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Aggregation of a quenched Lennard-Jones system under shear
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The thermodynamic decomposition of an unstable thermostatted system of Lennard-Jones disks is investi-
gated by nonequilibrium molecular dynamics. The system, first unsheared and then subjected to planar Couette
flow, is studied after temperature quenches into the unstable vapor-liquid and the vapor-solid coexistence
regions of the phase diagram. An interconnected morphology, characteristic of spinodal decomposition, forms
after quenching. The cluster growth is found to be temporally self-similar, and the structureSiagigrobeys
the dynamic scaling relatioS(q,t)~qr;df(t)8[q/qm(~t)]. Here, q is the scattered wave vector magnitude,

dm(t) is the location of the low angle peak 8{q,t), S(x) is a time-independent structure function which has

a maximum ak= 1, andd; is a fractal dimensiord; is relatively insensitive to the postquench state point, but

may depend on the shear rate. The primary influence of shear is to accelerate the aggregation—an effect that
has also been observed experimentally in dense gelling silica suspensions. The similarities between these
simulations and experiment suggest that a characteristic fractal dimension of a dense gel may be determined
from measurements @&(q,t).

I. INTRODUCTION decomposition process after a quench and, by extension, the

This paper describes the simulated thermodynamic dqugregatlon process which results in gel formafidrive

" f di ional L -3 fshow that shear does, in fact, effect the decomposition of a
composition of two-dimensional Lennard-Jones systems ac'wenched Lennard-Jones system, and the paper includes a

ter quenching into unstable regions of the phase diagranyiscussion of these effects.

Spec.if.ically, we quenched from the fluid at_t.hree different Figure 1 outlines the equilibrium phase diagram of the 2D
densities to(a) a temperature between the critical and t”plesingle-component Lennard-Jones system. Solid lines in the
points, andb) to a temperature below the triple point. Spin- figure indicate the coexistence boundaries. The vapor-liquid
odal decomposition from within the vapor-liquid coexistenceand liquid-solid boundaries were obtained from liquid-state
region has been investigated in some detail previoublyt  perturbation theory and Monte Carlo simulatidfisThe

this is an attempt to study decomposition of a single-vapor-solid coexistence boundaries are extrapolations from
component system quenched from above the critical temthe triple-point line to zero temperature using the reduced
perature to the unstable vapor-solid coexistence region. Futtensities of 0 for the vapor anﬁﬁ/\/§~0.92 for the solid.
thermore, the simulations were based on the technique af is appreciated that the exact placement of the lines—
nonequilibrium molecular dynamitg$NEMD) so we were particularly the location of the critical and triple points—
able to explore the effect of shear on the decomposition prodepend on details of the simulation, such as system size and
cesses. potential cutoff! These details, however, are not important

The work was stimulated in part as a way to explain re-
cent results from small-angle neutron-scatteB&NS) ex-
periments on the gelling of dense colloidal silica
suspensiond. It is now common to interpret the crystal I
growth of colloidal systems in terms of the nucleation and 0.6
growth or spinodal decomposition theories developed for
simple liquids and alloy&> An obvious extension is to apply I
these concepts to gel formation. Specifically, we equate the 04
aggregation that occurs during gel formation with a spinodal
decomposition mechanism following a quench.

The simulations follow naturally from our previous inves-
tigations on simple sheared liquifidn earlier studies, we
have used NEMD to stimulate simple liquids subjected to an
applied sheay and have demonstrated thatan be consid-
ered as a thermodynamic state varidbi@®ecause a sheared  FiG. 1. Phase diagram for the 2D Lennard-Jones system. Simu-
system has phase behavior which is perturbed, or even qualiated quenches were to the six state points indicated®byThe
tatively different, from that described by the equilibrium dashed lines indicate spinodal boundaries—those inside the vapor-
phase diagram, we anticipated that shear would influence thelid coexistence region are speculative.
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for our purposes. The dotted lines mark the spinodes—thsimulations will certainly allow us to understand better the

limits of mechanical stability. The vapor-liquid spinodal experimental data.

boundary, obtained from liquid-state perturbation theory, is The paper is organized as follows. Section Il outlines the
taken from Hendersoff. The vapor-solid spinodes are in- procedure and computer technique which we use to investi-
tended to be only schematic since their location in the vapordate the quenches and subsequent evolution of the
solid coexistence region is unknown. The vertical lines inPostquenched system, both with and without an applied
Fig. 1 symbolize our simulation paths: the system is equ”i_she_ar. Section Il reviews the r_esults and compares the be-
brated as a fluid above the critical temperature and theRavior of the structure factor with plots of the cluster mor-

quenched to state points below the critical and/or triplePhologies. The evolution d§(q,t), is discussed in Sec. IV.
points into the mechanically and thermodynamically un- 1 he connection between the simulation data and experiments

stable regions of the phase diagram with real silica gels are briefly summarized in Sec. V. Con-

