
Aggregation of a quenched Lennard-Jones system under shear

B. D. Butler and H. J. M. Hanley
Thermophysics Division, National Institute of Standards and Technology, Boulder, Colorado 80303

D. Hansen and D. J. Evans
Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

~Received 5 July 1995!

The thermodynamic decomposition of an unstable thermostatted system of Lennard-Jones disks is investi-
gated by nonequilibrium molecular dynamics. The system, first unsheared and then subjected to planar Couette
flow, is studied after temperature quenches into the unstable vapor-liquid and the vapor-solid coexistence
regions of the phase diagram. An interconnected morphology, characteristic of spinodal decomposition, forms
after quenching. The cluster growth is found to be temporally self-similar, and the structure factorS(q,t) obeys
the dynamic scaling relationS(q,t);qm

2df(t)S̃@q/qm(t)#. Here,q is the scattered wave vector magnitude,
qm(t) is the location of the low angle peak inS(q,t), S̃(x) is a time-independent structure function which has
a maximum atx51, anddf is a fractal dimension.df is relatively insensitive to the postquench state point, but
may depend on the shear rate. The primary influence of shear is to accelerate the aggregation—an effect that
has also been observed experimentally in dense gelling silica suspensions. The similarities between these
simulations and experiment suggest that a characteristic fractal dimension of a dense gel may be determined
from measurements ofS(q,t).

I. INTRODUCTION

This paper describes the simulated thermodynamic de-
composition of two-dimensional Lennard-Jones systems af-
ter quenching into unstable regions of the phase diagram.
Specifically, we quenched from the fluid at three different
densities to~a! a temperature between the critical and triple
points, and~b! to a temperature below the triple point. Spin-
odal decomposition from within the vapor-liquid coexistence
region has been investigated in some detail previously,1 but
this is an attempt to study decomposition of a single-
component system quenched from above the critical tem-
perature to the unstable vapor-solid coexistence region. Fur-
thermore, the simulations were based on the technique of
nonequilibrium molecular dynamics2 ~NEMD! so we were
able to explore the effect of shear on the decomposition pro-
cesses.

The work was stimulated in part as a way to explain re-
cent results from small-angle neutron-scattering~SANS! ex-
periments on the gelling of dense colloidal silica
suspensions.3 It is now common to interpret the crystal
growth of colloidal systems in terms of the nucleation and
growth or spinodal decomposition theories developed for
simple liquids and alloys.4,5An obvious extension is to apply
these concepts to gel formation. Specifically, we equate the
aggregation that occurs during gel formation with a spinodal
decomposition mechanism following a quench.

The simulations follow naturally from our previous inves-
tigations on simple sheared liquids.6 In earlier studies, we
have used NEMD to stimulate simple liquids subjected to an
applied shearg and have demonstrated thatg can be consid-
ered as a thermodynamic state variable.6,7 Because a sheared
system has phase behavior which is perturbed, or even quali-
tatively different, from that described by the equilibrium
phase diagram, we anticipated that shear would influence the

decomposition process after a quench and, by extension, the
aggregation process which results in gel formation.8,9 We
show that shear does, in fact, effect the decomposition of a
quenched Lennard-Jones system, and the paper includes a
discussion of these effects.

Figure 1 outlines the equilibrium phase diagram of the 2D
single-component Lennard-Jones system. Solid lines in the
figure indicate the coexistence boundaries. The vapor-liquid
and liquid-solid boundaries were obtained from liquid-state
perturbation theory and Monte Carlo simulations.10 The
vapor-solid coexistence boundaries are extrapolations from
the triple-point line to zero temperature using the reduced
densities of 0 for the vapor and3A4/A3'0.92 for the solid.
It is appreciated that the exact placement of the lines—
particularly the location of the critical and triple points—
depend on details of the simulation, such as system size and
potential cutoff.11 These details, however, are not important

FIG. 1. Phase diagram for the 2D Lennard-Jones system. Simu-
lated quenches were to the six state points indicated byd. The
dashed lines indicate spinodal boundaries—those inside the vapor-
solid coexistence region are speculative.
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for our purposes. The dotted lines mark the spinodes—the
limits of mechanical stability. The vapor-liquid spinodal
boundary, obtained from liquid-state perturbation theory, is
taken from Henderson.12 The vapor-solid spinodes are in-
tended to be only schematic since their location in the vapor-
solid coexistence region is unknown. The vertical lines in
Fig. 1 symbolize our simulation paths: the system is equili-
brated as a fluid above the critical temperature and then
quenched to state points below the critical and/or triple
points into the mechanically and thermodynamically un-
stable regions of the phase diagram.

