows the equal-time correlations of the two
to the opposite ond.2x (+3/5)m=(+4/5)7.] When us- holes{nu(r)ny(0)), and of spin and hol&S*(r)n,(0)), cal-
ing APBC we do not have the value of + 2  in the single- culated for these two types of spin-triplet excitations. The

N : latter quantity is nonzero since the states v@tk 1 are used
hole spectrum on ah=10 ladder. The closes, points are in the calculation. Whed'/J= 10, the two holes are separate

+ 3o and+ g5, leading to minima at- w and= 2w inthe  in space in the lowest state, while tightly bound in the other
two-hole spectra. Another feature that can be explained frongtate. The position of magnetic excitation is, on the other
the single hole spectra is the minimumlat(7,7) (odd  hand, close to the hole position in the lowest state, while they
parity, k= ). Using PBC this state is obtained with one are far apart from each other in the other state. These two
hole with k=(£,0) and one withk=(%, ), leading to behaviors are what is predicted by our picture explained
the minimum at ¢, ). aboye,_and despite modification in smaI_I det.ail they are

Using APBC's we can combine one holelat (&, ) qualitatively consistent even at the isotropic point.

. ] 5 ; Our numerical results confirm that the lowest triplet state
with one at eitherk= (5, m) or k=(3m, ). AS men- s the quasiparticle excitation where the bound hole pair
tioned above these two states are higher in energy than thgeaks up. The two holes repel each other and the hole-hole

minimum at+ 27 and very similar in energy. Therefore we correlations have the maximum at the largest distdn@e

E/t
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where |n) is the complete set of eigenstates with energy

0.02 : .
O ntrachain @) 4\ B sites (© ] 006 En. | g.s) is the ground state with enerdy, s and
A Ainter-chain \ 2 holes
) RTR \ 1 0.04
Ef 001 aA—- o ) \\ . 1
R \ | S=——> s, (18)
c L g/ A\\ _a-® 0.02 qa \/Z - r
g
0 . M- —=E==g——a {0
T Jit=03 Of Y @] 0.4 . .
P V/t=03 VY /‘:_%% Figure 15 shows”(q,w) calculated for the Heisenberg
=) \\ \ e 0.05 ladder using the Lanczos diagonalization combined with the
c N ! q . .
€002 he.o.-- @x/@ \\ e ) continued fraction methof. It can clearly be seen that the
@ h-TETEIEE A | A-ga—8 dominant contributions arise from the collective excitations
o -——&"_ - 4 . . . .
& © o 0 nearg=(,7) and there is very little weight in the con-
01 2 3 40 1 2 s a tinuum of spin excitations at higher energy.
r r In the doped case the two types of spin excitations have

different contributions to the dynamical spin structure factor.
FIG. 14. Hole-hole[(a) and (c)] and spin-hole[(b) and (d)] It can be seen in Fig. 16 that the continuum of spin excita-
correlation functions for the two triplet excitationls=8. Dashed  tions move towards lower energies. Most of the weight is in
lines are for the lowest triplet state and dashed-dotted lines for thehe magnon excitations, consistent with the mean-field
lowest state with nonvanishing weight.in[q=(,7),®]. theory? and there is very little weight in the lowest triplet
excitation consisting of the two separate quasiparticles.
Each of the holes is bound to a spin-1/2, as can be seen from As in the larged’ limit the lowest triplet excitation with
the hole-spin correlation function. This state is sketched irtly: 7 is a bound state of a Spin trip|et and the hole pair_ At
Fig. 4(d). ) o ~g=(m,m) this state has no spectral weight, while most of the
As a typical magnon excitation, we show the correlationsyeight is in the second excited state, which has the triplet
for the state ak=(,7) that has the main spectral weight in senarated from the bound pair. This is a finite size effect of
the dynamical spin structure _factor Whl(_:h _WlII be discusse he two-hole system. The reason is thatggt=0 or 7 we
soon. The hole-ho_le correlafuons are similar to t_he 9rounthave an additional symmetry, reflection invariance in the lad-
state. The hole-spin correlations show that the triplet Camyyer direction. The parity under these reflections is different

ing spin current is far away from the hole pair. This state is, - :
shown in Fig. 4e). Mean field theory predicts only this for the ground sta}te.and th_e triplet-hole pair ground state,
leading to the vanishing weight.

