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A stochastic formulation of the kinetic model for thermally stimulated luminescence, based on van
Kampen’s(Q) expansion, leads to the set of deterministic macroscopic kinetic equations for the model and to a
Fokker-Planck equation that governs the various particle number fluctuations. In the weak source limit the
expansions for the steady-state macroscopic particle numbers are of fairly simple form, as are those for the
eigenvalues of the system of kinetic equations for the expectation values of the fluctuations. Also in this limit,
these eigenvalugsvhich are just the decay constants in the sums of exponential decays that form the recom-
bination radiation correlation functionseparate into three distinct, experimentally distinguishable, sets. These
results have been us¢Bhys. Rev. B45, 622 (1992] to deduce the model parameters for the case of one
recombination center and one trapping level; here the analysis is extended to the general.cdperefy
radiative recombination centers and trapping levels whose activation energies are so close that over a
suitable temperature range all traps can traffic in electrons with the conduction band. One can still deduce the
larger number of model parameters from measurements of the steady-state recombination radiation intensities
and their correlation function decay constants at a set of temperatures and electron-hole production rates. It is
also shown how to account for nonradiative recombinations and for deep, thermally disconnectéasltieps
become filled in the steady state

I. INTRODUCTION functions between the recombination emissions from the

various centers. The redundancy from such a large humber of

Thermally stimulated luminescence in various materialgobservations allows one to obtain values for the model pa-
has been studied theoretically by invoking simplified phe-rameters from several independent measurements; agreement

nomenological models? Not all the parameters of these among the derived values would give confidence that the
models can be determined from observations of the reconfarameters have physical significance and have been accu-

bination radiation that is emitted when a previously irradi-ately measured. _
ated sample is heatéd.Not only are some of the properties | the next section steady-state relations for the macro-
of the sample undetermined: one may also question the exaftOPIC variables of the model, the kinetic equations govern-

physical meaning of the model parameters as well as th&'9 th'e expectation values o.f their quctu_ati_ons, and an ex-
appropriateness of the model itself pression for the recombination radiation correlation

A stochastic formulation of the usual model was functions wiII'be quoted;.theSy can be deriveq by generalizing
. : O .~ van Kampen'sQ) expansioft® to include multiple traps and
developed, and it was shown that in principle it is possible U
to derive values for all the parameters of a model with On(erecomb|nat!on centers. Then the Weak?sour(_:e steady—s_tate
. . olutions will be found for the macroscopic variables, as will
trapping _Ievel and one recombination C(_ante_r from a ,SEt Olveak-source expressions for the recombination radiation cor-
observathns of thg steady—state recombination radiation AYaation function(a sum of exponential decaydecay con-
tocorrelation function at different sample temperatures andants. The usefulness of these latter quantities, as functions
with different electron-hole production rategaused by of temperature andweak)jsource strength, in determining
varying the incident radiation intensjtyHere the analysis the trap parameters ar@ith the steady-state intensitiethe
will be extended to the more realistic model with multlple recombination center parameters will then be shown.
traps and recombination centers. There is a larger number of By this stochastic formulation, one can in principle find
parameters to be determined and equations to be solved; exalues for all the parameters of a model with multiple traps
tracting values for the model parameters from these solutionand recombination centers. The trap parameters are found by
becomes more involved. starting from a polynomial with known coefficien{deter-

The analysis will initially assume that the traps are somined from measurements of the decay consjawtsose
closely spaced in activation energy that they all contributeoots are directly related to the trap activation energies. The
appreciably to the electron traffic with the conduction bandrecombination parameters are then similarly found by start-
over a suitable temperature range. All electron-hole recoming from a set of coupled nonlinear algebraic equations that
binations are taken to be radiatite@nd observab)ethe pres-  involve the (now known trap parameters, decay constants,
ence of nonradiative recombinations will be considered inand steady-state recombination intensities and whose solu-
Appendix A. Since there is more than one recombinatiortions are the set of probabilities per unit time for a
center, one can measure not only the radiation autocorrel@onduction-band electron to recombine with holes in the
tion function for each center, but also the cross-correlatiorvarious centers. All these initial equations must be solved
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numerically. The approach is generalized to include the pres-
ence of deep, thermally disconnected traps; they become
filled in the steady state, which leads to excess holes in the
recombination centers. To illustrate this without excessive Al oy !
algebra, only the case of no active electron traps is presented. !

