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The structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions have been studied
using a computational approach which combines an embedded-atom-niE#lel description of alloy en-
ergetics with a second-order-expansi@OBE treatment of compositional and displacive disorder. It is dis-
cussed in detail how the SOE approach allows the EAM expression for the energy of a substitutional alloy to
be cast in the form of a generalized lattice-gas Hamiltonian containing effective pair interactions with arbitrary
range. Furthermore, we show how the SOE-EAM method can be combined with either mean-field or Monte
Carlo statistical mechanics techniques in order to calculate short-range{@®8€&) parameters, average
nearest-neighbor bond lengths, and alloy thermodynamic properties which include contributions from static
displacive relaxations and dynamic atomic vibrations. We demonstrate that the contributions to alloy heats of
mixing arising from displacive relaxations can be sizeable, and that the neglect of these terms can lead to large
overestimations of calculated phase-transition temperatures. The effects of vibrational free-energy contribu-
tions on the results of composition-temperature phase diagram calculations are estimated to be relatively small
for the phase-separating alloy systems considered in this study. It is shown that within the SOE approach
displacive effects can act only to displace the peak in the Fourier-transformed SRO parameter away from
Brillouin-zone-boundary special points and towards the origin. Consistent with this result, we show that the
unusual SRO observed in diffuse scattering experiments for Au-Ni solid solutions can be understood as arising
from a competition between chemical and displacive driving forces which favor ordering and clustering,
respectively.

I. INTRODUCTION culations and Monte CarléMC) simulations? in order to
compute structural and thermodynamic properties of the

Solid solutions form the most commonly occurring classsolid-solution phases of Cu-Ni, Au-Ni, and Cu-Ag. Particular
of alloy phases in the solid state. These phases are challengttention has been devoted to computing the magnitudes of
ing to study both theoretically and experimentally due to thdocal atomic displacements and to studying the effects which
topological and configurational disorder associated with theihese displacements have on calculated values of the heats of
atomic structures. In the past 30 years, a number of theoretiXing, composition-temperature{T) phase diagrams, and
cal techniques have been developed which make possibRNOrt-range-ordefSRO parameters.
computational studies of the structural and thermodynamic . Vibrational (phonon contributions to the free energy are

properties of alloy solid solution's® These approaches vary ggﬁ]r;cnperglsgﬁgsigf‘;Eﬁgtf_’}tri]%n?elsitﬁsigfsaogJg]ebé?%rmﬁgg'
in the manners in which they tr h m jonal com- <. : ) }
the manners ch they treat the computational co retical (see Refs. 13-18 and references thgreand

plexities associated with the structural disorder in alloys. In . 40 studies h d d that th .
one approach employed in a number of theoreticaEXpe”ment studies have demonstrated that these contri-
ol 2.9 . de of d-ord 908 utions may be sizable and that t_h_ey can have important
studies, " use S made ol a second-order expan .. consequences for alloy phase transitions. In the present work
of the energy Wlth respect to atomic displacements find_anl-ve have developed an approximate method for computing
occupation variables. The result of such an expansion is a§ational free energies of disordered alloys within the SOE
expression for the energy of a substitutional alloy which hagramework. With this method the effects which vibrational
a form analogous to the Hamiltonian of a lattice-gas mOde|free-energy contributions have on calculated phase dia-
In this paper we present results of a computational studyrams have been assessed.
which combines the formalism of a SOE approach with a A source of motivation for the present work is provided
description of alloy energetics based on the embedded ato@y the fact that the SOE-EAM approach combined with MF
method(EAM).*% statistical mechanics provides a method for computing alloy
The EAM is a semiempirical, interatomic-potential thermodynamic properties which offers the following com-
method which has been applied widely to the study of strucputational advantages over direct MC-based calculations: It
tural and thermodynamic properties of crystalline materialsis significantly faster and it allows one to avoid statistical
liquids, surfaces, and defedfsThe EAM has proven to be uncertainties associated with MC simulations. We are there-
successful particularly in describing the properties of noblefore interested in assessing the accuracy of both the SOE and
and late transition metals and their alloys. In the currenfMF approximations. In this paper we will discuss the accu-
study the combined SOE-EAM approach has been used iracy of the SOE treatments of alloy energetics and atomic
combination with mean-fieldMF) statistical mechanics cal- vibrations by comparing to results of more exact, direct cal-
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culations which we have performed within the context of thethe implementation within the context of pair potentials,
EAM. Additionally, the values of thermodynamic properties pseudopotential-linear-respofseheory, and all-electron
and SRO parameters calculated by MF and MC simulationsnethod$® are given elsewhere.

will be compared in order to estimate the magnitudes of the

errors associated with the MF approximation. The issues of

accuracy discussed in this paper should be of general interest

because both the MF approximation and the basic SOE for- A. Second-order energy expansion

malism have been and continue to be used widely in compu-

tational studies of alloy structural and thermodynamic prop- '_I'yp|call_y, the arrangement of atoms In a crystaliine alloy
erties. solid solution can be described with reference to a so-called

“parent” lattice, the crystallographic sites of which coincide
with average atomic positions. The positions of the atoms
Il. COMPUTATIONAL APPROACH can be specified with reference to the sites of the parent
lattice through the use of two types of variables. The first is
In this section we describe the SOE approach to treatingn occupation variable(R), which is equal to 1 or 0 depend-
compositional and displacive disorder in crystalline solid soing on whether am\ or B atom is associated with the lattice
lutions. Additionally, we discuss how this approach can besite located aR, respectively. Additionally, the displacement
used in MF calculations and MC simulations in order tovector u(R) gives the position of the atom relative to the
study structural as well as finite-temperature, thermodynamitattice site aR. The energy of a given arrangement of atoms
properties. The basic formalism described in this section wais a function of the set of occupation variables, displacement
discussed in detail previously by de Fontdimed it shares vectors, and the atomic volunte: E({c(R)}, {u(R)},Q).
many features in common with the method of de Gironcoli In the SOE approach, the energy at fixed volume is ex-
etal’ panded to second order in the compositional and displace-
In the discussion which follows we present details of thement variables. This expansion is formulated with respect to
application of the SOE approach to systems of interest in thia reference state, which can be defined in a number of ways.
paper, namely, solid solutions of binar{B) alloys where Two choices for the reference state used in previous work are
the parent lattice has cubic and inversions symmetries witthe following: (1) the “host” reference stafecorresponding
one atomic site per unit cell. Additionally, we describe into an elemental, crystalline solid of the majority alloy con-
detail how the SOE method can be implemented in the spestituent wherec(R)=u(R)=0 V R, and(2) a homogeneous,
cial case where the alloy energetics are parametrized bynrelaxedequiatomic random alloy characterized bg(R)
EAM potentials. The extension of the formalism presented=1/2 andu(R)=0 V R. An alternative choice, which is in-
below to multicomponent alloy systems and to lattices withtroduced in Ref. 1, is a reference state defined in terms of the
lower symmetry is straightforward in princip(éhe details of average compositiofic) as follows: c(R)=c and u(R)=0
the formalism in the case of multicomponent alloys may beV R, wherec is the value ofc(R) averaged over all lattice
found in Refs. 1 and )7 The underlying formalism is not sites. With this latter choice of reference state, the Taylor
limited in its application to EAM potentials alone; details of series expansion of the energy to second order has the form

E{e(R){u(R)}Q)=Eo+ % 2 [0(R=R")SC(R)SC(R') +2¢,(R—R")5C(R)U,(R')
R,R’

+ o, s(R=RHUL(R)UGRY]. (€

In the expansior(l) the first-order terms vanish due to the from its average value &. ¢,z is the force-constant matrix
translational and inversion symmetries of the reference stateorresponding to the homogeneous reference state.

and due to the fact that the sum over all lattice sites of The equilibrium(also calledstatic displacementsi®(R)
sc(R)=c(R)—c is zero by definition. In Eq(1) (and in those associated with a given set of occupation variables can be
which follow) sums over repeated Cartesian indieeand3  obtained by setting equal to zero the partial derivative of Eq.
are implied. It should be noted thB, 6, ¥,, and ¢,z are (1) with respect tau,(R):

all composition- and volume-dependent quantitieg. de-

notes the energy of the homogeneous reference state.

