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The structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions have been studied
using a computational approach which combines an embedded-atom-method~EAM! description of alloy en-
ergetics with a second-order-expansion~SOE! treatment of compositional and displacive disorder. It is dis-
cussed in detail how the SOE approach allows the EAM expression for the energy of a substitutional alloy to
be cast in the form of a generalized lattice-gas Hamiltonian containing effective pair interactions with arbitrary
range. Furthermore, we show how the SOE-EAM method can be combined with either mean-field or Monte
Carlo statistical mechanics techniques in order to calculate short-range-order~SRO! parameters, average
nearest-neighbor bond lengths, and alloy thermodynamic properties which include contributions from static
displacive relaxations and dynamic atomic vibrations. We demonstrate that the contributions to alloy heats of
mixing arising from displacive relaxations can be sizeable, and that the neglect of these terms can lead to large
overestimations of calculated phase-transition temperatures. The effects of vibrational free-energy contribu-
tions on the results of composition-temperature phase diagram calculations are estimated to be relatively small
for the phase-separating alloy systems considered in this study. It is shown that within the SOE approach
displacive effects can act only to displace the peak in the Fourier-transformed SRO parameter away from
Brillouin-zone-boundary special points and towards the origin. Consistent with this result, we show that the
unusual SRO observed in diffuse scattering experiments for Au-Ni solid solutions can be understood as arising
from a competition between chemical and displacive driving forces which favor ordering and clustering,
respectively.

I. INTRODUCTION

Solid solutions form the most commonly occurring class
of alloy phases in the solid state. These phases are challeng-
ing to study both theoretically and experimentally due to the
topological and configurational disorder associated with their
atomic structures. In the past 30 years, a number of theoreti-
cal techniques have been developed which make possible
computational studies of the structural and thermodynamic
properties of alloy solid solutions.1–9 These approaches vary
in the manners in which they treat the computational com-
plexities associated with the structural disorder in alloys. In
one approach employed in a number of theoretical
studies,1,2,9 use is made of a second-order expansion~SOE!
of the energy with respect to atomic displacements and site-
occupation variables. The result of such an expansion is an
expression for the energy of a substitutional alloy which has
a form analogous to the Hamiltonian of a lattice-gas model.
In this paper we present results of a computational study
which combines the formalism of a SOE approach with a
description of alloy energetics based on the embedded atom
method~EAM!.10,11

The EAM is a semiempirical, interatomic-potential
method which has been applied widely to the study of struc-
tural and thermodynamic properties of crystalline materials,
liquids, surfaces, and defects.11 The EAM has proven to be
successful particularly in describing the properties of noble
and late transition metals and their alloys. In the current
study the combined SOE-EAM approach has been used in
combination with mean-field~MF! statistical mechanics cal-

culations and Monte Carlo~MC! simulations12 in order to
compute structural and thermodynamic properties of the
solid-solution phases of Cu-Ni, Au-Ni, and Cu-Ag. Particular
attention has been devoted to computing the magnitudes of
local atomic displacements and to studying the effects which
these displacements have on calculated values of the heats of
mixing, composition-temperature (c-T) phase diagrams, and
short-range-order~SRO! parameters.

Vibrational ~phonon! contributions to the free energy are
often neglected in computational studies of the thermody-
namic properties of alloys. The results of a number of theo-
retical ~see Refs. 13–18 and references therein! and
experimental19 studies have demonstrated that these contri-
butions may be sizable and that they can have important
consequences for alloy phase transitions. In the present work
we have developed an approximate method for computing
vibrational free energies of disordered alloys within the SOE
framework. With this method the effects which vibrational
free-energy contributions have on calculatedc-T phase dia-
grams have been assessed.

A source of motivation for the present work is provided
by the fact that the SOE-EAM approach combined with MF
statistical mechanics provides a method for computing alloy
thermodynamic properties which offers the following com-
putational advantages over direct MC-based calculations: It
is significantly faster and it allows one to avoid statistical
uncertainties associated with MC simulations. We are there-
fore interested in assessing the accuracy of both the SOE and
MF approximations. In this paper we will discuss the accu-
racy of the SOE treatments of alloy energetics and atomic
vibrations by comparing to results of more exact, direct cal-
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culations which we have performed within the context of the
EAM. Additionally, the values of thermodynamic properties
and SRO parameters calculated by MF and MC simulations
will be compared in order to estimate the magnitudes of the
errors associated with the MF approximation. The issues of
accuracy discussed in this paper should be of general interest
because both the MF approximation and the basic SOE for-
malism have been and continue to be used widely in compu-
tational studies of alloy structural and thermodynamic prop-
erties.

II. COMPUTATIONAL APPROACH

In this section we describe the SOE approach to treating
compositional and displacive disorder in crystalline solid so-
lutions. Additionally, we discuss how this approach can be
used in MF calculations and MC simulations in order to
study structural as well as finite-temperature, thermodynamic
properties. The basic formalism described in this section was
discussed in detail previously by de Fontaine1 and it shares
many features in common with the method of de Gironcoli
et al.9

In the discussion which follows we present details of the
application of the SOE approach to systems of interest in this
paper, namely, solid solutions of binary (A-B) alloys where
the parent lattice has cubic and inversions symmetries with
one atomic site per unit cell. Additionally, we describe in
detail how the SOE method can be implemented in the spe-
cial case where the alloy energetics are parametrized by
EAM potentials. The extension of the formalism presented
below to multicomponent alloy systems and to lattices with
lower symmetry is straightforward in principle~the details of
the formalism in the case of multicomponent alloys may be
found in Refs. 1 and 7!. The underlying formalism is not
limited in its application to EAM potentials alone; details of

the implementation within the context of pair potentials,1

pseudopotential-linear-response9 theory, and all-electron
methods7,8 are given elsewhere.

A. Second-order energy expansion

Typically, the arrangement of atoms in a crystalline alloy
solid solution can be described with reference to a so-called
‘‘parent’’ lattice, the crystallographic sites of which coincide
with average atomic positions. The positions of the atoms
can be specified with reference to the sites of the parent
lattice through the use of two types of variables. The first is
an occupation variablec~R!, which is equal to 1 or 0 depend-
ing on whether anA or B atom is associated with the lattice
site located atR, respectively. Additionally, the displacement
vector u~R! gives the position of the atom relative to the
lattice site atR. The energy of a given arrangement of atoms
is a function of the set of occupation variables, displacement
vectors, and the atomic volumeV: E~$c~R!%, $u~R!%,V!.

In the SOE approach, the energy at fixed volume is ex-
panded to second order in the compositional and displace-
ment variables. This expansion is formulated with respect to
a reference state, which can be defined in a number of ways.
Two choices for the reference state used in previous work are
the following: ~1! the ‘‘host’’ reference state2 corresponding
to an elemental, crystalline solid of the majority alloy con-
stituent wherec~R!5u~R!50 ; R, and~2! a homogeneous,
unrelaxed,equiatomic, random alloy9 characterized byc~R!
51/2 andu~R!50 ; R. An alternative choice, which is in-
troduced in Ref. 1, is a reference state defined in terms of the
average composition~c! as follows: c~R!5c and u~R!50
; R, wherec is the value ofc~R! averaged over all lattice
sites. With this latter choice of reference state, the Taylor
series expansion of the energy to second order has the form

E~$c~R!%,$u~R!%,V!5E01
1

2 (
R,R8

@u~R2R8!dc~R!dc~R8!12ca~R2R8!dc~R!ua~R8!

1fa,b~R2R8!ua~R!ub~R8!#. ~1!

In the expansion~1! the first-order terms vanish due to the
translational and inversion symmetries of the reference state
and due to the fact that the sum over all lattice sites of
dc~R![c~R!2c is zero by definition. In Eq.~1! ~and in those
which follow! sums over repeated Cartesian indicesa andb
are implied. It should be noted thatE0, u, ca , andfa,b are
all composition- and volume-dependent quantities.E0 de-
notes the energy of the homogeneous reference state.
u~R2R8! is the second derivative of the energy with respect
to the occupation variables atR and R8 ~evaluated in the
reference state!. ca , the mixed second derivative with re-
spect to occupation variables and displacement vectors, is
referred to as the solute-lattice coupling parameter.1 The
productca~R2R8!dc~R! is thea component of the force at
R8, which arises from a deviation of the occupation variable

from its average value atR. fa,b is the force-constant matrix
corresponding to the homogeneous reference state.