Central to our theme is the behavior of the structure factoFIUS'Ons end the paper.
S(q,t) as a function of time& and wave vectoq. Theoretical
treatments of spinodal decomposition in general, and predic- Il. PROCEDURE

tions for the time evolution 0§(q,t) in particular, have been e consider a thermostatted two-dimensional system of
presented for binary solutions by Cahn and otti&r§;and N Lennard-JonegLJ) particles subjected to planar Couette
for the one-component fluid in equilibrium with its vapor by flow. The particles have unit mass and interact with the di-
Abraham®® In the theory of Cahn-Hilliard-CodR'*the ear-  mensionless potential,

liest stages of decomposition are characterized by the growth

in amplitude of compositional fluctuations of a particular 1\ [1\©
wave vector magnitude. At early times, therefore, a peak will bL=4 (F) - (F)
appear inS(q,t) at this characteristic wave vector. This peak

then grows in amplitude without significant shift in wave where r=|r;—r;[, with r; the position of particle
vector. At later times, when the fluctuation amplitudes havd (i=1N). The density of the system is defined as
reached approximately the densities dictated by the equilibe=N/A, whereA is the area; the temperature is taken as the
rium phase boundaries, the structure will coarsen by interfakinetic temperatureT. The shear rate is defined by
cial dynamics. In this late coarsening regime, the peak i =Ux/dy, with u, the x component of the streaming ve-
S(g,t) continues to grow in height but now moves towards/OCity U. Calcqlatlons were carried out with=14 336 with _
lower g, reflecting the increasing average domain size of thé;he LJ pqtentlal CUt(.)ﬁ at 25 A feV.V runs were made W.'th
two phases. Decomposition after a quench to inside the spir{\—lzzg.f_’.a4 in order to mvestlgate the _mfluence of systgm SIZE.
odal can thus be characterized by three time regimes: an Initial values Of the particle positions and pec_l,!har mo-
early stage described by the linear Cahn-Hilliard-Coo mentap; werg aSS|gneq =1 and thg system equilibrated.
theory, a late time coarsening regime, and a crossover regimehe system's behavior was studied aﬂef temperature
separating these two limit$.Cahrt* has shown that the mi- que_nchesllnto the vapor-liquid and yapor-solld cc_)eX|stence
crostructures in the early timdinean regime are highly regions. Figure 1 traces the path of six quenches simulated at

interconnected—a feature often viewed as characteristic c{f:0'25’t0'é|3_2_":’(’) 3”‘1_8'6 to a tr(]an;peratttrre 0'45”?”(1 tﬁ a q
spinodal decomposition. emperaturél =0.2. The quenched system was then allowe

; : b to evolve without the presence of an applied shear and then
The time over which the early stage decomposition pro- : =
ceeds is dictated by both thhe=0 correlation length and the when subjected to shears p0.01 and 0.1 aT=0.45, and

particular location inside the unstable region to which the?=0:01 atT=0.2.

system has been quench&d!® When the particle-particle The simulations were based on the nonequilibrium mo-
correlation distance is small or the quench is far inside thdScular dynamidNEMD) shear algorithms discussed exten-

unstable region, the early time regime may be very shor ively by E\{ans and co-workefsll computations were per-
lived or even nonexistent. The correlation distance in ou ormed using a 128-processor parallel supercomputer.

initial high-temperature configuration is short range and thé:)eta‘"S of the computational procedure and the paralleliza-

quenches simulated here are all deep within the unstable r%ipn scheme for planar Couette flow can be found in Ref. 21.
gion (Fig. 1). Hence, we expect to see a peakS(q,t)

n outline, however, the NEMD technigue solves the thermo-
which both grows and shifts toward loweras the system statted equations of motiéset up to mimic Couette flow for
evolves, that is, behavior characteristic of the late stag

éhe system with Lees-Edwards periodic boundary conditions
coarsening regime of a system quenched below the spinodaf’}.

t a given shear rate and temperature:
A gelling colloidal suspension is characterized by short-