Central to our theme is the behavior of the structure factor
S(q,t) as a function of timet and wave vectorq. Theoretical
treatments of spinodal decomposition in general, and predic-
tions for the time evolution ofS(q,t) in particular, have been
presented for binary solutions by Cahn and others,13–15 and
for the one-component fluid in equilibrium with its vapor by
Abraham.16 In the theory of Cahn-Hilliard-Cook13,14 the ear-
liest stages of decomposition are characterized by the growth
in amplitude of compositional fluctuations of a particular
wave vector magnitude. At early times, therefore, a peak will
appear inS(q,t) at this characteristic wave vector. This peak
then grows in amplitude without significant shift in wave
vector. At later times, when the fluctuation amplitudes have
reached approximately the densities dictated by the equilib-
rium phase boundaries, the structure will coarsen by interfa-
cial dynamics. In this late coarsening regime, the peak in
S(q,t) continues to grow in height but now moves towards
lower q, reflecting the increasing average domain size of the
two phases. Decomposition after a quench to inside the spin-
odal can thus be characterized by three time regimes: an
early stage described by the linear Cahn-Hilliard-Cook
theory, a late time coarsening regime, and a crossover regime
separating these two limits.17 Cahn14 has shown that the mi-
crostructures in the early time~linear! regime are highly
interconnected—a feature often viewed as characteristic of
spinodal decomposition.

The time over which the early stage decomposition pro-
ceeds is dictated by both thet50 correlation length and the
particular location inside the unstable region to which the
system has been quenched.17–19 When the particle-particle
correlation distance is small or the quench is far inside the
unstable region, the early time regime may be very short
lived or even nonexistent. The correlation distance in our
initial high-temperature configuration is short range and the
quenches simulated here are all deep within the unstable re-
gion ~Fig. 1!. Hence, we expect to see a peak inS(q,t)
which both grows and shifts toward lowerq as the system
evolves, that is, behavior characteristic of the late stage
coarsening regime of a system quenched below the spinodal.

A gelling colloidal suspension is characterized by short-
range interactions.20 Hence these simulations are particularly
relevant as tools to interpret gelation experiments. Real-
space particle imaging is possible, in principle, but extremely
difficult to carry out in practice. In the simulation, however,
we can quench a system and follow the decomposition by
monitoring bothS(q,t) and the real-space particle cluster
morphology. We can thus study the evolution ofS(q,t) in
detail and connect the variation ofS(q,t) to known cluster
formations. The qualitative behavior of our two-dimensional

simulations will certainly allow us to understand better the
experimental data.

The paper is organized as follows. Section II outlines the
procedure and computer technique which we use to investi-
gate the quenches and subsequent evolution of the
postquenched system, both with and without an applied
shear. Section III reviews the results and compares the be-
havior of the structure factor with plots of the cluster mor-
phologies. The evolution ofS(q,t), is discussed in Sec. IV.
The connection between the simulation data and experiments
with real silica gels are briefly summarized in Sec. V. Con-
clusions end the paper.

II. PROCEDURE

We consider a thermostatted two-dimensional system of
N Lennard-Jones~LJ! particles subjected to planar Couette
flow. The particles have unit mass and interact with the di-
mensionless potential,

fLJ54F S 1r D
12

2S 1r D
6G , ~1!

where r5ur i2r j u, with r i the position of particle
i ( i51,N). The density of the system is defined as
r5N/A, whereA is the area; the temperature is taken as the
kinetic temperatureT. The shear rate is defined by
g5]ux /]y, with ux the x component of the streaming ve-
locity u. Calculations were carried out withN514 336 with
the LJ potential cutoff at 2.5. A few runs were made with
N53584 in order to investigate the influence of system size.

Initial values of the particle positions and peculiar mo-
mentapi were assigned atT51 and the system equilibrated.
The system’s behavior was studied after temperature
quenches into the vapor-liquid and vapor-solid coexistence
regions. Figure 1 traces the path of six quenches simulated at
r50.25, 0.325, and 0.6 to a temperatureT50.45 and to a
temperatureT50.2. The quenched system was then allowed
to evolve without the presence of an applied shear and then
when subjected to shears ofg50.01 and 0.1 atT50.45, and
g50.01 atT50.2.