The equilibrium~also calledstatic! displacementsu0~R!
associated with a given set of occupation variables can be
obtained by setting equal to zero the partial derivative of Eq.
~1! with respect toua~R!:

ua
0~R!52 (

R8,R9
fa,b

21 ~R2R8!cb~R82R9!dc~R9!. ~2!

When the set of formulas for the equilibrium displacements
is inserted into Eq.~1!, a simplified expression for the energy
can be derived which has the following form, written ink
space:
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E5E01
1

2N (
k

V~k!dc~k!dc* ~k!

1
1

2N (
k

fa,b~k!dua~k!dub* ~k!. ~3!

In Eq. ~3!, N is the number of atoms anddua~k!
[ua~k!2ua

0~k! denotes the Fourier transform of the devia-
tion of ua~R! from its equilibrium value.V~k! is the Fourier
transform of the so-called effective pair interaction~EPI!,
which is defined as

V~k!5u~k!2ca~k!fa,b
21 ~k!cb* ~k!. ~4!

From Eq.~4! we see that the EPI contains two contributions.
The first describes the nature of the chemical interactions in
the system, and the second is arelaxation-energycontribu-
tion associated with the static displacements. In Eq.~3! the
sum of the first two terms on the right-hand side corresponds
to the zero-temperature energy of a given configuration of
atoms located at their equilibrium positions. The third term is
a thermal one which determines the cost in energy associated
with deviations in the locations of the atoms from their equi-
librium positions.

An important point to note is that atk50 the force con-
stant matrix~f! is not invertible and the second term on the
right-hand side of Eq.~4! is undefined. In the long-
wavelength~uku→0! limit, c~k!f21~k!c* ~k! is finite with a
value which is given by continuum elasticity theory~see,
e.g., Refs. 1 and 5!. However, the value ofcf21c* in this
limit depends on the direction of approach tok50. The sin-
gularity of V~k! at the origin poses no problem for what
follows because the termk50 can be excluded from the first
sum on the right-hand side of Eq.~3!, sincedc~k50!50 by
definition ~owing to our choice of a concentration-dependent
reference state!.

B. Thermodynamic properties and short-range order

In the present study we are interested in the structural and
thermodynamic properties and phase stability of alloy solid
solutions. The structural properties with which we shall be
concerned are the atomic SRO and the average nearest-
neighbor pair distances forA-A, B-B, andA-B bonds. The
SRO is quantified by values of the pair correlation functions
~PCF’s! ^dc~R!dc~R8!& ~or quantities such as the Warren-
Cowley SRO parameters, which are proportional to them1!,
which give a measure of the tendency for atoms at sitesR
andR8 to be preferentially occupied by like or unlike atom
types. The average nearest-neighbor distance forA-A, A-B,
andB-B pairs can be determined from the relative displace-
mentsdAA , dAB , anddBB defined as

dAA~t!5^c~R1t!u0~R1t!&2^c~R!u0~R!&,

dAB~t!5^c~R1t!u0~R1t!&2^@12c~R!#u0~r !&,

dBB~t!5^@12c~R1t!#u0~R1t!&2^@12c~R!#u0~R!&,
~5!

wheret is a vector connecting nearest-neighbor pairs in the
parent lattice. By combining Eqs.~2! and~5! it is possible to
definedAA , dAB , anddBB in terms of nearest-neighbor PCF’s.
Therefore, both SRO and average bond-length information
can be obtained from a knowledge of the values of the
PCF’s.

The thermodynamic property directly related to the stabil-
ity of an alloy solid solution under conditions of constant
pressure and temperature is the Gibbs free energy of forma-
tion, defined as the difference between the alloy Gibbs free
energy (G) and the concentration-weighted average of the
values ofG for the constituent element phases. For an alloy
with an energy given by Eq.~3!, G can be formally written
as

G~N,c,T,P!5E01
1

2N (
k
V~k!^dc~k!dc* ~k!&1^Fv~T,V,$c~R!%!&2TSc1NPV, ~6!

whereP is the pressure,T is the temperature,Sc is the configurational entropy,Fv is the vibrational free energy, and the
bracketŝ & denote ensemble averages over the configurational degrees of freedom~i.e., the occupation variables!. Consistent
with Eq. ~3!, the expression for the vibrational free energy used in the present study corresponds to that of a quasiharmonic
model wherefa,b form the elements of the volume-dependent force-constant matrix. In this work we are interested in
estimating the vibrational contribution to the free energy of solid-solution phases for values ofT well above the measured
Debye temperatures of the constituent elemental solids. Consequently, we will make use of the high-temperature limit of the
expression for the vibrational free energy of a quasiharmonic model. In this limit^Fv& can be written in terms of the
determinant~Det! of the force-constant matrix~see e.g., Ref. 6! and the following expression can be derived:

^Fv@T,V,$c~R!%#&'
1

2
kBT(

k
ln$MA

23cMB
23~12c!Det@\2f~k!/kB

2T2#%, ~7!

whereMA andMB denote the atomic masses ofA andB, respectively.
By combining Eqs.~6! and ~7!, it is straightforward to derive the following MF expression for the Gibbs free energy:

1

N
GMF~N,c,T,P!5

1

N
E01

1

2N
c~12c!(

kÞ0
V~k!1kBT@c lnc1~12c!ln~12c!#

1
1

2N
kBT(

k
ln$MA

23cMB
23~12c!Det@\2f~k!/kB

2T2#%1PV. ~8!
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In deriving Eq.~8! we have made use of the MF relations
^dc~k!dc* ~k!&5Nc(12c) and Sc52NkB@c ln(c)1(1
2c)ln(12c)#.

Even though correlations are explicitly neglected in MF
theory, it is possible to determine values of PCF’s consistent
with Eq. ~8! using the MF theory of concentration fluctua-
tions originally applied to alloy solid solutions by
Krivoglaz20 and Clapp and Moss21 ~KCM!. When our MF
free-energy function~8! is used to derive the KCM expres-
sion for the Fourier-transformed PCF, we obtain the
expression

^dc~k!dc* ~k!&5
Nc~12c!

11c~12c!@V~k!2V~R50!#/kBT
,

~9!

whereV~R50! is equivalent to the Brillouin-zone average of
V~k!.

The MF approximation discussed in the previous para-
graph is known to give rise to significant errors when applied
to the calculation ofc-T phase diagrams for alloy systems
with energetics described by Ising and lattice-gas Hamilto-
nians with short-ranged interactions~see, e.g., Ref. 1!. Addi-
tionally, it has been shown that in a few cases the KCM
formula can lead to incorrect predictions of the location of
the maximum for the PCF in reciprocal space.22 For the pur-
pose of assessing the accuracy of the MF approximation in
the present work, we have also performed calculations of
phase diagrams and PCF’s using MC simulations.12

MC simulations were performed in the grand-canonical
ensemble using periodic boundary conditions with cells con-
taining 2000, 16 000, and 54 000 atoms. The larger sized
~16 000 and 54 000! cells were required to avoid significant
finite-size effects for values of the chemical field and tem-
perature near critical points. Equilibration and sampling
stages of the MC simulations were performed for 5000 and
10 000 MC steps, respectively. Enthalpy and PCF values
were obtained directly from the results of the MC simula-

tions. Phase boundaries were calculated using values of free
energies derived from a thermodynamic integration tech-
nique described by de Gironcolliet al. in Ref. 9.

The Hamiltonian used in the MC simulations consisted of
the first two terms in Eq.~3! including real-space EPI’s
within the range of the eighth-nearest-neighbor pair: simula-
tions were performed both with and without the inclusion of
the vibrational free-energy expression given by Eq.~7!. The
termsE0, V~R!, andFv in the MC Hamiltonian are volume-
and concentration-dependent quantities. For a given tempera-
ture and concentration, the volume was assumed to be that
which minimized the sum ofE01Fv ~in simulations where
vibrational contributions were neglected, the volume was as-
sumed to be that which minimizedE0!. The corrections to
the volume due to short-range order were therefore neglected
in our study; these corrections were found to adjust the vol-
ume by an amount approximately equal to only 0.1% for the
systems considered in this study. The composition depen-
dence of the MC Hamiltonian was treated by fitting calcu-
lated values ofE0, Fv , andV~R! to polynomials in the con-
centration.