: @

range interaction® Hence these simulations are particularly % _b + N WY 2
relevant as tools to interpret gelation experiments. Real- dt - m 7

space particle imaging is possible, in principle, but extremely

difficult to carry out in practice. In the simulation, however, dp;

we can quench a system and follow the decomposition by at = bk yPiy— api, ©)

monitoring bothS(q,t) and the real-space particle cluster

morphology. We can thus study the evolution${fg,t) in ~ wheren, is a unit vector in the flow direction and the force,
detail and connect the variation 8{q,t) to known cluster Fi=—2X;d¢ ,(r)/dr;. The equations include the thermostat-
formations. The qualitative behavior of our two-dimensionalting multiplier « given by
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N N
a:ilei'Fi/ilei'pi- 4

For all runs, the system was first equilibrated in the fluid
atT=1, and then quenched into the unstable region to a state
point indicated in Fig. 1. The time step was set at
At=0.004 and the simulation monitored over at least
250 000 time stepsi.e., until t=1000). The shear simula-
tions were run at low Reynolds numbers, hence the peculiar
velocity of any particle,i, is given unambiguously by
pi/min Eg. (2) and the kinetic temperature is defined in the
usual way byT=2i(pi2)/2meB, wherekg is Boltzmann’s
constant. Because in each of these simulatiprsl, the re-
sults will be independent of the thermostat employee.,
the heating rates are smalKey data are plots of the posi-
tions of the particles as a function of time for a given state
point—that is, the morphology of the system—and the cor-
responding structure factor.

The azimuthally averaged structure factor was evaluated
for a particular simulation by first counting the number of
particle pairsN, separated by distances betweenand
r+Ar in the range =0—a/\2, wherea is the edge length
of the simulation box, withAr=0.01. In the range ,_;00
r=a/2—al+\/2 care was taken to count only those pairs sepa-
rated by the shortest distance after taking account of the pe-
riodic boundariesN, thus decreases rapidly from its maxi-
mum atr =a/2 to zero atr = a/\/i. The structure factor was
computed from this distribution using

t=100

N

FIG. 2. Decomposition of a Lennard-Jones system of density
(N, —N2)J,(2mqr), (5) p=0.325, quenched to a temperature=0.2. vy is the shear rate

0 andt is the time since the system was quenched. The simulations

contain N=14 336 particles and the inner rectangles indicate the

simulation box size.

aly

2+~

S(q)=

r

whereJ,, is the spherical Bessel function of orderWhich
takes account of the azimuthal averagiramd NZ' is the
number of particle pairs expected from a rand@miform  characteristic distribution of a fluid &i=1—have already
density placement of particlesS(q) was first computed in  aggregated at=8, and that these aggregates form a fine-
incrementsAq/27=0.0025 and then smoothed using a run-scale interconnected morphology. As the system evolves it
ning average with a window siz&q/27=0.01. coarsens. A striking feature of this coarsening process is that,
With finite-size simulations, the subtraction ®f'in Eq.  except for a change in length scale, the system at the early
(5) plays an important role as it efficiently subtracts the “av-time looks just like the system at the later times. In other
erage” scattering associated with the simulation box shap®ords, the system displays temporal self-similarity. The ef-
and size. Scattering from the simulation box, if not sub-fect of the shear is also pronounced; the coarsening process
tracted, will result in a sharp spike at the reciprocal spaceppears to proceed in a comparable fashion when the shear is
origin (of width related to the reciprocal of the simulation applied, only shear has substantially accelerated the aggrega-
box size, and will also produce several unwanted decayingtion until the simulation box is filled effectively by one clus-
“interference fringes” at higher.?” Careful counting of the ter att=1000.
particle pairs at distances betwe@na/2—>a/\/§ causes the Figure 3 displays the computed structure factors corre-
Bessel summation to be smoothly truncated. If this were nosponding to the images of Fig. 2 and the time dependence of
done,S(q) may have the artificial oscillations often encoun- the location of the maximum value &(qg,t). Shown are
tered when computing(q) from normalized pair distribu- S(q,t) plotted against the paramewi27. We first note that
tions. The running average also helps to minimize the un$(q,t) for g/27>1 indicates a close-packed internal distri-
avoidable oscillations resulting from the finite system size. bution of a solid, even at the earliest displayed time of
t=28. These peaks sharpen with time because the size of the
IIl. RESULTS clusters increasgot, as might be assumed, because the solid
becomes more ordergdrhis is made clear from the magni-
Our basic results are summarized by the sequence dfed, but representative, real-space images of Fi¢®. ahd
events shown in Fig. 2. This figure displays the time evolu-4(b) which are taken from the simulations shown in Fig. 2.
tion of the system after a quench 1=0.2 at a density The curves of Figs. @) and 3b) display an apparent
p=0.325 for shears oy=0 and 0.01. We see that the par- power-law increase in the structure factor with decreaging
ticles of the system aty=0—which showed initially the This power-law behavior, however, is simply an artifact that
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FIG. 3. Variation of S(q) with time since the system was
quenched td =0.2, p=0.325.(a) the system at zero shear, afil
the system subjected to a shear p£0.01. (c) shows the time
dependence of the location of the maximum3¢q). The corre-
sponding particle configurations are shown in Fig. 2.

