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The reverse Monte Carlo~RMC! method has been used to generate a model for the atomic structure of
amorphous germanium (a-Ge!. Fitting to experimental neutron diffraction data and applying coordination
number and ‘‘triplet’’ constraints, the positions of 3000 ‘‘atoms’’ in a box, with full periodicity, were altered
until the associated model structure factor,S(Q), and pair correlation function,g(r ), agreed with the analo-
gous experimental data, within the errors. The model generated is then analyzed to obtain coordination number,
bond angle, and ring size distributions. These, in turn, are compared to the results obtained from random
network models and other RMC studies. The effects of increasing the number density from the experimentally
determined bulk value are also investigated. The results are consistent with an atomic structure which has a
characteristic disordered tetrahedral network. For the highest density RMC model, the mean bond angle is
109.4° and the average coordination number is 3.49.

I. INTRODUCTION

At present there is no model for the structure of amor-
phous germanium (a-Ge!, which can reproduce all the fea-
tures of the experimental diffraction data: it is though that the
structure resembles a closely tetrahedrally bonded random
network, although there is still much discussion about the
detailed structure. The most successful models for describing
tetrahedrally bonded amorphous materials are random net-
work models~see, for example, Refs. 1–6!, although others
have been proposed.7–10 The original model, as applied to
amorphous semiconductors, was developed by Polk.1 How-
ever, when compared with experimental data from diffraction
measurements, none of these models fora-Ge reproduce the
features of the data satisfactorily11 over more that a short-
distance scale.

Neutron diffraction is a well-established method of ob-
taining structural information on disordered systems, such as
amorphous solids. From the experimentally measured pair
correlation function, accurate peak positions and quantitative
areas can be obtained; however, a three-dimensional model
of the structure cannot be built solely on this intrinsically
one-dimensional information. The reverse Monte Carlo
~RMC! method12 offers one possible route towards this goal.

RMC is a method for producing three-dimensional mod-
els of the structure of disordered materials that agree quan-
titatively with the available data, usually diffraction data.~In
this limited sense the method is comparable to the use of
Reitveld refinement in determining crystal structures.! Al-
though the model produced must be consistent with the ex-
perimental data, it cannot be regarded as unique given the
intrinsic limitation imposed by using a one-dimensional basis
data set. Unlike molecular dynamics and other Monte Carlo–
based simulation methods, RMC modeling requires no inter-
atomic potential, and it also allows complete data sets from
different sources, e.g., diffraction of neutrons and x rays, to
be fitted simultaneously, together with other appropriate con-
straints derived from prior chemical knowledge. These fac-
tors make it appealing in the study of a system such asa-Ge,
where an interatomic potential is difficult to define, but high

quality experimental data is available. Some work has al-
ready been done in trying to develop structural models for
a-Si anda-Ge,13,14 using the RMC method, and the results
presented here will be compared to those obtained in previ-
ous studies.

II. EXPERIMENTAL BACKGROUND

The neutron diffraction data was obtained by Wrightet al.
in an experiment carried out at the Institute Laue-Langevin
~Grenoble, France!, on the D4 twin-axis diffractometer. Fur-
ther details of the experimental procedure can be found in
Ref. 11.

In performing a diffraction experiment, the quantity we
wish to obtain is the structure factorS(Q), where, for an
amorphous material~i.e., an isotropic scatterer!15

S~Q!511
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0

`

r @g~r !21#sin~Qr !dr, ~1!

wherer is the average number density of atoms in the ma-
terial, uQu5uki2kf u is the wave-vector transfer associated
with the diffraction experiment, andg(r ) is the pair distri-
bution function, which is a measure of the atomic density at
a distancer from a given atom at the origin. The pair distri-
bution function may be obtained by Fourier transformation
of the structure factor, which is directly related to the mea-
sured neutron scattering intensity.

