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Magnetostrictive bending of a film-substrate system
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Relations are derived between the curvatures produced by magnetization of a very thin epitaxial film on a
substrate of finite thickness and the magnetoelastic coefficients of the film material. Relations are found both
for a free system and for one constrained to be flat in one direction. The derivation includes the important
effects of the discontinuity in strain at the interface, which interacts with the changing strain in the film as the
system bends. This interaction, which has been omitted in previous derivations, produces curvatures twice as
large as previous calculations for given magnetoelastic coefficients. The derivation is based on a specific
simple form for the magnetoelastic energy as a function of strains and magnetization direction and proceeds by
minimizing the total energy with respect to the two curvatures. Quantitative application is made to a measured
system and compared to the results of previous theories.

[. INTRODUCTION Section Il gives the magnetoelastic energy expression and
the magnetostrictive strains produced by that energy in an
An important technique for determining magnetostrictiveisolated film. Section Ill formulates the total energy of the
strains when a ferromagnetic material is magnetized meddent film-substrate system and derives the relations for cur-
sures the bending of a substrate to which a film of the unvatures and deflections by minimization. Section IV gives a
magnetized material has been bonavédfhe film-substrate quantitative application of the new relations to a measured
combination will be referred to as the system. The bendindnagnetostrictive system and compares with results from the
and the strains are produced when the bonded film is magprevious theories. Section V discusses the results and the
netized to saturation by a magnetic field. Two curvatures ar@PProximations in the new formulation.
produced with opposite signs, one along the direction of the
magnetiz.ation and one perpendicu[ar to it, as well as a vol- II. MAGNETOSTRICTION IN THE ISOLATED
ume strain. The theory of the bending relates the curvatures MAGNETIC EILM
to dimensionless coefficients of the magnetoelastic energy,
i.e., the energy of interaction of the strains and magnetization The model of a magnetic material adopted here assumes a
in the material. When the simplest suitable form for the mag-simple form for the magnetoelastic energy, of the mag-
netoelastic energy is assumed, which is linear in the straingetic material, which has the correct symmetry and invari-
phenomenological coefficients, for the magnitude of the ance properties for cubic or isotropic materials. The form has
isotropic volume strain an#l; for the anisotropic strain are two terms—a totally symmetric isotropic term linear in the
introduced. By evaluating the difference in bending for thevolume strain and an anisotropic term linear in the strain
magnetization along and perpendicular to the length of @&omponents.
film-substrate system, the volume magnetostriction cancels
gytitgglcfi the difference of the curvatures gives the valug of  E__ = —V[\y(cy1+2C10)(e1+ &5+ e3) +N1(C11—C1o)
Derivations by Klokholm and by du Trenolet and X (g1~ €2/2—e3/2)]. (1)
Peuzirt have led to different forms of the relation between
the difference of the curvatures aing. The present paper The elastic constants in each termf makely and \;
gives still a third form of the relation, and includes an im- dimensionless and lead to simple forms for the magnetostric-
portant effect which is omitted in Refs. 1 and 3. Namely thetive strains, as will be shown. This choice of the anisotropic
derivation takes account of the presence of a discontinuity oferm is the same as in Ref. 3. The coefficiaptis the \ of
strain at the interface, which interacts with the change irRef. 1 and is (2/3”%(c;—cy,), whereb”? is the coeffi-
magnitude of the strains in the film due to the bending. Thecient used in Ref. 3. The forrfl) also agrees with the form
effect of this interaction is to double the calculated curva-given by Vonsovskii and othefsi.e., the term ina, is pro-
tures for a giverh; compared to the previous theories. The portional to> 2, («2— 1/3)e; , where they, are the direction
total-energy minimization procedure applied in Ref. 3 is alsocosines of the magnetization direction. Th@h corresponds
used here. This procedure minimizes the total energy witho taking the magnetization along, i.e., a;=1, a,=a3=0.
respect to three parameters: two curvatures and the position The addition ofE,, to the energy of an isolated film
of the unstrained layer in the bent substrate. In addition tdmplies that stresses are produced when the film is magne-
finding the curvatures and deflections for a free system, thedézed, which strain the film. Although the forces are gener-
guantities are also found for a system which is constrained tated in the material of the film, they may be thought of as
remain flat in the width, which indicates the effects of clamp-applied forces and used to find the corresponding strains
ing a cantilevered system. from the elastic equations. Assuming that the elastic con-
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stants are not changed by the magnetization, the strains are
the solutions of the elastic equations, which are, for a mate-
rial with cubic symmetry,