C. Implementation within the embedded atom method

The SOE approach outlined in the previous subsections
can be coupled with any technique which allows one to cal-
culate the termsE0, u, f, andc in Eq. ~1!. For example, in
the work listed in Ref. 9 de Gironcolliet al. and Marzari
et al. used the virtual crystal approximation, combined with
linear response and pseudopotential theories in order to cal-
culate these terms from first principles. Additionally, de
Fontaine1 has reviewed how the SOE energy can be formu-
lated within the framework of pseudopotential-based pair po-
tentials. In the present work we use the EAM to calculate the
relevant terms arising in the SOE approach.

In the EAM, the cohesive energy of a binary alloy can be
written as

E5(
R

$c~R!FA~rR!1@12c~R!#FB~rR!%1
1

2 (
R,R8

RÞR8

„c~R!c~R8!UAA~DR,R8!1@12c~R!#@12c~R8!#UBB~DR,R8!

1$c~R!@12c~R8!#1c~R8!@12c~R!#%UAB~DR,R8!…, ~10!

whereFA andFB are the embedding functions
10,11corresponding toA andB atoms, respectively, andUAA , UBB , andUAB are

pair interactions10,11 appropriate for each possible type of pair in a binary alloy. In Eq.~10!, DR,R8 specifies the distance
between atoms:DR,R8[uR1u(R)2R82u(R8)u. The variablerR denotes the electron density at the location of the atom
associated with siteR due to all other atoms in the alloy. In the EAM, the electron density is approximated by a superposition
of atomic densities, and for a binary alloy we have

rR5 (
R8~ÞR!

@c~R8!rA~DR,R8!1@12c~R8!#rB~DR,R8!#, ~11!

whererA(DR,R8) is the contribution to the density atR1u~R! arising from anA atom located atR81u~R8! and similarly for
rB(DR,R8).

10,11

The termE0 in Eq. ~1! can be determined from Eqs.~10! and ~11! by settingc~R!5c and u~R!50 for each siteR.
Expressions for the termsu~R2R8!, ca~R2R8!, andfa,b~R2R8! can be derived in a straightforward manner from the partial
derivatives of Eqs.~10! and ~11! with respect to occupation and displacement variables. Explicitly,u andc have the forms

u~Ri j !5@2DF8~ r̄ !Dr~Ri j !1DU~Ri j !#~12d i j !1 (
k~Þ i , j !

F̂9~ r̄ !Dr~Rik!Dr~Rjk! ~12!
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and

c~Ri j !5 r̂ j i @DU8~Ri j !1 r̂8~Ri j !DF8~ r̄ !1Dr8~Ri j !F̂8~ r̄ !#1 (
k~Þ i , j !

@ r̂ jkF̂9~ r̄ !r̂8~Rkj!Dr~Rki!#, ~13!

whereRi j5uRi2Rj u, r̂ i j5~Ri2Rj !/Ri j , and primes denote differentiation with respect to the argument. In Eqs.~12! and~13!,
u andc are defined in terms of the derivatives of the following linear combinations of embedding functions, atomic electron
densities, and pair interactions:

DF~r![FA~r!2FB~r!, F̂~r![cFA~r!1~12c!FB~r!,

r̂~Ri j ![crA~Ri j !1~12c!rB~Ri j !, Dr~Ri j ![rA~Ri j !2rB~Ri j !, r̄[ (
j ~Þ i !

r̂~Ri j !,

DU~Ri j ![cUAA~Ri j !1~122c!UAB~Ri j !2~12c!UBB~Ri j !. ~14!

The expression for the force-constant matrix~f! used in the
present study can be obtained from the formulas given in
Ref. 11 for elemental solids, providedr̄ andF̂ are substituted
for the elemental electron charge densities and embedding
functions, respectively, and provided the pair interaction is
replaced by the average Ū(Ri j )[c2UAA(Ri j )
1(12c)2UBB(Ri j )12c(12c)UAB(Ri j ).

The EAM potentials for Cu-Ni and Cu-Ag used in the
present study have been derived, according to the procedure
discussed by Foiles,23 by fitting to elemental equilibrium lat-
tice constants, sublimation energies, elastic constants, va-
cancy formation energies, and dilute heats of solution. Even
though the only alloy information used in the fitting was
heats of solution for dilute compositions, we found that the
energetics of concentrated Cu-Ni and Cu-Ag alloys were
well described by these potentials. Specifically, predicted
heats of mixing agreed well with experimental
measurements24 at all compositions for Cu-Ni alloys~see
below!. Also, formation energies calculated by the EAM for
~hypothetical! ordered Cu-Ag compounds were found to
agree to within 7 meV/atom with the values computed from
first principles by Weiet al.25 For Au-Ni, we found that po-
tentials derived by fitting only to properties of the elemental
solids and dilute alloys underestimated considerably the
heats of mixing measured experimentally24 for concentrated
compositions. Therefore, information about the energetics of
concentrated alloys was included in the fitting of the Au-Ni
potentials used in the present study. Specifically, included in
the fitting of these potentials were the first-principles-
calculated values of the formation energies for five Au-Ni
compounds~with unrelaxedL12, L10, ‘‘40,’’ and Z2 struc-
tures! computed by Lu and Zunger.26

D. Comparison with other approaches

The combined EAM-SOE-MF approach outlined in this
section is similar in some ways to another technique which
has been applied to the study of substitutionally disordered
alloys within the context of the EAM. This technique is re-
ferred to as the free-energy minimization method~FEMM!,
and it is described in detail in a recent paper by Najafabadi
et al.27 For homogeneous solid-solution phases, there are
three main differences between the FEMM and SOE-MF ap-
proaches:~1! The FEMM description of alloy energetics re-

duces to ourE0 term in Eq.~3!; consequently, the contribu-
tion of the chemical interaction term~u! to the energy is
neglected in the FEMM.~2! Equilibrium displacements for
homogeneous solid solutions~with high-symmetry structures
such as fcc and bcc! are zero by symmetry in the FEMM.
Consequently, the relaxation-energy contribution to the alloy
enthalpy is neglected in the FEMM.~3! The local harmonic
model28 is used to calculate vibrational free energies in the
FEMM; in our approach, use is made of the high-
temperature limit of an approximate quasiharmonic treat-
ment for vibrations. In order to gauge the relative accuracies
of the FEMM and SOE-MF approaches, we performed a
comparison of the values of calculated thermodynamic prop-
erties forunrelaxedCu-Ag solid solutions. Excellent agree-
ment ~within 1 meV/atom! was found between our SOE-
EAM results and those obtained with the FEMM~Refs. 29
and 30! for both heats of mixing and Gibbs free energies of
formation. For applications tohomogeneoussolid solutions,
the SOE approach offers the following advantages over the
FEMM: It provides~1! a method for including the contribu-
tions of relaxation energies~associated with static local
atomic displacements! to calculated values of alloy thermo-
dynamic properties and~2! a convenient framework for ana-
lyzing SRO and average bond distances in disordered solid-
solution phases. In the case ofinhomogeneoussolid solutions
~e.g., solid solutions with extended defects!, the FEMM is
more versatile in general since, in contrast to the SOE
method, it is not formally based on the notion of an under-
lying reference parent-lattice structure.

The SOE approach discussed in this section shares many
features in common with the concentration-wave~CW!
method, the generalized perubation method~GPM!, and the
embedded cluster method~ECM! ~each of these methods are
described in detail in Refs. 6–8!. In particular, these methods
are also based upon perturbations of a random substitutional
alloy at a specific composition of interest. In contrast to the
SOE methods outlined in this section and in Refs. 1 and 9, in
the CW, GPM, and CWM approaches the energetics~and the
electronic structure! of the random alloy is approximated via
the ~single-site! coherent-potential-approximation31 ~CPA!.
The CPA-based methods as yet have not been used to treat
displacive effects in substitutional alloys. However, generali-
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zations of the CW method for treating displacements have
been outlined along the lines of the second-order formalism
discussed in Sec. II A.7,32