#R—R’) is the second derivative of the energy with respect ug(R)= - E ¢;,};(R— R")#s(R"—R")5¢c(R"). (2)

to the occupation variables & and R’ (evaluated in the R'.R"

reference staje ¢,, the mixed second derivative with re-

spect to occupation variables and displacement vectors, hen the set of formulas for the equilibrium displacements
referred to as the solute-lattice coupling paramet€he s inserted into Eq(1), a simplified expression for the energy
producty,(R—R’)6c(R) is the @ component of the force at can be derived which has the following form, written kn
R’, which arises from a deviation of the occupation variablespace:
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1 B. Thermodynamic properties and short-range order

E=Eo+ oy ; V(k) 8c(k) 8c* (k)

In the present study we are interested in the structural and
thermodynamic properties and phase stability of alloy solid
solutions. The structural properties with which we shall be
concerned are the atomic SRO and the average nearest-
i neighbor pair distances f&-A, B-B, andA-B bonds. The
In Eq. (3()), N is the number of atoms andu,k)  gRO is quantified by values of the pair correlation functions
=u_(k)—u,(k) denotes the Fourier transform of the dEVIa-(pCF’g (5c(R)Sc(R’)) (or quantities such as the Warren-
tion of u,(R) from its equilibrium valueV(k) is the Fourier Cowley SRO parameters, which are proportional to them
transfo_rm of the so-called effective pair interactidaPl), which give a measure of the tendency for atoms at $ites
which is defined as andR’ to be preferentially occupied by like or unlike atom

_ 1 % types. The average nearest-neighbor distancéfér, A-B,

V(K) = 0(K) = Yra(K) b 5(K) 5 (K). “) andB-B pairs can be determined from the relative displace-
From Eq.(4) we see that the EPI contains two contributions.mentsdaa, dap, and &g defined as
The first describes the nature of the chemical interactions in 0 0
the system, and the second isedaxation-energycontribu- San(T)=(C(R+ 1)U (R+ 7)) —(c(R)U"(R)),
tion associated with the static displacements. In Bythe
sum of the first two terms on the right-hand side corresponds ~ 9AB(7) =(C(R+ DU(R+ 7)) ~([1-c(R)IU(N)),
to the zero-temperature energy of a given configuration of
atoms located at their equilibrium positions. The third term is Jee(7)=([1-c(R+ 7)]Ju°(R+ T)>_<[1_C(R)JUO(R)>’5
a thermal one which determines the cost in energy associated ®)
with deviations in the locations of the atoms from their equi-where 7 is a vector connecting nearest-neighbor pairs in the
librium positions. parent lattice. By combining Eq&2) and(5) it is possible to

An important point to note is that &=0 the force con- defineda,, dag, anddgg in terms of nearest-neighbor PCF'’s.
stant matrix(¢) is not invertible and the second term on the Therefore, both SRO and average bond-length information
right-hand side of Eq.(4) is undefined. In the long- can be obtained from a knowledge of the values of the
wavelength(lk|—0) limit, y(k)¢ 1(k)¢* (k) is finite with a  PCF’s.
value which is given by continuum elasticity theofsee, The thermodynamic property directly related to the stabil-
e.g., Refs. 1 and)5However, the value ofi¢ 1y* in this ity of an alloy solid solution under conditions of constant
limit depends on the direction of approachke0. The sin-  pressure and temperature is the Gibbs free energy of forma-
gularity of V(k) at the origin poses no problem for what tion, defined as the difference between the alloy Gibbs free
follows because the terko=0 can be excluded from the first energy G) and the concentration-weighted average of the
sum on the right-hand side of E(B), sincedc(k=0)=0 by  values ofG for the constituent element phases. For an alloy
definition (owing to our choice of a concentration-dependentwith an energy given by Ed23), G can be formally written
reference staje as

1 x
5N 2 Pas(k) UG (K) SUE (K). )

G(N,c,T,P)=Eq+ % ; V(k)(sc(k)sc* (k))+{F, (T,Q,{c(R)}))-TS+NPQ, (6)

whereP is the pressureT is the temperatureS, is the configurational entrop¥;, is the vibrational free energy, and the
brackets( ) denote ensemble averages over the configurational degrees of fréieelomime occupation variableConsistent

with Eq. (3), the expression for the vibrational free energy used in the present study corresponds to that of a quasiharmonic
model where¢, ; form the elements of the volume-dependent force-constant matrix. In this work we are interested in
estimating the vibrational contribution to the free energy of solid-solution phases for valtesveli above the measured

Debye temperatures of the constituent elemental solids. Consequently, we will make use of the high-temperature limit of the
expression for the vibrational free energy of a quasiharmonic model. In this (Fgit can be written in terms of the
determinaniDet) of the force-constant matrigsee e.g., Ref.)6and the following expression can be derived:

<FU[T,Q,{c<R>}]>~%kBT§ In{M 4 **Mg **~“Def A2 (k)/kgT*]}, ()

whereM , and Mg denote the atomic masses Adfand B, respectively.
By combining Eqs(6) and(7), it is straightforward to derive the following MF expression for the Gibbs free energy:

1 1 1
N Gue(N,c,T,P)= N Eot+ N c(l—c)k;0 V(k)+kgT[c Inc+(1—-c)In(1—c)]

1

TN

keT>, IN{M Mg 31~ %Def#2¢(k)/KET?]}+ PQ. )
k
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In deriving Eq.(8) we have made use of the MF relations tions. Phase boundaries were calculated using values of free
(6c(k)doc* (k))=Nc(1—c) and S.=—Nkg[cIn(c)+(1 energies derived from a thermodynamic integration tech-
—c)in(1—c)]. nique described by de Gironcobit al. in Ref. 9.

Even though correlations are explicitly neglected in MF  The Hamiltonian used in the MC simulations consisted of
theory, it is possible to determine values of PCF's consistenghe first two terms in Eq(3) including real-space EPI's
with Eqg. (8) using the MF theory of concentration fluctua- within the range of the eighth-nearest-neighbor pair: simula-

tions OZ'Z%ina”y applied to alloy solid solutions by tions were performed both with and without the inclusion of

Krivoglaz® and Clapp and Mo$$ (KCM). When our MF  he Vibrational free-energy expression given by Et). The
free-energy function(8) is used to derive the KCM expres-

, ) ! termsEg, V(R), andF, in the MC Hamiltonian are volume-
sion for the Fourier-transformed PCF, we obtain the

and concentration-dependent quantities. For a given tempera-

expression ture and concentration, the volume was assumed to be that
Nc(1—c) which minimized the sum oE,+F, (in simulations where
* — . . . . )
(8c(k)c* (k)) 1+ (1= 0)[V(K) —V(R=0)]/kg T’ vibrational contributions were neglected, the volume was as

(9) sumed to be that which minimized;). The corrections to
the volume due to short-range order were therefore neglected
V(k) in our study; these corrections were found to adjust the vol-

L . . . m n amount approximately equal to only 0.1% for the
The MF approximation discussed in the previous parau e by a bp yed y >

. LT e ) (;systems considered in this study. The composition depen-
graph is knowr] to give rise to s|gn|f|cant errors when applie dence of the MC Hamiltonian was treated by fitting calcu-
to the calculation oft-T phase diagrams for alloy systems

with energetics described by Ising and lattice-gas Hamilto-lated V?'“es 0o, F,, andV(R) to polynomials in the con-
nians with short-ranged interactiofsee, e.g., Ref.)LAddi- centration.
tionally, it has been shown that in a few cases the KCM
formula can lead to incorrect predictions of the location of
the maximum for the PCF in reciprocal sp&ééor the pur- The SOE approach outlined in the previous subsections
pose of assessing the accuracy of the MF approximation inan be coupled with any technique which allows one to cal-
the present work, we have also performed calculations ofulate the term&,, 6, ¢, and ¢ in Eq. (1). For example, in
phase diagrams and PCF’s using MC simulatitins. the work listed in Ref. 9 de Gironcoliet al. and Marzari