Z=—ﬁts film tf
IEmalV) substrate 4
C1181+ C12(82+ 83) = (Cll+ 2C12))\0 _ Tlnterfoce ts
deq A}Oo————e_xl. -
+(C11—C12)Ag, X9 N
/(Emeil V) a0
C11€x+Craeztes)=— TZZ(011+2012))\0
FIG. 1. Film-substrate system bent under magnetostrictive ac-
—(C11—C12)N1/2, tion of film magnetized along; with A\;>0. Cubi¢001) surface
with lengthl along cubic axis<;, width w, film thicknesst;, sub-
I Emal V) strate thickness,. The unstrained layefdashedl is at a distance
CreztCilertey)=— =(Cq11t2C19)Ng Bt from the interface. The origin is at the unstrained layer; the
de
8 X3z=2z axis points downward; the&; axis points to the right. The
—(Cqy—C1)N1/2. 2) radius of curvature in thg; —x3 plane isR;>0, and in thex,—x3
plane isR,<0.
These equations are equivalent to minimizing the total en-
ergy of the filmE,; with respect to the strain components, Mmy=—&1;=—Ao—\q,
where
Aot Aq/2 @
My=—&2= —AoT Ayle.
Et=Eet Emer ()

Positive \; means that the film has positive strain along
Cu o, o, when magnetized gnd exp_ands alonghence the mismatch
Eo=V > (eftestez)t+cCio(erezteseterer)|, with the substrate is negative and equal to the negative of the
4) strain produced by magnetization. The substrate then exerts
compressive forces on the film and the film exerts tensile
andE, is given by(1). Shear strains are omitted since thenyI‘CGS on the substrate, which bends down if the film is on

are not present in the symmetrical systems to be studied. Bip, as in Fig. 1.

symmetry for a cubic material with the magnetization along The problem of finding the bending of an epitaxial film-
the x, cubic axis substrate combination under isotropic strain was solved in

1925 by Timoshenkbin connection with the equivalent
g,=¢g3. (5)  problem of the bending of a bimetallic strip, where the mis-
match is created by temperature change and a difference in
Then the solutions of2) are the coefficients of thermal expansion. The present problem is
to generalize that solution to consider bending produced by
£1=AgT Ay, anisotropic strain and must take account of two curvatures.
(6)  The film thickness is assumed very small compared to the
£y=83=Ng— N\q/2. substrate thickness for simplicity and because it corresponds
to the usual experimental situation.
Assume the film-substrate system is rectangular with
lengthl along the cubic crystal axis; as in Fig. 1, and width
The film is deposited and bonded to the substrate in amv along the orthogonal axis,; the film thickness ig;, the
unmagnetized state. A magnetic field is applied along a cubisubstrate thickness is. Thex; or z axis points down in Fig.
axis to magnetize the film to saturation. If the film were1 and the origin is at the unstrained lay@tashed ling
isolated, the magnetized equilibrium state of the film wouldwhich is a distanceBts from the interface. The radius of
differ from the unmagnetized state by the straing@n The  curvature in thex;-x; plane isR;, which is positive in Fig.
substrate acts to restore the original dimensions of the film], and in thex,-x; plane isR,, which is negative.
but if the substrate can bend, the substrate will strain and the The strains produced in the substrate by bending are func-
original film dimensions will not be completely restored. In tions ofz in the fornf
epitaxial terms the magnetized film is mismatched to the

Ill. THE MAGNETIC FILM-SUBSTRATE SYSTEM

substrate. Hence the equilibrium state of the film-substrate s\ Z

system can be found by elastic analysis of the strains pro- 21(2)=~ R,

duced by a mismatch between a film and substrate when the (8)
film is in pseudomorphic epitaxy on the substrate. The mis- s z

match is defined as the equilibrium dimension of the sub- ex(z)=— R_2

strate minus the equilibrium dimension of the magnetized

film, which is divided by the dimension of the substrate. These forms vanish on the unstrained layer and correspond
Hence the mismatch is the negative of the magnetostrictivéo the change of arc length with divided by the arc length
strain, of a spherical layer az=0 with radiusR; or R,, respec-
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tively, i.e., correspond to a strain. The strain comporagtith Note that the strainsif in (14) are measured from the equi-
either film or substrate is obtained from the condition thatlibrium state of the magnetized film, not the unmagnetized
there are no external applied forces on the magnetized filrfilm. From (14) and(11) the film elastic energy can be writ-
and substrate, hence ten as

f_f
03=Cq1€3+Cq(e1te5)=0 9 (C11—C1o)
3=CnestCiaerter) ©) El=V; TS {(chy i)l (my+ Bay)?
which gives H