CONDUCTION BAND e

II. STOCHASTIC FORMULATION OF THE
THERMOLUMINESCENCE MODEL Ny Av

Q

Consider a material in which, upon electron-hole pair for- (o
mation due to irradiation, the holes in the valence band can m
migrate to a set ofu different type recombination centers C;
and the electrons in the conduction band can migrate to a set m; M.
of v different type trapsfrom which they can escape via
thermal activatiohand to the recombination centers; recom-
bination of these electrons with the holes in the centers pro- H
duces the thermoluminescence. There is no direct recombi-
nation from the traps, only through the conduction band.
Recombination is the only loss mechanism for the holes, and
every electron-hole recombination results in photon emis-
sion; so the luminescence from centeis |;, the recombi-
nation ra';e in that center. The photons escape fror_n _the VALENCE BAND My
sample without absorption or other interaction. Nonradiative
recombination is addressed in Appendix A, where it is shown
how to obtain thd; from intensity observations. The com- FIG. 1. Energy levels, transition probabilities, and densities for
plicated details of the interaction of the incident radiationelectrons and holes in the conduction and valence bands, multiple
with the sample that gives rise to the electron-hole pairs ar&gapping states, and multiple recombination centers for a general-
represented by the paramet&r the number of electrons ized kinetic model that allows electron-hole production during lu-
(holeg produced in a unit volume of the sample conductionminescence.

(valence band in a unit time interval. For independent, un-

correlated incident radiation, as is assumed here,Jhésa

constant macroscopic parameter in t_he steady state; the mas- aixi=AN—x)¢ (=1,...0), 3)
ter equation for the system probability function will contain

additional terms in the presence of correlated incident

radiation®”’ while charge conservation gives

The model is illustrated by Fig. 1, and the model param-
eters and variables are defined in Table I. In the steady state
the kinetic equations yield the algebraic relations

©n v
P+241 ‘/’i:¢+j21 Xi - (4)
Ciothi=Bi(Mi—¢p)p=1; (i=1,....u), )

A generalization of the previous analysithat uses van

“ " u
o IV TR _ Kampen'sQ expansion produces the set of kinetic equa-
21 Ciddi .21 Bi((Mi—v)p ;1 =), @ tions, for the expectation values of the fluctuations,
P " “
5t T>:_§l Bi(Mi_‘r/fi)<T>+iZl Bip( i), ®)
9 1 v m v
(6= 2 Gt 2 AN =x)) (=2, Cim)+ 2, (+A @), (6)
J
E<Wi>:Bi(Mi_wi)<7>_ci$i<§>_(ci¢+ Bip)(mi), (7)

J
E(Q)ZAI'(NJ_Xj)<§>_(o'i+Aj¢)<§i>- 8
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TABLE |. Identification of model parameters and variables for a sample of voldnewith
i=1,...,u recombination centers arjé=1, . . . ,v traps.

Symbol

Identification

m,—Qp+QY%r
ne—Q¢+QY%
mi*)Q lﬁi“l‘Ql/ZT]i
nJHQX] +Qll2£j

oj=s;exp(—E;/kgT)

Sj
Ej
Hi—Qli+ QY
J

number of holes per unit volume in the valence band

number of electrons per unit volume in the conduction band

number of holes per unit volume in recombination cemter

number of electrons per unit volume in trgp

probability per unit time that a valence-band hole enters center

probability per unit time that a conduction-band electron recombines
with a hole in center

probability per unit time that a conduction-band electron entersjtrap

number of recombination centerper unit volume

number of trapg per unit volume

probability per unit time for a trap electron to escape to the
conduction band

trap j preexponential factor

trap j activation energy

Boltzmann constanttemperature

electron-hole recombination rate/intensity for certer

electron-hole production rate per unit volume

Charge conservation yields

(+ 2 (m)=(6)+ 2, (0), (©)

from which one can eliminate one of the variablés), for
example, from the sg6)—(8). The intensityH; of recombi-
nation radiation from centdris given by the expression