originates from the presence of a peak3(y,t) at low val- FIG. 5. Particle configurations aftex= 1000 when the system is
ues ofg—a peak indicating the existence of cluster-clusterquenched ta@ =0.2. Note that, at all three densities, the coarsening
correlations. Not much, therefore, can be learned from thés much more rapid when a shear is applied.

actual magnitude of the slop@s is often done in dilute 02 )
system&>?3 because the slope will depend on the shape,

size, and degree of correlatitetweerindividual clumps of
particles?*

The coarsening of the system is reflected by the move-
ment of this lowe peak with time. Att=8, for example,
S(q,t) peaks atg/27=~0.1 which corresponds to a cluster-
cluster correlation distance of about ten particle diameters.
The peak increases in height and moves to a loyvas the
system evolves after the quenghe signature of a coarsen-
ing procesy until the system develops large clusters at
t=1000 that nearly span the simulation box. The accelerated
coarsening observed in Fig. 2 for the systemyat0.01
could alternatively be inferred from the time variation of the
location of the peak ir8(q,t) shown in Fig. 8c). Here, the
peak inS(q,t) moves to loweig much more rapidly after the
quench relative to the unsheared case.

Figure 5 displays and compares the particle configurations
at the limiting timet=1000 for the three different post-
guench densities. The influence of an applied shear on these
configurations is very clear: shear greatly accelerates the
coarsening. Companion plots &(q,t) from these simula-
tions, shown in Fig. 6, confirm this observation. Figure 7,
with Fig. 3, summarizes the evolution d§(q,t) after

FIG. 4. Magnified view of particle configurations showing the quenching to the three system densitieJ at0.2.
close packed solidlike structure obtained when the system is In 1983, Koch, Desai, and Abraham published their de-
quenched taf =0.20; shown aré=8 (a) andt=1000(b). Liquid-  tailed paper on the decomposition of the LJ fluid into the
like structures are obtained when the quench i§40.45;t=8 (c)  vapor-liquid region of the phase diagrdriVe repeated sev-
andt=1000/(d). eral of their calculations here, but for a larger system, and
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FIG. 6. Structure factors computed for each of the 6 configura-
tions shown in Fig. 5. —=0.25, - - - - p=0.325, - - —
p=0.6.

extended that study by including a simulation of the decom-
position phenomenon under shear fgr=0.01 andy=0.1.

Our data for the quench t6=0.45 andp=0.325 are pre-
sented in Figs. 8—11. Let us compare Fig. 8 with Fig. 2. In
both cases we see the interconnected structures and we find,
at even the earliest times, that the system has decomposed to
two distinct phases. As time progresses, the systems coarsen; - 1990 |
We observe temporally self-similar coarsening behavior for
the system quenched =0.45 as observed &=0.2. The
major difference between the clusters formed after the
guenches td =0.45 andT=0.2 for y=0 lies in the density
and structure of the two phases, Fig. 4; we see that the sys-
tem quenched t@=0.45 has clusters composed of a disor-
dered low-density fluid whereas the quenchTte 0.2 pro-
duces clusters of solidlike structure and density.

Figure 9 shows that the dramatic influence of the sheagompared to results @t=0.2, merely reflects that the system
seen aff =0.2 is observed only for the higher shear rate ofrelaxation timer is relatively short in a system &t=0.45.
y=0.1 at the quench witfi =0.45. But that we do not see Suppose, for convenience, we can definas the Maxwell
any substantial influence of the shear at the lower shear ratggslaxation timer,,= 7/G.., with % the viscosity ands.. the
infinite frequency shear modulus. The Maxwell relaxation
time of a Lennard-Jones fluid close to freezingris~0.2;
we estimate from calculations of the viscosity that in the
liquid 7,,~0.02 atT=0.45. In general, simulations of non-
Newtonian behavior in simple systems sfdhat the effects
of shear are observdile., the properties of the system can
be shear rate dependgmthen y>7,,*1073. Hence it is not
surprising that a shegr=0.01 has no significant effect at the
higher temperature.