The experimental data are subject to several corrections
before the structure factor is obtained. Following subtraction
of the background counts and corrections for absorption,
multiple scattering, and self-shielding,16 the data were nor-
malized using the Krogh-Moe-Norman technique.17,18 After
normalization the diffraction pattern did not oscillate cor-
rectly about the self-scattering~Placzek corrections were ap-
plied according to the formalism of Yarnellet al.19! but
dropped below it at highQ. This was identified by Wright
et al.as being due to hydrogen contamination in the form of
residual absorbed water and was corrected for using the neu-
tron diffraction data of Beyster20—see Ref. 11 for details.
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The basic RMC algorithm has been described in detail
elsewhere.12,21 In essence, ‘‘atoms’’ in a box are moved until
the derived pair correlation functiong(r ) and/or the structure
factorS(Q) matches the experimentally measured data. The
important steps in the method are given below.

~1! Define a box with edge dimensions at least twice the
value of r at which statistically significant oscillations in
g(r ) disappear and then fill the box with ‘‘atoms’’~either at
random, or using a simple lattice! so that the number density
matches the measured bulk value. The number density is an
important parameter in RMC model building, as in all other
modeling and simulation work. The fact that the modeling
process ought to be conducted using the microscopic density
~which often cannot be measured accurately, or at all!, rather
than the measured bulk value is discussed more fully below.

~2! The atoms are moved at random, and at each stage a
modelS(Q) is calculated. Note that an atom is moved sub-
ject to the constraint that it does not overlap with a neigh-
boring atom@an ‘‘excluded volume’’ is therefore associated
with each atom type; this may be determined from the ex-
perimentalg(r ) and need not rely on prior other knowledge#.

~3! The modelSmod(Q) is compared with the experimen-
tal Sexpt(Q), and a new configuration is accepted if the asso-
ciatedx2 has been reduced:

x25(
i

@Sexpt~Qi !2Smod~Qi !#
2/s i

2 .

Rejection is subject to a probability function dependent on
the experimental errors i . This ensures that the algorithm’s
model is not ‘‘trapped’’ in a subsidiary minimum.

~4! The process is repeated until the modelS(Q) repro-
duces experiment to within the experimental errors. The pro-
cess is further iterated until an ‘‘equilibrium’’ configuration
is obtained. Where more than one data set is used, thex2

calculations and acceptance or rejection criteria are applied
to each. This is also the case for any constraints imposed on
the bonding of the atoms.

For the model presented here, a box edge of 42.3 Å was
used, containing 3000 atoms placed initially at random sites,
subject to the criterion that defined distances of closest ap-
proach were not violated. In other RMC studies13,14 a box
size of 1728 particles was used; this gives a box length of
only 32 Å, which implies that the significant oscillations in
g(r ) should not appear beyond 16 Å. In thea-Ge system,
however, where there is significant medium range order, this
assumption is unlikely to be realized, and the larger box size
used in this study should significantly reduce the truncation
errors, which may result from using a smaller box length.
This also illustrates one of the important benefits of RMC
over the hand-built ‘‘Polk-type’’ models. The largest such
model fora-Ge consists of 563 atoms,5 which is too small
realistically to generate ensemble average figures for ring
statistics, bond distances, etc. Neutron diffractionS(Q) and
g(r ) data were modeled simultaneously using a modified
version of the original code supplied by McGreevy.22 This
was run on a DEC Alpha 3000 processor, where on average
;106 moves may be attempted in a 24 h period. The total
number of accepted moves for the models presented here
was;106, compared to 2–33105 for the models by Ger-
eben and Pusztai.14 Considerations for deciding whether or

not the model has reached equilibrium are generally based on
the ratio of moves tried to moves accepted. The criterion we
have adopted is that the algorithm be run until this ratio fell
to ;1000:1, i.e., out of 1000 generated moves, only 1 move
was found to be acceptable. During the fitting process, sec-
ondary minima were avoided by cycling the maximum move
size through the range 1–0.001 Å~and via the move rejec-
tion probability function determined on the basis of the error
associated with the experimental data!.

In our work modeling amorphous hydrogenated carbon
(a-C:H!,23,24we have come across several problems intrinsic
to applying the RMC method to covalently bonded amor-
phous systems, where diffraction data is used. This has led to
the introduction of constraints on the model to avoid chemi-
cally and physically unreasonable features.