QHi:mi+Qllzhi:%(Q¢+91/25)(Q¢i+91/27]i),
(10
and so{H;)=1;, and in the steady state
((Hi(O)H(1))) =(hi(0) (1))
=CiCul ¢™(7i(0) (1)) + i hi{ E(0) (1))

+ i(§(0) (1) + G mi(0) &(1))].
(1D

obtain expressions for the model parameters in terms of the
observed quantities. In the weak-source limit, the autocorre-
lation decay constants will separate into three sets with 1,
u, and v components. Thus expand the macroscopic vari-
ables as a power series i) with the previous subscript
notation?

p=p P+ p, 3%+ ., (12)
b= ppdP2+ ¢ 3P 2+ (13)
Gi= P 37+ g, 37 P (14)
Xi=Xj o2+ X537 4 (15

Then (3) requires thaté=p8 and (2) that B+ y=2 and
a=2, so that(4) yields =1 (a=2, B=vy=56=1). In ob-
taining these relations one also finds the lowest-order terms

Since there is more than one intensity, one can measure the
cross-correlation as well as the autocorrelation functions for
the various intensities. All the equations in this section re-
duce to the corresponding relations for the single trap and
recombination levelp=r=1* and the same approach will

be taken in developing their solutions.

[ll. STEADY-STATE SOLUTIONS

The fluctuations of a system are most readily interprete
when they occur about the steady state, which can be estab-
lished by exposing the luminescent sample at a fixed tem-
perature to a fixed radiation field that results in a constant
electron-hole production raté and is described byl)—(4).

This production rate will be small for most experimental
situations; also in this limit the various steady-state equations
have simplified solutions which are more easily inverted to

1
P2=SEM," (16)
AiN;
Xj1= - b1, (17)
_BM; 1
l/jil_EkBkMk Ci¢y’ (18)
h1=dcd,, (19
here
3iBiM;/C;\ 2 lip) 2
i I D I
N\ —12
=1+ ﬂ) . (21)
IO
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TABLE II. Elements of the determinant for the eigenvalues of the sys&®m(8), with L;=C; ¢+ B;p.

Bip [Bip+ZiBi(Mi—¢i) +N]  (Bo=By)p - (B,—Bi)p Bip Bip
—Cig—Li—A [=Bi(Myi—¢n)—Li—\] Li+A Li+A —Li—A —Li—A
~Cat —Ba(M2— ) L=y 00 0 0 o 0 0
: : 0 : 0 0 0 0 0 0
: ; 0 0 0 0 0 0 0
-C,¥, -B,(M,—¢,) 0 0 0 ~L,- 0 0 0 0
A1(N1—x1) 0 0 0 0 0 (mo1=A16—N\) 0 0 0
: 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ) 0
From the next term in the power series, one finds=3, the weak-source limit, only terms i andJ'? are of inter-

B’'=~"=6"=2. By combining(1) and (2), one obtains the est; when one substitutes the expansions of the macroscopic

exact steady-state relations guantities, truncated to this order dn the characteristic de-
terminant is simplified since all terms in(~p,J+ - - -) will
Cii  BiMi—¢) i (22) vanish. This latter fact in turn allows one to separate the

SCW SBM =) Sl I

For the intensity series expansion, one obtains

roots A, into three distinct, experimentally distinguishable,
sets. Expand the resulting determinant along the first row
(whose only nonvanishing element is in the second cojJumn