The structure factors corresponding to the simulations in
Figs. 8 and 9 are presented in Figs. 10 and 11. The form of
S(q,t) for y=0.0 and for wave vectorg/27>1 is that of a
liquid, as one would expect from viewing the magnified real
space images of Figs.(@ and 4d). In Fig. 4(c) we find
small clumps of liquid surrounded by a vapor and in Fig.
4(d) we find the same liquid structure but in much larger
clumps. At a sheary=0.1, however, the local structure
evolves with time such that we observe a form £{q,t)
characteristic of a low-density liquid at early times, but a
much higher density liquid—bordering on a disordered solid
phase—att=1000 (Fig. 8). The long-range cluster-cluster

qnz ) correlations, and the growth of the clusters themselves as
derived fromS(q,t), do not seem markedly different from

FIG. 7. Variation of S(q) with time since the systems were that observed in th&d=0.2 postquench simulations, as we
quenched tar =0.2. remarked when discussing Fig. 8.

FIG. 8. Decomposition of a Lennard-Jones system of density
p=0.325, quenched to a temperatdre 0.45.

p=0.25 y=0.01

t=1000
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FIG. 9. Particle configurations at=1000, p=0.325 for a
qguench toT=0.45. (a) no shear(b) y=0.01, and(c) y=0.1. At
this higher temperature only very large shear rates Q.1) signifi-
cantly effect the final structure.

IV. EVOLUTION OF THE STRUCTURE FACTOR:
SCALING

Our comments in the previous section regarding the strik-
ing temporal self-similarity of the coarsening process in both
the T=0.20 andT=0.45 quenches were based on subjective
interpretations of the appearance of the particle configura-
tions as a function of time shown in Figs. 2 and 8. The
temporal self-similarity claim can, however, be cast into a
more quantitative, and therefore more justified, form by de-
riving the expected behavior &(q,t) under such circum-

stances and then checking this against the simulafions.

If the particle configurations at different times are the
same except for a change in length scale then, by definition,

their structure factors will have the same form:

S(0,) ~ K (Gm(1)S(A/ (1)), (6)

whereq(t), the location of the lowg peak maximum cor-

100 L

10 |

a2

FIG. 10. Variation ofS(q,t) after the system was quenched to
T=0.45, p=0.325. (a) the system at zero shear, afii] subjected
to a shear ofy=0.1.

been chosen as the characteristic sc&8gx) is a time-
independentcharacteristic structure function which has a
maximum atx= 1, andK(q,,(t)) is ag-independent propor-
tionality constant. The form dk(g,,(t)) can be obtained by
recognizing that the magnitude of the structure factor will be
proportional to the number of clusteM. present and the
square of the number of scatterers per cluster

S(0,)~Nen?S(q/q(1)). @

For generality we allow the clusters to be mass fractals of
dimensiond; and assume that the number of scatters is pro-
portional to the masM of a clustern~M ~§df~qr;df(t),
where ¢ is the cluster-cluster correlation length. Mass con-
servation requiredN.n=N, whereN is the total number of
particles in the system. The structure factor scaling relation is
thus

S(q,t)~q, (1) S(a/ gr( D). ®

Equation(8) is simply a more general form of the scaling
relation normally given in the literatufé?” except thatd;

has replaced the dimensionaliy of the system[Although

we used the characteristic cluster-cluster correlation distance

100 | ° =0

S(g, = 1000)

0.01 ea 1

FIG. 11. Computed structure factorstat 1000 for the system
with p=0.325 quenched t6=0.45. Observation of magnified por-
tions of the particle configurations with=0.1 (not shown dem-
onstrate that the sharp peak@®2m=1 results from nearly close

responding to the cluster-cluster correlation distance, hagsacking of the disks.
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0.03 0.04 0.05 0.66 0.07
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FIG. 13. The maximum irs(q) for the simulation quenched to
T=0.20 andp=0.25 scaled according to E@8) using different

d;
m

To1r p=0325 ] values for the fractal dimension. Note that when a fractal dimension
I ] of 1.7 or 2 is assumed there is a systematic deviation from the
0.8 Time since quench horizontal indicating an error in the choice df. In this way we
r g ‘1‘80 1 obtained estimated errors for our determinationglef +0.05 in
F o 200 1 the present case.
0.6 X 300 '_
N d;=1.7 there is a systematic decrease in this plot, whereas
0.4 o d;=1.85 yields a nearly horizontal line. From plots such as
[ " this we estimate the accuracy in the determined fractal di-
L mension for the systems shown in Fig. 12 to be
0.2 d¢=1.85+0.05.
- The solid curve drawn in Fig. 12 is Furukawd'sphe-
o B D - nomenological form for the characteristic structure function:
0 1 2 3 4 5
/4 () . (1+ @/2)x?