The first of these constraints to be adopted in the present
study is one that removes ‘‘triples,’’ that is, three atoms
forming an equilateral triangle with side length equal to the
near-neighbor distance Ge-Ge. The existence of these is typi-
fied by a sharp peak at 60°~Refs. 13, 14, and 25! in the
bond-angle distribution. Since the formation of these results
in three bonds at the required distance, and therefore a rela-
tively large fall in thex2, it is not surprising that they form
so readily; however, such a conformation is highly strained
and unlikely to occur in any substantial quantity in the real
a-Ge network. A constraint was therefore introduced that
prevents the formation of triplets and removes the majority
of those already in existence after the initial box-filling op-
eration. This is done by examining the box for 60° bond
angles and then preferentially moving the atoms involved in
forming that angle, until the triplet is removed; in the same
way, any move that creates a triplet is rejected.

In other cases, this problem has been overcome by con-
straining the bond angle distribution13 and by requiring
100% fourfold coordination.14 However, constraining bond
angles in this way is very expensive on computer time and is
difficult to implement simply; also our results show that this
is unnecessary. Constraining the coordination number of ev-
ery atom to be equal to 4 can be problematic, since it ex-
cludes all dangling bonds, some of which are known to be
present because the experimentally determined average coor-
dination number is less than 4.

In the present study we assume that each Ge atom can
form three or four bonds, i.e., can have three or four nearest
neighbors, according to basic chemical information. It is
therefore reasonable to constrain the coordination number of
each Ge atom to be less than five, but greater than two. This
can be done quite simply by discouraging configurations
such that atoms have zero, one, two, or five nearest neigh-
bors between 2.23 and 2.74 Å, where distances are taken
from the lower and upper limits of the first peak in theg(r ),
respectively.

Since both these constraints arise from chemical consid-
erations, the initially random arrangement of atoms was
made to satisfy these conditions as completely as possible,
before fitting to the experimental data was begun.

From our previous work ona-C:H,24 it is also apparent
that the number density used in generating the model is a
crucial parameter. The original value adopted for thisa-Ge
sample, determined empirically from the experimental neu-
tron data11 is 0.039 75 atoms Å23, which is a bulk or mac-
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roscopic number density. However, the value required for the
RMC method is the microscopic density, which cannot be
determined accurately by experimental methods. Therefore,
using a value of 0.039 75 atoms Å23 is likely to be in error
for a material such asa-Ge, where voids are known to be
present. Random network models for this data~e.g., Refs.
2–6 and 8! give densities in the range 0.039 52–0.044 97
atoms Å23. RMC calculations by Gereben and Pusztai14

give an optimum microscopic density fora-Ge of 0.043 at-
oms Å23, somewhat higher than the experimentally deter-
mined value.

To explore the effect of density on the RMC work, two
models have been generated using densities of 0.039 75 at-
oms Å23 ~corresponding to the experimentally measured
bulk density! and 0.042 75 atoms Å23. The same method of
fitting was used for both, and the effects on the final configu-
ration are presented.

III. RESULTS AND DISCUSSION

Figures 1~a! and 1~b! show the fits to the neutron diffrac-
tion S(Q) andg(r ), respectively, for the two different den-
sities used to produce the models. Both the RMC fits agree
well with the experimentalS(Q) data, across the whole dy-
namic range. This matches the quality of fit achieved by
Gereben and Pusztai,14 although we have fitted out to;24
Å21, rather than;12 Å21. It is noted that the quality of the
fit to the experimental data in the low-Q region is not as
good as that obtained by Gereben and Pusztai. This may
result from our fitting over a widerQ range but is more
probably caused by imposing coordination constraints that
will preferentially fit over the short real-space distances and
therefore will mean better fitting at intermediate rangeQ
values. Figure 2 shows theS(Q) differences between the
data and the RMC, where it appears that above;15 Å21,
the oscillations in the RMC-generated plots are more heavily

FIG. 1. ~a! RMC-generated fits to the experi-
mental structure factor: experimental data~—!,
low-density RMC model ~- - - -!, and high-
density RMC model~-•-•-!. ~b! RMC-generated
fits to the experimental pair correlation functions:
experimental data~—!, low-density RMC model
~- - - -!, and high-density RMC model~-•-•-!.
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damped. However, it should be noted that the experimental
data drops off in this region, so that it no longer oscillates
evenly about the axis, which the RMCS(Q) is constrained
to do. This could well be because of an error in correcting for
hydrogen contamination and will not have any significant
effect on the model. The overall task could be further im-
proved if theQ range of the data were increased until the
S(Q) oscillations had more fully decayed towards their
asymptotic limit; this would require additional experiments
using a pulsed neutron source. The real-spaceg(r ) fits are
also very good for both densities. This is in contrast to the
random network models, which fail to reproduce the correct
intensity of real-space features over more than a short range.