MC simulations were performed in the grand-canonicalet al. used the virtual crystal approximation, combined with
ensemble using periodic boundary conditions with cells conlinear response and pseudopotential theories in order to cal-
taining 2000, 16 000, and 54 000 atoms. The larger sizedulate these terms from first principles. Additionally, de
(16 000 and 54 000cells were required to avoid significant Fontainé has reviewed how the SOE energy can be formu-
finite-size effects for values of the chemical field and tem-lated within the framework of pseudopotential-based pair po-
perature near critical points. Equilibration and samplingtentials. In the present work we use the EAM to calculate the
stages of the MC simulations were performed for 5000 andelevant terms arising in the SOE approach.
10000 MC steps, respectively. Enthalpy and PCF values Inthe EAM, the cohesive energy of a binary alloy can be
were obtained directly from the results of the MC simula-written as

whereV(R=0) is equivalent to the Brillouin-zone average of

C. Implementation within the embedded atom method

R#R’
E=2 {c(RIFalpR) T[1-C(RIFe(pr)} + 5 2 (C(RIC(R)Uan(Arp) +[1-c(R)I[1-Cc(R)VUee(Ar)
R,R’

He(R)[1-c(R)]+c(R)[1-c(R)[JUag(ARr)), (10

whereF , andFg are the embedding functiolfs corresponding té\ andB atoms, respectively, ard,,, Ugg, andU »5 are

pair interaction®!! appropriate for each possible type of pair in a binary alloy. In @g), Agr r' specifies the distance
between atomsAg r'=|R+Uu(R)—R’—u(R")|. The variablepg denotes the electron density at the location of the atom
associated with sitR due to all other atoms in the alloy. In the EAM, the electron density is approximated by a superposition
of atomic densities, and for a binary alloy we have

pr= 2 [C(R)pa(Arp)+[1-Cc(R)]ps(Arp)], (11)
R'(#R)
WherepA(ARiR/) is the contribution to the density &+u(R) arising from anA atom located aR’+u(R’) and similarly for
PB(AR,R')-lo' !
The termE, in Eqg. (1) can be determined from Eq§10) and (11) by settingc(R)=c and u(R)=0 for each siteR.
Expressions for the term&R—R’), #,(R—R’'), and¢, z(R—R’) can be derived in a straightforward manner from the partial
derivatives of Egs(10) and (11) with respect to occupation and displacement variables. Explidthnd ¢ have the forms

6(Ri;)=[2AF'(p)Ap(Rij) +AU(R;)](1— 5ij)+k<;j) 'A:”(I;)AP(Rik)AP(Rjk) (12
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and

1//(Rij)=fji[AU'(Rij)+f"(Rij)AF'(E)+AP'(Rij)|E'(E)]+k(;j) [ijﬁ"(E)f"(Rkj)AP(Rki)], (13

whereR;; =|R,—R;/, I;;=(R;—R;)/R;;, and primes denote differentiation with respect to the argument. In(Egsand(13),
0 and ¢ are defined in terms of the derivatives of the following linear combinations of embedding functions, atomic electron
densities, and pair interactions:

AF(p)=Fa(p)—Fs(p), F(p)=cFa(p)+(1—c)Fg(p),
p(Rij)=cpa(Rij)+(1—c)pa(R;j), Ap(Rj)=pa(Rij)—ps(Rj), EEj;)ﬁ(Rij)a

AU(Rjj)=cUpa(Rjj) +(1—2c)Up(Rij) = (1—c)Ugp(Rjj). (14)

The expression for the force-constant matig® used in the duces to ouE, term in Eq.(3); consequently, the contribu-
present study can be obtained from the formulas given inion of the chemical interaction terrfy) to the energy is
Ref. 11 for elemental solids, providgcandF are substituted neglected in the FEMM(2) Equilibrium displacements for
for the elemental electron charge densities and embeddingomogeneous solid solutiofith high-symmetry structures
functions, respectively, and provided the pair interaction issuch as fcc and bgare zero by symmetry in the FEMM.
replaced by the average U(R;)=c’Uaa(Rj)  Consequently, the relaxation-energy contribution to the alloy
+(1-0)*Ugg(Ry)) +2¢(1-¢) Upg(Ry). . enthalpy is neglected in the FEMNI3) The local harmonic
The EAM potentials for Cu-Ni and Cu-Ag used in the mogef® is used to calculate vibrational free energies in the
present study have been derived, according to the procedup%MM; in our approach, use is made of the high-
discussed by Foiles by fitting to elemental equilibrium lat- temperature limit of an approximate quasiharmonic treat-

tice constants, subllm_at|on energies, elastic constants, Vs for vibrations. In order to gauge the relative accuracies
cancy formation energies, and dilute heats of solution. Eve%]c the FEMM and SOE-MF approaches, we performed a

though the only alloy information used in the fitting was . :
heats of solution for dilute compositions, we found that thecOmparnson of the values of calculated thermodynamic prop-

energetics of concentrated Cu-Ni and Cu-Ag alloys wererties forunrelaxedCu-Ag solid solutions. Excellent agree-

well described by these potentials. Specifically, predictednent (within 1 meV/atom was four_1d between our SOE-
heats of mixing agreed well with experimental EAM results and those obtained with the FEM[Refs. 29

measurementé at all compositions for Cu-Ni alloygsee ~and 30 for both heats of mixing and Gibbs free energies of
below). Also, formation energies calculated by the EAM for formation. For applications tbomogeneousolid solutions,
(hypothetical ordered Cu-Ag compounds were found to the SOE approach offers the following advantages over the
agree to within 7 meV/atom with the values computed fromFEMM: It provides(1) a method for including the contribu-
first principles by Weiet al?® For Au-Ni, we found that po- tions of relaxation energiesassociated with static local
tentials derived by fitting only to properties of the elementalatomic displacementgo calculated values of alloy thermo-
solids and dilute alloys underestimated considerably th&lynamic properties an(®) a convenient framework for ana-
heats of mixing measured experiment&lifor concentrated lyzing SRO and average bond distances in disordered solid-
compositions. Therefore, information about the energetics ofolution phases. In the caseiohomogeneousolid solutions
concentrated alloys was included in the fitting of the Au-Ni(e.g., solid solutions with extended defectthe FEMM is
potentials used in the present study. Specifically, included imnore versatile in general since, in contrast to the SOE
the fitting of these potentials were the first-principles-method, it is not formally based on the notion of an under-
calculated values of the formation energies for five Au-Ni|ying| reference parent-lattice structure.
compoundgwith unrelaxedL1,, L1,, “40,” and Z2 struc- The SOE approach discussed in this section shares many
tures computed by Lu and Zungé¥. features in common with the concentration-wa@W)
method, the generalized perubation metli@&#®M), and the
D. Comparison with other approaches embedded cluster meth¢BCM) (each of these methods are

The combined EAM-SOE-MF approach outlined in this described in detail in Refs. 6.8n particular, these methods
section is similar in some ways to another technique whictare also based upon perturbations of a random substitutional
has been applied to the study of substitutionally disorderedlloy at a specific composition of interest. In contrast to the
alloys within the context of the EAM. This technique is re- SOE methods outlined in this section and in Refs. 1 and 9, in
ferred to as the free-energy minimization metH&6&EMM), the CW, GPM, and CWM approaches the energdacsl the
and it is described in detail in a recent paper by Najafabadelectronic structuneof the random alloy is approximated via
et al?” For homogeneous solid-solution phases, there arthe (single-sit¢ coherent-potential-approximatitn (CPA).
three main differences between the FEMM and SOE-MF apThe CPA-based methods as yet have not been used to treat
proaches(1) The FEMM description of alloy energetics re- displacive effects in substitutional alloys. However, generali-
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zations of the CW method for treating displacements haveetragonal |, structure was fixed at its ideal valugta=1).
been outlined along the lines of the second-order formalisnThe SOE cohesive energies were obtained from the first two
discussed in Sec. Il A% terms in Eq.(3) using the values oBc(k) obtained by a