A variety of approaches based upon the cluster expansion
formalism ~for a review, see Ref. 3! have been applied
widely to the calculation of structural and thermodynamic
properties of substitutional alloys, including the effects of
atomic displacements. Within the cluster-expansion formal-
ism, relaxation effects in disordered alloys have been ac-
counted for in a number of ways.3,5,13,15,16,25,33–36In one type
of approach, effective volumes and elastic moduli are as-
signed to each type of atomic arrangement associated with a
point13,33or multiatom25,34,36cluster. Sanchezet al.have also
generalized this type of theory in order to calculate vibra-
tional properties of disordered alloys within a Debye-model
formalism.13 The various parameters which enter into the
effective-volume cluster-expansion theories are commonly
derived from the results of first-principles total-energy calcu-
lations for ordered alloy structures with high-symmetry crys-
tal structures. In alternative cluster-expansion approaches,5,35

relaxation effects are incorporated into the values of effective
cluster-interaction~ECI! parameters directly. The values of
the ECI’s, including the contributions of the relaxation en-
ergy, are obtained in these methods by fitting to first-
principles-calculated total energies for a large set of ordered
structures~including structures with low symmetries and
many structural degrees of freedom! which have been re-
laxed with respect to all cell-internal and external structural
degrees of freedom.5

In the cluster-expansion approaches, relaxation energies
and chemical interactions are parametrized by pair as well as
higher-order multiple-atom ECI’s, in contrast to the SOE
method in which relaxation and ordering energies are de-
scribed by effectivepair interactions only. While third- and
higher-order displacive effects are automically built into the
fitted values of the ECI’s in the cluster expansion ap-
proaches, the consideration of such terms within the formal-
ism outlined in Sec. II A would require going beyond
second-order terms in the expansion given by Eq.~1!. The
SOE approach offers the distinct advantage that it allows the
magnitudes of the atomic displacements in substitutionally
disordered alloys to be calculated directly; this is not gener-
ally possible in the current implementation of the cluster-
expansion approaches. In the following section the results of
the present SOE-based calculations will be compared with
those of previous studies performed using cluster-expansion
methods.

III. RESULTS

A. Accuracy of the SOE approach

In order to assess the accuracy of the approach for treating
alloy energetics described in the previous section, we per-
formed several tests comparing results obtained~using the
same set of EAM potentials! from direct calculations and
from the approximate SOE method. The first test involved
the zero-temperature cohesive energies of ordered alloy com-
pounds havingLl 2 andLl 0 structures. The direct calculations
were performed by evaluating Eq.~10! with the values of
$c~R!% appropriate for each ordered structure and with the
values of$u~R!% all set equal to zero~the c/a ratio for the

tetragonalLl 0 structure was fixed at its ideal value:c/a51!.
The SOE cohesive energies were obtained from the first two
terms in Eq.~3! using the values ofdc~k! obtained by a
Fourier transform of the occupation variables appropriate for
each structure. In both the direct and SOE calculations, the
cohesive energies were minimized with respect to volume.
For each of theLl 2 andLl 0 structures in the Cu-Ni, Au-Ni,
and Cu-Ag alloy systems, we found that the SOE and direct
calculations gave cohesive energies which agreed to within 3
meV/atom.

Our second test of the SOE involved the zero-temperature
cohesive energies for relaxed, disordered alloys with equi-
atomic compositions. In this case the direct numbers were
obtained by averaging the energy, calculated using Eq.~10!,
for ten 864-atom supercells which contained randomly gen-
erated atomic configurations. The energy of each supercell
was minimized with respect to volume and also with respect
to the displacements$u~R!%, where the latter minimization
was performed using the conjugate-gradient method.37 The
SOE cohesive energies for the relaxed, equiatomic, disor-
dered alloys were obtained by minimizing the zero-
temperature and zero-pressure version of Eq.~8! with respect
to volume. In this test excellent agreement between the re-
sults of direct and SOE calculations was again obtained: Co-
hesive energies were found to agree to within 3 meV/atom
for each alloy system considered.

In order to estimate the accuracy of the approximate treat-
ment for atomic vibrations outlined above, vibrational free
energies were computed both by a direct quasiharmonic
method~using the EAM expressions for the dynamical ma-
trix given by Dawet al. in Ref. 11! and from Eq.~7! for
equiatomic Cu-Ag and Cu-Ni alloys at 600 and 900 K. Di-
rect calculations of the quasiharmonic vibrational free ener-
gies were performed for both disordered alloys and for or-
dered compounds with theLl 0 structure. Analogous to the
calculations described in the previous paragraph, the direct
calculations for disordered alloys were performed using 108-
atom supercells and results were averaged over several ran-
domly generated atomic configurations. For CuNi the SOE
expression for the vibrational free energy gives results which
are at most 3 meV/atom~2%! and 2 meV/atom~1.5%! more
negative for ordered and disordered alloys, respectively, at
each temperature considered. For CuAg the magnitudes of
the vibrational free energies were found to be larger, as was
the discrepancy between results obtained from direct and
SOE calculations. Specifically, for CuAg the vibrational free
energies calculated from Eq.~7! are as much as 10 meV/
atom ~3%! and 15 meV/atom~4%! less negative than those
obtained by direct calculations for disordered and ordered
alloys, respectively.

B. Heats of mixing

In Fig. 1 we present the results of EAM-SOE calculations
for zero-temperature heats of mixing (DH) for relaxed and
unrelaxed random solid solutions in fcc Cu-Ni@Fig. 1~a!#,
Cu-Ag @Fig. 1~b!#, and Au-Ni @Fig. 1~c!# alloys. The solid
lines in Fig. 1 give the heats of mixing forrelaxedalloys
which were computed as the difference in enthalpy between
the random solid solution of a given composition and the
concentration-weighted average of the enthalpies of the con-
stituent elements. The enthalpies were computed by mini-
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mizing Eq.~8! with respect to volume atT50 K. The dashed
lines in Fig. 1 correspond to the heats of mixing calculated
for unrelaxedrandom alloys in which the atoms are artifi-
cially constrained to occupy the ideal positions on an fcc
lattice ~i.e., displacements were all set to zero!; these results
were computed also from Eq.~8! neglecting the relaxation-
energy contribution@the second term on the right-hand side
of Eq. ~4!# to the EPI. The dotted lines in Fig. 1 give the
values of the relaxation energies defined as the difference
between the heats of mixing for relaxed and unrelaxed al-
loys.

The degree of size mismatch for each of the alloy systems
considered in the present study can be assessed by comput-
ing the ratioDa/ā, whereDa and ā are, respectively, the
difference and the average of the lattice parameters for the
two constituent elements. For Cu-Ni, Cu-Ag, and Au-Ni, the
values ofDa/ā are, respectively, 2.5%, 12.5%, and 14.7%. A
comparison of the dotted lines in Fig. 1 shows that a corre-
lation exists between the magnitudes of the relaxation ener-
gies and the degree of size mismatch, as expected. In par-
ticular, for Cu-Ni the relaxation energy is smallest with a
value of maximum magnitude equal to 3 meV/atom. For

Cu-Ag and Au-Ni the relaxation energies are more sizable
with magnitudes as large as 30 and 80 meV/atom, respec-
tively.

The open circles in Fig. 1 symbolize the values ofDH
measured experimentally24 at finite temperatures for Cu-Ni,
Cu-Ag, and Au-Ni solid solutions. For Cu-Ni the calculated
results for random alloys at zero temperature and the mea-
sured values for solid solutions containing SRO atT5973 K
@solid line and open circles, respectively, in Fig. 1~a!# agree
to within 5 meV/atom. We found that the agreement with the
experimentally measured values ofDH was improved when
finite-temperature and SRO corrections were included in our
calculations. Specifically, we recalculated the values of the
cohesive energies for Cu-Ni solid solutions and pure ele-
ments using lattice parameters which minimized the free en-
ergy given by Eq.~8! at T5973 K. Additionally, in the cal-
culations for the alloys we included SRO effects through the
use of MC simulations. The effect of SRO was tolower the
calculated heats of mixing by as much as 4 meV/atom for
near-equiatomic alloys. The corrections toDH due to ther-
mal expansion were found to be smaller in magnitude for
Cu-Ni; their effect was toraise the calculated values ofDH
by a maximum value of 2 meV/atom.

FIG. 1. Calculated and experimentally measured values of the heats of mixing (DH) for Cu-Ni ~a!, Cu-Ag ~b!, and Au-Ni ~c! solid
solutions. The solid lines indicate total calculated values ofDH for relaxed alloys, the dashed lines correspond to values ofDH for unrelaxed
solid solutions, and the dotted lines give values of relaxation energies~see text!. The open circles indicate measured values ofDH, taken
from Ref. 20, for Cu-Ni alloys at 973 K, Cu-Ag alloys at 1052 K, and Au-Ni alloys at 1150 K.
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The agreement between calculated and experimentally
measured values of the heats of mixing for relatively dilute
Cu-Ag alloys is seen in Fig. 1~b! to be excellent. This good
agreement is not surprising since experimentally measured
dilute heats of solution were used in the fitting of the EAM
potentials for Cu-Ag. For Au-Ni alloys@Fig. 1~c!#, the ex-
perimentally measured and calculated values ofDH agree
very well for near-equiatomic alloys, although significant
discrepancies are found for more dilute compositions. These
discrepancies cannot be attributed to finite-temperature and
SRO effects neglected in the calculated values. Rather, they
arise from errors associated with the EAM potentials devel-
oped for Au-Ni.