magnon excitation, which evolves continuously from the A significant diff bet the two t f spi
Heisenberg ladder. significant difference between the two types of spin

In neutron scattering experiments the relevant quantity i€xcitations is that the largest number of “quasiparticle” ex-
the dynamical spin structure factor citations is limited by the number of holes. We need at least

two holes to create such an excitation. The number of pos-
sible excitations is thus proportional to the hole dopihg
A w)=>, [(n|S} 9.8)|28(E,—Egs—wp), (17) On the other hand, the magnon excitations can be excited at
n any rung where there are no holes. The number of these
excitations is thus proportional to-16 instead, much larger

210 sites s T ax10 sitos =0 for a small qu.ingﬁ.. Therefore with decreasing temperature
2t “ohole 7 10 F 0 hole o the susceptibility will show a large exponential drop at tem-
0 0 peratures of the order of the gap of the undoped system
ol (n/5,0) 10 {n/5,m) (T~0.57), followed by a small drop at temperatures around
o o the spin gap of the doped system.

(2n/5,0) - @n/5,1) To summarize we can describe the spin excitations of the
2r 10 + t-J ladders by a simple picture: quasiparticles moving in a
0 A 0r e spin liquid background. In the ground state the quasiparticles
2t (31/5.0) 10t (3n/5,m) are paired. In the excitation spectrum two types of excita-
0 Jk 0 A tions can be distinguished. The first corresponds to the break-
5| (41/5,0) 10 (4n/5,m) ing of a pair of quasiparticles. This excitation has the lowest
j\\ jL energy, but its number is limited by the number of holes. Of
0 (r,0) e (nm) more importance for measurements of the susceptibility or
2 J\\ 10 JL inelastic neutron scattering experiments is the second type,
0 0 > A 4 0 0 2 4 which are magnon excitations in the spin liquid background.

w/J i~ They evolve continuously from the undoped Heisenberg lad-
der. Although the gap for this type of excitation is larger it is
FIG. 15. Dynamical spin structure factor(q,), for the un- ~ more important since we can excite more of these excita-
doped ladder with. =10 rungs. Note that the scale is different for tions. Also the weight in the dynamical spin structure factor
Qy=1. is larger.
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similar to that of spinless fermions, consisting of large peaks

2x10 sites q=(0,0) 2x10 sites g=(0,m) ; . -
1+ 2holes 1 | 2holes at the energies expected from the cosine band of the spinless
o | =03 0 fermions.
.| @ws0)| | =03 (r/5,1) In two dimensions they find different behavior. In the spin
0 0 lA A structure factor nearly all of the weight is in a few sharp
] (50 | @n/5,m) Eea(l;s f;l]t low _energieﬁ. In the Ichf':lrgle Istructure, on thefotrr:er
i I and, the main weight is at relatively large energies, of the
0 Ldoce 0 AP order of severat, and is strongly broadened. This is indica-
1} (31/5,0) 1 (8n/5m) tive of strong spin-charge interactions. Only at some special
0 DN 0 g points are there peaks at low energies. The dynamical
1l @500, | (4n/5,m) charge structure factor/ (g, ) for the ladder shown in Fig.
0 J 0 M 17 differs a lot from the single chain but resembles the 2D
(,0) (. cluster. At largeq,, we see the peaks at large energies
Tr D A 4r h ~2t-4t. At small gy in the q,=0 sector, /' (q,w) for the
00 0 05 10 00 0 05 10 ladder is dominated by the collective mode of the hole pairs,
' "ot ' ' "ot ' and its behavior differs substantially from spinless fermions.
Another similarity to the 2D system is found in the dynami-
5 | 2x10 sites 4=(0.0) | , | 2x10sites q=(0,) cal spin structure/(q,w) where the main weight is in peaks
o | =05 o L t=05 Y with energies~J (see Fig. 16 We conclude from this com-
(n/5,0) (/5,7 parison that the 2D clusters and the ladders are closely
Tr Ty o related—a fact which points towards al-vave” paired
0 - 2n/5.0) 0 4 /5.1 state for the 2D clusters. A more difficult question is to what
1+ ' 1} ' extent this behavior of the finite 2D cluster is a consequence
0 ee 0 AN of the strong tendency of finite clusters to favor singlet
1l @50 || (3n/5,m) ground states and to what extent it is representative of an
0 A 0 infinite plane.
1L (4n/5,0) al (4n/5,m)
0 A a ot 0 JL A VI. LONG-RANGE CORRELATIONS
1 L @0 | ,1 J (r.m) A. Superconducting correlations
0 Mo hohes 0 - A highly intriguing and much debated subject of the high-
0.0 (1,)/0t 20 00 O.io/t 10 T. superconductors is the internal symmetry of the order