The simulations were based on the nonequilibrium mo-
lecular dynamic~NEMD! shear algorithms discussed exten-
sively by Evans and co-workers.2 All computations were per-
formed using a 128-processor parallel supercomputer.
Details of the computational procedure and the paralleliza-
tion scheme for planar Couette flow can be found in Ref. 21.
In outline, however, the NEMD technique solves the thermo-
statted equations of motion2 set up to mimic Couette flow for
the system with Lees-Edwards periodic boundary conditions
at a given shear rate and temperature:

dr i
dt

5
pi
m

1nxgyi , ~2!

dpi
dt

5Fi2nxgpiy2api , ~3!

wherenx is a unit vector in the flow direction and the force,
Fi52S j]fLJ(r )/]r i . The equations include the thermostat-
ting multiplier a given by
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a5(
i21

N

pi•FiY(
i21

N

pi•pi . ~4!

For all runs, the system was first equilibrated in the fluid
atT51, and then quenched into the unstable region to a state
point indicated in Fig. 1. The time step was set at
Dt50.004 and the simulation monitored over at least
250 000 time steps~i.e., until t51000). The shear simula-
tions were run at low Reynolds numbers, hence the peculiar
velocity of any particle, i , is given unambiguously by
pi /m in Eq. ~2! and the kinetic temperature is defined in the
usual way byT5( i(pi

2)/2mNkB , wherekB is Boltzmann’s
constant. Because in each of these simulationsg!1, the re-
sults will be independent of the thermostat employed~i.e.,
the heating rates are small!. Key data are plots of the posi-
tions of the particles as a function of time for a given state
point—that is, the morphology of the system—and the cor-
responding structure factor.

The azimuthally averaged structure factor was evaluated
for a particular simulation by first counting the number of
particle pairsNr separated by distances betweenr and
r1Dr in the ranger50→a/A2, wherea is the edge length
of the simulation box, withDr50.01. In the range
r5a/2→a/A2 care was taken to count only those pairs sepa-
rated by the shortest distance after taking account of the pe-
riodic boundaries.Nr thus decreases rapidly from its maxi-
mum atr5a/2 to zero atr5a/A2. The structure factor was
computed from this distribution using

S~q!5
1

N (
r50

a/A2

~Nr2Nr
av!Jo~2pqr !, ~5!

whereJo is the spherical Bessel function of order 0~which
takes account of the azimuthal averaging! and Nr

av is the
number of particle pairs expected from a random~uniform
density! placement of particles.S(q) was first computed in
incrementsDq/2p50.0025 and then smoothed using a run-
ning average with a window sizeDq/2p50.01.

With finite-size simulations, the subtraction ofNr
av in Eq.

~5! plays an important role as it efficiently subtracts the ‘‘av-
erage’’ scattering associated with the simulation box shape
and size. Scattering from the simulation box, if not sub-
tracted, will result in a sharp spike at the reciprocal space
origin ~of width related to the reciprocal of the simulation
box size!, and will also produce several unwanted decaying
‘‘interference fringes’’ at higherq.22 Careful counting of the
particle pairs at distances betweenr5a/2→a/A2 causes the
Bessel summation to be smoothly truncated. If this were not
done,S(q) may have the artificial oscillations often encoun-
tered when computingS(q) from normalized pair distribu-
tions. The running average also helps to minimize the un-
avoidable oscillations resulting from the finite system size.

III. RESULTS

Our basic results are summarized by the sequence of
events shown in Fig. 2. This figure displays the time evolu-
tion of the system after a quench toT50.2 at a density
r50.325 for shears ofg50 and 0.01. We see that the par-
ticles of the system atg50—which showed initially the

characteristic distribution of a fluid atT51—have already
aggregated att58, and that these aggregates form a fine-
scale interconnected morphology. As the system evolves it
coarsens. A striking feature of this coarsening process is that,
except for a change in length scale, the system at the early
time looks just like the system at the later times. In other
words, the system displays temporal self-similarity. The ef-
fect of the shear is also pronounced; the coarsening process
appears to proceed in a comparable fashion when the shear is
applied, only shear has substantially accelerated the aggrega-
tion until the simulation box is filled effectively by one clus-
ter at t51000.