<Hi>:|i:|i2‘]+|i3‘]3/2+'"1 (23) to obtain
where
> Bi(Mi— ;13" +1|D*"(M)=0,  (26)
G BM; !
'i2_2c¢ " 3.BM (24) . .
K=kl =k=kk where the elements of the determinddt”(\) are given
and explicitly in Table 1lI; it has nonvanishing terms only along
the first row, first column, and diagonal.
lis 12, lip In the weak-source limit, the roots, =\ ,o+\,1J*? of
|i3:E ¥ C.M, - CM;/’ (29 D#”(\) separate into a set @f with \,;=0 and a set ob

with \,o# 0. To find the latter values, retain only terms pro-
which satisfy the conditiong;l;,=1 and3,l;3=0. Thus portional t0J° upon expandind**, so that
there are each only.—1 independent;, and l;;. These
conditions are just that in the steady state there are as many 1 1 e 1
electron-hole recombinations per unit time as there are
electron-hole pairs created, but the individual recombination ANy — o317 Ao

rates do not scale linearly with thus, the relative distribu- (No)*| ¢ =0.
tion of recombinations in the various centers is a function of
J.
Upon eliminating 7 from the set of equation®)—(8) by AN, 0 —0,~ Ao
the charge conservation conditi¢®, one has % w+ v in- 27

dependent equations that can be expressed in matrix form as . . . - .

dY/dt=LY, where the components of the vectérare ar- ince this determinant is a polynomial iy, one cannot in

ranged in tyhe ordet£),( 77) (L) (¢,) and general obtain explicit expressions for the various rdaitsl
1 7ty wm/ gy ey v

the elements of the matrix are obtained fron6)—(8); the even in the cases where this is possible, the resulting rela-

steady-state values of the macroscopic quantities are useté‘.)n%f‘r.e S0 comp_llcatefd tTﬁt It |s(;10|t fea5|b|etto |r_1v?rt themf
The solution to this system consists of sums of various ex 0 obtain expressions lor the model parameters in terms o

ponential decays exp(t), where A, are the roots of the the observed quantities)). By setting the expansion ¢27)

characteristic equatiof. —\1|=0, | being the identity ma- equal 10 a product of terms linear in the roots
trix. These eigenvalues are also the decay constants of the , ,
recombination radiation correlation functions. One can sim-

plify the determinantL — 1| by performing a series of op- J-Hl (UJ'H‘OHJZl A,-lel;[j (UkH‘O):rHl (Ao~ Ar0)=0,
erations:(i) Add the lastv rows to the first row{ii) subtract (28
rows 2 throughw + 1 from the first rowyiii ) add column 2 to

the first column and to the last columns;(iv) subtract col- however, one can obtain explicit analytic expressions for
umn 2 from column 3 throughe+ 1. The elements of this specific sums of products of the various rodtg,. Equate
modified determinant are displayed in Table Il and are exadterms in like powers ol in (28) to obtain the set of func-
since no truncated expansions have been introduced yet. tions
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TABLE IlIl. Elements of the determinar@#”(\) for the eigenvalues of the weak-source limit.

[7011,011Jl/27c1¢)1~]1/27)\] Cl¢l‘]l/2+)\ Cl¢1Jl/2+)\ 7C1¢1J1/27)\ e 7C1¢1Jl/27)\
—Cahpd™? —Cyp 2= 0 0 0 0 0 0 0

: 0 0 0 0 0 0 0

: 0 0 0 0 0 0 0
*C#i,b#l\]llz 0 0 0 ,C#¢1Jl/277\ 0 0 0 0
Al(N1_X1131/2) 0 0 0 0 (_‘71_A1¢1‘]m_)\) 0 0 0

: 0 0 0 0 0 0 0

: 0 0 0 0 0 0 . 0
AV(NV7XV1‘]112) 0 0 0 0 0 0 0 (7(71/7Av¢1‘]1/27 \)

v v The functions-; are known, since they are found by adding
Fo=—2 Awo=2, (0;+AN)), (29)  singlets, pairs, triplets .. of the observed roots\,q. If
r=1 =1 there arev trapping levels, there are of these roots, but
each root contains information about alltraps. Each trap
competes against all the other traps for its share of the
Foo= 2 2 AroAso= 2 2 Ti9% condpuction t?and electron traffic, andpso the steady-state oc-
cupationy; and fluctuations thereof; , depend on the prop-
erties of all traps, not jugt In the lowest order?), this set
+ Z Aijz. k> (30 of eigenvalues does not contain any effect from the recom-
j=1 k#j . . . .
bination centers, even though they also interact with the
conduction-band electrons.
To obtain thelJ*? coefficients\; for the set ofu eigen-
values with\q=0, setA=\;J¥? in D*” and remove all