parameter. In this section we study the internal structure of

FIG. 16. Dynamical spin structure factar/(q,w), for the  the pairsin the doped ladders. For th@ model usually only
L=10 ladder with two holesJ/t=J'/t=0.3 (upper panelsand  Nearest neighbor pairs have been considered except for a few
0.5 (lower panels PBC’s are used. Note that the scale is differentCases. It is reasonable to assume that they are the dominant
for aroundq= (,). pair correlations. However more quantitatively we have cho-
sen the optimal form for the pairs.

Using the Lanczos algorithm we calculate the pairing cor-

Similarly to the calculation of the dynamical spin struc- relation functions for different pairings. Let us introduce the

ture factor we calculate the dynamical charge structure facto?f’r%rator creating a singlet pair of electrons on siteznd
defined by r+ad

C. Charge excitations

1

P;r,d:ﬁ(c;rjc:m,i_C;r,lc:mn)- (20

A1(0,00)=2 [(nlpg| 9:5)|*8(En—Ege=wo), (19
wherepg is the Fourier transform of the local density fluc- Using this definition of the pair operator we can calculate the
tuation around the average density superconducting order parameter

The result of our calculations is shown in Fig. 17. The

main contribution arises from the coherent motion of the _ _ 1 t
hole pairs. This leads to large peaks at low energies near Xd < 9.5, Np—2 hOIE%ZLZ Pr.a) 9:5-+ N holes>
g=(0,0). The rest of the weight is distributed incoherently (21

over a wide region at rather high energies of order K . .

: . . . : ._and its Fourier transform
arises from interactions of a single hole with the surrounding
spin background. This is similar to results obtained for two
dimensions?

Recently Tohyameet al. have calculated”(q,») and
(q,w) for single chains and 2D clustetsin the single
chain they find that, as expected from Luttinger liquid theory,
the charge and spin excitations are decoupled in the lowherePy _, is the Fourier transform of the real space pair
energy region. The dynamical charge structure factor is vergpperator with zero total momentum.

Xk:; xa€'* ¢

=(g.s,Ny,—2 hole$P] _,| g.s.,N, holes, (22)



53 PROPERTIES OF LIGHTLY DOPEDR-J TWO-LEG LADDERS 261

Figure 18 shows the superconducting order parameter fdargeJ’ limit down to the isotropic coupling. This observa-
the L=8 ladder with PBC'’s for several values dft. The tion indicates that the low-energy and long-wavelength prop-
most obvious properties are that the sign is opposite for pairerties of lightly dopedt-J ladders would be entirely de-
with k,=0 andk,= 7 and that the absolute values are veryscribed by an effective continuum Hamiltonian in terms of
small near (0,0) and+, ). This is similar tod-wave pair- charge degrees of freedom and this model correctly predicts
ing in a fully 2D system. The absolute value is largest neatong-range asymptotic behavior of correlation functions. The
wave vectors which we have identified with the Fermi pointseffective model is actually the bosonic Gaussian model pro-
of the quasiparticlesk=(3/4,0)~kE and k=(m/2,7)  posed by Efetov and Larkiff,
~ké. At large J/t the order parameter is very similar to the (1400 — ]2 V80012
simple co&,—cosk, structure of nearest neighba-wave ., 7 Ng(X)—Ng o VOs(X
pairs. % '](EL_EJ dx[ 7Ky T TRevs T ]
Consider now pairs with a form facté: (28