A variety of approaches based upon the cluster expansioRourier transform of the occupation variables appropriate for
formalism (for a review, see Ref.)3have been applied each structure. In both the direct and SOE calculations, the
widely to the calculation of structural and thermodynamiccohesive energies were minimized with respect to volume.
properties of substitutional alloys, including the effects ofFor each of the.l, andLl, structures in the Cu-Ni, Au-Ni,
atomic displacements. Within the cluster-expansion formaland Cu-Ag alloy systems, we found that the SOE and direct
ism, relaxation effects in disordered alloys have been acealculations gave cohesive energies which agreed to within 3
counted for in a number of ways,*31516:2533-3f gne type  meV/atom.
of approach, effective volumes and elastic moduli are as- Our second test of the SOE involved the zero-temperature
signed to each type of atomic arrangement associated with@hesive energies for relaxed, disordered alloys with equi-
point>33or multiaton?®34*cluster. Sancheet al.have also  atomic compositions. In this case the direct numbers were
generalized this type of theory in order to calculate vibra-obtained by averaging the energy, calculated using(Ed),
tional properties of disordered alloys within a Debye-modelfor ten 864-atom supercells which contained randomly gen-
formalism®® The various parameters which enter into theerated atomic configurations. The energy of each supercell
effective-volume cluster-expansion theories are commonlyas minimized with respect to volume and also with respect
derived from the results of first-principles total-energy calcu-to the displacementfu(R)}, where the latter minimization
lations for ordered alloy structures with high-symmetry crys-was performed using the conjugate-gradient metiothe
tal structures. In alternative cluster-expansion approatfres, SOE cohesive energies for the relaxed, equiatomic, disor-
relaxation effects are incorporated into the values of effectivelered alloys were obtained by minimizing the zero-
cluster-interactionECI) parameters directly. The values of temperature and zero-pressure version of(Bgwith respect
the ECI’s, including the contributions of the relaxation en-to volume. In this test excellent agreement between the re-
ergy, are obtained in these methods by fitting to first-sults of direct and SOE calculations was again obtained: Co-
principles-calculated total energies for a large set of orderetiesive energies were found to agree to within 3 meV/atom
structures(including structures with low symmetries and for each alloy system considered.

many structural degrees of freedpmhich have been re- In order to estimate the accuracy of the approximate treat-
laxed with respect to all cell-internal and external structuralment for atomic vibrations outlined above, vibrational free
degrees of freedor. energies were computed both by a direct quasiharmonic

In the cluster-expansion approaches, relaxation energigaethod(using the EAM expressions for the dynamical ma-
and chemical interactions are parametrized by pair as well asix given by Dawet al. in Ref. 1)) and from Eq.(7) for
higher-order multiple-atom ECI's, in contrast to the SOEequiatomic Cu-Ag and Cu-Ni alloys at 600 and 900 K. Di-
method in which relaxation and ordering energies are derect calculations of the quasiharmonic vibrational free ener-
scribed by effectivepair interactions only. While third- and gies were performed for both disordered alloys and for or-
higher-order displacive effects are automically built into thedered compounds with thiel, structure. Analogous to the
fited values of the ECl's in the cluster expansion ap-calculations described in the previous paragraph, the direct
proaches, the consideration of such terms within the formalealculations for disordered alloys were performed using 108-
ism outlined in Sec. Il A would require going beyond atom supercells and results were averaged over several ran-
second-order terms in the expansion given by @¢. The  domly generated atomic configurations. For CuNi the SOE
SOE approach offers the distinct advantage that it allows thexpression for the vibrational free energy gives results which
magnitudes of the atomic displacements in substitutionallyare at most 3 meV/atorf2%) and 2 meV/aton{1.5% more
disordered alloys to be calculated directly; this is not genernegative for ordered and disordered alloys, respectively, at
ally possible in the current implementation of the cluster-each temperature considered. For CuAg the magnitudes of
expansion approaches. In the following section the results ahe vibrational free energies were found to be larger, as was
the present SOE-based calculations will be compared witthe discrepancy between results obtained from direct and
those of previous studies performed using cluster-expansioBOE calculations. Specifically, for CuAg the vibrational free
methods. energies calculated from Eq7) are as much as 10 meV/
atom (3%) and 15 meV/aton{4%) less negative than those
Il RESULTS obtained by dl_rect calculations for disordered and ordered

alloys, respectively.
A. Accuracy of the SOE approach

In order to assess the accuracy of the approach for treating B. Heats of mixing

alloy energetics described in the previous section, we per- In Fig. 1 we present the results of EAM-SOE calculations
formed several tests comparing results obtaifiesing the for zero-temperature heats of mixing ) for relaxed and
same set of EAM potentigisfrom direct calculations and unrelaxed random solid solutions in fcc Cu-MNig. 1(a)],
from the approximate SOE method. The first test involvedCu-Ag [Fig. 1(b)], and Au-Ni[Fig. 1(c)] alloys. The solid

the zero-temperature cohesive energies of ordered alloy corfines in Fig. 1 give the heats of mixing faelaxedalloys
pounds havind.1, andLlI structures. The direct calculations which were computed as the difference in enthalpy between
were performed by evaluating E¢LO) with the values of the random solid solution of a given composition and the
{c(R)} appropriate for each ordered structure and with theconcentration-weighted average of the enthalpies of the con-
values of{u(R)} all set equal to zerdthe c/a ratio for the  stituent elements. The enthalpies were computed by mini-
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FIG. 1. Calculated and experimentally measured values of the heats of miXidy for Cu-Ni (a), Cu-Ag (b), and Au-Ni(c) solid
solutions. The solid lines indicate total calculated valueAdffor relaxed alloys, the dashed lines correspond to valués-bfor unrelaxed
solid solutions, and the dotted lines give values of relaxation enefggestext The open circles indicate measured valued bff, taken
from Ref. 20, for Cu-Ni alloys at 973 K, Cu-Ag alloys at 1052 K, and Au-Ni alloys at 1150 K.

mizing Eq.(8) with respect to volume at=0 K. The dashed Cu-Ag and Au-Ni the relaxation energies are more sizable
lines in Fig. 1 correspond to the heats of mixing calculatedvith magnitudes as large as 30 and 80 meV/atom, respec-

for unrelaxedrandom alloys in which the atoms are artifi- tively.

cially constrained to occupy the ideal positions on an fcc The open circles ina?Fig. 1 symbolize the valuesdfi
lattice (i.e., displacements were all set to Zerhese results measured experiment fyat finite temperatures for Cu-Ni,

were computed also from E¢B) neglecting the relaxation- Cu-Ag, and Au-Ni solid solutions. For Cu-Ni the calculated
results for random alloys at zero temperature and the mea-

energy contributiorjthe second term_ on t_he ri_ght-ha_nd side sured values for solid solutions containing SR &t973 K

of Eq. (4)] to the EPI. The dotted lines in Fig. 1 give the [¢yjid |ine and open circles, respectively, in Figajl agree
values of the relaxation energies defined as the differencg) within 5 meV/atom. We found that the agreement with the
between the heats of mixing for relaxed and unrelaxed a|experimenta||y measured values ®H was improved when
loys. finite-temperature and SRO corrections were included in our
The degree of size mismatch for each of the alloy systemsalculations. Specifically, we recalculated the values of the
considered in the present study can be assessed by compuothesive energies for Cu-Ni solid solutions and pure ele-
ing the ratioAa/a, whereAa and a are, respectively, the ments using lattice parameters which minimized the free en-
difference and the average of the lattice parameters for thergy given by Eq(8) at T=973 K. Additionally, in the cal-
two constituent elements. For Cu-Ni, Cu-Ag, and Au-Ni, theculations for the alloys we included SRO effects through the
values ofAa/a are, respectively, 2.5%, 12.5%, and 14.7%. Ause of MC simulations. The effect of SRO wasldwver the
comparison of the dotted lines in Fig. 1 shows that a correealculated heats of mixing by as much as 4 meV/atom for
lation exists between the magnitudes of the relaxation enenear-equiatomic alloys. The correctionsA¢d due to ther-
gies and the degree of size mismatch, as expected. In pamal expansion were found to be smaller in magnitude for
ticular, for Cu-Ni the relaxation energy is smallest with a Cu-Ni; their effect was tgaise the calculated values &fH
value of maximum magnitude equal to 3 meV/atom. Forby a maximum value of 2 meV/atom.
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TABLE I. Mean-field-calculated and experimentally measured values of critical temperaiear(d
critical compositions X.) for phase separation in the Cu-Ni, Cu-Ag, and Au-Ni alloy systems. All tempera-
tures are in kelvin, and compositions are given in units of atomic percent. The results I, I, and Ill correspond
to calculations performed | neglecting both relaxation energy and vibrational contributions to the alloy free
energy, (II) including relaxation energy, but neglecting vibrational contributions, @hd including both
relaxation energy and vibrational free-energy contributions. Experimental results listed in the final row are
taken from Ref. 28.