r=1s=r+1 1 k=j+1

14 14 A N 14 . 1/2 X -
Fo,=(— 1)VH Aro=| 1+ E H or. (31 terms inJ*< from the lasty rows of '_[he determmant, which
r=1 j=1 k=1 may then be expanded along the first row to yield
|
M M BM, -1 M "
II a+Cign+| 2 =] 2 BMIT v+ Cop=I1 (\=-Ar)=0. (32
=1 k=1 k =1 S#I r=1

This has the same form 488), and so its roots can be specified by the functiBnsf (29)—(31) if one makes the identifi-
cationso;— C; 1 andAjN;—BiM; ¢, (ZBM/Cy) ™ L with the products and sums now runningidnstead ofv. One then
has

Fu_ (-1 Ll (&
. E =2 | 2 zi> : (33
pu o =1 i=1 Zj i=1
Fo_ 1G0 & o G li2le & el< |
|
Fo 2 2 Anra=2 2 +2 1, 2 =2z, (34
o Si=1 s=r+ =1 kST+1 4 Zx =1 TkFi Zk \i=a
Fia 1)“ lio
¢>_ﬁ,‘ o H A= L Z_| (35
|
where such root contains information about all recombination
centers as well as trapping-level information through the
lio| 1 presence of the,. The observed correlation functiofkl)
zZi= —) ¢— (36) are combinations of the solutions for the kinetics of the fluc-
¢ tuation first moments and of the steady-state second mo-

and soZ;z;= ¢ . If there arex recombination centers, there ments of the fluctuations. Since both these quantities are de-
are u eigenvalues whose lowest dependened*?. Each rived from the same Fokker-Planck equation, one wants to
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ensure that there is no peculiar relationship that would causge recombination radiatiofH;) from all centers. By con-
the amplitude; pf some qf the exponential decays to Va”isréidering(ZS), (26), and similar expressions for” and A * at
From the explicit calculations of the=v=1 casé and the  yyq production rates, andJ,, one obtains thd expansion
symmetry of theAj; andAj, in the trap and center param- coefficients; of these quantities, onlys and A, (and thus
eters, one can argue that just as the singleand Ao ap-  the trap parametersan be obtained solely from relative in-
pear in the"”? terms of theu=v=1 correlation function, S0  tensjty measurements, i.e., from individually unknowp
also will the entire setd /; and A, appear in the)'? terms andJ, that have a known ratier=J,/J; .
of all the general, v correlation functions. This is based on  |n principle, one can use all the information contained in
the observation that each decay constfjtor A}, contains  measurements at only three temperatures to obtain the trap
in a completely symmetric manner the parameters of all thgparameters; there will bei8equationgat three temperatures
traps or centers and that in the governing equations only thiyr each of the vFo) and 3v unknownsE;, s;, and
arbitrary labeling scheme distinguishes one recombinatior(lAij), In this approach, first solve the setofquations at
center and its stochastic radiation from any other such centefemperatureT, to obtain expressions for the(Aij) in
By similar reasoning, the third type of decay constany,of  terms of theF;(T;) and thes;(T,); substitution of these
(26), will not appear in the lowest-orddrexpansion term for  expressions into the equations b5 and T eliminates the
any of the generak, v correlation functions. (AN;) and leaves 2 equations that are nonlinear in the
2y variables. It does not seem possible to reduce signifi-
cantly the number of equations and variables by further al-
IV. DEDUCTION OF THE MODEL PARAMETERS gebraic manipulation, and so one must solve numerically a