The values of the heats of mixing presented in Fig. 1 can
also be compared to results of previous first-principles
calculations13,16,25,26,36,38 performed within the cluster-
expansion framework using various approximations~see dis-
cussion in Sec. II D! for the treatment of atomic relaxations
in the Cu-Ni, Cu-Ag, and Au-Ni alloy systems. In the case of
the Cu-Ni system, the values ofDH plotted in Fig. 1~a! are
roughly 15 meV/atom larger in magnitude than those ob-
tained by Amador and Bozzolo.36 In agreement with our
findings, Amador and Bozzolo find that SRO has a weak
effect on the calculated values ofDH for near-equiatomic
Cu-Ni alloys atT5973 K. For dilute Cu-Ag solid solutions
~containing less than 10 at. % Cu and greater than 90 at. %
Cu!, our results forDH agree to within 5 meV/atom with the
‘‘relaxed’’ values calculated by Weiet al.25 Values ofDH for
more concentrated compositions in the Cu-Ag system have
been calculated by Sanchezet al.13 and Terakuraet al.38

When local relaxation effects are neglected, these authors
obtain values ofDH for the equiatomic composition equal to
140 meV/atom~Ref. 13! and 540 meV/atom~Ref. 38!. The
calculated values of Sanchezet al. are more consistent with
the unrelaxed results plotted by the dashed line in Fig. 1~b!.
An even better level of agreement exists between our results
and those of Sanchezet al. for the values ofDH calculated
including relaxation effects: In this case our values are
smaller for the equiatomic composition by 13 meV/atom. It
is interesting to note, however, that the value of the relax-
ation energy for CuAg obtained using an effective-volume
method~see Sec. II D! by Sanchezet al. is roughly twice as
large as that found in the present study. For Au-Ni alloys,
values of the heats of mixing have been calculated including

relaxation effects by Amador and Bozzolo,36 Lu and
Zunger,26 and Colinetet al.16 The best level of agreement
with the results in Fig. 1~c! and with experimental measure-
ments for concentrated alloys is found for the relaxed values
calculated by Colinetet al. ~solid line in Fig. 2 of Ref. 16!:
At c50.5 our results forDH are only 5 meV/atom larger
than those obtained from first-principles calculations by
these authors. The values ofDH at c50.5 calculated by Lu
and Zunger and by Amador and Bozzolo are roughly twice
as large as those shown in Fig. 1~c!. However, the magni-
tudes of the relaxation energy for AuNi calculated by these
authors agree well~within 9 meV/atom! with the value of 77
meV/atom found in this study.

C. Finite-temperature phase stability

Table I and Fig. 2 display experimentally measured39 and
calculated results pertaining to the thermodynamic stability
of Cu-Ni, Cu-Ag, and Au-Ni solid solutions. The computed
results were obtained from MF calculations and MC simula-
tions according to the methods outlined in Sec. II B. In Table
I values of the critical temperatures (Tc) and critical compo-
sitions (xc) for solid-state phase separation are listed. The
computed values are the results of MF calculations which
were performed using the following three levels of approxi-
mation:~I! neglecting both relaxation-energy and vibrational
contributions to the free energy,~II ! including relaxation-
energy contributions but neglecting vibrational contributions,
and ~III ! including both relaxation-energy and vibrational
contributions. In Fig. 2, MF- and MC-calculated phase dia-
grams are plotted for Cu-Ni and Cu-Ag alloys. The dashed
and solid lines in Fig. 2 correspond to MF- and MC-
calculated phase boundaries, respectively. In the case of
Cu-Ni @Fig. 2~a!#, these phase boundaries were computed
including both vibrational and relaxation-energy contribu-
tions to the alloy free energy. For Cu-Ag, relaxation-energy,
but not vibrational, free-energy contributions were consid-
ered in the calculations of the phase diagrams shown in Fig.
2~b!.

From a comparison of the MF-calculated results listed in
the rows labeled I and II in Table I, it can be seen that the
relaxation energy is responsible for a lowering of the calcu-
lated values ofTc by 14% ~150 K!, 28% ~900 K!, and 31%
~1090 K! for Cu-Ni, Cu-Ag, and Au-Ni alloys, respectively.

TABLE I. Mean-field-calculated and experimentally measured values of critical temperatures (Tc) and
critical compositions (xc) for phase separation in the Cu-Ni, Cu-Ag, and Au-Ni alloy systems. All tempera-
tures are in kelvin, and compositions are given in units of atomic percent. The results I, II, and III correspond
to calculations performed I neglecting both relaxation energy and vibrational contributions to the alloy free
energy,~II ! including relaxation energy, but neglecting vibrational contributions, and~III ! including both
relaxation energy and vibrational free-energy contributions. Experimental results listed in the final row are
taken from Ref. 28.

Method

Cu-Ni Cu-Ag Au-Ni

Tc xc ~Ni! Tc xc~Cu! Tc xc ~Ni!

I 1050 63 3170 63 3550 79
II 900 63 2270 49 2460 85
III 900 67
Experiment 628 67.3 1083 70.6
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Additionally, relaxation energies change the values ofxc for
Cu-Ag and Au-Ni solid solutions by 14 and 6 at. %, respec-
tively. In the work of Sanchezet al.13 for Cu-Ag the effect
on the calculated value ofTc due to the relaxation energy
was estimated to be nearly twice as large~50%, 1700 K! as
that found in this study; this result is consistent with the fact
that the relaxation energy in Ref. 13 was found to be roughly
twice as large as ours for concentrated alloys. Sanchezet al.
found that the calculated value ofxc changed from roughly
65 to 50 at. % Cu when the relaxation-energy contribution to
the free energy was included in the calculation of the Cu-Ag
phase diagram; these results are in excellent agreement with
the values ofxc listed in rows I and II of Table I. Weiet al.

25

also estimated the effects which~local! relaxation energies
have on the calculated Cu-Ag phase diagram, and their re-
sults are in nearly perfect agreement with those of Sanchez
et al. concerning the effect on the calculated values ofTc .
However, Weiet al. estimated that the relaxation energy has

almost no effect on the calculated value of the critical com-
position (xc), contrary to the findings of both this study and
that of Sanchezet al.

For Cu-Ni the results listed in the rows labeled II and III
in Table I indicate that the main effect of the vibrational free
energy is to shift the calculated value ofxc to a more Ni-rich
composition. For Cu-Ag and Au-Ni, calculated values ofTc
andxc could not be obtained including vibrational contribu-
tions to the free energy since, with the sets of EAM poten-
tials used in the present study, both of these alloys are pre-
dicted to be dynamically unstable at temperatures lower than
Tc .

40 For Cu-Ag alloys at 1000 K, we found that vibrational
contributions to the free energy are responsible for an ap-
proximately 3 at. % increase in the calculated solubility lim-
its for both Cu- and Ag-rich compositions. A qualitatively
similar effect of the vibrational free-energy contributions on
the solubility limits in Cu-Ag was found by Sanchezet al.13

An assessment of the magnitudes of the errors associated
with the MF approximation in the present study can be ob-
tained from a comparison of the dashed and solid lines plot-
ted in Fig. 2. In the case of Cu-Ni, Fig. 2~a!, MF and MC
results agree well for Ni-rich compositions, although signifi-
cant discrepancies are found near equiatomic compositions.
Specifically, near the composition 45 at. % Ni, phase bound-
aries obtained from MC simulations are lower than those
derived from MF calculations by approximately 20%~160
K!. For Cu-Ag, MF- and MC-calculated phase transition
temperatures are found to be in better agreement; a maxi-
mum difference of only 3% is found in the calculated phase
transition temperatures near 70 at. % Cu.