Cu-Ni Cu-Ag Au-Ni
Method Te X¢ (Ni) Te X:(Cu) Te X¢ (Ni)
| 1050 63 3170 63 3550 79
Il 900 63 2270 49 2460 85
I} 900 67
Experiment 628 67.3 1083 70.6

The agreement between calculated and experimentallielaxation effects by Amador and Bozzdfo,Lu and
measured values of the heats of mixing for relatively diluteZunger?® and Colinetet all® The best level of agreement
Cu-Ag alloys is seen in Fig.(lb) to be excellent. This good with the results in Fig. (c) and with experimental measure-
agreement is not surprising since experimentally measureshents for concentrated alloys is found for the relaxed values
dilute heats of solution were used in the fitting of the EAM calculated by Colineét al. (solid line in Fig. 2 of Ref. 18
potentials for Cu-Ag. For Au-Ni alloy$Fig. 1(c)], the ex- At ¢=0.5 our results forAH are only 5 meV/atom larger
perimentally measured and calculated valuesA\éf agree than those obtained from first-principles calculations by
very well for near-equiatomic alloys, although significantthese authors. The values &AH at c=0.5 calculated by Lu
discrepancies are found for more dilute compositions. Thesand Zunger and by Amador and Bozzolo are roughly twice
discrepancies cannot be attributed to finite-temperature arak large as those shown in Figicl However, the magni-
SRO effects neglected in the calculated values. Rather, thaydes of the relaxation energy for AuNi calculated by these
arise from errors associated with the EAM potentials develauthors agree welwithin 9 meV/atom with the value of 77
oped for Au-Ni. meV/atom found in this study.

The values of the heats of mixing presented in Fig. 1 can
also be compared to results of previous first-principles
calculation$®10:252636.38 parformed within the cluster-
expansion framework using various approximati¢see dis- Table | and Fig. 2 display experimentally measdrezhd
cussion in Sec. Il Dfor the treatment of atomic relaxations calculated results pertaining to the thermodynamic stability
in the Cu-Ni, Cu-Ag, and Au-Ni alloy systems. In the case ofof Cu-Ni, Cu-Ag, and Au-Ni solid solutions. The computed
the Cu-Ni system, the values &fH plotted in Fig. 1a) are  results were obtained from MF calculations and MC simula-
roughly 15 meV/atom larger in magnitude than those obtions according to the methods outlined in Sec. Il B. In Table
tained by Amador and Bozzof.In agreement with our | values of the critical temperature¥ ) and critical compo-
findings, Amador and Bozzolo find that SRO has a wealksitions (x.) for solid-state phase separation are listed. The
effect on the calculated values &fH for near-equiatomic computed values are the results of MF calculations which
Cu-Ni alloys atT=973 K. For dilute Cu-Ag solid solutions were performed using the following three levels of approxi-
(containing less than 10 at. % Cu and greater than 90 at. dfation:(I) neglecting both relaxation-energy and vibrational
Cu), our results foAH agree to within 5 meV/atom with the contributions to the free energyll) including relaxation-
“relaxed” values calculated by Wait al?® Values ofAH for  energy contributions but neglecting vibrational contributions,
more concentrated compositions in the Cu-Ag system havand (Ill) including both relaxation-energy and vibrational
been calculated by Sanchet al'® and Terakuraet al®®  contributions. In Fig. 2, MF- and MC-calculated phase dia-
When local relaxation effects are neglected, these authomgrams are plotted for Cu-Ni and Cu-Ag alloys. The dashed
obtain values oA H for the equiatomic composition equal to and solid lines in Fig. 2 correspond to MF- and MC-
140 meV/atom(Ref. 13 and 540 meV/atoniRef. 38. The calculated phase boundaries, respectively. In the case of
calculated values of Sanchezal. are more consistent with Cu-Ni [Fig. 2(a)], these phase boundaries were computed
the unrelaxed results plotted by the dashed line in Fig).1 including both vibrational and relaxation-energy contribu-
An even better level of agreement exists between our resultsons to the alloy free energy. For Cu-Ag, relaxation-energy,
and those of Sanche# al. for the values ofAH calculated but not vibrational, free-energy contributions were consid-
including relaxation effects: In this case our values areered in the calculations of the phase diagrams shown in Fig.
smaller for the equiatomic composition by 13 meV/atom. It2(b).
is interesting to note, however, that the value of the relax- From a comparison of the MF-calculated results listed in
ation energy for CuAg obtained using an effective-volumethe rows labeled | and Il in Table I, it can be seen that the
method(see Sec. Il Dby Sanchezt al. is roughly twice as relaxation energy is responsible for a lowering of the calcu-
large as that found in the present study. For Au-Ni alloysated values ofl; by 14% (150 K), 28% (900 K), and 31%
values of the heats of mixing have been calculated including1090 K) for Cu-Ni, Cu-Ag, and Au-Ni alloys, respectively.

C. Finite-temperature phase stability
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almost no effect on the calculated value of the critical com-
position (x.), contrary to the findings of both this study and
that of Sancheet al.

For Cu-Ni the results listed in the rows labeled 1l and IlI
in Table I indicate that the main effect of the vibrational free
energy is to shift the calculated valuexgfto a more Ni-rich
composition. For Cu-Ag and Au-Ni, calculated valuesTgf
andx, could not be obtained including vibrational contribu-
tions to the free energy since, with the sets of EAM poten-
tials used in the present study, both of these alloys are pre-
dicted to be dynamically unstable at temperatures lower than
S A— T..%2 For Cu-Ag alloys at 1000 K, we found that vibrational
0 20 40 60 80 100 contributions to the free energy are responsible for an ap-

Cu ¢ (at. % Ni) Ni proximately 3 at. % increase in the calculated solubility lim-
its for both Cu- and Ag-rich compositions. A qualitatively
@ similar effect of the vibrational free-energy contributions on
3000 the solubility limits in Cu-Ag was found by Sancheral®®
1 (Ag, Cu) An assessment of the magnitudes of the errors associated
2500 ] ’ with the MF approximation in the present study can be ob-
] tained from a comparison of the dashed and solid lines plot-
ted in Fig. 2. In the case of Cu-Ni, Fig(&, MF and MC
results agree well for Ni-rich compositions, although signifi-
cant discrepancies are found near equiatomic compositions.
Specifically, near the composition 45 at. % Ni, phase bound-
aries obtained from MC simulations are lower than those
derived from MF calculations by approximately 20260
K). For Cu-Ag, MF- and MC-calculated phase transition

T (K)
g
P

500 4 temperatures are found to be in better agreement; a maxi-
0 20 40 60 8 100 mum difference of only 3% is found in the calculated phase
Ag ¢ (at. % Cu) Cu transition temperatures near 70 at. % Cu.
(b) Results listed in the last row of Table | and shown as open

circles in Fig. 2 are taken from experimentally measured
rphase diagram®. In Fig. 2(a) it can be seen that our calcu-

tions of the composition-temperature phase diagrams for C@Ni lations reproduce qualitatively the asymmetry in the misci-

and Cu-Ag(b). Dashed and solid lines were calculated using thebIIIty gap for Cu-Ni. Our most accurate calculated value of

mean-field approximation and Monte Carlo simulations, respec- ¢ Or Cu-Ni, obtained from MC simulations including both