Figure 3 displays the computed structure factors corre-
sponding to the images of Fig. 2 and the time dependence of
the location of the maximum value ofS(q,t). Shown are
S(q,t) plotted against the parameterq/2p. We first note that
S(q,t) for q/2p.1 indicates a close-packed internal distri-
bution of a solid, even at the earliest displayed time of
t58. These peaks sharpen with time because the size of the
clusters increase~not, as might be assumed, because the solid
becomes more ordered!. This is made clear from the magni-
fied, but representative, real-space images of Figs. 4~a! and
4~b! which are taken from the simulations shown in Fig. 2.

The curves of Figs. 3~a! and 3~b! display an apparent
power-law increase in the structure factor with decreasingq.
This power-law behavior, however, is simply an artifact that

FIG. 2. Decomposition of a Lennard-Jones system of density
r50.325, quenched to a temperatureT50.2. g is the shear rate
and t is the time since the system was quenched. The simulations
containN514 336 particles and the inner rectangles indicate the
simulation box size.
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originates from the presence of a peak inS(q,t) at low val-
ues ofq—a peak indicating the existence of cluster-cluster
correlations. Not much, therefore, can be learned from the
actual magnitude of the slope~as is often done in dilute

systems20,23! because the slope will depend on the shape,
size, and degree of correlationbetweenindividual clumps of
particles.24

The coarsening of the system is reflected by the move-
ment of this low-q peak with time. Att58, for example,
S(q,t) peaks atq/2p'0.1 which corresponds to a cluster-
cluster correlation distance of about ten particle diameters.
The peak increases in height and moves to a lowerq as the
system evolves after the quench~the signature of a coarsen-
ing process! until the system develops large clusters at
t51000 that nearly span the simulation box. The accelerated
coarsening observed in Fig. 2 for the system atg50.01
could alternatively be inferred from the time variation of the
location of the peak inS(q,t) shown in Fig. 3~c!. Here, the
peak inS(q,t) moves to lowerq much more rapidly after the
quench relative to the unsheared case.

Figure 5 displays and compares the particle configurations
at the limiting time t51000 for the three different post-
quench densities. The influence of an applied shear on these
configurations is very clear: shear greatly accelerates the
coarsening. Companion plots ofS(q,t) from these simula-
tions, shown in Fig. 6, confirm this observation. Figure 7,
with Fig. 3, summarizes the evolution ofS(q,t) after
quenching to the three system densities atT50.2.

In 1983, Koch, Desai, and Abraham published their de-
tailed paper on the decomposition of the LJ fluid into the
vapor-liquid region of the phase diagram.1 We repeated sev-
eral of their calculations here, but for a larger system, and

FIG. 3. Variation of S(q) with time since the system was
quenched toT50.2, r50.325.~a! the system at zero shear, and~b!
the system subjected to a shear ofg50.01. ~c! shows the time
dependence of the location of the maximum inS(q). The corre-
sponding particle configurations are shown in Fig. 2.

FIG. 4. Magnified view of particle configurations showing the
close packed solidlike structure obtained when the system is
quenched toT50.20; shown aret58 ~a! and t51000~b!. Liquid-
like structures are obtained when the quench is toT50.45;t58 ~c!
and t51000 ~d!.

FIG. 5. Particle configurations aftert51000 when the system is
quenched toT50.2. Note that, at all three densities, the coarsening
is much more rapid when a shear is applied.
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extended that study by including a simulation of the decom-
position phenomenon under shear forg50.01 andg50.1.
Our data for the quench toT50.45 andr50.325 are pre-
sented in Figs. 8–11. Let us compare Fig. 8 with Fig. 2. In
both cases we see the interconnected structures and we find,
at even the earliest times, that the system has decomposed to
two distinct phases. As time progresses, the systems coarsen.
We observe temporally self-similar coarsening behavior for
the system quenched toT50.45 as observed atT50.2. The
major difference between the clusters formed after the
quenches toT50.45 andT50.2 forg50 lies in the density
and structure of the two phases, Fig. 4; we see that the sys-
tem quenched toT50.45 has clusters composed of a disor-
dered low-density fluid whereas the quench toT50.2 pro-
duces clusters of solidlike structure and density.