In the previous section both the macroscopic and correlaSet of 2v nonlinear algebraic equations with coefficients de-
jved from observation to obtain values for the remaining

tion function steady-state values of the model variables werd e S .
determined for weak electron-hole production in terms of them()d.eI trap parameters. This is quite d'f.f'cu“ in general,
model parameters. The purpose of this stochastic formulatio Since theFo; involve only the trapping parameters;

is to deduce numerical values for these parameters from tHe_ Si€XPCEj/ksT)] andA;N; , one can try to obtain numeri-
various intensity measurements. There aget3tv such pa- cal values for these parameters by manipulating a seF of
rameters to be determined, thre@ (B, ,M,) for each of the Fo; measured _at se\_/eral different temperatures. !Equatlons
u recombination centers and foug(,s; ,A;,N;) for each of (29—(31) are linear in the productss\ij, and so if the.
the v trapping levels(although in the lowest order only the Foj gnd oj are _known at a single terr_lperature_, Oone can im-
productA;N; can be determingdThe numberg: and v are med.lately obtain values for tijj . S|npe(29) is also lin-
also to be determined, as Jsitself in most circumstances. €ar N theo;, one approach is to use juBt, evaluated at
Here one considers the case in which all recombinations arg? *1 temperatureswith T, <T,<---<Tj,.,) such that
radiative and can be observed and the trapping level activa-

tion energies are so close together that they all participate in

electron trafficking over the temperature range of the obser- ( 1 _ 1 ) :( 1 _ 1 )

vations. The observed quantities are fhesteady-state re- ksT1 KgTz/ \kgTz KkgTs

combination radiation intensitieH;) and theu(u+1)/2 1 1

independent intensity correlation functiof@;(0)H,(t))). =... :(__ —) =7, (37
By measuring the latter for a set of time delaysone de- ksT2, KgTa,+1

duces by standard deconvolution schetn¥sthe 1+ u+ v
decay constants, . These measurements are performed at
set of electron-hole production ratdsfor each of a set of
temperaturesT; this allows one to obtain thé® and J*?
terms in the expansions of the various quantities and to sepa-
rate the\, into the three setd g, Af;, Ajp, from which one AF| | 1=Foi(T)—FouT,_1)
forms theFq; andFy; of (29—(31) and (33)—(35) that are '

i.e., the difference between the inverses of adjacent tempera-
Qures is constant. Th&;N; can be eliminated by forming the
difference betweerf29) evaluated at two adjacent tempera-

the v+ u “observed” or “measured” decay quantities. The Y

u decay constants associated with fhg are immediately = Z sjexp(—E;/kgT|—1)[exp(7E;) —1].
identified by theirJ¥? dependence, while the decay con- =

stants associated with the; are identified through their (39)

J° dependence and strong temperature dependence throug
the o. The decay constamkg is specified by the lack of
temperature dependence in ¥ term. One can thus assign
the measured decay constants to their appropriate groups aﬁ
obtain u and v as well. To obtain the B trapping param-

eters, one must measure thE; for at least three different
temperatures; to obtain theu3recombination parameters,
one uses the 2(— 1) independentI* andJ®?) terms in the

Pvide these equation§38) into two groups AF,, ...,
AF,.,,) and AF . 5,41, -..,AF5,,15,); €ach set can be
8Ived fors; or s; [exp(yEj)—1] in terms of the still un-
nown quantitiess;=exp(sE;).

Extensive algebraic manipulatiothe major features of
which are given in Appendix Bof these equations leads one
to a polynomial of the form

J expansion of theu(H;), the u decay quantities,; and y ;
Ao, Api- x—x)=> (—1)lbx* =0 39
From (2) and (23) one can obtaid simply by summing 11;[1 ( 2 jgo (=1 ’ 39
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where the coefficients; are known from the observed quan- electrons escape so quickly the traps are empty. This tem-
tities AF, ,_, of (38). Such an equation is readily solved perature must be consistent with the ability to measure the
numerically to give thex; and hence the activation energies luminescence; for example, it cannot be so high that black-