tively. In the calculations for Cu-Ni, both vibrational and r€laxation and vibrational contributions to the free energy, is
relaxation-energy contributions to the alloy free energy were in-Nigher than the experimentally measured value by 230 K.
cluded:; for Cu-Ag, relaxation-energy but not vibrational free-energy T his overestimation of the value df. for Cu-Ni is consis-
contributions were considered. The open circles were taken fronfent with the fact that the EAM-SOE-computed heats of mix-
the experimentally measured phase diagrams compiled in Ref. 28ng shown in Fig. 1a) are slightly larger in magnitude than
the values obtained from calorimetry experimefitszor
Additionally, relaxation energies change the values ofor Cu-Ag alloys, below the eutectic temperature of 1053 K, the
Cu-Ag and Au-Ni solid solutions by 14 and 6 at. %, respec-calculated phase boundaries underestimate only slightly the
tively. In the work of Sancheet al® for Cu-Ag the effect experimentally measured solubility limits shown in Figb2
on the calculated value of. due to the relaxation energy for Cu-rich compositions. On the Ag-rich side of the phase
was estimated to be nearly twice as laf§6%, 1700 K as  diagram, the discrepancy between the calculated and experi-
that found in this study; this result is consistent with the factmentally measured phase boundaries is slightly more signifi-
that the relaxation energy in Ref. 13 was found to be roughlycant. As alluded to above, when vibrational free-energy con-
twice as large as ours for concentrated alloys. Sanehat  tributions are included in the calculation of the miscibility-
found that the calculated value gf changed from roughly gap phase boundaries for Cu-Ag at temperatures below the
65 to 50 at. % Cu when the relaxation-energy contribution tceutectic, the computed solubility limits increase and the
the free energy was included in the calculation of the Cu-Agagreement with experimental measurements is improved for
phase diagram; these results are in excellent agreement wittoth Cu- and Ag-rich compositions. According to the results
the values ok, listed in rows | and Il of Table I. Wegt al?®  for Au-Ni listed in Table |, the MF-SOE-EAM calculation,
also estimated the effects whiglocal) relaxation energies which included relaxation-energy contributions to the free
have on the calculated Cu-Ag phase diagram, and their resnergy, resulted in a computdd which significantly over-
sults are in nearly perfect agreement with those of Sanchezstimates the measured value. The reason for this poor level
et al. concerning the effect on the calculated valuesTpf  of agreement between calculated and measured valugs of
However, Weiet al. estimated that the relaxation energy hasfor Au-Ni can be attributed largely to the failure of the EAM

FIG. 2. Calculated and experimentally measured solid-state po
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FIG. 3. Calculated Fourier-transformé@T) pair-correlation function$PCF’9 and effective pair interaction&PI's) for a Au—40 at. %
Ni alloy. FT PCF’s, calculated using Monte Carlo simulatiéasand the mean-field approximatidb), are plotted in th€001), k,=0, plane
of reciprocal space. The FT EPI is plotted with a solid linddnbetween thd” ((000)) andX ((100) points. The dashed and dotted lines
in (c) give the “chemical” and relaxation-energy contributio(s®e text to the FT EPI, respectively.

potentials to accurately reproduce the curvature associatdbns. In the MF calculations the FT PCF was determined
with the composition dependence of the heats of mixing plotdirectly using Eq(9). MC simulations were used to compute

ted in Fig. Xc). values of the real-space PCF’s for the first eight nearest-
neighbor shells; these results were then Fourier transformed
D. Short-range order and effective pair interactions in order to compare with experimental measurements and

The SRO of Au-Ni solid solutions has been studied ex-IF calculations.

perimentally by a number of investigataisee Refs. 41 and The results ,of the MC simulations and MF cal_culations
42 as well as references listed thejeising diffuse scatter- or the FT PCF's are plotted in th@01} plane of reciprocal
ing methods. Results obtained by Wu and Cdfishow that ~ SPace in Figs. @ and 3b), respectively. The features dis-
the Fourier-transforme@T) PCF for a Au—40 at. % Ni al- Played in each of these figures are seen to be qualitatively
loy has a maximum value away from the high-symmetryvery similar. In particular, in excellent agreement with ex-
special points*®in the fcc Brillouin zone. Specifically, the = perimental measuremerits, both the MC- and MF-
PCF is found to peak ne&r=(0.6,0,0. In the current study calculated PCF’s take on maximal values at positions be-
we computed the Fourier-transformed PCF for a Au—4Qween thel’ ((0,0,0) and X ({(1,0,0) points of the fcc

at. % Ni alloy at a temperature of 2300 Kvhich is just  Brillouin zone. Specifically, the MC and MF results display
above the calculated miscibility-gap phase boundary at thi®CF peaks at approximatek~={0.55,0,0 andk=(0.5,0,0,
composition using both MF calculations and MC simula- respectively. The maximal value of the FT PCF calculated by
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MC simulations is lower than that obtained from MF theory simulations and MF calculations, respectively; our results
[Eq. (9)]; the origin of this discrepancy is likely due to the therefore agree best with the measurements of Wu and
fact that the critical temperature obtained by MC simulationsCohen*

is lower than that derived from MF. Additionally, the MF  In Fig. 3(c) it is shown that the chemical and relaxation-
results[Fig. 3(b)] show structure near the origin which is €nergy contributions to the Fourier-transformed EPI are com-
absent in Fig. @&). The reason this structure is not present inParable in magnitude for the Au-Ni system. The magnitudes
the latter figure stems from the fact that the MC-calculated® the relaxation-energy contributions to EPI's can be ana-
FT PCF's were obtained from the values of the real-spac&/Z€d further from the results plotted in Fig. 4. In Figgay

PCF's corresponding to only the first eight nearest-neighboft(?), and 4c), calculated values of EPI's are plotted as a

shells; from an analysis of the MF results, it was found thafunction of the neighbor shell in real space for equiatomic

the values of PCF's corresponding to pairs spanning disg:u-Nl, Cu-Ag, and Au-Ni solid solutions, respectively. Each

tances greater than the eighth neighbor are needed to reprvqlah'te.bar |nd|(?ate_s a value od(R), corresponding to the
P ; chemical contribution to the EPI. For each alloy system, the
duce the structure shown in Fig(3 near thel” point.

An understanding of the possible origin of the unusualChemiCéII EPP's are seen to decay rapidly as a function of
; . ) . distance. Specifically, the nearest-neighbor values are found

SRO obse_rved in Au-Ni solid solutions can be_obtameq fromto dominate andé(R) is negligible beyond the fourth-
an analysis of the calculated EPI shown in Fig)3In this  eighnor-pair distance in all cases. The solid black bars in
figure the solid line gives the valueV(k)=V(k)-V (R=0) g4 indicate values of the EPI's including both chemical
[see Eq.(9)] calculated for a Au—40 at. % Ni alloy as a anq relaxation-energiP(R)] contributions. A comparison of
function ofk along the line joining thé” andX points. From  the plack and white bars in Fig(@ shows that for CuNi the
Eq. (9) it can be seen that, within the MF theory of concen-contributions fromP(R) are relatively small. For CuAg and
tration fluctuations, the PCF has a maximal valu& gbints  AuNi the situation is quite different. Specifically, the relax-
corresponding to global minima for the functiaf(k). In  ation energy is found to change the sign of the first- and
agreement with Fig. ®), the quantityAV(k) is seen to have second-neighbor pair interactions for CuAg, as well as the
a minimum value ak~(0.5,0,0. In Fig. 3c) the dashed and nearest-neighbor EPI for AuNi. Additionall2(R) gives rise
dotted lines indicate the “chemical” and relaxation-energyto EPI's which decay slowly in real space. The fact that
contributions toAV(k) defined asf(k)—#R=0) and P(k) sizable relaxation energies lead to long-ranged EPI's has
—P(R=0), respectively, whereP(k)=—y(k)¢ (k)y*(k). been noted also in previous semiempirtcaland
The chemical contribution taV(k) (dashed lingis seen to first-principles:® studies.
have a minimum value at th¥ point. Therefore, chemical
interactions give rise to a tendency for ordering SRO of the E- Local atomic displacements: Average nearest-neighbor
type consistent with.l, and LI, structures. By contrast, the bond lengths
relaxation-energy contribution taV(k) (dotted ling has a In the previous three subsections, we analyzed the effects
minimal value at thel’ point, indicating a preference for which local atomic displacements have on the SRO and ther-
SRO of clustering type. Therefore, we find that for Au—40 modynamic properties of solid solutions. In this subsection
at. % Ni alloys, the minimum o¥/(k) and the corresponding we consider the nature of the local atomic displacements
peak in the PCF for values &f between thd” andX points  themselves. Specifically, in Fig. 5 we show calculated and
arise as a consequence of a competition between chemicgxperimentally measuréd®® values of average nearest-
and relaxation-energy contributions to the EPI, which, re-neighbor (NN) bond lengths R) for Au-Au [Fig. 5a)],
spectively, favor SRO of ordering and clustering types. ~ Au-Ni [Fig. Xb)], and Ni-Ni[Fig. 5(c)] pairs as a function of