. .ot whereng(x) represents the density of bound hole pairs at the
Pr _; FaPra, (23 rung x with the average valueg=Ng/L= 4, and 6g(X) is
its conjugate phase obeying the canonical commutation rela-
whereF is normalized tion, [ng(x),8g(x’)]=i8(x—x"). As shown by the fact that
the =0 mode of the first term in Eq(28) denotes the
> E4?=1. (24)  change in the ground-state energy associated with the num-
d ber of bound hole pairsyEx (1/2Kg) (ANg)?, the parameter
“ordelKB is given by the compressibility of the hole pairs, which
will be shown afterwards. The second term, on the other
hand, describes the energy change associated with current,
related with the sound velocity;. Instead of a direct calcu-
XF=2 F& Xd (25  lation of the dispersion relation, the sound velocity can also
d be obtained numerically by applying an Aharanov-Bohm flux
is maximized by the pair with the form factor penetrating in the center of the ladder with PBC's, since the
flux induces a finite current along the chain direction. Once
Xd the two parameters, andKy, are determined in this way, it
Fd:mf’ 26 s straightforward to calculate the power-law exponents of
o ) _ ) correlation functions as follows.
which is proportional to th_e order parametey. This opti- The Efetov-Larkin Hamiltonian is actually identical to the
mal order parameter then is single-componenti.e., spinless Luttinger model diagonal-
12 ized by bosonization, which was studied by Mattis and
s |Xd|2} _ (27)  Lieb* Luther and Peschéf, and Haldan® in details. The
d Hamiltonian (28) is immediately solved by rewriting each

. , ) Fourier component with a boson operator,
In Fig. 19 we show this maximal order parameter for a

L=28 ladder as a function af/t. A clear increase as a func- K|

tion of J/t can be seen, similar to single chains and 2D Ng k= \/ 5—(by+ b‘[k),

planes where the superconducting correlations are also en- ' 2m

hanced at larged values. We note that the expectation value

of the optimal order parameter is larger for four doped holes i T

than for two holes. This is a consequence of the strong cor- O k=1 m

relation effect, as any pairing order parameter or fluctuations

should vanish a$— 0. The mean-field theory including the then the result is

strong correlation effects predicts&linear dependence of

the order parameter a$—0: i.e., the superfluid density is " T 0.2 )

proportional to the hole doping. Our results show that the%EL:% vs|K|byby+ > Lon(Ng=Np)“+v,J5]. (30

value for four doped holes is less than twice the value for

two holes. This may be because that in the four hole case thgere N, is the total number of bound hole pairs and

doping, 6=0.25, is already large and out of the region of ;, — (7K .)~1 is the charge velocity and,=7Kgv? is the

o-linear dependence. We need further study using larger latsrrent velocity associated with the number &2 excita-

tices to clarify this point more quantitatively. tions, Jg, obeying the universal relatiom,v;=v2. Here

k3F= 6= m(1—p) is the Fermi wave number of spinless

fermions transmuted from the bosonic hole pair operators by
In Secs. llI-V, our numerical results have shown that allthe Jordan-Wigner transformation. The last two terms in Eq.

the spin excitations cost a finite energy and the only gaples&0) describe nonbosonic excitations accompanied with the

excitations are charge fluctuations, i.e., coherent propagatiothange in the quantum numbefdg andJg. Their impor-

of bound hole pairs along the ladder direction. We may theretance was first pointed out by Haldane in his Luttinger liquid

fore say that the system is a Luther-Emery liddifrom  concept®

A simple calculation shows that the superconducting
parameter”

X=

(bf—b_y), (29

B. Mapping to a Luther-Emery liquid
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2x10 sites =(0,0 2x10 sites o
2 holes =00 | 51| 72 holes q=(0,m)
Jt=0.3 0.0 | n
1.0 | (TC/5,0) 0.1 & J/t =0.3 (7'5/5,11:)
0.0 P 0.0 o A
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0.1 l (.0) 0.1+ (r,m)
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o/t o/t FIG. 17. Dynamical charge structure

factor,./(q, ), for theL =10 ladder with

- ; two holes.J/t=J'/t=0.3 (upper panels
2x10 sit 2x10 sit
th ol essl es g=(0,0) 01 L J\th ol ;sl es g=(0,m) and 0.5(lower panels PBC's are used.
JA=05 0.0 l Mo L
1.0 H @50 | o, | Jt=0.5 (n/5,m)
0.0 0.0 _‘_MAMM_
(2n/5,0) (2n/5,m)
0.1} 01 |
0.0 - 0.0
o1 L J (3n/5,0) 01 L (3n/5,m)
0.0 Mm 0.0 —iu MMWMM .
01 L (4n/5,0) 01 L (4n/5,m)
0.0 [t WWMW% 0.0
01| @O | o1 L M
0.0 0 0.0 I 1