Ej,

1

Ej:—lan , (40)
n

with » given by (37). Since theE; are all positive, the ob-

servations must be accurate enough to ensure all the roo

X; are greater than unity. One can check these results by al
using anF,; evaluated at two temperaturés andT,, for
F1i(T2)

example,
2fi v
=eX E |= Xi,
F1i(Ty) ;{ ') =1 )

Fo,(T2)
FOV(Tl)

to obtain an independent value for the sum of the activatio

energies. Once the; are found, one finds thg; from the

intermediate equationgB1). Finally, the A;N; are found

from (29—(31) evaluated at one temperatufg, for ex-

ample; this system has solutionsg=1)

—(—1)"S{_o(— ) Fo,«
lezl,;&j((fj_gk)

where thes andF are evaluated af;. From observations at
2v+1 temperatures, analysis (#9) allows one to deduce
the trapping parametets; ,s; and the product#;N;. Most

14

>,

(41)

AN =

iN; , (42

body radiation from the sample material masks the lumines-
cent radiation. The idea is to make the effectivethe num-
ber of traps partaking in electron trafficking, as small as
possible. To be definite, this is taken to be 1. The param-
eters of this trap are then determined by measurements at
hree temperatures or at two temperatures with bgthand

1. These temperatures are all so high that only the one
%)elzepest trap contains electrons. Now lower the temperature
into a region in which only a second tréhe second deepest
one also contains electrons. The parameters for this2
system could be found by using the methods discussed ear-
lier in this section; however, it would be much easier to use
the already determinej= v trapping state parameters to re-
fluce this to a single trap problem for the v—1 trap. Re-
duce the temperature until a third trap contains electrons and
treat this as a single trajp=v—2 problem since the param-
eters of the other two traps are already known. Continue this
process to determine the trap parameters one trap at a time
until they have all been found. If some trapping states are so
close together in activation energy that they are always
empty or always contain some electrons together, one would
use the equation for this effective which is still a great
advantage over solving at once for altrapping states.

In the general step of this process, suppose that there are
j +1 trapping states and that the parameterp affthem are

of the information avallable from the observatlons is notknown. Then thg + 1 equations for th§('*l) are not inde-

used, since onlyFq; is considered. An unfavorable conse-

(j+1)

pendent. For convenience, conadéﬁ{“) and F§LY,

quence of this is that, since a minimum temperature separavhich are the sum and product of thie-1 trapping state

tion is needed to yield an accuraid-, in the case of many
trapping levelsy the 2v+1 measurements will be spread

over a temperature range that may be larger than the region

in which all traps partake in electron traffickifghich de-
pends on the function expE/KkgT)].

Since it becomes more difficult to determine the trapping

parameters as the numberof trapping states increases, an

alternative approach to these measurements may be useful.

decay constants. They satisfy

FIPm-FR(D=0, (N+A,_N,;, (43
FO A =0, (nFYr)
+a, () (DA, N, |, (44

Start the set of measurements at a temperature so high thathere the temperatui® is denoted by in the arguments of
only the deepest trap contains charges in the steady state; ttiee functions and all quantities are known except ;(r)
other traps are relatively shallow, and so at this temperaturandA,_;N,_;. One immediately finds

A N PO —FEOIFG () ~FEi(1)] s
T g, (o (DT-FG)
_ RO (D)o (DIFG V) - FROT_ 45
7ol [0y ya(D) 7D FJ(D) =Rei(0: “9
|
Evaluate(46) at temperature$; andT, to obtain R,-;(2) T /(T=Ty)
Si-i=R-i(DIg— 1y D (48)
v=j
1 1\t R,_i(2) .
E, = Tk In l() (47) The value ofA,_;N,_; can be obtained frort¥5) evaluated
" Bl1 sT2 R,-j(1 atT;.

and

To find the parameters for the first, deepest, trap, one used
measurements at three temperatures. Only two temperatures
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each are needed to determine the parameters of the subse- lis

guent traps one by one; overall, then, one measures at i:Z‘Ekzk' (53
(|

2v+1 temperatures, just as in the first method proposed.
Similarly, one also does not use all the informatfeg) avail-  One first solves the. equations(33)—(35) to obtain thez; .
able from these measurements; however, the temperaturesom (53) one then obtains values for the electron-hole re-
used here are chosen under the constraint of the distributiatombination rate<C;, while (52) yields the number of re-
of the trap activation energiés; and not according to the combination centers,

n prescription of (37). Consequently, by combining the

methods of determination of the trap parameters all at once

or one by one, one can use 2 1 temperature measurements 7
to obtain the parameters for a fairly arbitrary distribution of M, !