SRO in the Au-Ni system has been the subject of severatlloy composition for Au-Ni solid solutions. The calculated
theoretical studies in the pa&t*3*4In the recent work of Lu values, shown_ as solid ci_rcles in Fig_. 5, were obtained for
and Zungef® the properties of Au-Ni solid solutions were fandom alloys(i.e., neglecting SRPusing Egs(2) and(5).

studied using a first-principles, cluster-expansion-based "€ €xperimental values plotted with open circles were ob-

method. By combining this approach with MC simulations,EaE';eA?: S)fﬁgqasuer)étrigﬂ?sd e’:}::)%\':gst? rpgzaﬂgligsgﬁgture
Lu and Zunger calculate SRO for a Au—40 at. % Ni solid P y '

solution which is also in good agreement with experimentarpen squares give NN bond lengths for Au—40 at. % Ni al-
measurements: They find a peak in the SRO in reciproc ys derived from the magnitudes of the average displace-

) He andX Do _ K0.8.0 ents obtained by Wu and CoHéfrom an analysis of their
space between tHéandX points at approximatel§0.8,0,0.  jttyse scattering data. The dashed lines in Fig. 5 correspond

Therefore, the experimentally observed position for the peak, “Vegard's law” values ofR which have been calculated

in the SRO in reciprocal spacat roughly(0.6,0,0) is brack-  355uming no displacements and a linear dependence of lat-
eted by the peak positions obtained in the present calculgjce parameter on composition.

tiOI’lS and in Ref 26. Lu and Zunger note that their Calculated Both calculated and experimenta”y measured results p|0t_
value of the nearest-neighbor Warren-Cowley SRO paramted in Figs. %a) and 5c) show that the lengths of the NN
eter(—0.074 is opposite in sign compared to the value mea-Au-Au and Ni-Ni bonds are greater and smaller, respectively,
sured experimentally by Wu and Coh@hn039,*! although it than the average values given by Vegard's law, as expected.
agrees fairly well with an estimate-0.030 obtained from  From an analysis of Figs.(& and Hc), it can be seen that
earlier experiments on polycrystalline samples performed byhe displacements with the largest magnitu@es, the larg-
Flinn et al*? Our computed values for the nearest-neighborest deviations from Vegard's laware found for like NN
SRO parameter are 0.034 and 0.052, obtained from M®onds between minority species in dilute alloys. For the
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FIG. 4. Calculated values of the effective pair interactiovis for equiatomic Cu-Nia), Cu-Ag (b), and Au-Ni(c) alloys. The horizontal
axis represents neighbor shells; results for shells ranging from the first to the eighth neighbor are plotted from left to right in each figure. The
white bars give values of the “chemical” contributiah[see Eqg.(1)] to the effective pair interaction. The solid black bars give the total
values of the effective pair interactions, including both chemical and relaxation-energy contriiggertext

mixed Au-Ni bonds, both the EXAFS data and the calculatedoresent study, we described the details of how the SOE

results indicate that the values of the displacements changsethod can be implemented within the framework of the

sign as a function of composition: For Ni- and Au-rich com- EAM in Sec. Il C.

positions, respectively, the Au-Ni bond lengths deviate posi- When combined with MF statistical-mechanical calcula-

tively and negatively from Vegard’s law. tions, the SOE approach provides a highly efficient technique
In the case of Au-Au NN bonds, the agreement betweerfor computing both structural and thermodynamic properties

the different experimental data and the calculated results fgpf alloy solid solutions. In order to estimate the magnitudes

R is quite good, although computed bond lengths are considf the errors associated with the various approximations used

tently slightly larger than the measured values. For Au-Nil0 formulate the MF-SOE approach, a number of numerical

bonds at 40 at. % Ni, there is a significant difference betweefEStS Was performed comparing predictions of this method

the values oR obtained from the two different experimental Wit those of more accurate calculations. The results dis-
methods. In this case our calculations are in very good agre cussed in Sec. Il A demonstrate that the SOE expression for

ment with the EXAFS results. By contrast, for Ni-Ni bonds(?he alloy energy is accurate to within a few meV/atom. This

our computed bond lengths differ greatly from the Valuesexcellent level of accuracy is achieved both for ordered com-

obtained by EXAFS measurements for Au-rich Composi_pounds and relaxed disordered solid solutions even though

tions, and better agreement is found with the diffuse scattell—he SOE s formulated with respect to a homogeneous disor-

ing data at 40 at. % Ni. A comparison of the data plotted Withdered reference state with no displacements.

; o In Sec. Il B we described a method which allows alloy
?e?seur;tscwglrizlil:rt] ';']%St (g?-Nanarﬁ(g) ZBO&IKS égﬁgtﬁgngéélzire vibrational free energies to be calculated within the SOE

roughly equal for Au-rich compositions. This surprising re- framework. For elemental solids this approach reduces to the

sult is not reproduced by either our calculations or those OFlgh-temperature limit of the quasiharmonic theory. For al-

Amador and de Fontairf8,and it warrants further experi- t?rl: é?:tuiggrofggh;ﬁgg?ﬁgﬁg\/;ﬁe dnugvtl(t)héﬂetzg ggth;)f
mental and theoretical investigation in our opinion. P q 9

higher-order terms in the expansion, E@), of the alloy
energy?’ In Sec. Il A we discussed results which demon-
IV. SUMMARY AND DISCUSSION strate that the approximate SOE method reproduces values of
F, from direct quasiharmonic calculations for ordered and
disordered alloys to within a few percent. A problem associ-

In the second section of this paper, a SOE approach waated with the SOE treatment of vibrational free energies is
outlined for the purpose of studying the structural and therthat it leads to an expression B, which is independent of
modynamic properties of alloy solid solutions. This approactthe alloy configuration at a given concentration. This short-
can in principle be coupled with any technique which allowscoming can be remedied and the accuracy of the approach
one to calculate th&, term as well as the various second- can be improved through the consideration of third-order
order derivatives arising in Eq1). For the purposes of the terms in the expansion of the alloy enefgy.

A. SOE approach
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FIG. 5. Calculated and experimentally measured values of the average bond leRyths @ function of alloy composition for
nearest-neighbor Au-Aua), Au-Ni (b), and Ni-Ni (c) bonds in Au-Ni solid solutions. The solid circles are results of the calculations
discussed in the text; the solid lines connecting the solid-circles are merely drawn as a guide to the eye(RABS and diffuse x-ray
scattering(Ref. 30 experimental results are plotted with open circles and squares, respectively.

