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Quantum phonon optics: Coherent and squeezed atomic displacements
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We investigate coherent and squeezed quantum states of phonons. The latter allow the possibility of modu-
lating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent
states. The expectation values and quantum fluctuations of both the atomic displacement and the lattice
amplitude operators are calculated in these states—in some cases analytically. We also study the possibility of
squeezing quantum noise in the atomic displacement using a polariton-based approach.

[. INTRODUCTION words, a coherent state is as “quiet” as the vacuum state.
Squeezed statsare interesting because they can have
Classical phonon optitshas succeeded in producing smaller quantum noise than the vacuum stat®ne of the
many acoustic analogs afassical optics such as phonon conjugate variables, thus having a promising future in differ-
mirrors, phonon lenses, phonon filters, and even “phonorént applications ranging from gravitational wave detection to
microscopes" that can generate acoustic pictures with a res@DtiCﬁ' communications. In addition, Squeezed states form an
lution comparable to that of visible light microscopy. Most €xciting group of states and can provide unique insight into
phonon optics experiments use heat pulses or supercondu€uantum mechanical fluctuations. Indeed, squeezed states are
ing transducers to generaticoherent phonons, which Nnow being explored in a variety of non-quantum-optics sys-
propagate ballistically in the crystal. These ballistic incoher-tems, includingclassicalsqueezed statés.
ent phonons can then be manipu|ated by the above- In Sec. Il we introduce some quantities of interest and
mentioned devices, just as in geometric Optics_ StUdy the fluctuation properties of the phonon vacuum and
Phonons can also be excitgthase coherentlyFor in-  number states. In Secs. lll and IV we investigate phonon
stance, coherent acoustic waves with frequencies of up teoherent and squeezed states. In Sec. V we propose a way of
10'° Hz can be generated by piezoelectric oscillators. Laser§queezing quantum noise in the atomic displacement opera-
have also been used to generate coherent acoustic and optié@l using a polariton-based mechanism. The Appendix sum-
phonons through stimulated Brillouin and Raman Scatteringnarizes the derivation of the time evolution of the relevant
experiments. Furthermore, in recent years, it has been po§perators in this polariton approach. Finally, Sec. VI presents
sible to track the phases of coherent optical phorfahse to  Some concluding remarks.
the availability of femtosecond-pulse ultrafast las@rith a

pulse duration shorter than a phonon pe),i%)dnd techniques || PHONON OPERATORS AND THE PHONON VACUUM
that can measure optical reflectivity with accuracy of one AND NUMBER STATES
part in 16. _ _

In most situations involving phonons ciassicaldescrip- A phonon with quasimomentup=#q and branch sub-

tion is adequate. However, at low enough temperaturessCripth has energy,, =fiw, ; the corresponding creation
quantumfluctuations become dominant. For example, a re2nd annihilation operators satisfy the boson commutation re-
cent stud§ shows that quantum fluctuations in the atomiclations

positions can indeed influence observable quantiéas, the

Raman line shapeeven when temperatures are not very low. [bqw,b;x]= Sqq’On»  [gn,bgra/1=0. (1)
With these facts in mind, and prompted by the many exciting

developments irclassical phonon optics, coherent phonon The atomic displacements,, of a crystal lattice are given by
experiments, andon the other handsqueezed states of

light,> we would like to explore phonon analogs gdiantum N _

optics. In particular, we study the dynamical and quantum Uip=—7——= 2 Uéane'q'R‘. 2
fluctuation properties of the atomic displacements, in anal- JNm @

ogy with the modulation of quantum noise in light. Specifi- Here R, refers to the equilibrium lattice positions; to a

cally, we study single-mode and two-mode phonon coherent ticular directi N is 1h -mod litud
and squeezed states, and then focus on a polariton-based Qﬁ—r icular direction, and; is the normal-mode amplitude

proach to achieve smaller quantum noise than the zero-poifiPerator
fluctuations of the atomic lattice.