2 4 6 0 2 4 6
o/t o/t

The propagator of bound hole pair, i.e., pairing correla- Density-density correlations are characterized by a power-
tion, is then obtained as in the calculation of the Debyedaw decay at the wave numbekZ . SincekZ' is twice the
Waller factor, average of the Fermi wave number of the original electron

o B ) bonding and antibonding band&-= (#/2)p, the wave
G(r)=ng(e'l?%B(M~ 0]y = n e~ (106N~ (020 ~ 1K, number X3"is actually 4 in the original picture. The ex-
(31)  ponent of the RZ"=4k: charge-density wavéCDW) fluc-
where the exponent is tuations is calculated using a density-phase duality as was
done in the original papéf. The density operator has a short-
K,=2mKgus=mp2eK, (32  range XZ" CDW order, but since the value ok is locally
determined by the density at each position, it is fluctuating

wherep is the electron density per site ards the electron  5,6,nq the average valuerd associated with the density
compressibility. The relation for the laddd¢g= kp?/2, is fluctuations. We therefore may write as

used to obtain the second equality. This result differs from

the one for the chain, which has the numerical factd? Ng(X)=ng Cos{ZkEFXwLZHJ(X)], (333
instead. It is important to emphasize that this result is the 20

. . . _ 1/2 . _
Luttinger liquid paramete ,=2(v,/vy) ™% for the single- J_ m(Ng— ). (330)

component boson systems. ox
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g.s!
0.4 D= ——5—| . 36
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o Jt=05

g
.
epe S D8 sited
2 holes

FIG. 18. Superconducting order paramejgr, for N,=2 cal-
culated on theL=8 ladder with PBC’s for several values of
Jit=J'It.

Rewriting the Hamiltonian(28) with 6; and its conjugate
operator n;= (1/7) V6g, we again obtain a Gaussian
model,

V6,(x)

™

gf dx[ vilny(x) 12+ vy

2
] . (39

where [n;(x),0;(x')]=i8(x—x"). This duality of the
charge and current operators was also emphasized
Haldane’s papet® Since the density-density correlation is
written as an exponential of; in this representation, its
calculation can be done similarly as before,

Ng(r)=(ng(r)ng(0))~ng? cog 2ker (e "~
ccog 2kgr)r Ko, (35
Instead of calculating the sound velocity, the value of
K

, IS more accurately obtained through the Drude weigh
defined by
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FIG. 19. The order parameter for the optimal pair EZy) as a

whereEgs(¢) is the total energy of the ground state when
the flux ¢ is penetrating. Assuming the holes propagate in
pair, the relation betweeld andv for the ladder is obtained
and the result agrees with the one for the cPragrside from

its numerical factor,

4 2
;UJ:;KpUS-

D (37)
Combining this with Eq(32), we finally obtain the formula
of the correlation exponent in terms of the compressibility
and the Drude weight:

«D
sz']Tp 7

It is noted that this expression is identical to the one for the
chain in terms of« andD, while they differ by factor 2 in
terms ofx andvg.

In this way, when the energy scale concerned is smaller
than the spin gap, we can predict long-range asymptotic be-
havior of the correlation functions based on the Efetov-
Larkin effective model, and calculate correlation exponents
once the two parameters, and Kg (or equivalentlyx and
D), are numerically determined.

Figure 20 shows the correlation exponent calculated in
this way for the isotropic ladderJ(/J=1) with L=7 and
two holes as a function af. This corresponds to the electron

density,p= £=0.857. The necessary quantities are carefully
calculated by using the Lanczos diagonalization. The com-
pressibility, «, is determined from the ground-state energy of
unfrustrated systems in the sense explained before. The
Drude weight,D, is then calculated by E¢36). Combining
these twoK,, is obtained via Eq(38).

Near the phase separation bounddfy, grows rapidly.
This is owing to the divergence of the compressibility at this

(39

rboundary. In other words, the collective charge excitations

become softening and the superconducting fluctuations are
enhanced correspondingly.