In addition to the approximations made in deriving thethe MF approximation leads to approximately a 23% overes-
SOE expressions for the alloy energy and vibrational fredgimation of the calculated value df.." In the present study,
energy, an additional source of error introduced in the MF+the alloy Hamiltonian is somewhat more complex than that
SOE approach is the use of the MF approximation in theof the nearest-neighbor Ising model. Specifically, the SOE
calculation of alloy thermodynamic properties and PCF'sHamiltonian contains longer-ranged pair interactions as well
(SRO parameteysin the calculation of PCF’s, the MF-KCM as a composition-dependent teEg. As a consequence, the
expression given in Eq9) has been shown to qualitatively estimates of the accuracy of the MF approximation obtained
fail in some case% As discussed in detail in Sec. lll D, in for short-ranged Ising Hamiltonians are not directly relevant
the present study errors associated with the MF theory wertor our calculations. In particular, in the limiting case where
found to be much less severe for the calculated PCF’s of ¢he magnitudes of the EPI's are small enough that the sum of
Au-40 at. % Ni alloy. In particular, the position of the peak the interaction term&/(k){sc(k)sc* (k)) is negligible com-
in the PCF in reciprocal space was computed to be roughlpared to the ternk, in Eq. (6), the MF expression for the
half way between th& and X special points of the fcc Bril- alloy free energy given in E(8) is exact.
louin zone in both MF and MC calculations; the MC- and In Sec. Il C the accuracy of the MF approximation for
MF-calculated peak positions for the PCF in reciprocal spac¢he calculation ofc-T phase diagrams in the present study
were only slightly displaced from one another. was assessed by comparing results obtained using both MF

For Ising (and, equivalently, lattice-gasnodel Hamilto- and MC methods. The MF-calculated values of the transition
nians with short-ranged interactions, the errors associate@mperatures for Cu-Ni were overestimated at some compo-
with the MF approximation for the calculation of thermody- sitions by as much as 20%, an error comparable in magni-
namic properties and-T phase diagrams have been well tude to that found for the nearest-neighbor ferromagnetic
established. Specifically, for phase-separating alloys with fc¢sing model. However, in the case of Cu-Ag alloys, the MF
structureqsuch as those considered hemed energetics de- errors were found to be much smaller and phase transition
scribed by the nearest-neighbor ferromagnetic Ising modetemperatures were overestimated by at most 3%. These re-
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sults for Cu-Ni and Cu-Ag demonstrate that in general theare associated with chemical and relaxation-energy contribu-
accuracy of the MF approximation in the calculation of alloy tions to the energy, are comparable to those introduced in

thermodynamic properties is system dependent. Sec. Il. The third arises from the elastic “unrelaxed energy”
(UE), which is defined as the elastic work required to form a

B. Structural and thermodynamic properties disordered alloy of size-mismatched atoms located on ideal

of alloy solid solutions lattice sites. The parameters in the Cook—de Fontaine SOE

With the SOE method we have analyzed the effects whiciormulas were parametrized by Wu and Cohen using neutron
static and dynamic atomic displacements have on the strudnelasti¢® as well as diffuse scatterifiydata. It was found
tural and thermodynamic properties of Cu-Ni, Cu-Ag, andthat the total elastic-energy contribution k), given by
Au-Ni solid solutions. In Sec. Il we discuss how, within the the sum of the UE and the relaxation energy, has a minimum
SOE formalism, static displacements give rise to aatk=(0.6,0,0. They therefore propose that the elastic energy
relaxation-energy contribution to the enthalpy of an alloyalone is responsible for a minimum in the total value/¢k)
solid solution. The magnitude of the relaxation energy hasind a corresponding peak in the SRO at this position in
been calculated by a variety of techniques in a number ofeciprocal space. Furthermore, they suggest that the mini-
first-principles computational studi¢see Refs. 3, 5 9, 13, ‘mum in the elastic-energy component\tfk) can be attrib-

15, 16, 25, 26, and 34-36 as well as references cited thereifyted to the nature of the force constants in the system which
of the energetics of disordered alloys. In agreement with thgre known to give rise to a softening of the phonon spectrum
findings of these previous studies, the results displayed igt k=(0.6,0,0.* The elastic UE is contained within tHg,

Fig. 2 for Cu-Ag and Au-Ni alloys clearly show that the term in our formalism, and it does not contribute directly to
relaxation energy can amount to a sizable fraction of the heagyr v (k) due to the different reference frame used in our
of mixing in alloys displaying large degrees of atomic-size SOE method as compared with that of Cook and de Fontaine.
mismatch. Consequently, it is difficult for us to comment directly on the

The effect of static and dynamivibrationa) atomic dis-  explanation proposed by Wu and Cohen. However, it is
placements on the thermodynamic stability of alloy solid soorth noting that Wu and Cohen find minima in the chemical
lutions was discussed in Sec. Ill C. It was shown that theynd relaxation-energy contributions\¥ek) which occur near
relaxation energy associated with static displacements led o=(1 0,0 and at k=(0,0,0, respectively, in qualitative
as much as 31% lowering of the calculated values of phasggreement with the results of the present study. In our opin-
transition temperatures. In the cases of Cu-Ni and Cu-Adion further work is warranted to establish the possible con-
results displayed in Fig. 2 illustrate that vibrational contribu-nection between phonon softening and a minimunVik)
tions to the alloy free energy were found to have effects omheark=(0.6,0,0.
calculated phase diagrams which are comparatively smaller oyr results (see Sec. Il D which demonstrate that
than those arising from static atomic relaxations. In particure|axation-energy contributions to the EPI act to drag the
lar, for Cu-Ni the main effect of vibrations was to shift the peak in the SRO away from Brillouin-zone-boundary special
top of the calculated miscibility gap to higher Ni composi- points is a general one which is not unique to the Au-Ni
tions. For CU'Ag vibrational effects were found to be respon'system_ Speciﬁca”y’ we show in the Appendix how symme-
sible for a slight increase in the solubility limits below the try considerations allow us to conclude that the second term
eutectic temperature. The effect of vibrational free-energyyn the right-hand side of Ed4), P(k)=— (k)¢ (k) ¢* (K),
contributions on the results of phase-diagram calculations fofakes on a maximum valugequal to zerp at each of the
phase-separating metalfi;® semiconductol! and  special points excluding”. Therefore, within the KCM
ceramic® alloy systems also has been analyzed in previousheory, the ternP(k) can only act to displace the peak in the
studies. In each of these it was found that vibrational contripCE away from the Brillouin zone boundary when special-
butions lowered the critical phase-separation temperature bypint-ordering SRO is favored chemically. In practice,
amounts ranging from between a few peréétd as much as  hether or not the relaxation energy actually does displace
15%:*°*®Additionally, it has been found that the effects the SRO peak in such situations is dependent upon the rela-
upon calculated phase diagrams attributed to vibrational freﬁve magnitudes of the chemical and re'axation_energy con-
energies can be significantly asymmetric in nature, as we finglipytions to the EPI. In Au-Ni these contributions are of
for Cu-Ni. similar magnitude, as shown in Fig(c3, and it is likely that

The results shown in Fig. 3 and discussed in Sec. lll Dthis may be the case in other alloy systems as well.
provide an interesting example which illustrates how chemi-

cal and displacive contributions to the energy can compete in

determining the atomic structure of an alloy solid solution.
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APPENDIX: EFFECT OF DISPLACEMENTS ON SRO

In this appendix we give a proof that the relaxation-

energy contribution td/(k) is maximal at all special points

excludingI'. The first element of the proof relies on the fact

that this contribution has a quadratic forni(k)
E—[wa(k)gb;’};(k) lpz(k)]. For a stable crystalg(k) and
¢ (k) are positive-definite matrices, exceptkat0. Conse-
quently, fork+#0, P(k)<0, where the equality holds when
(k)=0. In other words, for alk #0, P(k) takes on its maxi-
mum possible value, zero, whenevgik)=0.

From the symmetry of the reference state, it can be show

that for every symmetry elemeBtwhich is a member of the
point group of the parent latticey(R) transforms as

S{Y1(R), ¢h2(R), h3(R)} ={4h1(SR), (SR), ws(SR)(}

or SY{R)=y(SR), for short. As a consequence, it is straight-

forward to show that the following relation holds for the
Fourier-transformed values of.

EMBEDDED-ATOM-METHOD EFFECTIVE-PAIR-INTERACTION . . .
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Sip(K) = (Sk). (A2)

Consider now & vectork* and a symmetry elemeis*
for which the following relation holdsS*k* =k* +G, where
G is a reciprocal lattice vector. By translational symmetry
and the relation(A2), it follows that S* y{k*)=y(k*). As a
consequence, the vectdiy(k*),dn(k*),s(k*)} must lie
along or within the symmetry elemeft. The set of sym-
metry operationgS*} for which S*k* =k* +G holds can be
hown to form a groufd referred to as the point group kf.
two or more elements in the point group kf intersect at
a common point, it follows thag(k*)=0. The points in re-
ciprocal space for which this latter requirement is true are the
special pointgsee, for example, Ref.)3
To summarize, for each of the special poikfs y(k*)
vanishes owing to the symmetry propertigsl) and (A2).
For all special pointk* exceptl’, this implies thatP(k)
=—[¢,(K) ¢;,1B(k) z,/;;;(k)] takes on its maximum value of
zero.
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