The concepts of coherent and squeezed states were both Q= /L(b b 3
proposed in the context of quantum optics. A coherent state a 2wgy ar oo
is a phase-coherent sum of number states. In it, the quantum
fluctuations in any pair of conjugate variables are at theAn experimentally observable quantity is the real part of the
lower limit of the Heisenberg uncertainty principle. In other Fourier transform of the atomic displacement:
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% noiseless as the vacuum state. Coherent states are also the set
Re{ua(q)]=2 am {Uga(bq)\+ biqx) of quantum states that best describe the classical harmonic
A @an oscillators’
+ Ua;(b—q}\—i_ ng)}- (4) A single-mode phonon coherent state can be generated by

the Hamiltonian
For simplicity, hereafter we will drop the branch subscript

\, assume that, is real, and define g-mode dimension- + 1 T
less lattice amplitude operator: H=%wq| bgbg+ 2 +)‘§(t)bq+7‘q(t)bq (14
u(=q)=bgy+ bT_q+ bt b;. (5) and an appropriate initial state. Hekg(t) represents the

. . _ . __interaction strength between phonons and the external
This operator contains essential information on the Iatt'cesource. More specifically, if the initial state is a vacuum

dynamics, mcludmg_ ql_Jantl_Jm fluctuations. It is the phononstate,|¢(0))=|0>, then the state vector becomes a single-
analog of the electric field in the photon case.

X : mode coherent state thereafter,
Let us first consider the phonon vacuum state. When no

phonon is excited, the crystal lattice is in the phonon vacuum l(t))= |Aq(t)e—iwqt>, (15)
state|0). The expectation values of the atomic displacement

and the lattice amplitude are zero, but the fluctuations will bevhere

finite:

t

i
<(Auia)2>vac5<(uia)2>vac_<uia>2vac (6) AQ(t):_ gJ’*

N AU, 2 is the coherent amplitude of modg If the initial state is a
= 9« (7)  single-mode coherent stag(0)) =|ag), then the state vec-
q 2NMmag, tor at timet takes the form

Ao(7)e“ad T (16)

([AU(=Q)]?)yac=2. (8) [p() = [{A4(t) + agte™"“d), (17)

Let us now consider the phonon number states. The eigerfthich is still a coherent state. i
states of the harmonic phonon Hamiltonian are number states N @ single-mode ) coherent state|Aq(t)e™' "),
which satisfybg|ng) = vng/ng—1). The phonon number and {Uj(t)) con @N(U(* ) )con are sinusoidal functions of time.
the phase of atomic vibrations are conjugate variables. Thud N€ fluctuation in the atomic displacements is

due to the uncertainty principle, the phase is arbitrary when N U2
the phonon number is certain, as is the case with any number (AU o= E | qa| _ (18)
state|nq). Thus, in a number state, the expectation values of “ 7 2Nmag,

the atomic displacemerin,|u;,|n,) andg-mode lattice am-

pIitude(nq|u(tq)|nq) vanish due to the randomness in the The unexcited modes are in the vacuum state and thus all

contribute to the noise in the form of zero-point fluctuations.

phase of the atomic displacements. The fluctuations in & rthermore
number statgn,) are ’
Au(=q) %) cor=2. 19
((Auig) >numzm < INmag,’ ©  From thezexprgsgions of the nois(a(Auia)?)coh and
a-a ([Au(=0)]1%)con, it is impossible to know which statéf
([AU(iQ)]2>num=2+2nq- (10) any) has been excited, while this information is clearly

present in the expression of the expectation value of the lat-
tice amplitude{u(=q))¢n. These results can be straightfor-
wardly generalized to multimode coherent states.

A single-mode ) phonon coherent state is an eigenstate
of a phonon annihilation operator: IV. PHONON SQUEEZED STATES

Ill. PHONON COHERENT STATES

byl Bq) =Bdl Bq)- (12) In order to reduce quantum noise to a level below the
_ _ zero-point fluctuation level, we need to consider phonon
It can also be generated by applying a phonon displacemerfueezed states. Quadrature squeezed states are generalized

operatorD4(S3,) to the phonon vacuum state coherent statésHere “quadrature” refers to the dimension-
B _ . less coordinate and momentum. Compared to coherent states,
|13q>_ Dq(ﬁq)|o>_exqﬂqbq_ﬂq bq)|0> (12 squeezed ones can achieve smaller variances for one of the

quadratures during certain time intervals and are therefore

184%) < ng helpful for decreasing quantum noise. Figures 1 and 2 sche-
&g T nZ:O - ,|nq>- (13 matically illustrate several types of phonon states, including
d @ vacuum, number, coherent, and squeezed states. These fig-

Thus it can be seen that a phonon coherent state is a phas#es are the phonon analogs of the illuminating schematic
coherent superposition of number states. Moreover, coherediagrams used for photofis.
states are a set of minimum-uncertainty states which are as A single-mode quadrature phonon squeezed state is gen-



