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TheT1u1T1g multimode Jahn-Teller problem in icosahedral symmetry is investigated. It is found that the
pseudo-Jahn-Teller interaction betweenT1u and T1g can give rise to an increase of symmetry through the
development of additional troughs in the space of ungerade modes. This result is related to a continuous group
invariance of the Hamiltonian. The possible relevance to the Jahn-Teller instability of negatively charged
fullerides is discussed.

There is currently a great interest in the study of icosahe-
dral Jahn-Teller instabilities, especially in relationship to the
mechanism of electron-phonon coupling in alkali-doped
fullerides.1–13 In the present communication we examine the
adiabatic potential energy surface of theT1u1T1g Jahn-
Teller problem in icosahedral symmetry. This surface exhib-
its an interesting continuous group invariance. Its potential
relevance to the Jahn-Teller activity of negatively charged
fullerides will also be discussed.

C60 and all other closed-shell fullerenes of the leapfrog
class have six low-lying empty orbitals matching the trans-
lational and rotational symmetries.14 In the I h point group
this orbital sextuplet transforms asT1u1T1g . The corre-
sponding Jahn-Teller problem is of the (T1u1T1g)
3(ag1hg1au1t1u1hu) type. The even modes in this
model are due to vibronic coupling within the two triplets:
ag denotes totally symmetric modes andhg represents five-
fold degenerate modes. The odd modes arise through
pseudo-Jahn-Teller interterm mixing: degeneracies ofau ,
t1u , hu representations are 1, 3, 5, respectively. For a trun-
cated icosahedral cage, as in C60, the phonon part of the
Hamiltonian should be written as: 2ag18hg1au14t1u
17hu . The general multimode Hamiltonian for linear cou-
pling with harmonic phonons is described as follows:
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where the first term describes the energies of the electronic
T1g and T1u states, spaced by 2D, the second term is the
elastic energy of the phonons, and the third term is the linear
coupling. The indexm counts repeated irreducible represen-
tationsG of the modes. The representationsG i andG j run
independently over the electronicT1u andT1g symmetries.
The linear coupling constantsV are reduced matrix elements
that link levels ofG i andG j under vibronic coupling to the
mG mode. They are independent of the mode component
g. Finally C’s denote electronic operators in theT1u1T1g
space of the model. Their matrix elements correspond to
Clebsch-Gordan coefficients for the icosahedral group:15

^G ig i uCGg
G iG j uG jg j&5^G ig i uGgG jg j&. ~2!

For GP(G i3G j ) the following normalization condition
holds:

(
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Hermiticity of H further implies
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G jG i^G jg j uGgG ig i&. ~4!

We now introduce six directional cosines to express an arbi-
trary real electronic vectoruca&.
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The average energy of this state is minimized with respect to
the nuclear coordinates. In this way one generates the iso-
stationary function. The stationary points of this function in
electronic space are images of the extrema of the adiabatic
Jahn-Teller potential in actual coordinate space,16–18even in
the multimode case.19 The isostationary function ofH is
given by
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where one has
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The functionals in Eq.~7! are easily obtained from the pub-
lished tables of icosahedral coupling coefficients.15 The re-
sult for ^H&a has a transparent form if we define two vectors
R andL in a common three-dimensional space, as

R5~cx
T1u ,cy

T1u ,cz
T1u!,

L5~cx
T1g ,cy

T1g ,cz
T1g!. ~8!

The isostationary function only contains scalar and vector
products of these vectors. This is a consequence of the
sphericallike vector addition ofT1 representations in icosa-
hedral symmetry.
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The coupling parameters in this expression are defined as
follows:
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Here the superscriptsu andg refer to theT1u andT1g states,
respectively. Note that the non-ag parameter definitions in-
clude the degeneracy of the mode in the denominators. In
this way the constants are scaled as Jahn-Teller stabilization
energies.

Let w be the angle betweenL andR. From Eq.~5! one
can further infer thatL21R251. The isostationary function
can now be rewritten as a function ofR only:

^H&a52uR42vR21D2B2B8, ~10!

with

u5A1A81B1B822C22C82 f ~w!,

v52D22B22B812C12C81 f ~w!,

f ~w!52~D12F !cos2w13~E1F2C!sin2w.

This function must be minimized with respect to the elec-
tronic space coordinatesR and w, which is equivalent to
finding extremal points of the eigenenergy surface of Eq.~1!
in the space of nuclear coordinates.16 The results can conve-
niently be represented in a (u,v) diagram as shown in Fig. 1.
The corresponding energy expressions are given in Table I.
Three qualitatively different distortion phases can occur. The
T1g phase arises when the stabilization energy of the excited
2T1g term in hg and ag modes overcomes the sum of the
2T1u→2T1g energy spacing, 2D, and the Jahn-Teller stabili-
zation energy of the2T1u term. TheT1u phase is found
whenever the pseudo-Jahn-Teller mixing is not strong
enough to produce additional distortions along the odd
nuclear coordinates. In this case there is no admixture of the
upper term (L250). In both these phases the static vibronic
problem reduces to the well-knownT3h Jahn-Teller~JT!
effect,20–22 the equilibrium distortions forming a two-
dimensional continuum, that is invariant under SO~3! sym-
metry. Finally a third phase establishes in the presence of a
strong pseudo-Jahn-Teller effect. It is characterized by odd

distortions which mix the two terms of opposite parity. Mini-
mization of the isostationary function with respect to the
angle w betweenR and L yields three types of minimal
energy surfaces, depending on the relative coupling strength
of the odd-parity distortions and the interterm coupling ele-
mentC of the even-parityhg modes. These results are sum-
marized in Table II.