Figure 9 shows that the dramatic influence of the shear
seen atT50.2 is observed only for the higher shear rate of
g50.1 at the quench withT50.45. But that we do not see
any substantial influence of the shear at the lower shear rate,

compared to results atT50.2, merely reflects that the system
relaxation timet is relatively short in a system atT50.45.
Suppose, for convenience, we can definet as the Maxwell
relaxation time,tm5h/G` , with h the viscosity andG` the
infinite frequency shear modulus. The Maxwell relaxation
time of a Lennard-Jones fluid close to freezing istm'0.2;
we estimate from calculations of the viscosity that in the
liquid tm'0.02 atT50.45. In general, simulations of non-
Newtonian behavior in simple systems show6 that the effects
of shear are observed~i.e., the properties of the system can
be shear rate dependent! wheng.tm

211023. Hence it is not
surprising that a shearg50.01 has no significant effect at the
higher temperature.

The structure factors corresponding to the simulations in
Figs. 8 and 9 are presented in Figs. 10 and 11. The form of
S(q,t) for g50.0 and for wave vectorsq/2p.1 is that of a
liquid, as one would expect from viewing the magnified real
space images of Figs. 4~c! and 4~d!. In Fig. 4~c! we find
small clumps of liquid surrounded by a vapor and in Fig.
4~d! we find the same liquid structure but in much larger
clumps. At a shearg50.1, however, the local structure
evolves with time such that we observe a form forS(q,t)
characteristic of a low-density liquid at early times, but a
much higher density liquid—bordering on a disordered solid
phase—att51000 ~Fig. 8!. The long-range cluster-cluster
correlations, and the growth of the clusters themselves as
derived fromS(q,t), do not seem markedly different from
that observed in theT50.2 postquench simulations, as we
remarked when discussing Fig. 8.

FIG. 6. Structure factors computed for each of the 6 configura-
tions shown in Fig. 5. —r50.25, – – – – r50.325, – - –
r50.6.

FIG. 7. Variation ofS(q) with time since the systems were
quenched toT50.2.

FIG. 8. Decomposition of a Lennard-Jones system of density
r50.325, quenched to a temperatureT50.45.
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IV. EVOLUTION OF THE STRUCTURE FACTOR:
SCALING

Our comments in the previous section regarding the strik-
ing temporal self-similarity of the coarsening process in both
theT50.20 andT50.45 quenches were based on subjective
interpretations of the appearance of the particle configura-
tions as a function of time shown in Figs. 2 and 8. The
temporal self-similarity claim can, however, be cast into a
more quantitative, and therefore more justified, form by de-
riving the expected behavior ofS(q,t) under such circum-
stances and then checking this against the simulations.25

If the particle configurations at different times are the
same except for a change in length scale then, by definition,
their structure factors will have the same form:

S~q,t !;K„qm~ t !…S̃„q/qm~ t !…, ~6!

whereqm(t), the location of the low-q peak maximum cor-
responding to the cluster-cluster correlation distance, has

been chosen as the characteristic scale.S̃(x) is a time-
independentcharacteristic structure function which has a
maximum atx51, andK„qm(t)… is aq-independent propor-
tionality constant. The form ofK„qm(t)… can be obtained by
recognizing that the magnitude of the structure factor will be
proportional to the number of clustersNc present and the
square of the number of scatterers per clustern2:

S~q,t !;Ncn
2S̃„q/qm~ t !…. ~7!

For generality we allow the clusters to be mass fractals of
dimensiondf and assume that the number of scatters is pro-
portional to the massM of a cluster:n;M;jdf;qm

2df(t),
wherej is the cluster-cluster correlation length. Mass con-
servation requiresNcn5N, whereN is the total number of
particles in the system. The structure factor scaling relation is
thus

S~q,t !;qm
2df~ t !S̃„q/qm~ t !…. ~8!

Equation~8! is simply a more general form of the scaling
relation normally given in the literature,26,27 except thatdf
has replaced the dimensionalityD of the system.@Although
we used the characteristic cluster-cluster correlation distance

FIG. 10. Variation ofS(q,t) after the system was quenched to
T50.45, r50.325. ~a! the system at zero shear, and~b! subjected
to a shear ofg50.1.

FIG. 11. Computed structure factors att51000 for the system
with r50.325 quenched toT50.45. Observation of magnified por-
tions of the particle configurations withg50.1 ~not shown! dem-
onstrate that the sharp peak atq/2p51 results from nearly close
packing of the disks.