53 QUANTUM PHONON OPTICS: COHERENT AND SQUEEZED ... 2421

AP (a) AP (b) 0<u(iQ)> (a)
1
(b}
t
o N 7
//’\\\ ///—\\\(d)
— N N t’
ﬁP (C) AP (d) SR R\ @)
\ 7 0 \\\/// N "

FIG. 2. Schematic diagram of the time evolution of the expec-
tation value and the fluctuation of the lattice amplitude operator
/\ u(=q) in different states. Dashed lines repres@nt=q)), while
q) . the solid lines represent the enveloge$+q)) = V{[Au(=q)]1?).
6/2 (@ The phonon vacuum stat¢0), where (u(+q))=0 and
gl Ll ([Au(=q)1?=2. (b) A phonon number statén,,n_), where
X X (u(=0))=0 and ([Au(=q)]*)=2(ng+n_g)+2. (c) A single-
mode phonon coherent stafte,), where (u(+q))=2|ag|cosw,t
(i.e., aq is rea), and([Au(tq)]2>:2. (d) A single-mode phonon
squeezed state| aqe"“’q‘,g(t», with the squeezing factor
&t)y=re ?“d" and r=1. Here, (u(xq))=2|ag/cosmt, and
([Au(xa)]?)=2(e *"coSwyt +e*'sirfwqt). (€) A single-mode
phonon squeezed state, agd); now the expectation value of is

FIG. 1. Schematic diagram of the uncertainty aressded in
the generalized coordinate and moment(Xiq, —q), P(q,—q))

phase space df) the phonon vacuum statéy) a phonon number
state,(c) a phonon coherent state, afd] a phonon squeezed state. (U(£Q))=2| agsinwgt (i.e., a is purely imaginary, and the fluc-
Here X(q, —) and P(q, —q) are the two-mode £ q) coordinate t ation([Au(;q)F)qhas tr,1e qsame time dependehce adin No-
and momentum operators, which are the direct generalizations Yce that the squeezing effect now appears at the times when the
their corresponding single-mode operators. Notice that the phono tiice amplitude(u(q)) reaches its maxima, while ifd) the
coherent state has the same uncertainty area as the vacuum staS tieezing effect is present at the times whe(r’_f q)) is close to
and that both areas are circular, while the squeezed state has %ero
elliptical uncertainty area. Therefore, in the direction parallel to the '

6/2 line, the squeezed state has a smaller noise than both the

_ t t Tt
vacuum and coherent states. qu P h“’qlbqlbq1+ ﬁququbq2+ g(t)bqlqu
erated from a vacuum state as +§*(t)bq1qu' (24)
|atg €)= Dyl ) S(£)]0); (20) The time-evolution operator has the form
a two-mode quadrature phonon squeezed state is generated [
o a P a g U(t):ex;n(—%Hot>exp[g*(t)bqlqu—g(t)bglbgz],
(29
|aq1, aq,, &= Dql(“ql) qu(aqz)Sql 'q2(§)|0>. (21 where
HereD () is the coherent state displacement operator with _ T T
ag=|agle 3 Ho=fiwq,bg bg, + 7 wq,bg by, (26)
* - o and
Sq(f)zex;{?bq— qu ), (22) it .
f(t)zgf g(T)el(wq1+wq2)TdT. (27)
Say.0,(€) = EXH(£¥ g by, — gbglbgz) (23) o

Here £(t) is the squeezing factor ang{t) is the strength of
are the single- and two-mode squeezing operators, anghe interaction between the phonon system and the external
¢=re'’ is the complex squeezing factor with=0 and  source; this interaction allows the generation and absorption
0<6¢<2w. The squeezing operat®, q,(£) can be pro- of two phonons at a time. The two-mode phonon quadrature
duced by the following Hamiltonian: operators have the form
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X(q,—q)=2"34b +bl+b_g+b' ) (28) TABLE |. Different combinations ot =0 initial states(modes
' a" Mgt M-q" ¥-q ; i i i
+k) for the polariton approach to lattice amplitude squeezing and
_ 2‘3/2u( +q) (29) the corresponding effects in the fluctuations of the lattice amplitude
' operatoru( = k). Here CSk), VS(k), TS(K), SMST(k), and TMST
P(g,—q)= —i273/2(bq—bg+b,q—btq). (30) (xk) refer, respectively, to coherent, vacuum, thermal, single-