Results listed in the last row of Table I and shown as open
circles in Fig. 2 are taken from experimentally measured
phase diagrams.39 In Fig. 2~a! it can be seen that our calcu-
lations reproduce qualitatively the asymmetry in the misci-
bility gap for Cu-Ni. Our most accurate calculated value of
Tc for Cu-Ni, obtained from MC simulations including both
relaxation and vibrational contributions to the free energy, is
higher than the experimentally measured value by 230 K.
This overestimation of the value ofTc for Cu-Ni is consis-
tent with the fact that the EAM-SOE-computed heats of mix-
ing shown in Fig. 1~a! are slightly larger in magnitude than
the values obtained from calorimetry experiments.24 For
Cu-Ag alloys, below the eutectic temperature of 1053 K, the
calculated phase boundaries underestimate only slightly the
experimentally measured solubility limits shown in Fig. 2~b!
for Cu-rich compositions. On the Ag-rich side of the phase
diagram, the discrepancy between the calculated and experi-
mentally measured phase boundaries is slightly more signifi-
cant. As alluded to above, when vibrational free-energy con-
tributions are included in the calculation of the miscibility-
gap phase boundaries for Cu-Ag at temperatures below the
eutectic, the computed solubility limits increase and the
agreement with experimental measurements is improved for
both Cu- and Ag-rich compositions. According to the results
for Au-Ni listed in Table I, the MF-SOE-EAM calculation,
which included relaxation-energy contributions to the free
energy, resulted in a computedTc which significantly over-
estimates the measured value. The reason for this poor level
of agreement between calculated and measured values ofTc
for Au-Ni can be attributed largely to the failure of the EAM

FIG. 2. Calculated and experimentally measured solid-state por-
tions of the composition-temperature phase diagrams for Cu-Ni~a!
and Cu-Ag~b!. Dashed and solid lines were calculated using the
mean-field approximation and Monte Carlo simulations, respec-
tively. In the calculations for Cu-Ni, both vibrational and
relaxation-energy contributions to the alloy free energy were in-
cluded; for Cu-Ag, relaxation-energy but not vibrational free-energy
contributions were considered. The open circles were taken from
the experimentally measured phase diagrams compiled in Ref. 28.
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potentials to accurately reproduce the curvature associated
with the composition dependence of the heats of mixing plot-
ted in Fig. 1~c!.

D. Short-range order and effective pair interactions

The SRO of Au-Ni solid solutions has been studied ex-
perimentally by a number of investigators~see Refs. 41 and
42 as well as references listed therein! using diffuse scatter-
ing methods. Results obtained by Wu and Cohen41 show that
the Fourier-transformed~FT! PCF for a Au–40 at. % Ni al-
loy has a maximum value away from the high-symmetry
special points1,4,6 in the fcc Brillouin zone. Specifically, the
PCF is found to peak neark5^0.6,0,0&. In the current study
we computed the Fourier-transformed PCF for a Au–40
at. % Ni alloy at a temperature of 2300 K~which is just
above the calculated miscibility-gap phase boundary at this
composition! using both MF calculations and MC simula-

tions. In the MF calculations the FT PCF was determined
directly using Eq.~9!. MC simulations were used to compute
values of the real-space PCF’s for the first eight nearest-
neighbor shells; these results were then Fourier transformed
in order to compare with experimental measurements and
MF calculations.

The results of the MC simulations and MF calculations
for the FT PCF’s are plotted in the$001% plane of reciprocal
space in Figs. 3~a! and 3~b!, respectively. The features dis-
played in each of these figures are seen to be qualitatively
very similar. In particular, in excellent agreement with ex-
perimental measurements,41 both the MC- and MF-
calculated PCF’s take on maximal values at positions be-
tween theG ~^0,0,0&! and X ~^1,0,0&! points of the fcc
Brillouin zone. Specifically, the MC and MF results display
PCF peaks at approximatelyk5^0.55,0,0& andk5^0.5,0,0&,
respectively. The maximal value of the FT PCF calculated by

FIG. 3. Calculated Fourier-transformed~FT! pair-correlation functions~PCF’s! and effective pair interactions~EPI’s! for a Au–40 at. %
Ni alloy. FT PCF’s, calculated using Monte Carlo simulations~a! and the mean-field approximation~b!, are plotted in the~001!, kz50, plane
of reciprocal space. The FT EPI is plotted with a solid line in~c! between theG ~^000&! andX ~^100&! points. The dashed and dotted lines
in ~c! give the ‘‘chemical’’ and relaxation-energy contributions~see text! to the FT EPI, respectively.
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MC simulations is lower than that obtained from MF theory
@Eq. ~9!#; the origin of this discrepancy is likely due to the
fact that the critical temperature obtained by MC simulations
is lower than that derived from MF. Additionally, the MF
results @Fig. 3~b!# show structure near the origin which is
absent in Fig. 3~a!. The reason this structure is not present in
the latter figure stems from the fact that the MC-calculated
FT PCF’s were obtained from the values of the real-space
PCF’s corresponding to only the first eight nearest-neighbor
shells; from an analysis of the MF results, it was found that
the values of PCF’s corresponding to pairs spanning dis-
tances greater than the eighth neighbor are needed to repro-
duce the structure shown in Fig. 3~b! near theG point.

An understanding of the possible origin of the unusual
SRO observed in Au-Ni solid solutions can be obtained from
an analysis of the calculated EPI shown in Fig. 3~c!. In this
figure the solid line gives the valueDV~k!5V~k!2V ~R50!
@see Eq.~9!# calculated for a Au–40 at. % Ni alloy as a
function ofk along the line joining theG andX points. From
Eq. ~9! it can be seen that, within the MF theory of concen-
tration fluctuations, the PCF has a maximal value atk points
corresponding to global minima for the functionV~k!. In
agreement with Fig. 3~b!, the quantityDV~k! is seen to have
a minimum value atk'^0.5,0,0&. In Fig. 3~c! the dashed and
dotted lines indicate the ‘‘chemical’’ and relaxation-energy
contributions toDV~k! defined asu~k!2u~R50! and P~k!
2P~R50!, respectively, whereP~k!52c~k!f21~k!c* ~k!.
The chemical contribution toDV~k! ~dashed line! is seen to
have a minimum value at theX point. Therefore, chemical
interactions give rise to a tendency for ordering SRO of the
type consistent withLl 2 andLl 0 structures. By contrast, the
relaxation-energy contribution toDV~k! ~dotted line! has a
minimal value at theG point, indicating a preference for
SRO of clustering type. Therefore, we find that for Au–40
at. % Ni alloys, the minimum ofV~k! and the corresponding
peak in the PCF for values ofk between theG andX points
arise as a consequence of a competition between chemical
and relaxation-energy contributions to the EPI, which, re-
spectively, favor SRO of ordering and clustering types.

SRO in the Au-Ni system has been the subject of several
theoretical studies in the past.26,43,44In the recent work of Lu
and Zunger,26 the properties of Au-Ni solid solutions were
studied using a first-principles, cluster-expansion-based
method. By combining this approach with MC simulations,
Lu and Zunger calculate SRO for a Au–40 at. % Ni solid
solution which is also in good agreement with experimental
measurements: They find a peak in the SRO in reciprocal
space between theG andX points at approximatelŷ0.8,0,0&.
Therefore, the experimentally observed position for the peak
in the SRO in reciprocal space~at roughly^0.6,0,0&! is brack-
eted by the peak positions obtained in the present calcula-
tions and in Ref. 26. Lu and Zunger note that their calculated
value of the nearest-neighbor Warren-Cowley SRO param-
eter~20.074! is opposite in sign compared to the value mea-
sured experimentally by Wu and Cohen~0.039!,41 although it
agrees fairly well with an estimate~20.030! obtained from
earlier experiments on polycrystalline samples performed by
Flinn et al.42 Our computed values for the nearest-neighbor
SRO parameter are 0.034 and 0.052, obtained from MC

simulations and MF calculations, respectively; our results
therefore agree best with the measurements of Wu and
Cohen.41

In Fig. 3~c! it is shown that the chemical and relaxation-
energy contributions to the Fourier-transformed EPI are com-
parable in magnitude for the Au-Ni system. The magnitudes
of the relaxation-energy contributions to EPI’s can be ana-
lyzed further from the results plotted in Fig. 4. In Figs. 4~a!,
4~b!, and 4~c!, calculated values of EPI’s are plotted as a
function of the neighbor shell in real space for equiatomic
Cu-Ni, Cu-Ag, and Au-Ni solid solutions, respectively. Each
white bar indicates a value ofu~R!, corresponding to the
chemical contribution to the EPI. For each alloy system, the
chemical EPI’s are seen to decay rapidly as a function of
distance. Specifically, the nearest-neighbor values are found
to dominate andu~R! is negligible beyond the fourth-
neighbor-pair distance in all cases. The solid black bars in
Fig. 4 indicate values of the EPI’s including both chemical
and relaxation-energy@P~R!# contributions. A comparison of
the black and white bars in Fig. 4~a! shows that for CuNi the
contributions fromP~R! are relatively small. For CuAg and
AuNi the situation is quite different. Specifically, the relax-
ation energy is found to change the sign of the first- and
second-neighbor pair interactions for CuAg, as well as the
nearest-neighbor EPI for AuNi. Additionally,P~R! gives rise
to EPI’s which decay slowly in real space. The fact that
sizable relaxation energies lead to long-ranged EPI’s has
been noted also in previous semiempirical1 and
first-principles5,35 studies.