Recently Haywardaet al® directly calculated various cor-
relation functions for the-J ladders by using the density-
matrix renormalization-group method. Aft=J'/t=1 and
p=0.8, they found a power-law decay of the pairing corre-
lations with the exponent close to unity. This exponent cor-
responds tK ,~ 1, which is larger than our estimate at the
sameJ andJ’, Kp%0.7.7 The discrepancy may be owing to
the larger electron density in our calculatign: $=0.857,
but it is not clear if this suffices to account for the difference
until calculation is carried out at the same density. Hayward
et al. also report data on the density-density correlation
functior”® but the exponent of the expected power-law decay
of the oscillatory term cannot be easily extracted.

VIl. ONE-PARTICLE EXCITATIONS

Finally we discuss the one-particle Green's function

function of J/t on anL=8 ladder with both PBC and APBC. Where we can see the quasiparticle excitations directly. The

Shown are results for 2 and 4 holes.

electron and hole parts of its spectral function are defined as
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(39) S T
where|n,N) is an eigenstate fdX electrons with the energy 0 . L . ! |
En(N) and|g.s.N) denotes the ground state with elec- 0 1 2
trons. Positivanegative energies correspond to the electron J/t
(hole) part. The chemical potential is defined by

FIG. 20. Correlation exponenk,, for the L=7 ladder with
p=3[Egs(2L—1)—Egs(2L—3)]. (40)  two holes.

The results forL=10 and the isotropic couplings,  There exists a finite energy gap in the quasiparticle spec-
J'/J=1, are shown in Fig. 21 fa#/t=0.3 and 0.5. The wave tra. The electron and hole branches both come close to the
vectors along the laddéq,= 2a/L (n) (n: intege) are for  Fermi energy ak,~ /2, but instead of passing through they
PBC’s andk,= 2x/L (n+ 3) for APBC’s. The ground state move away from it. The energy gap fd/t=0.3 (0.5) is
energyEy s(2L —2) and the chemical potential in Eq.(39) ~ 0.1Z (0.29) at k=(3#/5,0) and 0.22 (0.3%) at
are the average over both boundary conditions. The resul=(27/5,7). This corresponds to a quasiparticle gap
for L=10 are very similar to out.=8 results published 2Agp=0.13=J/2 for J/t=0.3 and 2 op=0.23=3J/5 for
before? J/t=0.5.

The spectral function has large weights for the bonding It is interesting to note that the calculationsAfk, ) in
(B) (k,=0) and antibondingA) (k,= ) orbitals only near 2D cluster$***show similar behavior fok points not along
the Fermi energyw=0, and they seem to constitute quasi- (1,1) but no shadow peaks fdd(1,1), indicatingd,z_,2
particle bands. Away from the Fermi energy, the individualpairing also.
quasiparticle peaks are much less prominent and there is an Figure 22 shows the spectral function of the one-particle
incoherent part with an energy of the ordertof Green’s function of two holes in ah=10 ladder summed