X)=———575-

| (0= 5727 ©
FIG. 12. Computed structure factors scaled according tq&g.

using d;=1.85. The quenches were ®=0.2 with y=0 at the  Here we have used= 3 to ensure that Porod’s I&f\in two
indicated densities. The solid line is the phenomenological theory offimensions is satisfied at high values @f. The agreement
Furukawa(see text between our simulation results and this relation is impres-

sive, especially because the only parameters used to con-
& and not the actual cluster size in our argument above, in gtruct Figs. 12 are the log-peak locations at each time
self-similar system those two quantities will be proportional,increment, the fractal dimensiat}, and a single, universal,
and, in fact, any measure of a characteristic distance of thgormalizing constant to place the peak heights at 1. Alterna-
system, for instance an inflection point in the structure factofjves to this characteristic function may also be considered;

peak, would be equally appropriate to use in E].] for example Schael and Ackerson’s formwas shown to
Figure 12 shows a plot of the structure factors for two ofwork well in colloidal systems. The particular form of the
the systems, quenched 16=0.2 as a function of time, and characteristic function is, however, not important for our
scaled according to Ed8) using, in both casesl;=1.85.  present arguments.
All data fall essentia”y on a Single curve. Our description of Figure 14 shows the structure factor Sca”ng for the sys-
the evolution of the system after quenching as temporallf{ems quenched toT=0.2, at densitiesp=0.25 and
self-similar thus appears ]UStIerd The results for times earp:0.325 under the apphed Shear’pf: 0.01. Since the CIUS'
lier thant=40 and later than=800 are not included in Fig. ters grow much faster under shear, the scaling plots could
12 because at early times the cluster growth does not congnly be constructed for times to abdut 300; beyond this it
pletely follow a coarsening mechanismit the later times s impossible to determine accurately the lqupeak maxi-
the clusters grow larger than 1/2 the simulation box sizenum given our simulation system size. Nevertheless, we find
making it impossible to locate accurately the lowpeak. that the scaling relation still holds under shear, but that some-
The exponent used in E(B) to produce Figs. 12 was not \hat lower fractal dimensionsj;=1.75-0.1 for p=0.25
the Euclidean dimensiorID=2d. To verify that indeedds  andd,=1.7+0.1 for p=0.325 are required to obtain a good
#D we constructed plots of 'S(qy,) Vs qy, for d;=1.7,  fit. The larger error bars on these systems result from the
1.85, and 2 like that shown in Fig. 13. When Ef) holds  shorter time over which we can scale the results.
andd; has been chosen properly, the points on this plot lie on Finally, scaling plots corresponding to the quenches to
a horizontal line. Ifd; has not been chosen properly there T=0.45 are shown in Fig. 15. Here, the coarsening is slower
will be systematic deviation away from the horizontal. It is so it is possible to scale the simulations out+01000. Self-
clear that wherd;=2 there is a systematic rise and when similar growth, however, does not appear to hold for times
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FIG. 14. Computed structure factors scaled according tq&g. FIG. 15. ScaledS(q) as in Fig. 12 except quenched to
from simulations quenched td@=0.2 with an applied shear T_g45 For p=0.25 d;=1.85-0.05 and for p=0.325
v=0.01. Only the early times can be scaled as the cluster sizes ?F=1.80+0.05.
later times have grown too large to produce a peakS{q).

d=1.75-0.1 and 1.%0.1 for p=0.25 and 0.325 respectively.  gerjve d, accurately from systems much smaller than the

N=14 336 systems used in this study.
less than about=100. We obtain fractal dimensions of
d;=1.85+0.05 for p=0.25 and d;=1.80+=0.05 for
p=0.325. Under moderate shearsyof 0.01 the results are _ . I
identical(as would be expected from the previous discussion We remarked in the Introduction that a motivation for

. . _ performing the simulation work was to interpret small-angle
of Fig. 9). At the higher shear rate;=0.1, we found that Eg. neutron-scattering SANS) data on the structural changes