It is interesting to note that the quality of the fits is very
similar for both densities. However, a good fit to the experi-
mental data can be produced very easily using RMC, even
though the resulting atomic configuration may show some
peculiar, and physically and chemically implausible, arrange-
ments when examined more closely at the atomistic level, so
this agreement alone is not sufficient, and the models must
be analyzed in further detail.

The nearest-neighbor distributions for the two models are
given in Table I. The lower density gives an average first
coordination number of 3.28, whereas for the higher density
it has increased to 3.49~c.f. the value determined by fitting

Gaussian peaks to the experimental data of 3.68!. So, a 7.5%
increase in number density has resulted in a 6.4% increase in
the average coordination number, but without producing any
significant change in the fit to the experimental data. These
coordination number distributions give 65% and 46% of Ge
atoms with dangling bonds, respectively. The residual differ-
ence between the value obtained by peak fitting and those
from the RMC probably arises from inaccuracies in correct-
ing empirically for water contamination, and from the pre-
cise choice of maximumr values for the first-neighbor dis-
tance in the RMC model.

Figure 3 shows the Ge-Ge-Ge bond-angle distributions
obtained from the two models. The main, well-defined peak
in the distribution gives a mean bond angle at 109.4°~with a
standard deviation of 8.5°! for both densities. This indicates
that the network has a disordered tetrahedral character. The
average bond angle determined from direct peak fitting to the
data is~108.561!°; the mean values from the random net-
work models are in the range 109.2°–109.5°. Both RMC
models are both consistent with these previous results. Note

FIG. 2. Differences between the RMC fit and
the experimental structure factor: low-density
model ~—! and high-density model~- - - -!.

TABLE I. Coordination number distribution.

n50.039 75 atoms Å23 n50.042 75 atoms Å23

Number of Number of Number of
neighbors atoms atoms

0 0 0
1 2 2
2 95 73
3 1972 1370
4 931 1555

Average 3.28 3.49 FIG. 3. Bond-angle distributions obtained from the RMC mod-
els: low-density model~—! and high-density model~- - - -!.
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that the bond-angle distribution in the region;50–90° is
distorted by the triplet constraint, which discourages the for-
mation of 60° bond angles but does nothing to reduce the
probability of the formation of squares. The shape of the
distribution is the same for both densities, but the ‘‘number’’
for the higher density is increased. This is consistent with
more bonding in the network; i.e., a higher connectivity. The
bond-angle distributions generated from the RMC models for
a-Ge generated by Gereben and Pusztai14 show an unphysi-
cal sharp peak at;60°, except for their model constrained to
yield 100% fourfold coordination starting from an initial box
of atoms with the diamond structure. It is an important pro-
gression here that by using a larger box and by disallowing
60° angles and anything other that threefold and fourfold
coordination we have been able to generate a model with a
slightly narrower bond-angle distribution showing no serious
unphysical characteristics and started from an initially ran-
dom arrangement of atoms.

Finally, Figure 4 shows the ring statistics for the models.
The most favored number of atoms in a ring is six, for both
densities, which again indicates a model with disordered tet-
rahedral characteristics. There are also a few three-
membered rings still present in the models. The order of
probability for different ring sizes is six-.seven-.five-
.four-membered rings for RMC low density; six-.five-
.four-.seven-membered rings for RMC high density; and
six-.five-.seven-.eight-membered rings for random net-
work models. It should be noted, however, that the number
of four-membered rings in the RMC models is artificially
high because of the effect of the triplet constraint to discour-
age three-membered rings. Taking this into account, the
higher-density RMC model shows strong similarities to the
random network models, although the fit to the full-range
experimentalg(r ) is much better for the RMC-generated
model. The total number of rings is greater in the high-
density model compared to the low-density one, which again
shows an increased degree of bonding in the network and is,
of course, consistent with the increased coordination number.