FIG. 9. Particle configurations att51000, r50.325 for a
quench toT50.45. ~a! no shear,~b! g50.01, and~c! g50.1. At
this higher temperature only very large shear rates (g50.1) signifi-
cantly effect the final structure.
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j and not the actual cluster size in our argument above, in a
self-similar system those two quantities will be proportional,
and, in fact, any measure of a characteristic distance of the
system, for instance an inflection point in the structure factor
peak, would be equally appropriate to use in Eq.~8!.#

Figure 12 shows a plot of the structure factors for two of
the systems, quenched toT50.2 as a function of time, and
scaled according to Eq.~8! using, in both cases,df51.85.
All data fall essentially on a single curve. Our description of
the evolution of the system after quenching as temporally
self-similar thus appears justified. The results for times ear-
lier thant540 and later thant5800 are not included in Fig.
12 because at early times the cluster growth does not com-
pletely follow a coarsening mechanism.1 At the later times
the clusters grow larger than 1/2 the simulation box size
making it impossible to locate accurately the low-q peak.

The exponent used in Eq.~8! to produce Figs. 12 was not
the Euclidean dimensionD52. To verify that indeeddf
ÞD we constructed plots ofqm

dfS(qm) vs qm for df51.7,
1.85, and 2 like that shown in Fig. 13. When Eq.~8! holds
anddf has been chosen properly, the points on this plot lie on
a horizontal line. Ifdf has not been chosen properly there
will be systematic deviation away from the horizontal. It is
clear that whendf52 there is a systematic rise and when

df51.7 there is a systematic decrease in this plot, whereas
df51.85 yields a nearly horizontal line. From plots such as
this we estimate the accuracy in the determined fractal di-
mension for the systems shown in Fig. 12 to be
df51.8560.05.

The solid curve drawn in Fig. 12 is Furukawa’s27 phe-
nomenological form for the characteristic structure function:

S̃~x!5
~11w/2!x2

w/21x21w . ~9!

Here we have usedw53 to ensure that Porod’s law28 ~in two
dimensions! is satisfied at high values ofq. The agreement
between our simulation results and this relation is impres-
sive, especially because the only parameters used to con-
struct Figs. 12 are the low-q peak locations at each time
increment, the fractal dimensiondf , and a single, universal,
normalizing constant to place the peak heights at 1. Alterna-
tives to this characteristic function may also be considered;
for example Scha¨tzel and Ackerson’s form5 was shown to
work well in colloidal systems. The particular form of the
characteristic function is, however, not important for our
present arguments.

Figure 14 shows the structure factor scaling for the sys-
tems quenched toT50.2, at densitiesr50.25 and
r50.325 under the applied shear ofg50.01. Since the clus-
ters grow much faster under shear, the scaling plots could
only be constructed for times to aboutt5300; beyond this it
is impossible to determine accurately the low-q peak maxi-
mum given our simulation system size. Nevertheless, we find
that the scaling relation still holds under shear, but that some-
what lower fractal dimensions,df51.7560.1 for r50.25
anddf51.760.1 for r50.325 are required to obtain a good
fit. The larger error bars on these systems result from the
shorter time over which we can scale the results.

Finally, scaling plots corresponding to the quenches to
T50.45 are shown in Fig. 15. Here, the coarsening is slower
so it is possible to scale the simulations out tot51000. Self-
similar growth, however, does not appear to hold for times

FIG. 12. Computed structure factors scaled according to Eq.~8!
using df51.85. The quenches were toT50.2 with g50 at the
indicated densities. The solid line is the phenomenological theory of
Furukawa~see text!.

FIG. 13. The maximum inS(q) for the simulation quenched to
T50.20 andr50.25 scaled according to Eq.~8! using different
values for the fractal dimension. Note that when a fractal dimension
of 1.7 or 2 is assumed there is a systematic deviation from the
horizontal indicating an error in the choice ofdf . In this way we
obtained estimated errors for our determinations ofdf560.05 in
the present case.
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less than aboutt5100. We obtain fractal dimensions of
df51.8560.05 for r50.25 and df51.8060.05 for
r50.325. Under moderate shears ofg50.01 the results are
identical~as would be expected from the previous discussion
of Fig. 9!. At the higher shear rate,g50.1, we found that Eq.
~8! does not describe the coarsening behavior over any ap-
preciable range of times. Also, we found that at the highest
density r50.6, Eq. ~8! does not describe adequately the
simulation data regardless of the quench temperature or shear
rate.