(8) d.ogls not descfrltt_)e theAc\:loarsenlr;g bght?]wtor to'xler r?.n{] aﬁat take place as silica spheres @geT.he gel SANS experi-
preciable range of imes. AlSo, we found that at the NgNest, o ;¢ 5re reported in Ref. 3 so a detailed description of the

density p=0.6, Eq.(8) does not describe adequately the o, oriments need not be repeated. In summary, the experi-
simulation data regardless of the quench temperature or shégfanta| systems were initially suspensions of silica spheres
rate. _ _ _ with diametero=24 nm, in a HO-D,0 medium at several
We repeated several of the simulations using a smallejojume fractionsé. Gelation was induced by changing the
number of particlesN|=3584) to check the effect, if any, of pH of the suspension and adding NaCl. SANS intensity data
system size on these results. We found that at early times theom the 30-m spectrometer at the NIST Cold Neutron Re-
particle configurations looked similar, but that it is difficult search Facility were obtained from the suspensions, from the
to construct a scaling plot from E@8). There are two rea- final gels, and, in some cases, from the gelling system as a
sons for this(1) with the smaller system size there are fewerfunction of time. The suspensions and gels were also sub-
particles contributing to the computet{q) so it is noisier jected to applied shears using the Couette shearing cell de-
and therefore more difficult to place accurately on the scalingcribed in Ref. 30. The key results are reproduced graphi-
plot, and(2) because the systems size is smatBéq,t) can-  cally in Figs. 16 and 17.
not be computed to the small wave vectors that can be Figure 1@a) plots the structure factor of the gelling
reached with the larger system. Thus, the evolution could no$= 0.1 suspension as a function of time after gel initiation at
be followed for long times. The result is that it is difficult to wave vectorssqo/27. At the very earliest times there is no

V. CONNECTION WITH GELS
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VI. CONCLUSION

(a) + . . .
* We have discussed the NEMD simulated decompositions
", of a thermostatted system, first unsheared and then subjected
AO'; (e, * to planar Couette flow, after temperature quenches into the
308 ’.,++ unstable vapor-liquid and the vapor-solid coexistence regions
P07 mrany %t of the phase diagram. Our system was a two-dimensional
oy :
06L°" system of Lennard-Jones disks, and the quenches were from
05 ¢=°,'1° ) +T+*"f“f, . the fluid to unstable state points between the critical and
02 0.4 06 08 1

triple-point temperatures al=0.45, and below the triple
point atT=0.2.
Upon quenching, we find that a fine scale, interconnected

"morphology is produced at very early times in all systems,

and that this initially phase-separated structure then coarsens.
We can identify easily from the simulated quenches below
the triple point toT=0.2 a close-packed solid phase coexist-
appreciable small-angle scattering, indicating that the initiaing with a dilute vapor. Quenches into the region between the
solution is relatively homogeneous at the length scalesriple point and critical temperature display a similar mor-
probed by this experimeniseveral particle diametgrsAs  phology, but with a liquidlike phase in contact with a dense
the gelation proceeds, however, there is a marked increase wapor. The system with a shear coarsens much more rapidly,
the scattering at low, and this becomes more pronounced atbut generally the interconnected cluster morphology is simi-
longer times. At these later timeS(q,t) displays a power- lar to that seen without shear. We did observe, however, that
law increase with decreasirgg(on this log-log plot the scat- shear alters the structure of the dense phase after quenching
tering increases linearly toward the origiompare this set to T=0.45; this phase now has features of an amorphous
of curves with the simulations of Fig. 3; the time sequencesolid.
are very similar. The experiments do not detect a cluster- Computations of the structure factdgq,t) as a function
cluster lowg peak but, according to Fig. 3, such peaksof time show a distinct peak at logindicating the presence
would more likely to be observed fayo/27 less than 0.1—  of cluster-cluster correlations, even at the earliest times after
below the lowg limit of the present SANS experiments. the quench. As time progresses this peak moves to snegller