+(My+ Bay) 2]+ 2¢](my+ Bay) (My+ Bay)}.
c
83:_0_12(81+82). (10) (15)
1 In (15) the film is assumed thin enough so that the strain can
Putting (10) into (4) gives the elastic energy density as abe considered homogeneous over the film volume.

function of juste; ande, The third component of the total energy of the system is
the magnetoelastic enercﬁme, in the film. Using the form

(C1y1—C19) - (1), with e5 expressed as a function ef and e, from (10)
Ea=V 2¢1; [(C1atCr(e1+e3) +2C12180]. ande{, £} given by(14), E! ., becomes
(11)
£y (cii—chy)

Unlike the case of the isolated filng, is not equal toes mel= — f_f_cll .
because forces are exerted on the film by the substrate in the
X, direction. X=(ci,+2¢},)(my+ Bay+my+ Bay)ho+[(2¢),+

Equation(11) will first be applied to the substrate, at) (C11 12 (Mt Bayt Myt Bag)ho+[(261:% €3)
will give the z dependence of the elastic strain energy of X(my+ Bay)—(ch,—cl)(my+ Bay) In/2. (16)

each layer. The layer energies must be integrated ofrem
— Bt to (1-PB)t, to give the elastic strain energy of the sub-
strateEg;, namely

The total energy of the systeR is given by the sum of12),
(15), and(16)

(Cs —cs ) 1 2cS E= E<f=3I+ E2I+ Erfnel' (17)
o= % (c3;+c3y) §2+ =2 + R_I'f The variablesa;, a,, B must now be determined by mini-
11 1 72 12 mizing E;. From the conditionsdE/da,=dE/da,=0
1B, come the equations fag; and «,
z°dz )
_Bts
2 AijaJ-:Bi, i:1,2, (18)
=1
(ch—c3, ( 1
s o0, B—B 3 where
f_Af
X[(€3+C5,) (a2 + al) +2c5,a1as], (12 (Cu—C))

— _ f f
An=~Axp=r1p S (€13t C12)
i i 11
where o and a, are dimensionless measures of curvature

defined by 1) (ci;—ciy
+| B—1+ 55| —=— (c1+ 3,
t 3,8 C?.l 11 12
J— s H—
“=g. 1712 13 (chi—ch)

A=An=r1pB o ‘w2
andV,=Iwt, is the volume of the substrate. 1

Now consider the strains in the epitaxial magnetized film 1)\ (ci;—ci)
due to the mismatcki7) with the substrate. If the substrate +| B—1+ 38 ¢ clo,
remained flat, as is the case for substrates in the tigrito, 1
all the strain would be in the film, which would have strains (CL— Cflz)

g1=my, s ;=m,. When the substrate bends, the change in B, =2r —2 2 [ (¢! +2¢] )\ o+ (2¢)+ ¢l )Ne/2],
strain in the substrate at the interface is given(8y with C11
z=—Btg, i.e., Bay along x; and B, along x,. The same

f f
change in strain must occur in the film since the film is B (C11—C1o) . ¢ § §
bonded to the substrate, hence in the bent system the film By=2r lel [(C11+2C1) Mo~ (€13~ C1p)N4/2].
strains are (19