E. Local atomic displacements: Average nearest-neighbor
bond lengths

In the previous three subsections, we analyzed the effects
which local atomic displacements have on the SRO and ther-
modynamic properties of solid solutions. In this subsection
we consider the nature of the local atomic displacements
themselves. Specifically, in Fig. 5 we show calculated and
experimentally measured41,45 values of average nearest-
neighbor ~NN! bond lengths (R̄) for Au-Au @Fig. 5~a!#,
Au-Ni @Fig. 5~b!#, and Ni-Ni @Fig. 5~c!# pairs as a function of
alloy composition for Au-Ni solid solutions. The calculated
values, shown as solid circles in Fig. 5, were obtained for
random alloys~i.e., neglecting SRO! using Eqs.~2! and ~5!.
The experimental values plotted with open circles were ob-
tained from extended x-ray-absorption fine-structure
~EXAFS! measurements performed by Renaudet al.45 The
open squares give NN bond lengths for Au–40 at. % Ni al-
loys derived from the magnitudes of the average displace-
ments obtained by Wu and Cohen41 from an analysis of their
diffuse scattering data. The dashed lines in Fig. 5 correspond
to ‘‘Vegard’s law’’ values ofR̄ which have been calculated
assuming no displacements and a linear dependence of lat-
tice parameter on composition.

Both calculated and experimentally measured results plot-
ted in Figs. 5~a! and 5~c! show that the lengths of the NN
Au-Au and Ni-Ni bonds are greater and smaller, respectively,
than the average values given by Vegard’s law, as expected.
From an analysis of Figs. 5~a! and 5~c!, it can be seen that
the displacements with the largest magnitudes~i.e., the larg-
est deviations from Vegard’s law! are found for like NN
bonds between minority species in dilute alloys. For the
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mixed Au-Ni bonds, both the EXAFS data and the calculated
results indicate that the values of the displacements change
sign as a function of composition: For Ni- and Au-rich com-
positions, respectively, the Au-Ni bond lengths deviate posi-
tively and negatively from Vegard’s law.

In the case of Au-Au NN bonds, the agreement between
the different experimental data and the calculated results for
R̄ is quite good, although computed bond lengths are consis-
tently slightly larger than the measured values. For Au-Ni
bonds at 40 at. % Ni, there is a significant difference between
the values ofR̄ obtained from the two different experimental
methods. In this case our calculations are in very good agree-
ment with the EXAFS results. By contrast, for Ni-Ni bonds
our computed bond lengths differ greatly from the values
obtained by EXAFS measurements for Au-rich composi-
tions, and better agreement is found with the diffuse scatter-
ing data at 40 at. % Ni. A comparison of the data plotted with
open circles in Figs. 5~b! and 5~c! shows that the EXAFS
results predict that Ni-Ni and Au-Ni bond lengths are
roughly equal for Au-rich compositions. This surprising re-
sult is not reproduced by either our calculations or those of
Amador and de Fontaine,46 and it warrants further experi-
mental and theoretical investigation in our opinion.

IV. SUMMARY AND DISCUSSION

A. SOE approach

In the second section of this paper, a SOE approach was
outlined for the purpose of studying the structural and ther-
modynamic properties of alloy solid solutions. This approach
can in principle be coupled with any technique which allows
one to calculate theE0 term as well as the various second-
order derivatives arising in Eq.~1!. For the purposes of the

present study, we described the details of how the SOE
method can be implemented within the framework of the
EAM in Sec. II C.

When combined with MF statistical-mechanical calcula-
tions, the SOE approach provides a highly efficient technique
for computing both structural and thermodynamic properties
of alloy solid solutions. In order to estimate the magnitudes
of the errors associated with the various approximations used
to formulate the MF-SOE approach, a number of numerical
tests was performed comparing predictions of this method
with those of more accurate calculations. The results dis-
cussed in Sec. III A demonstrate that the SOE expression for
the alloy energy is accurate to within a few meV/atom. This
excellent level of accuracy is achieved both for ordered com-
pounds and relaxed disordered solid solutions even though
the SOE is formulated with respect to a homogeneous disor-
dered reference state with no displacements.

In Sec. II B we described a method which allows alloy
vibrational free energies to be calculated within the SOE
framework. For elemental solids this approach reduces to the
high-temperature limit of the quasiharmonic theory. For al-
loys the approach is approximate even within the high-
temperature–quasiharmonic framework due to the neglect of
higher-order terms in the expansion, Eq.~1!, of the alloy
energy.47 In Sec. III A we discussed results which demon-
strate that the approximate SOE method reproduces values of
Fv from direct quasiharmonic calculations for ordered and
disordered alloys to within a few percent. A problem associ-
ated with the SOE treatment of vibrational free energies is
that it leads to an expression forFv which is independent of
the alloy configuration at a given concentration. This short-
coming can be remedied and the accuracy of the approach
can be improved through the consideration of third-order
terms in the expansion of the alloy energy.47

FIG. 4. Calculated values of the effective pair interactions (V) for equiatomic Cu-Ni~a!, Cu-Ag ~b!, and Au-Ni~c! alloys. The horizontal
axis represents neighbor shells; results for shells ranging from the first to the eighth neighbor are plotted from left to right in each figure. The
white bars give values of the ‘‘chemical’’ contributionu @see Eq.~1!# to the effective pair interaction. The solid black bars give the total
values of the effective pair interactions, including both chemical and relaxation-energy contributions~see text!.
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In addition to the approximations made in deriving the
SOE expressions for the alloy energy and vibrational free
energy, an additional source of error introduced in the MF-
SOE approach is the use of the MF approximation in the
calculation of alloy thermodynamic properties and PCF’s
~SRO parameters!. In the calculation of PCF’s, the MF-KCM
expression given in Eq.~9! has been shown to qualitatively
fail in some cases.22 As discussed in detail in Sec. III D, in
the present study errors associated with the MF theory were
found to be much less severe for the calculated PCF’s of a
Au–40 at. % Ni alloy. In particular, the position of the peak
in the PCF in reciprocal space was computed to be roughly
half way between theG andX special points of the fcc Bril-
louin zone in both MF and MC calculations; the MC- and
MF-calculated peak positions for the PCF in reciprocal space
were only slightly displaced from one another.

For Ising ~and, equivalently, lattice-gas! model Hamilto-
nians with short-ranged interactions, the errors associated
with the MF approximation for the calculation of thermody-
namic properties andc-T phase diagrams have been well
established. Specifically, for phase-separating alloys with fcc
structures~such as those considered here! and energetics de-
scribed by the nearest-neighbor ferromagnetic Ising model,

the MF approximation leads to approximately a 23% overes-
timation of the calculated value ofTc .

1 In the present study,
the alloy Hamiltonian is somewhat more complex than that
of the nearest-neighbor Ising model. Specifically, the SOE
Hamiltonian contains longer-ranged pair interactions as well
as a composition-dependent termE0 . As a consequence, the
estimates of the accuracy of the MF approximation obtained
for short-ranged Ising Hamiltonians are not directly relevant
for our calculations. In particular, in the limiting case where
the magnitudes of the EPI’s are small enough that the sum of
the interaction termsV~k!^dc~k!dc* ~k!& is negligible com-
pared to the termE0 in Eq. ~6!, the MF expression for the
alloy free energy given in Eq.~8! is exact.