We repeated several of the simulations using a smaller
number of particles (N53584) to check the effect, if any, of
system size on these results. We found that at early times the
particle configurations looked similar, but that it is difficult
to construct a scaling plot from Eq.~8!. There are two rea-
sons for this:~1! with the smaller system size there are fewer
particles contributing to the computedS(q) so it is noisier
and therefore more difficult to place accurately on the scaling
plot, and~2! because the systems size is smaller,S(q,t) can-
not be computed to the small wave vectors that can be
reached with the larger system. Thus, the evolution could not
be followed for long times. The result is that it is difficult to

derive df accurately from systems much smaller than the
N514 336 systems used in this study.

V. CONNECTION WITH GELS

We remarked in the Introduction that a motivation for
performing the simulation work was to interpret small-angle
neutron-scattering~SANS! data on the structural changes
that take place as silica spheres gel.29 The gel SANS experi-
ments are reported in Ref. 3 so a detailed description of the
experiments need not be repeated. In summary, the experi-
mental systems were initially suspensions of silica spheres
with diameters524 nm, in a H2O-D2O medium at several
volume fractionsf. Gelation was induced by changing the
pH of the suspension and adding NaCl. SANS intensity data
from the 30-m spectrometer at the NIST Cold Neutron Re-
search Facility were obtained from the suspensions, from the
final gels, and, in some cases, from the gelling system as a
function of time. The suspensions and gels were also sub-
jected to applied shears using the Couette shearing cell de-
scribed in Ref. 30. The key results are reproduced graphi-
cally in Figs. 16 and 17.

Figure 16~a! plots the structure factor of the gelling
f50.1 suspension as a function of time after gel initiation at
wave vectors<qs/2p. At the very earliest times there is no

FIG. 14. Computed structure factors scaled according to Eq.~8!
from simulations quenched toT50.2 with an applied shear
g50.01. Only the early times can be scaled as the cluster sizes as
later times have grown too large to produce a peak inS(q).
df51.7560.1 and 1.760.1 for r50.25 and 0.325 respectively.

FIG. 15. ScaledS(q) as in Fig. 12 except quenched to
T50.45. For r50.25 df51.8560.05 and for r50.325
df51.8060.05.
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appreciable small-angle scattering, indicating that the initial
solution is relatively homogeneous at the length scales
probed by this experiment~several particle diameters!. As
the gelation proceeds, however, there is a marked increase in
the scattering at lowq, and this becomes more pronounced at
longer times. At these later times,S(q,t) displays a power-
law increase with decreasingq ~on this log-log plot the scat-
tering increases linearly toward the origin!. Compare this set
of curves with the simulations of Fig. 3; the time sequences
are very similar. The experiments do not detect a cluster-
cluster low-q peak but, according to Fig. 3, such peaks
would more likely to be observed forqs/2p less than 0.1—
below the low-q limit of the present SANS experiments.

For samples with silica volume fractions above 0.18~spe-
cifically, f50.24 and 0.30!, the rise in the small-angle scat-
tering, Fig. 16~b! was not observed~even in the final gels!
when a shear was not applied. When shear is applied during
gelation of the higher-density samples, however, this power-
law increase ofS(q,t) returns. For example, Fig. 17 displays
the structure factor for thef50.24 system gelled at zero
shear and at a shear rateg54500 s21. Furthermore, in ad-
dition to this large increase in small-angle scattering brought
about by the application of shear, there is also a significant
change observed in the particle-particle contact peak located
near qf/2p'1. This peak is broad and weak in the un-
sheared sample, but is much sharper and more intense in the
sample gelled under applied shear. Compare Fig. 17 with the
simulation graph of Fig. 11. The shear-influenced features in
the experimental plot are replicated to a first approximation
by the simulation.

VI. CONCLUSION

We have discussed the NEMD simulated decompositions
of a thermostatted system, first unsheared and then subjected
to planar Couette flow, after temperature quenches into the
unstable vapor-liquid and the vapor-solid coexistence regions
of the phase diagram. Our system was a two-dimensional
system of Lennard-Jones disks, and the quenches were from
the fluid to unstable state points between the critical and
triple-point temperatures atT50.45, and below the triple
point atT50.2.

