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Relations are derived between the curvatures produced by magnetization of a very thin epitaxial film on a
substrate of finite thickness and the magnetoelastic coefficients of the film material. Relations are found both
for a free system and for one constrained to be flat in one direction. The derivation includes the important
effects of the discontinuity in strain at the interface, which interacts with the changing strain in the film as the
system bends. This interaction, which has been omitted in previous derivations, produces curvatures twice as
large as previous calculations for given magnetoelastic coefficients. The derivation is based on a specific
simple form for the magnetoelastic energy as a function of strains and magnetization direction and proceeds by
minimizing the total energy with respect to the two curvatures. Quantitative application is made to a measured
system and compared to the results of previous theories.

I. INTRODUCTION

An important technique for determining magnetostrictive
strains when a ferromagnetic material is magnetized mea-
sures the bending of a substrate to which a film of the un-
magnetized material has been bonded.1,2 The film-substrate
combination will be referred to as the system. The bending
and the strains are produced when the bonded film is mag-
netized to saturation by a magnetic field. Two curvatures are
produced with opposite signs, one along the direction of the
magnetization and one perpendicular to it, as well as a vol-
ume strain. The theory of the bending relates the curvatures
to dimensionless coefficients of the magnetoelastic energy,
i.e., the energy of interaction of the strains and magnetization
in the material. When the simplest suitable form for the mag-
netoelastic energy is assumed, which is linear in the strains,
phenomenological coefficientsl0 for the magnitude of the
isotropic volume strain andl1 for the anisotropic strain are
introduced. By evaluating the difference in bending for the
magnetization along and perpendicular to the length of a
film-substrate system, the volume magnetostriction cancels
out, and the difference of the curvatures gives the value ofl1
by itself.

Derivations by Klokholm1 and by du Tre´molet and
Peuzin3 have led to different forms of the relation between
the difference of the curvatures andl1. The present paper
gives still a third form of the relation, and includes an im-
portant effect which is omitted in Refs. 1 and 3. Namely the
derivation takes account of the presence of a discontinuity of
strain at the interface, which interacts with the change in
magnitude of the strains in the film due to the bending. The
effect of this interaction is to double the calculated curva-
tures for a givenl1 compared to the previous theories. The
total-energy minimization procedure applied in Ref. 3 is also
used here. This procedure minimizes the total energy with
respect to three parameters: two curvatures and the position
of the unstrained layer in the bent substrate. In addition to
finding the curvatures and deflections for a free system, these
quantities are also found for a system which is constrained to
remain flat in the width, which indicates the effects of clamp-
ing a cantilevered system.

Section II gives the magnetoelastic energy expression and
the magnetostrictive strains produced by that energy in an
isolated film. Section III formulates the total energy of the
bent film-substrate system and derives the relations for cur-
vatures and deflections by minimization. Section IV gives a
quantitative application of the new relations to a measured
magnetostrictive system and compares with results from the
previous theories. Section V discusses the results and the
approximations in the new formulation.

II. MAGNETOSTRICTION IN THE ISOLATED
MAGNETIC FILM

The model of a magnetic material adopted here assumes a
simple form for the magnetoelastic energyEmel of the mag-
netic material, which has the correct symmetry and invari-
ance properties for cubic or isotropic materials. The form has
two terms—a totally symmetric isotropic term linear in the
volume strain and an anisotropic term linear in the strain
components.

Emel52V@l0~c1112c12!~«11«21«3!1l1~c112c12!

3~«12«2/22«3/2!#. ~1!

The elastic constants in each term ofEmel makel0 and l1
dimensionless and lead to simple forms for the magnetostric-
tive strains, as will be shown. This choice of the anisotropic
term is the same as in Ref. 3. The coefficientl1 is thel of
Ref. 1 and is (2/3)bg,2/(c112c12), whereb

g,2 is the coeffi-
cient used in Ref. 3. The form~1! also agrees with the form
given by Vonsovskii and others,4 i.e., the term ina1 is pro-
portional to( i51

3 (a i
221/3)« i , where theai are the direction

cosines of the magnetization direction. Then~1! corresponds
to taking the magnetization alongx1, i.e.,a151, a25a350.

The addition ofEmel to the energy of an isolated film
implies that stresses are produced when the film is magne-
tized, which strain the film. Although the forces are gener-
ated in the material of the film, they may be thought of as
applied forces and used to find the corresponding strains
from the elastic equations. Assuming that the elastic con-
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stants are not changed by the magnetization, the strains are
the solutions of the elastic equations, which are, for a mate-
rial with cubic symmetry,

c11«11c12~«21«3!52
]~Emel/V!