mode, and two-mode squeezed states in the mode inside the paren-

We have considered two cases where squeezed stat®§Sesk or k. Ty() is the temperature below which squeezing is
were involved in modes:=q. In the first case, the system is obtained(see Fig. 4 By squeezing we mean that the quantum noise
in a two-mode (q) squeezed State|a a .8 of the relevant variable is below its corresponding vacuum state

q 1 7q 1 1

(¢=re'?), and its fluctuation is value.
t=0 photons t=0 phonons Squeezed =k)?
([Au(=Qq)]®)=2|e coszfvte2r sinZf (31
N 2 2/ CS(=k) CS(=k) yes(no) if y>(=<) 0.1
In the second case, the system is in a single-mode squeezé%sﬂk)’ VS(=k) VS(=k) yes(no) if x>(=) 0.1
state|aq, &) (aq=|ag|e'®) in the first mode and an arbitrary ST(K), VS(=k) TS(*k) yes if T<Ts(x)
A 4 4 TMST(+k) VS(+K) weak (no) if y>(<) 0.1

coherent stat¢B_,) in the second mode. The fluctuation is

now
0 p Hpolaritons the two free oscillator sums correspond to free

Au(+ag)12) =1+ e sinz( +2]+e 2 co2| ¢+ ~|. photons and free phonons, while the mixing terms come
{[Au=a) 1% ¢ 2 ¢ 2 from the interactiork - P between photons and phonons. The

(32 phonon energye,, has been corrected as, is substituted

In both of these case§,Au(*q)]%) can be smaller than in bY @ov1+Yx, so that we have "dressed” phonons.
coherent statesee Fig. 2 _Our goal is to compute the fluctuations of the lattice am-
plitude operatoru(*+k,t)=b,(t)+b",(t)+b_(t)+b}(t).
In a two-mode (k) coherent statbozq ,@_g), its variance is
([Au(=0q)]%)cn=2. Therefore, if at any given time we ob-

Phonon squeezed states can be generated through phong@in a value less than 2, the lattice amplitude of the relevant
phonon interactions. This will be discussed elsewfiddere ~ mode is squeezed. In our calculation, we diagonalize the po-
we focus on how to squeeze quantum noise in the atomit@riton Hamiltonian and find the time dependence of
displacements through phonon-photon interactions. When a(*a). The Appendix presents in more detail the derivation
ionic crystal is illuminated by light, there can be a strong©f the time evolution oii(+q). .
coupling between photons and the local polarization of the OUr results show that the fluctuation propertyugf+ q)
crystal in the form of phonons. Photons and phonons witfSensitively depends on the=0 initial state|y(0)) of both
the same wave vector can thus form polarit§halthough phonons and photpns. Our results are summ_anzc_ed in Table I,
now phonons and photons are not separable in a polaritofd Some numerical examples are shown in Fig. 3. These
we can still study the quantum noise in the atomic displacegalcm‘%ltlons focus on the case wherieis close tow, (the

ments. Let us consider the simplest Hamiltoffatescribing Eg;? p;‘gr?g&fraer%ufﬁucg'c‘)’:’ﬁ'fh =i;?/%lr$1aeH¥;OOEHZSfORA%$é
the above scenario: P yp .1 ps.

specifically, squeezing effects ir{x k) are relatively strong
for either one of the following two sets of 0 initial states:
H potaritor= > {E1xakay+ Eaxbiby+ Ea(afb—ayby (i) photon and phonon coherent states,(ior single-mode
k photon squeezed state and phonon vacuum state. For in-

V. POLARITON APPROACH

t ot stance, the maximum squeezing exponerns 0.015 when
—ad-tasbl, (33) the incident photon qstate %as IOa squeezing factor
where £=0.1e%°Kt (where ck is the photon frequengy On the
other hand, with an initial two-mode photort k) squeezed
Ei=rck, (34 state and two-mode{k) phonon vacuum state, the squeez-
ing effect inu(xk) is weak. We have also used initial con-
Exx=fiwoyl+ty, (35  ditions with a single-mode photon squeezed state and ther-
1 mal states in the two phonon modes.
h2ckwox Figure 4 shows the temperature dependence of the
Eac=1 4 \/m (36) squeezing effect for several values of the dielectric suscepti-