Upon quenching, we find that a fine scale, interconnected
morphology is produced at very early times in all systems,
and that this initially phase-separated structure then coarsens.
We can identify easily from the simulated quenches below
the triple point toT50.2 a close-packed solid phase coexist-
ing with a dilute vapor. Quenches into the region between the
triple point and critical temperature display a similar mor-
phology, but with a liquidlike phase in contact with a dense
vapor. The system with a shear coarsens much more rapidly,
but generally the interconnected cluster morphology is simi-
lar to that seen without shear. We did observe, however, that
shear alters the structure of the dense phase after quenching
to T50.45; this phase now has features of an amorphous
solid.

Computations of the structure factorsS(q,t) as a function
of time show a distinct peak at lowq indicating the presence
of cluster-cluster correlations, even at the earliest times after
the quench. As time progresses this peak moves to smallerq
and grows in height—indicating that the cluster size in-
creases. The linear spinodal decomposition theory of
Cahn-Hilliard-Cook13 predicts a regime in which the location
of the low-angle peak remains stationary while growing in
amplitude. We did not observe such a regime, but this was
anticipated for our system which is characterized by short-
range interactions.17

A particularly striking feature of the observed coarsening
is that, except for a change in length scale, we see that the
structures at early times look similar to those at later times—
that is, the cluster morphologies are temporally self-similar.
Accordingly, we introduced a dynamic scaling law for
S(q,t), Eq. ~8!, generalized to allow for the presence of
fractal clusters. When our simulation results are scaled by
this relation, all computed structure factors fall on a single
universal curve, provided that the fractal dimensiondf is
chosen correctly. The scaling relation is satisfied remarkably
well with df51.8560.05 at bothT50.2 and atT50.45~ex-
cept when r50.325 and T50.45 for which
df51.8060.05). The dynamic scaling relation also de-
scribes well the simulations quenched toT50.2 when a
shear is applied, but with smaller fractal dimensions
df51.7560.1 for r50.25 anddf51.7060.1 for r50.325.

In Sec. IV we demonstrated that a thermodynamic quench
into the unstable region of the phase diagram has many char-
acteristics in common with gel initiation. For instance, gels
produced from silica spheres are made by changing the pH
and/or electrolyte content of a suspension so as to affect the
range and nature of the particle-particle interaction
potential.20 Since a rapid change in the interaction potential
is equivalent to a rapid change in the reduced temperature
and density, we argued that the gelation mechanism is an

FIG. 16. Measured structure factors from SANS data on 24-nm
silica spheres atg50; ~a! as a function of time since gel initiation
at volume fractionf50.1 and~b! as a function of volume fraction
after the gel has formed.

FIG. 17. Measured structure factors for a gelled sample with
f50.24, with and without an applied shear.
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aggregation process that is similar to our quench of a system
from a disordered state into an unstable two-phase region. It
is particularly profitable and practical to compare the two
processes because we know that cluster-cluster correlations
in dense gels will dominate the scattering and make it diffi-
cult to interpret the results by conventional methods. We can-
not, for example, get structural information and a fractal di-
mension from measurements ofS(q,t→`) assuming that
the fractal dimension is related to the rise inS(q,t→`) at
low angles, as is done routinely for dilute gels. Equation~8!,
however, implies that the fractal dimension of an experimen-
tal dense system can be ascertained from the time evolution
of the measured structure factor. In principle, this method
will work regardless of the density of the initial suspension.
To illustrate this point, we remark that Carpineti and Giglio31

recently measuredS(q,t) over a very wide range of wave
vectors as a function of time in dilute~volume fraction
0.03%! polystyrene colloidal solutions undergoing aggrega-
tion. They were able to determine a fractal dimension for
their growing clusters in the usual way by measuring the rise
in S(q,t→`) at intermediate wave vectors. They also mea-
sured to much lowerq where they found a cluster-cluster
correlation peak. A scaling plot, in the form of our Fig. 12,

was constructed using the fractal dimension derived from the
intermediateq measurements. All the scaled data lay on a
universal curve. It is thus clear that the fractal dimension
could have been derived from the scaling plot without re-
course to the higherq data analysis, which required a mea-
surement covering length scales much smaller than the
cluster-cluster correlation distance yet much larger than the
particle size. In short, the results of Ref. 31 and our analysis
suggest that future scattering experiments on the gelation of
dense colloidal systems should concentrate on measurements
to wave vectors small enough to include the cluster-cluster
correlation peak so that analyses based on Eq.~8! can be
performed.
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