The main effects on the RMC model of increasing the
number density are an increase in the average coordination
number, the production of a more bonded network, and a
change in the shape of the ring size distribution. These are

relatively subtle effects, which are not apparent simply by
examining the fits to the experimental data. Both densities
result in models that exhibit characteristics of a disordered
tetrahedral network, which is also shown in earlier random
network models, but, which of the two RMC models is ‘‘cor-
rect’’? The model generated using the measured bulk density
has an average coordination number lower than expected on
the basis of direct analysis of the experimental data and gives
a slightly different order of preference for ring sizes. There-
fore, although the models are similar in all other respects,
and the overall quality of their fits to the experimental data
are the same, the higher density model is a better represen-
tation of the structure. This higher density also agrees with
the value for the optimum density found by Gereben and
Pusztai.14

One of Gereben’s and Pusztai’s conclusions is that the key
characteristic of these structures is not the fraction of four-
fold coordinated atoms but the fraction of tetrahedral angles.
However, the two models presented here show almost iden-
tical bond-angle distributions and give the same fits to the
experimental data, but have 31% and 52% fourfold coordi-
nation, respectively. This shows that the fraction of fourfold
coordinated atoms remains one of the principal parameters in
examining these structures; this is an especially important
point, given the fact that no constraints were placed on this
fraction in our models. Indeed, the work presented here
shows that defects such as threefold coordinated atoms and
four-membered rings, which are almost completely excluded
by earlier random network models, are important features of
the structure. Recent work by Gilkes, Gaskell, and
Robertson26 modeling the structure of tetrahedral amorphous
carbon (ta-C! shows that the introduction of threefold coor-
dinated sites into a tetrahedral network improved the agree-
ment with the experimentalg(r ) considerably. Wooten and
Weaire27 have also investigated the effects of introducing
pair defects into their ‘‘bond switching’’ models; however,
these also disallowed four-membered rings, so a direct com-
parison of the results is not strictly possible. They did, how-
ever, find that the introduction of such defects resulted in a
large angular distortion within their models, but this problem
was not evident in our RMC models. It is interesting to note
in passing that the characteristics associated with a desirable
kind of model outlined by Wooten and Weaire,27 i.e., that the
models should contain several hundred atoms at least, that
the models should conform to periodic boundary conditions,
and that the local tetrahedral bonding should not be too
grossly distorted, are all satisfied by our RMC models. How-
ever, a model of 3000 atoms, i.e.,;42 Å, will not be able to
reproduce microstructure~e.g., voids! over regions that are
large in comparison with the RMC models. Indeed, such mi-
crostructural variation may prevent adequate fitting of the
data in a single model, even of several thousand atoms, with
periodic boundary conditions and other constraints. In the
future, as computational power develops, models produced
using hundreds of thousands of atoms will be a realistic pos-
sibility and may yield further insight into the structure of
these materials.

IV. CONCLUSIONS

The RMC method has been used successfully to produce
a model for the structure of amorphous germanium contain-

FIG. 4. Ring size distributions obtained from the RMC models:
low-density model~—! and high-density model~- - - -!.
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ing 3000 atoms. Chemically and physically unreasonable
features have been discouraged by the application of con-
straints on coordination numbers and ring size. Models pro-
duced at two different densities fit the experimental data
well, give a mean bond angle of 109.4°, and show six-
membered rings to be the most probable. The main differ-
ence between these models is in the average coordination
numbers~3.28 and 3.49 for the low and high densities, re-
spectively!, which reflects an increased amount of bonding in
the model generated using a higher density, also apparent in
the increase in the total number of rings. The RMC models
show similarities to the random network models in that both
exhibit characteristics of a disordered tetrahedral network,
although the RMC models fit the experimental data more
closely than any of the earlier random network models. This
work also represents an improvement on previous RMC
work.

Defects such as threefold coordinated atoms and four-
membered rings have been shown to be important features in
the structural model obtained fora-Ge, consistent with the
experimental data. According to the criteria of Wooten and
Weaire,27 RMC provides a straightforward method of pro-
ducing a realistic model structure.
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