In (18) and (19) the derivative equations have been divided

by V¢ and B; alsom; ,m, have been replaced by their values
; (14 in terms of\y and )\, given in (7). The small parameter is
g2=My+ Ba,. defined by

ngml—i'ﬂa'lr
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_tf_Vf 20 — 18\ Yf/(1+Vf) 25
ARITEAVA (20 Mmem MY (T @9
The elastic constants iflL9) can be expressed in terms of
Young's modulusy and the Poisson ratio by the relations The above solution for the curvatures is for a free system.
Y(1-7) But measurements are made on a system which is cantile-
11:—”, vered by clamping one end, leaving the other end free. The
(1+v)(1-2v) clamping would constrain the specimen to remain flat across
(21)  the width, at least near the clamped end. Some indication of
- Yv the effect of clamping is obtained by constraining the system
271+ v)(1-2v)° to be flat in thex, direction. Thena, is obtained by putting

a,=0, i.e., keeping the specimen flat in thedirection, into
Note that the factor 2 if8, andB, comes from the cross the equation for bending along with magnetization along
termsBma in Eel in (15). These terms contribute a constantxl, which is(18) with i =1, and solving fore, . To obtaina,
to the derivative9E,/d«; and add to the constants intBe  observe that the equation for bending alonggwvith magne-
that come frome! . Wlthout the misfit inEl;, these con- tization along the perpendicular direction and the speci-
tributions would vanish, but the constants frdg,.,, would ~ men kept flat along, is the same as the equation for bend-
still be present. ing alongx, with magnetization along, and the specimen
The equatioryE,/dB=0 is not needed because a generalkept flat alongxy, i.e., takei =2 in (18), put ;=0 and solve
proof can be given tha8=2/3 for a thin epitaxial film ex- for a,. The result for the difference;— «, is
erting stresses on the substrate. The proof does not require
knowledge of the stresses in the film or of the curvatures and
uses the moment balance equation around the interface. The
moments around the interface have no contribution from the
stresses in the thin film because the moment arm is negli-
gible. The stresses in the substrate are linear from (8)
and the elastic equations. Thus usii8y for €7 ande3 and IV. APPLICATION OF THE BENDING EQUATIONS
finding 3 from (10) gives

Yf/(1+ Vf)
M Y T @]

(26)

=

The solutions 0f18) for a;—a, will now be applied to a
$—¢C measured case of magnetostrictive bending. First note that
=TS [(cli+clertcizs]=Cz (22)  the deflection of one end with respect to the tangent at the
1 other end of a specimen of lengthalongx; and curvature
The moment balance equation in thedirection around the a;=tJ/R; is
interface then gives a geometrical condition independent of
the elastic constants

(1-Bts 1 B

f Cz(z+ﬁts)dz Ct —— = =0, (23

Bt 3 2

henceg must be 2/3, and this value can be put directly intowhich gives the deflection when the magnetization is along

give B=2/3, so tha{ is isotropic when the film is very thin. 1S alongxl is a,=t4/R;, which is independent of the dimen-
Dropping the small term with factar in the A;;, putting ~ SIOns of the specimen, hence is the same as the curvature

B=2/3, introducingY and » from (21) and solving(18) for  alongx; when the magnetization is alomg, and is given by
aq,0p g'VeS

57 @1, (27)

1r Y -
T Y, ((l vt Re= g, 2 29
i M L2 v) +vs(1—2vp)] The difference deflection is then, usif2p),
2 (1+Vf) ’
(24
12 1o 12 12 Yil(1+v5)
= v, | (L Amdnmde Ty (e e =9 g7 )
29
A [(A=2wp) +vg(2—w) ] (
2 (1+Vf) '

which is independent afy and measures,; directly.
Then(24) determines the differencg, — a,, which will give Equationg24), (25), and(26) will now be applied to a set
the difference deflection, i.e., the deflection of the system foof values of the system parameters for a permallgifFe)
the magnetization along, minus the deflection of the sys- film on a Corning 7059 glass substrate for whighhas been
tem for the magnetization along, measured.Namely,
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t;=720 A=0.72x10"° cm, is missing the factor 2 due to the mismatch. There are some
flaws in the derivation of33), which are corrected i(32).
ts=0.04 cm, The result is to introduce a factét+ v,) into (33) as well as

the factor 2 due to the mismatch.
=4 cm,

(30
Y;=2.18 Mbar, »;=0.28,
V. DISCUSSION

Y,=0.68 Mbar, »,=0.22,
e The principal contribution of this paper on magnetostric-
A1=20.4x10"". tive bending by magnetization of an epitaxial film is a for-

The value of\, has been fixed to give the observed deflec-Mmulation that includes the discontinuity in strain at the inter-

tion differenceA, of 1300 A using the formula of Klokholm face. That discontinuity is a consequence of the misfit
given below. From(24) and (25) the following numerical —Petween the dimensions of the magnetized and unmagnetized

values are obtained; films. The substrate is in equilibrium with the unmagnetized
film to which it is bonded, hence there is a misfit between the
@;=1.39x10"", ap,=-0.63x1077, substrate and the magnetized film. The idea that due to misfit
a discontinuity in parallel strain exists at the interface be-
A;=4040 A=4.040<10"° cm, tween an epitaxial film and a substrate is well known in
; s (3D epitaxy theory. There the discontinuity is obvious because, in
%:8 517x 10~ 4 %ZO 077x 10~ 14 the usual case, the thick substrate has negligible strain, and
Ve Vv, ' the film has the full misfit strain.