In Sec. III C the accuracy of the MF approximation for
the calculation ofc-T phase diagrams in the present study
was assessed by comparing results obtained using both MF
and MC methods. The MF-calculated values of the transition
temperatures for Cu-Ni were overestimated at some compo-
sitions by as much as 20%, an error comparable in magni-
tude to that found for the nearest-neighbor ferromagnetic
Ising model. However, in the case of Cu-Ag alloys, the MF
errors were found to be much smaller and phase transition
temperatures were overestimated by at most 3%. These re-

FIG. 5. Calculated and experimentally measured values of the average bond lengths (R̄) as a function of alloy composition for
nearest-neighbor Au-Au~a!, Au-Ni ~b!, and Ni-Ni ~c! bonds in Au-Ni solid solutions. The solid circles are results of the calculations
discussed in the text; the solid lines connecting the solid-circles are merely drawn as a guide to the eye. EXAFS~Ref. 32! and diffuse x-ray
scattering~Ref. 30! experimental results are plotted with open circles and squares, respectively.
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sults for Cu-Ni and Cu-Ag demonstrate that in general the
accuracy of the MF approximation in the calculation of alloy
thermodynamic properties is system dependent.

B. Structural and thermodynamic properties
of alloy solid solutions

With the SOE method we have analyzed the effects which
static and dynamic atomic displacements have on the struc-
tural and thermodynamic properties of Cu-Ni, Cu-Ag, and
Au-Ni solid solutions. In Sec. II we discuss how, within the
SOE formalism, static displacements give rise to a
relaxation-energy contribution to the enthalpy of an alloy
solid solution. The magnitude of the relaxation energy has
been calculated by a variety of techniques in a number of
first-principles computational studies~see Refs. 3, 5, 9, 13,
15, 16, 25, 26, and 34–36 as well as references cited therein!
of the energetics of disordered alloys. In agreement with the
findings of these previous studies, the results displayed in
Fig. 2 for Cu-Ag and Au-Ni alloys clearly show that the
relaxation energy can amount to a sizable fraction of the heat
of mixing in alloys displaying large degrees of atomic-size
mismatch.

The effect of static and dynamic~vibrational! atomic dis-
placements on the thermodynamic stability of alloy solid so-
lutions was discussed in Sec. III C. It was shown that the
relaxation energy associated with static displacements led to
as much as 31% lowering of the calculated values of phase
transition temperatures. In the cases of Cu-Ni and Cu-Ag,
results displayed in Fig. 2 illustrate that vibrational contribu-
tions to the alloy free energy were found to have effects on
calculated phase diagrams which are comparatively smaller
than those arising from static atomic relaxations. In particu-
lar, for Cu-Ni the main effect of vibrations was to shift the
top of the calculated miscibility gap to higher Ni composi-
tions. For Cu-Ag vibrational effects were found to be respon-
sible for a slight increase in the solubility limits below the
eutectic temperature. The effect of vibrational free-energy
contributions on the results of phase-diagram calculations for
phase-separating metallic,13,16 semiconductor,17 and
ceramic18 alloy systems also has been analyzed in previous
studies. In each of these it was found that vibrational contri-
butions lowered the critical phase-separation temperature by
amounts ranging from between a few percent17 to as much as
15%.13,16,18Additionally, it has been found that the effects
upon calculated phase diagrams attributed to vibrational free
energies can be significantly asymmetric in nature, as we find
for Cu-Ni.

The results shown in Fig. 3 and discussed in Sec. III D
provide an interesting example which illustrates how chemi-
cal and displacive contributions to the energy can compete in
determining the atomic structure of an alloy solid solution.
Specifically, for Au–40 at. % Ni alloys we find that cluster-
ing SRO is favored by the relaxation energy, while chemical
interactions prefer̂100&-type order. The result of this com-
petition is SRO intermediate between these two opposite ex-
tremes.

Wu and Cohen44 have also studied the origin of SRO in
Au-Ni using a SOE approach based upon the formalism of
Cook and de Fontaine.2 In this formalism, which is derived
using the ‘‘host’’ reference frame described in Sec. II A,
there are three contributions to the EPI. The first two, which

are associated with chemical and relaxation-energy contribu-
tions to the energy, are comparable to those introduced in
Sec. II. The third arises from the elastic ‘‘unrelaxed energy’’
~UE!, which is defined as the elastic work required to form a
disordered alloy of size-mismatched atoms located on ideal
lattice sites. The parameters in the Cook–de Fontaine SOE
formulas were parametrized by Wu and Cohen using neutron
inelastic48 as well as diffuse scattering41 data. It was found
that the total elastic-energy contribution toV~k!, given by
the sum of the UE and the relaxation energy, has a minimum
atk5^0.6,0,0&. They therefore propose that the elastic energy
alone is responsible for a minimum in the total value ofV~k!
and a corresponding peak in the SRO at this position in
reciprocal space. Furthermore, they suggest that the mini-
mum in the elastic-energy component ofV~k! can be attrib-
uted to the nature of the force constants in the system which
are known to give rise to a softening of the phonon spectrum
at k5^0.6,0,0&.48 The elastic UE is contained within theE0
term in our formalism, and it does not contribute directly to
our V~k! due to the different reference frame used in our
SOE method as compared with that of Cook and de Fontaine.
Consequently, it is difficult for us to comment directly on the
explanation proposed by Wu and Cohen. However, it is
worth noting that Wu and Cohen find minima in the chemical
and relaxation-energy contributions toV~k! which occur near
k5^1,0,0& and at k5^0,0,0&, respectively, in qualitative
agreement with the results of the present study. In our opin-
ion further work is warranted to establish the possible con-
nection between phonon softening and a minimum inV~k!
neark5^0.6,0,0&.

Our results ~see Sec. II D! which demonstrate that
relaxation-energy contributions to the EPI act to drag the
peak in the SRO away from Brillouin-zone-boundary special
points is a general one which is not unique to the Au-Ni
system. Specifically, we show in the Appendix how symme-
try considerations allow us to conclude that the second term
on the right-hand side of Eq.~4!, P~k!52c~k!f21~k!c* ~k!,
takes on a maximum value~equal to zero! at each of the
special points excludingG. Therefore, within the KCM
theory, the termP~k! can only act to displace the peak in the
PCF away from the Brillouin zone boundary when special-
point-ordering SRO is favored chemically. In practice,
whether or not the relaxation energy actually does displace
the SRO peak in such situations is dependent upon the rela-
tive magnitudes of the chemical and relaxation-energy con-
tributions to the EPI. In Au-Ni these contributions are of
similar magnitude, as shown in Fig. 3~c!, and it is likely that
this may be the case in other alloy systems as well.
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APPENDIX: EFFECT OF DISPLACEMENTS ON SRO

In this appendix we give a proof that the relaxation-
energy contribution toV~k! is maximal at all special points
excludingG. The first element of the proof relies on the fact
that this contribution has a quadratic formP(k)
[2@ca(k)fa,b

21 (k)cb* (k)#. For a stable crystal,f~k! and
f21~k! are positive-definite matrices, except atk50. Conse-
quently, for kÞ0, P~k!<0, where the equality holds when
c~k!50. In other words, for allkÞ0, P~k! takes on its maxi-
mum possible value, zero, wheneverc~k!50.

From the symmetry of the reference state, it can be shown
that for every symmetry elementSwhich is a member of the
point group of the parent lattice,c~R! transforms as

S$c1~R!,c2~R!,c3~R!%5$c1~SR!,c2~SR!,c3~SR!%
~A1!

or Sc~R!5c~SR!, for short. As a consequence, it is straight-
forward to show that the following relation holds for the
Fourier-transformed values ofc:

Sc~k!5c~Sk!. ~A2!

Consider now ak vectork* and a symmetry elementS*
for which the following relation holds:S*k*5k*1G, where
G is a reciprocal lattice vector. By translational symmetry
and the relation~A2!, it follows thatS*c~k* !5c~k* !. As a
consequence, the vector$c1~k* !,c2~k* !,c3~k* !% must lie
along or within the symmetry elementS* . The set of sym-
metry operations$S* % for which S*k*5k*1G holds can be
shown to form a group49 referred to as the point group ofk* .
If two or more elements in the point group ofk* intersect at
a common point, it follows thatc~k* !50. The points in re-
ciprocal space for which this latter requirement is true are the
special points~see, for example, Ref. 3!.

To summarize, for each of the special pointsk* , c~k* !
vanishes owing to the symmetry properties~A1! and ~A2!.
For all special pointsk* exceptG, this implies thatP(k)
[2@ca(k)fa,b

21 (k)cb* (k)# takes on its maximum value of
zero.
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