]«1
5~c1112c12!l0

1~c112c12!l1 ,

c11«21c12~«31«1!52
]~Emel/V!

]«2
5~c1112c12!l0

2~c112c12!l1/2,

c11«31c12~«11«2!52
]~Emel/V!

]«3
5~c1112c12!l0

2~c112c12!l1/2. ~2!

These equations are equivalent to minimizing the total en-
ergy of the filmEt with respect to the strain components,
where

Et5Eel1Emel, ~3!

Eel5VFc112 ~«1
21«2

21«3
2!1c12~«2«31«3«11«1«2!G ,

~4!

andEmel is given by~1!. Shear strains are omitted since they
are not present in the symmetrical systems to be studied. By
symmetry for a cubic material with the magnetization along
the x1 cubic axis

«25«3 . ~5!

Then the solutions of~2! are

«15l01l1 ,
~6!

«25«35l02l1/2.

III. THE MAGNETIC FILM-SUBSTRATE SYSTEM

The film is deposited and bonded to the substrate in an
unmagnetized state. A magnetic field is applied along a cubic
axis to magnetize the film to saturation. If the film were
isolated, the magnetized equilibrium state of the film would
differ from the unmagnetized state by the strains in~6!. The
substrate acts to restore the original dimensions of the film,
but if the substrate can bend, the substrate will strain and the
original film dimensions will not be completely restored. In
epitaxial terms the magnetized film is mismatched to the
substrate. Hence the equilibrium state of the film-substrate
system can be found by elastic analysis of the strains pro-
duced by a mismatch between a film and substrate when the
film is in pseudomorphic epitaxy on the substrate. The mis-
match is defined as the equilibrium dimension of the sub-
strate minus the equilibrium dimension of the magnetized
film, which is divided by the dimension of the substrate.
Hence the mismatch is the negative of the magnetostrictive
strain,

m152«152l02l1 ,
~7!

m252«252l01l1/2.

Positivel1 means that the film has positive strain alongx1
when magnetized and expands alongx1, hence the mismatch
with the substrate is negative and equal to the negative of the
strain produced by magnetization. The substrate then exerts
compressive forces on the film and the film exerts tensile
forces on the substrate, which bends down if the film is on
top, as in Fig. 1.

The problem of finding the bending of an epitaxial film-
substrate combination under isotropic strain was solved in
1925 by Timoshenko5 in connection with the equivalent
problem of the bending of a bimetallic strip, where the mis-
match is created by temperature change and a difference in
the coefficients of thermal expansion. The present problem is
to generalize that solution to consider bending produced by
anisotropic strain and must take account of two curvatures.
The film thickness is assumed very small compared to the
substrate thickness for simplicity and because it corresponds
to the usual experimental situation.

Assume the film-substrate system is rectangular with
lengthl along the cubic crystal axisx1 as in Fig. 1, and width
w along the orthogonal axisx2; the film thickness ist f , the
substrate thickness ists . Thex3 or z axis points down in Fig.
1 and the origin is at the unstrained layer~dashed line!,
which is a distancebts from the interface. The radius of
curvature in thex1-x3 plane isR1, which is positive in Fig.
1, and in thex2-x3 plane isR2, which is negative.

The strains produced in the substrate by bending are func-
tions of z in the form6

«1
s~z!52

z

R1
,

~8!

«2
s~z!52

z

R2
.

These forms vanish on the unstrained layer and correspond
to the change of arc length withz, divided by the arc length
of a spherical layer atz50 with radiusR1 or R2, respec-

FIG. 1. Film-substrate system bent under magnetostrictive ac-
tion of film magnetized alongx1 with l1.0. Cubic~001! surface
with length l along cubic axisx1, width w, film thicknesst f , sub-
strate thicknessts . The unstrained layer~dashed! is at a distance
bts from the interface. The origin is at the unstrained layer; the
x35z axis points downward; thex1 axis points to the right. The
radius of curvature in thex12x3 plane isR1.0, and in thex22x3
plane isR2,0.
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tively, i.e., correspond to a strain. The strain component«3 in
either film or substrate is obtained from the condition that
there are no external applied forces on the magnetized film
and substrate, hence

s35c11«31c12~«11«2!50 ~9!

which gives

«352
c12
c11

~«11«2!. ~10!

Putting ~10! into ~4! gives the elastic energy density as a
function of just«1 and«2

Eel5V
~c112c12!

2c11
@~c111c12!~«1

21«2
2!12c12«1«2#.

~11!