For w50 odd distortions of theau andhu type coupleR
andL in a parallel way. This orientation is maintained while
the system rotates in the two-dimensional trough of the
T3h JT problem. The symmetry of this solution therefore
does not exceed the SO~3! symmetry of theT1u or T1g
phases. A degenerate solution exists forw5p, with the two
vectors antiparallel. There is a saddle-point ridge between
the w50 andw5p minimal troughs with a perpendicular
orientation of the two vectors. In the second type of solutions
with w5p/2 this saddle point ridge has become a minimum.
In this case coupling tot1u modes prevails. There are now
two different types of rotation which leave the isostationary
function invariant: a three-dimensional rotation of the vector
R which is driven byhg distortions, and a precession ofL
about R. The total symmetry of the system therefore in-
creases to SO~3!3SO~2!. Thew50,p solutions now corre-
spond to local maxima. Finally in the third type of angular
coupling, with 2D1F53E23C, the isostationary function
is independent ofw. This means that only the lengths ofR
andL remain fixed while both vectors are allowed to rotate
freely. The total symmetry of this solution is SO~3!
3SO~3!, which is isomorphic to SO~4!.

FIG. 1. Phase diagram for theT1u1T1g problem.

TABLE I. Equilibrium distorted configurations resulting from
2T1u1

2T1g vibronic mixing.

Phase Coupling conditions Energy of stabilization

T1g(R
250) u.0,v<2u D2B2B8

u,0,v<0
T1u(L

250) u.0,v>2u 2D2A2A8
u,0,v>22u

Mixed u,0,0<v<22u D2B2B81v2/4u
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The appearance of a symmetry increase as a result of a
pseudo-Jahn-Teller interaction is a rather surprising result
that can be accounted for by considering the continuous
group invariance of the model in Eq.~1!. For u andv equal
to zero the isostationary function in Eq.~10! is a constant.
This case corresponds to the limit of equal coupling with
SO~6! symmetry. The SO~6! group is locally isomorphic to
SU~4!, which provides a convenient subduction route to
SO~4!. In SU~4! the electronic sextuplet corresponds to the
sixfold-degenerate representation@1100#. The symmetrized
square of@1100# yields an SU~4! scalar and the@2200# tensor
with 20 components which can embed all Jahn-Teller cou-
plings. The branching rules for reduction from SU~4! to
SO~4! are as follows:

@1100#→~1,0!1~0,1!,

@2200#→~0,0!1~2,0!1~0,2!1~1,1!. ~11!

The ~1,0! and ~0,1! components are readily identified as the
T1u and T1g systems with internal SO~3! symmetry. From
Eq. ~11! an SO~4! Hamiltonian can be constructed with the
following ingredients: a~0,0! scalar corresponding to the
spacing betweenT1u andT1g , ~2,0! and~0,2! tensors repre-
senting intraterm coupling tohg modes, and the~1,1! tensor
which matches the odd modeau1t1u1hu interactions under
equal coupling, i.e., withD5E5F.

The actual SO~4! invariance case in Table II is slightly
more involved due to the appearance of the coupling param-
eter C which represents interaction between the electronic

terms via the commonhg modes. The physics of the model
requires that in the absence of odd-parity mixing modes such
interaction should not be able to induce a mixed phase
ground state, since that would violate the parity rule. This
requirement can indeed easily be established. From the defi-
nition of the coupling parameters one can infer
u2Cu<A1B and u2C8u<A81B8. These inequalities imply
that for vanishingD, E, andF the parameteru will always
be positive, which precludes a mixed phase solution~cf. Fig.
1!.

In conclusion it has been shown that the pseudo-JT effect
in a T1u1T1g manifold can give rise to an interesting mixed
phase ground state with high dynamic symmetries. Whether
or not this effect will play a role in fullerides must be the
subject of further investigation. For the case of the C60

2

anion the separation 2D betweenT1u andT1g states is of the
order of 1 eV, while JT couplings are probably of a lesser
magnitude. As a result the ground state ofC60

2 is likely to
exhibit a pureT1u phase. Interterm vibronic constants have
not yet been calculated but a coupling oft1u modes to the
t1u→t1g absorption has been observed in the IR spectra of
A6C60 (A5K,Rb!.23 Indirect evidence of nonvanishingt1u
andhu coupling constants is also obtained from the intensi-
ties of the false origins in the fluorescence spectrum of neu-
tral C60.

24 This suggests that it should be possible to induce
a phase transition to the mixed phase ground state, provided
the orbital separation constant could be lowered. Further in-
vestigations are needed to see if this goal can be achieved by
chemical tuning or by changing the surroundings of the ful-
leride. In multiply charged C60

n2 vibronic mixing between
t1u andt1g orbitals will probably be enhanced due to reduced
t1u→t1g promotion energies.25 The presence of a manifold
of open-shell states in these ions will of course give rise to
more intricate Jahn-Teller surfaces.
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TABLE II. Odd static distortions in the mixed phase.

Condition Angular minimum Symmetry

2D1F.3E23C w50,p SO~3!

2D1F,3E23C w5p/2 SO~3!3SO~2!

2D1F53E23C SO~4!
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