. . The idea introduced here is that the magnetized film is in
mel _ 14 t_ 14 a new equilibrium state, effectively a new crystalline phase
Vs =17.111x10°7, V_S_ZS'704>< 10 Mbar. with new dimensions, which must be strained toward the
dimensions of the old equilibrium state of the unmagnetized
film by the action of the substrate. The calculation of the
strain is then a problem of plate-bending elasticity theory, but
with the complication that anisotropic strain must be consid-
ered, resulting in anisotropic curvature. To solve this prob-
2 Y/ (1+ vy) lem, which does not involve any concentrated applied forces,
A,"at=9t— A1y TA=v0(1+0] =3151 A. (32)  the simple powerful method of minimization of the total en-
S s S s ergy introduced by du Traolet and Peuzihis very suitable.
The results in(31) show that the elastic energy in the The derivation here parallels their analysis, but adds the mis-
substrate is only 0.9% of the elastic energy in the film, whichfit effects and extends the discussion to the case of a speci-
itself is 50% of the magnetoelastic energy in the film. If themen constrained to be flat in one direction.
substrate is very thick, so that it does not belg=0, E., is The essential reason for the importance of the misfit in
0.9% larger than in the bent system, az{qe, is 0.45% larger.  determining the curvatures is the interaction of the misfits
The bending produces a radius of curvature along the diregwith the curvature variables; , as noted explicitly aftef21).
tion of magnetization of 2.8810° cm and of—6.39x10° cm A substantial increase in curvatures for givenis shown in
in the perpendicular direction. the A, values in(31) and(32) compared to the values (33
The above values of the deflectidn may be compared and(34). The increase is somewhat less {8), which ap-
with the values calculated by the formula proposed byplies to a specimen kept flat in one direction. However the

Direct calculation has verified thd, is a minimum at the
above values ofy;, ay, and 8=2/3.

From (26) is obtained the deflection difference for a sys-
tem held flat in the width

Klokholm,! which is, in the present notation, real problem of a cantilevered specimen has clamped bound-
912 Yo I(1+ v) ary conditions at just one epq and. free boundary condit_io_ns
A== —ry f Vi =1291 A, (33) at the other end and is a difficult inhomogeneous elasticity
2ts T Ys/(1-vg) problem. In the absence of a solution with these mixed
and with the formula proposed by du Telet and Peuzif, boundary conditions, a reasonable estimate would be the av-
namely erage ofA, in (31) and(32). This average still increases the
deflections for a given, and would require a reduction &f
912  Y{/(1+wy) for Fe/Ni from 20.4<10°® to 7.3x107° to fit the observed
A, =2020 A. (34)

deflection. There would be less uncertainty in the valuk;of
if the curvature of a free specimen could be measured and
In the formula(34) A, is half the value given by29) and  (29) applied to fix\;.

is exactly the result of assuming that the bending moments The analysis here assumes linear elastic relations, which
due to the magnetized film remain constant at the values fas a good assumption for the small deflections and small

a flat substrate, while the system bends. The forni@®  magnetostrictive strains that occur. The film is assumed very
gives a smaller value because it attempts to take into accoutitin compared to the substrate, which is a necessary condi-
the effect of clamping of a cantilevered specimen by assumtion for 8 to equal 2/3. This assumption could be removed by

ing the specimen remains flat across the wid®3) like (34) including the inhomogeneous strain in the film produced by

2 ™MV ATy
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bending, althouglB would then be anisotropic. The epitaxy dratic in A\, and \; to E, and E,,,¢, but does not affect the
is assumed to occur on a cutfi®l) or isotropic surface, but curvature relations.

this assumption could also be removed by using the elastic

constants appropriate for the crystal structure and surface

involved. _ . . . ACKNOWLEDGMENT
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