bility x of the crystal. Our numerical results show that
Herek is the wave vector for both photons and phonons angqueezing effects are quickly overshadowed by the thermal
wo is the bare phonon frequency. is the dimensionless noise for smally, while for large y (e.g., x=0.5) the
dielectric susceptibility of the crystalthe strength of the squeezing effect can exist up To~250 K, as illustrated in

phonon-photon interactigrdefined by Fig. 4.
xw3eoE=P+ 2P, (37 VI. CONCLUSIONS
whereE is the electric field of the incoming light arilis the In conclusion, we have investigated the dynamics and

polarization generated by optical phonons in the crystal. Iquantum fluctuation properties of phonon coherent and
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FIG. 3. Calculated[Au(*k)]?) versus time for different com- FIG. 4. Temperature dependence of timénimum fluctuation

binations of photon and phonon initial states using a polaritonmin{<[Au(ik)]2)} in u(xKk) using a polariton mechanism for
mechanism for lattice amplitude squeezing. Daskmalid) lines  squeezing. The phonon frequency is 10 THz. The initial states are a
correspond to a susceptibility=0.1(0.4). Time is measured in sjngle-mode squeezed state in photon mégevacuum state in
units of 1bk, whereck is the free photon frequency. These calcu- pho’[on mode— k, and thermal state in bothi(k) phonon modes.
lations focus on the case whetk is close tow, (the bare phonon The squeezing factor i§=0.1e?". Squeezing can exist up to a
frequency, which is typically~10 THz for optical phononsand  temperatureT(x). For example, whery=0.2, squeezing effects
thus our typical time is~0.1 ps. The horizontal lines at yanish whenT=25 K. On the other hand, for stronger photon-

([Au(=k)]?=2 correspond to the noise level of coherent statesphonon interactiore.g., y="0.5), the squeezing effects can be ob-
Thus, any time the fluctuation satisfi¢pAu(+k)1?)<2 (high-  tained up toT~250 K.
lighted, the state is squeezed. Different combinations of initial

states were considere@) Photon and phonon coherent staté8.  mental developments in the still unexplored area of quantum

Single-mode squeezed state in photon moedth squeezing factor phonon optics and the manipulation of phonon quantum fluc-
£=0.1 and a vacuum state in the photon moelk; both phonon tuations.

modes are in the vacuum state). Same combination of states as in

(b), but here¢=0.1e?".
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It is difficult to generate squeezed states because the
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opment of photon coherent and squeezed states took decadgsye write
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states might require years of further theoretical and experi- a=(ay, a0, _ah_ )7 (A2)
mental work. Nevertheless, we believe that theoretical results ' '
in quantum phonon optics can help the development of the a=(ay,by.al bt YT, (A3)

corresponding experiments. We hope that our efiotb this
very rich problem will lead to more theoretical and experi-the above relation can be written in a matrix form
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a=A-a, (A4)  which is true if the two different polariton branches are in-
dependent of each other.
In the polariton representation, the Hamiltonielr,aiton
describes two independent harmonic oscillators. From the
Heisenberg equation

with its inversea=A"1. a. HereA is a matrix given by

Wi X1 Y1 7y

Wy X2 Yo 2o

A= « * * % |- (AS5) dé R
iz Wi Xg ih 5 =[O.H], (A9)
Y2 W3 X
_ ) o we obtain
In the polariton representation, the Hamiltonian has the
diagonal form ay(t) = alk(o)e—iEf})t/ﬁ’ (A103)

1 1

polaitor= 24 [E&“( et 5) + Ef)( adeazct 5| |. ()= a(0)e BN, (A0b)

(AB)  orin a more compact form

The subindices =1 ,2 specify the two polariton branches,
with different dispersion relationg(") andE{?). The trans-
formation matrix elementsy; ,x;,y;, andz; are determined Recall that the matrix form of the canonical transformation
by requiring that thex;,’s satisfy boson commutation rela- from the photon and phonon operatoms, (and by) to the
tions polariton operatorsdy) is a=A-a. Thus at timet the pho-
ton and phonon operators can be expressed as

a(t)=U,(t)«(0). (A11)

[aik'a;rkr]:5ij5kku [aik, @) ]1=0, (A7)

so that a(t)=A"ta(t)=A"1U,(1)Aa(0), (A12)

0 which provides the time evolution of the photon and phonon
[aik, H]=E aix, (A8)  operators.
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