For samples with silica volume fractions above 0(§8e- and grows in height—indicating that the cluster size in-
cifically, ¢=0.24 and 0.3)) the rise in the small-angle scat- creases. The linear spinodal decomposition theory of
tering, Fig. 16b) was not observedeven in the final gels  Cahn-Hilliard-Cook® predicts a regime in which the location
when a shear was not applied. When shear is applied duringf the low-angle peak remains stationary while growing in
gelation of the higher-density samples, however, this poweramplitude. We did not observe such a regime, but this was
law increase 08(q,t) returns. For example, Fig. 17 displays anticipated for our system which is characterized by short-
the structure factor for theb=0.24 system gelled at zero range interaction’’
shear and at a shear rage=4500 s . Furthermore, in ad- A particularly striking feature of the observed coarsening
dition to this large increase in small-angle scattering broughis that, except for a change in length scale, we see that the
about by the application of shear, there is also a significanstructures at early times look similar to those at later times—
change observed in the particle-particle contact peak locatetthat is, the cluster morphologies are temporally self-similar.
near q¢/27w=~1. This peak is broad and weak in the un- Accordingly, we introduced a dynamic scaling law for
sheared sample, but is much sharper and more intense in ti$q,t), Eqg. (8), generalized to allow for the presence of
sample gelled under applied shear. Compare Fig. 17 with thiactal clusters. When our simulation results are scaled by
simulation graph of Fig. 11. The shear-influenced features itthis relation, all computed structure factors fall on a single
the experimental plot are replicated to a first approximatioruniversal curve, provided that the fractal dimensibnis
by the simulation. chosen correctly. The scaling relation is satisfied remarkably

well with d;=1.85+0.05 at botiT =0.2 and aflf = 0.45(ex-
— cept when p=0.325 and T=0.45 for which
d;=1.80+0.05). The dynamic scaling relation also de-
scribes well the simulations quenched Te=0.2 when a
shear is applied, but with smaller fractal dimensions
d¢=1.75+0.1 for p=0.25 andd;=1.70=0.1 for p=0.325.

In Sec. IV we demonstrated that a thermodynamic quench
into the unstable region of the phase diagram has many char-
o y-4500s" ] acteristics in common with gel initiation. For instance, gels
@ =0 produced from silica spheres are made by changing the pH
02 04 06081 and/or electrolyte content of a suspension so as to affect the

q0/2m range and nature of the particle-particle interaction
potential’® Since a rapid change in the interaction potential

FIG. 17. Measured structure factors for a gelled sample withS equivalent to a rapid change in the reduced temperature
¢=0.24, with and without an applied shear. and density, we argued that the gelation mechanism is an

qo2m

FIG. 16. Measured structure factors from SANS data on 24-n
silica spheres ay=0; (a) as a function of time since gel initiation
at volume fractiong=0.1 and(b) as a function of volume fraction
after the gel has formed.

0.2




53 AGGREGATION OF A QUENCHED LENNARD-JONES SYSTE. . . 2459

aggregation process that is similar to our quench of a systemvas constructed using the fractal dimension derived from the
from a disordered state into an unstable two-phase region. ihtermediateq measurements. All the scaled data lay on a

is particularly profitable and practical to compare the twouniversal curve. It is thus clear that the fractal dimension
processes because we know that cluster-cluster correlatioesuld have been derived from the scaling plot without re-
in dense gels will dominate the scattering and make it diffi-course to the higheq data analysis, which required a mea-
cult to interpret the results by conventional methods. We cansurement covering length scales much smaller than the
not, for example, get structural information and a fractal di-cluster-cluster correlation distance yet much larger than the
mension from measurements 8{q,t—~) assuming that particle size. In short, the results of Ref. 31 and our analysis
the fractal dimension is related to the riseSfg,t—~) at  suggest that future scattering experiments on the gelation of
low angles, as is done routinely for dilute gels. Equati®n  dense colloidal systems should concentrate on measurements
however, implies that the fractal dimension of an experimento wave vectors small enough to include the cluster-cluster
tal dense system can be ascertained from the time evolutiatorrelation peak so that analyses based on (Bgcan be

of the measured structure factor. In principle, this methodperformed.
will work regardless of the density of the initial suspension.

To illustrate this point, we remark that Carpineti and Gitflio

recently measure®(q,t) over a very wide range of wave

vectors as a function of time in dilutevolume fraction The work was supported in part by a grant from the Office
0.03% polystyrene colloidal solutions undergoing aggrega-of Basic Energy Sciences, Division of Engineering and Geo-
tion. They were able to determine a fractal dimension forsciences, US Department of Energy. Butler was supported by
their growing clusters in the usual way by measuring the riséhe National Research Council. Hansen and Evans thank
in S(g,t—«) at intermediate wave vectors. They also mea-Fujitsu, the ANU Computer Science Department, and the
sured to much loweqg where they found a cluster-cluster ANU Supercomputer Facility for generous grants of comput-
correlation peak. A scaling plot, in the form of our Fig. 12, ing time.
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