The quasiparticle part of the spectrum is consistent witrover all wave vectors: A, ,(w) =2 A, ,(k,0), and
the mean-field theory based on tlavave RVB stat€. The  Ap (o)== An (K, »). This quantity is the local density of
undoped ladder consists of local singlets on the rungs. Suciates to add and remove electrons. In a strongly correlated
a singlet is the superposition of two electrons in the bondingystem, the sum rules on the weighe., the integrated val-
orbital and two electrons in the antibonding orbital, ueg of A(w) andA,(w) are very different since the former
bib]—ala]|0). Holes doped into the half-filled ladder will is given by the number of empty sites and the latter by the
go predominantly into the antibonding orbitals to gain anumber of filled sitegor equivalently the number of holes
larger kinetic energy along the rung direction. The bondingand electrons, respectivelyin a Fermi liquid the values of
band is occupied by more electrons, while the antibondingte(®@) andA(w) for small values ofw — u| are determined
band is occupied by less electrons. The quasiparticle witly quasiparticle weight at the Fermi energy and are continu-
energy closest tav=0 has a wave vector nearest to theous. It is interesting therefore to note that Fig. 22 shows
original Fermi wave numbekg (k,= 37/5 for bonding and ~ approximately similar values fohe(w—u) and Ay(u— o)
k,= 27/5 for antibonding. Because of the band splitting, aroundw~ u, but the sum rule on the total weight is satis-
kE>ké: but the Luttinger sum rule is satisfied, fied through the large weight in incoherent excitations in
k3+KA=(1—8)m. This means the Fermi volume is large, An() at higher energiesw — u|>J. The strong correlation
proportional to the electron number rather than the hole numeondition is reflected in the much smaller total weight in
ber, and this is consistent with photoemission experiments ofte(«) which comes about through an effective cutoff in en-
cuprate superconductotélt is important to notice that the €9y ONAg(w). In this respect the system in energy space is
quasiparticle peaks near the Fermi energy have their coursimilar to a lightly hole doped band insulator although as we
terparts on the opposite side of the Fermi energy. An elecdiscussed earlier the location knspace of the coherent qua-
tronic quasiparticle peak at energy>0 has a shadow hole siparticle peaks corresponds to a large Fermi surface to add
peak at energy around »<0, andvice versaThese peaks and remove electrons. o
indicate that the quasiparticle excitations are those of the The Tmomentum d'St”bU“OD for Telectr_ons,
Bogoliubov quasiparticles as in BCS theory, i.e., mixture ofe(K)=(Ck ,Ck.,). and for holes,ng(k)=(C ,Cy o) IS
an electron and a h0|91¢:UkCET+UkC—k1)- The weights in ~ Shown in Fig. 23. Note because of the strong correlation
the electron and hole parts are proportional|tg|? and condition, these do not add to one but instead their sum is
lvi|2 They are holelike aroundk,=0 and electronlike —given by nS(k)+ni(k)= 3 (1+ ). The strong correlation
aroundk, = 7 for both the bonding and antibonding bands. condition is also evident in the reduced magnitude of the
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variation ofn’(k) as a function ok. Nonetheless the pres- 2
ence of an apparent “Fermi surface” in the center of the
Brillouin zone is clear, consistent with the dispersion rela-
tions of the coherent quasiparticles. The difference between
the bonding k,=0) and antibondingk, = 7) bands and the
reduced occupation of the antibonding band arise from the
energy gain in placing the doped holes preferentially in the
antibonding band.

o/t
o

VIIl. CONCLUSIONS

.
b

The results of our Lanczos diagonalizations confirm ear-
lier studies which concluded that lightly doped two-leg lad-
ders belong to a different universality class from single
chains. The latter are Tomonaga-Luttinger liquids with gap- .
less and separated spin and charge excitations. The ladder in
contrast has a finite gap in the spin excitation spectrum and
gapless excitations only in the charge sector. The low energy 5
excitations evolve continuously from the limit of strong in-
terchain exchange coupling’(>J,t) and the simplicity of
that limit allows a clear interpretation of our results.

At large J' the dispersion relation of a single doped hole
consists of two cosine bands corresponding to bonding and
antibonding states on a rung. Loweridg to the isotropic
limit (J'/J=1) and setting botld,J’' <t changes the disper- % 4
sion relation substantially. The coherent parts of both bands
are centered at energies— 1.5 but the width is~J only.

The spin and charge components are still bound but more
loosely and the large magnetic polarizability of the spin
background introduces longer-range hoppings. Remarkably
the form of the bands resembles the noninteracting band
structure so that a photoemission experiment which removes
electrons would measure in effect a large “Fermi surface”

with bonding and antibonding pieces. In this regime the qua-
siparticle propagation is strongly influenced by the coupling

to magnetic excitations.
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When two holes are added they bind together on a single FIG. 21. Spectral function of the one-particle Green’s function,

rung at largel’ and remain bound although the size of the
bound hole pair increases dsapproached~t/2. Moreover
the qualitative features of the density-density(q,») and
spin-spin structure factor{(q,»), which are easy to under-
stand at largel’, remain similar as)’ approaches~t/2.

A(k,w), for the L=10 ladder with two holes(a) J/t=J"/t=0.3
and (b) J/t=J'/t=0.5. The width of each line represents the
strength of the excitation. Fas>0 we show the spectral function
for addingone electrorA, ,(k,w), and foro<0 the spectral func-
tion for removingan electrorA,, ,(k, ).