Unlike the case of the isolated film,«2 is not equal to«3
because forces are exerted on the film by the substrate in the
x2 direction.

Equation~11! will first be applied to the substrate, and~8!
will give the z dependence of the elastic strain energy of
each layer. The layer energies must be integrated overz from
2bts to ~12b!ts to give the elastic strain energy of the sub-
strateEel

s , namely

Eel
s5 lw

~c11
s 2c12

s !

2c11
s F ~c11

s 1c12
s !S 1

R1
2 1

1

R2
2D 1

2c12
s

R1R2
G

3E
2bts

~12b!ts
z2dz

5Vs

~c11
s 2c12

s !

2c11
s S b22b1

1

3D
3@~c11

s 1c12
s !~a1

21a2
2!12c12

s a1a2#, ~12!

wherea1 and a2 are dimensionless measures of curvature
defined by

a i[
ts
Ri
, i51,2, ~13!

andVs5 lwts is the volume of the substrate.
Now consider the strains in the epitaxial magnetized film

due to the mismatch~7! with the substrate. If the substrate
remained flat, as is the case for substrates in the limitts→`,
all the strain would be in the film, which would have strains
« 1
f 5m1 , « 2

f 5m2 . When the substrate bends, the change in
strain in the substrate at the interface is given by~8! with
z52bts , i.e., ba1 along x1 and ba2 along x2. The same
change in strain must occur in the film since the film is
bonded to the substrate, hence in the bent system the film
strains are

«1
f 5m11ba1 ,

~14!
«2
f 5m21ba2 .

Note that the strains« i
f in ~14! are measured from the equi-

librium state of the magnetized film, not the unmagnetized
film. From ~14! and~11! the film elastic energy can be writ-
ten as

Eel
f 5Vf

~c11
f 2c12

f !

2c11
f $~c11

f 1c12
f !@~m11ba1!

2

1~m21ba2!
2#12c12

f ~m11ba1!~m21ba2!%.

~15!

In ~15! the film is assumed thin enough so that the strain can
be considered homogeneous over the film volume.

The third component of the total energy of the system is
the magnetoelastic energyEmel

f in the film. Using the form
~1!, with «3 expressed as a function of«1 and«2 from ~10!
and« 1

f , « 2
f given by ~14!, Emel

f becomes

Emel
f 52Vf

~c11
f 2c12

f !

c11
f X,

X5~c11
f 12c12

f !~m11ba11m21ba2!l01@~2c11
f 1c12

f !

3~m11ba1!2~c11
f 2c12

f !~m21ba2!#l1/2. ~16!

The total energy of the systemEt is given by the sum of~12!,
~15!, and~16!

Et5Eel
f 1Eel

s1Emel
f . ~17!

The variablesa1, a2, b must now be determined by mini-
mizing Et . From the conditions]Et/]a15]Et/]a250
come the equations fora1 anda2

(
j51

2

Ai ja j5Bi , i51,2, ~18!

where

A115A225rb
~c11

f 2c12
f !

c11
f ~c11

f 1c12
f !

1S b211
1

3b D ~c11
s 2c12

s !

c11
s ~c11

s 1c12
s !,

A125A215rb
~c11

f 2c12
f !

c11
f c12

f

1S b211
1

3b D ~c11
s 2c12

s !

c11
s c12

s ,

B152r
~c11

f 2c12
f !

c11
f @~c11

f 12c12
f !l01~2c11

f 1c12
f !l1/2#,

B252r
~c11

f 2c12
f !

c11
f @~c11

f 12c12
f !l02~c11

f 2c12
f !l1/2#.

~19!

In ~18! and ~19! the derivative equations have been divided
by Vs andb; alsom1 ,m2 have been replaced by their values
in terms ofl0 andl1 given in ~7!. The small parameterr is
defined by
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r[
t f
ts

5
Vf

Vs
. ~20!

The elastic constants in~19! can be expressed in terms of
Young’s modulusY and the Poisson ration by the relations

c115
Y~12n!

~11n!~122n!
,

~21!

c125
Yn

~11n!~122n!
.

Note that the factor 2 inB1 andB2 comes from the cross
termsbma in Eel

f in ~15!. These terms contribute a constant
to the derivatives]Et/]a i and add to the constants in theBi

that come fromEmel
f . Without the misfit inEel

f , these con-
tributions would vanish, but the constants fromEmel

f would
still be present.

The equation]Et/]b50 is not needed because a general
proof can be given thatb52/3 for a thin epitaxial film ex-
erting stresses on the substrate. The proof does not require
knowledge of the stresses in the film or of the curvatures and
uses the moment balance equation around the interface. The
moments around the interface have no contribution from the
stresses in the thin film because the moment arm is negli-
gible. The stresses in the substrate are linear inz from ~8!
and the elastic equations. Thus using~8! for « 1

s and« 2
s and

finding « 3
s from ~10! gives

s1
s5

c11
s 2c12

s

c11
s @~c11

s 1c12
s !«11c12

s «2#5Cz. ~22!

The moment balance equation in thex1 direction around the
interface then gives a geometrical condition independent of
the elastic constants

E
2bts

~12b!ts
Cz~z1bts!dz5Cts

3S 132
b

2 D50, ~23!

henceb must be 2/3, and this value can be put directly into
~19!. Moments about the interface in thex2 direction also
giveb52/3, so thatb is isotropic when the film is very thin.

Dropping the small term with factorr in theAi j , putting
b52/3, introducingY andn from ~21! and solving~18! for
a1,a2 gives

a15
12r

~12n f !

Yf

Ys
H ~12ns!l0

1
l1

2

@~22n f !1ns~122n f !#

~11n f !
J ,

~24!

a25
12r

~12n f !

Yf

Ys
H ~12ns!l0

2
l1

2

@~122n f !1ns~22n f !#

~11n f !
J .

Then~24! determines the differencea12a2, which will give
the difference deflection, i.e., the deflection of the system for
the magnetization alongx1 minus the deflection of the sys-
tem for the magnetization alongx2,

a12a2518rl1

Yf /~11n f !

Ys /~11ns!
. ~25!

The above solution for the curvatures is for a free system.
But measurements are made on a system which is cantile-
vered by clamping one end, leaving the other end free. The
clamping would constrain the specimen to remain flat across
the width, at least near the clamped end. Some indication of
the effect of clamping is obtained by constraining the system
to be flat in thex2 direction. Thena1 is obtained by putting
a250, i.e., keeping the specimen flat in thex2 direction, into
the equation for bending alongx1 with magnetization along
x1, which is~18! with i51, and solving fora1. To obtaina2
observe that the equation for bending alongx1 with magne-
tization along the perpendicular directionx2 and the speci-
men kept flat alongx2 is the same as the equation for bend-
ing alongx2 with magnetization alongx1 and the specimen
kept flat alongx1, i.e., takei52 in ~18!, puta150 and solve
for a2. The result for the differencea12a2 is

a12a2518rl1

Yf /~11n f !

Ys /@~12ns!~11ns!#
. ~26!

IV. APPLICATION OF THE BENDING EQUATIONS

The solutions of~18! for a12a2 will now be applied to a
measured case of magnetostrictive bending. First note that
the deflection of one end with respect to the tangent at the
other end of a specimen of lengthl alongx1 and curvature
a15ts/R1 is

D l15
l 2

2ts
a1 , ~27!

which gives the deflection when the magnetization is along
x1. The curvature in thex2 direction when the magnetization
is alongx1 is a25ts/R2 , which is independent of the dimen-
sions of the specimen, hence is the same as the curvature
alongx1 when the magnetization is alongx2, and is given by

D l25
l 2

2ts
a2 . ~28!

The difference deflection is then, using~25!,

D l5D l12D l25
l 2

2ts
~a12a2!59

l 2

ts
rl1

Yf /~11n f !

Ys /~11ns!
,

~29!

which is independent ofl0 and measuresl1 directly.
Equations~24!, ~25!, and~26! will now be applied to a set

of values of the system parameters for a permalloy~Ni/Fe!
film on a Corning 7059 glass substrate for whichDl has been
measured.7 Namely,
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t f5720 Å50.7231025 cm,

ts50.04 cm,

l54 cm,
~30!

Yf52.18 Mbar, n f50.28,

Ys50.68 Mbar, ns50.22,

l1520.431026.

The value ofl1 has been fixed to give the observed deflec-
tion differenceDl of 1300 Å using the formula of Klokholm
given below. From~24! and ~25! the following numerical
values are obtained;

a151.3931027, a2520.6331027,

D l54040 Å54.04031025 cm,
~31!

Eel
f

Vs
58.517310214,

Eel
s

Vs
50.077310214,

Emel
f

Vs
517.111310214,

Et

Vs
525.704310214 Mbar.

Direct calculation has verified thatEt is a minimum at the
above values ofa1, a2, andb52/3.

From ~26! is obtained the deflection difference for a sys-
tem held flat in the width

D l
flat59

l 2

ts
rl1

Yf /~11n f !

Ys /@~12ns!~11ns!#
53151 Å. ~32!