41(q,w) nearg=(0,0) is dominated by the low energy liquid.” When electrons are remove@r holes added the

mode associated with the motion of hole pairs. At lagge
4(q,w) has a broad peak at high energies4t) similar to

spectral weight is spread over a large energy regiobt(),
but the coherent part is limited only to energies below

that found by Ohta, Eder, and Maekawa for 2D clustérs. the Fermi energy.. The energy dispersion relations show a
They interpreted this as local excitations of single holes inarge apparent Fermi surface for the coherent quasiparticles
the magnetic cloud or spin bd§The dynamical spin struc- and which matches onto a similar one for adding electrons at
ture factor,”(q,w), also resembles 2D clusters and not 1Denergies greater tham. Thesek-space features resemble a
chains when we compare to the results of Tohyama, Horschmetal with a large Fermi surface. The property that re-

and Maekawd® The major weight is at energiesJ. The

sembles a lightly hole doped insulator is the energy depen-

spin gap evolves discontinuously upon doping through thelence of the spectral weight to add an electron. This shows a
guasiparticle excitations that can be made by breaking a holew energy cutoff (- §X 6t) similar to a lightly hole doped
pair into two separate single holes. However the majoband insulator. The result is an intriguing duality between
weight of the spin excitations remains in the collective mag-metalliclike features irk-space and lightly hole doped insu-

non mode whose dispersion evolves continuously from théating features in energy space.
The overall properties of the lightly doped ladder place it
in the Luther-Emery class rather than the Tomonaga-

6=0 limit, although it is influenced by the continuum of
guasiparticle excitations.

We have also investigated the one-particle spectral functuttinger class of 1D systems. The low energy properties of
tions to add and remove electrons from the two-hole ground.uther-Emery liquids are described by interacting hard-core
state. These show clearly the unusual nature of this “Fermbosons as shown by Efetov and Larkin. In the present case
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2x10 sites
2 holes
J/t=J/t=03

’§ — | ©-O electrons, k=n
X
Z =g ®-® electrons, k=0
G -C holes, k=n =Ny
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FIG. 22. Spectral function of the one-particle Green’s function g1, 23. The momentum distribution function for the ground

for two holes summed over all wave vector#, (o)=  gtate for 5=0.1 andL=10. J/t=J'/t=0.3. The electron part,

EkAh,zr,(k’w) and  Ag (@) =ZkAe (k).  L=10 and pek)=(c! c, ), and the hole partfi(k) = (¢, ,c} ). The mo-
J/t=J'/t=0.3. The oscillations at large| are caused by noncon- - mentak,=27n/L, with integem’s are for PBC's, while those with
vergent Lanczos iterations at these energies. half-integern’s are for APBC’s.

the Efetov-Larkin bosons are bound hole pairs. Two featuresarkably similar and the single-particle spectral functions
distinguish thet-J ladder from the usual Luther-Emery lig- indicate the existence of Bogoliubov quasiparticles with a
uids arising from attractive interactions. One is thevave finite superconducting gap. Thus we are lead to the conjec-
character of the pairing and the second is the presence tifire that thet-J model on 2D clusters is a doped RVB spin
magnon excitations and limited quasiparticle excitationsliquid showingd-wave pairing, similar to the ladder.
Note the magnon excitations cannot be viewed as the collec-
tive mode of quasiparticles since the latter vanishbas0.
The system is not a standard Fermi liquid, but rather is an
interesting mixture of a dilute attractive Fermi gas in which  We wish to thank M. Sigrist, F. C. Zhang, H. Monien, R.
the hole binding energy remains finite 8s-0, and a dense Noack, D. Poilblanc, P. Prelovsek, D. J. Scalapino, S. R.
Fermi liquid with an apparent large Fermi surface&ispace. White, and D. Wtz for helpful discussions. This work has
Comparing the ladder with the results by Tohyaetal,, been supported by the Swiss National Fund under Grant No.
we see that the ladder is very different from the single chailNFP-304030-032833, by an internal grant of ETHZ, and by
but similar to 2D clusters in many respects. Both in laddergshe Centro Svizzero di Calcolo Scientifico CSCS Manno.
and in 2D clustersl-wave pairs are found down to smalt. The calculations have been performed on the Cray Y-MP/464
The dynamical charge and spin structure factors look reef ETH Zirich and on the NEC SX-3/24R of CSCS Manno.
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