The results in~31! show that the elastic energy in the
substrate is only 0.9% of the elastic energy in the film, which
itself is 50% of the magnetoelastic energy in the film. If the
substrate is very thick, so that it does not bend,Eel

s50,Eel
f is

0.9% larger than in the bent system, andEmel
f is 0.45% larger.

The bending produces a radius of curvature along the direc-
tion of magnetization of 2.883105 cm and of26.393105 cm
in the perpendicular direction.

The above values of the deflectionDl may be compared
with the values calculated by the formula proposed by
Klokholm,1 which is, in the present notation,

D l5
9

2

l 2

ts
rl1

Yf /~11n f !

Ys /~12ns!
51291 Å, ~33!

and with the formula proposed by du Tre´molet and Peuzin,3

namely

D l5
9

2

l 2

ts
rl1

Yf /~11n f !

Ys /~11ns!
52020 Å. ~34!

In the formula~34! Dl is half the value given by~29! and
is exactly the result of assuming that the bending moments
due to the magnetized film remain constant at the values for
a flat substrate, while the system bends. The formula~33!
gives a smaller value because it attempts to take into account
the effect of clamping of a cantilevered specimen by assum-
ing the specimen remains flat across the width;~33! like ~34!

is missing the factor 2 due to the mismatch. There are some
flaws in the derivation of~33!, which are corrected in~32!.
The result is to introduce a factor~11ns! into ~33! as well as
the factor 2 due to the mismatch.

V. DISCUSSION

The principal contribution of this paper on magnetostric-
tive bending by magnetization of an epitaxial film is a for-
mulation that includes the discontinuity in strain at the inter-
face. That discontinuity is a consequence of the misfit
between the dimensions of the magnetized and unmagnetized
films. The substrate is in equilibrium with the unmagnetized
film to which it is bonded, hence there is a misfit between the
substrate and the magnetized film. The idea that due to misfit
a discontinuity in parallel strain exists at the interface be-
tween an epitaxial film and a substrate is well known in
epitaxy theory. There the discontinuity is obvious because, in
the usual case, the thick substrate has negligible strain, and
the film has the full misfit strain.

The idea introduced here is that the magnetized film is in
a new equilibrium state, effectively a new crystalline phase
with new dimensions, which must be strained toward the
dimensions of the old equilibrium state of the unmagnetized
film by the action of the substrate. The calculation of the
strain is then a problem of plate-bending elasticity theory, but
with the complication that anisotropic strain must be consid-
ered, resulting in anisotropic curvature. To solve this prob-
lem, which does not involve any concentrated applied forces,
the simple powerful method of minimization of the total en-
ergy introduced by du Tre´molet and Peuzin3 is very suitable.
The derivation here parallels their analysis, but adds the mis-
fit effects and extends the discussion to the case of a speci-
men constrained to be flat in one direction.

The essential reason for the importance of the misfit in
determining the curvatures is the interaction of the misfits
with the curvature variablesai , as noted explicitly after~21!.
A substantial increase in curvatures for givenl1 is shown in
theDl values in~31! and~32! compared to the values in~33!
and ~34!. The increase is somewhat less for~32!, which ap-
plies to a specimen kept flat in one direction. However the
real problem of a cantilevered specimen has clamped bound-
ary conditions at just one end and free boundary conditions
at the other end and is a difficult inhomogeneous elasticity
problem. In the absence of a solution with these mixed
boundary conditions, a reasonable estimate would be the av-
erage ofDl in ~31! and ~32!. This average still increases the
deflections for a givenl1 and would require a reduction ofl1
for Fe/Ni from 20.431026 to 7.331026 to fit the observed
deflection. There would be less uncertainty in the value ofl1
if the curvature of a free specimen could be measured and
~29! applied to fixl1.

The analysis here assumes linear elastic relations, which
is a good assumption for the small deflections and small
magnetostrictive strains that occur. The film is assumed very
thin compared to the substrate, which is a necessary condi-
tion for b to equal 2/3. This assumption could be removed by
including the inhomogeneous strain in the film produced by
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bending, althoughb would then be anisotropic. The epitaxy
is assumed to occur on a cubic~001! or isotropic surface, but
this assumption could also be removed by using the elastic
constants appropriate for the crystal structure and surface
involved.

Note added in proof.Strictly, relation~9! applies only to
the substrate, whereas the film has from~1! a stress
s352]~Emel/V!/]«3 linear inl0 andl1. However, this mag-
netostrictive stress merely adds small constant terms qua-

dratic in l0 andl1 to Eel andEmel, but does not affect the
curvature relations.
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