“[(Apy/—Ago)—(lislliD) by

(54

trapping state activation energies.

From the previous discussion, it is possible to determineS
the model parameters of the trapping states solely from th
set of recombination intensity correlation decay constant:
Ajy. One can now turn to the problem of finding the recom-

bination center parametes;, B;, andM; from the set of
intensity correlation decay constandg; and Ag and the
macroscopic recombination intensitigs andl ;3. From(26)

one has

m
Ago= —;l B/M;, (49)
A 1 E BZIM, -
=SS EME G 5

so that(24) and(25) yield (i=1, ... u)
BiMj=—Apgoliz (51

and
Ii2

(52

CiMid’C:[(ABl/—ABO)—(|i3/|iz)]d’o.

Since the quantityp, can be found from thé ” roots, (33)—
(35) are a set ofu nonlinear equations ip unknown quan-
tities z; . From (36) one finds

AN

gl AA roqsl[ (

v
_ v v

Since theA;N; are known, this set ofv equations(for
j=1,... ) linear in thev unknown quantitieg\, is readily
solved to yield theA, (and thus also th&,) in terms of

S i

ubstitution of thes#/; into (51) then yields values for the

. Thus one can obtain numerical values for the recombi-
hation parameter€,;, B;, andM; in a straightforward man-
ner.

Since the factorg, and theF,; have the same tempera-
ture dependence, the right-hand side$38—(35) are tem-
perature independent; thus, evaluation of these equations at
different temperatures will not aid in their solution. For ar-
bitrary «, one must use numerical methods to obtain values
for the z; from the set of nonlinear equatiofd3)—(35). The
general approach to such a problem is to find initial estimates
for the z; that are as accurate as possible and then to refine
these estimates by iterative or other schemes that converge to
the correct solution. This can be very difficult to do in sev-
eral dimension$"'2 There may be some assistance in that
the (always positivgé magnitude of theC; or z; will have
typical values that arise from the physical properties of the
sample material.

From theA j, one could only obtain the productgN; for
the trapping parameters. By also considering the next terms

i1 in the J expansion of these decay constants, one can
obtain theA; by themselvegand thus also théN;). The
Aj; are found from the sum of £ u + v determinants, which
are all the possible ways the determinant for the lowist
order characteristic equation can have ahf terms in only
one column at a time and’ terms in all the other columns.
Since the originall® characteristic equation vanishes for any
of the v eigenvalues\ j,, any terms or combination of terms
that are proportional to it will vanish. One thus obtains, after
some algebraic manipulation,

—1)H (o +AJp)+ 2> ANy T <ar+Aro>}
K i#k ik r#k,|l

[T (o +Al)—2> AN T (o, +A%) +iH (a+A%). (55
£k J r#K ! b1 i=1 ]

1#k
V. DEEP TRAPS

If the trap activation energies are widely separated, the
deep traps will be thermally disconnected from the conduc-

observable properties of the recombination radiation. Ongon pand for temperatures at which luminescence observa-

only needs to be able to associate Ihj”q with the appropri-
ate Aj, for all v decay constants.

tions are made. In the steady state these deep traps will be
filled and their only effect is an excess number of holes in the
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recombination centers and in the valence band; one must be (H)=1i=1;d+1;,0%+ - . -, (59)
able to fill these deep traps in a reasonable time in order to
use the stochastic approach. Previous theoretical investigithere
tions have assumed that this deep trap filling is possibté,
as _havg stud_ies _of old sampl_(amqh as qgar)zin archgeo'- li2=Cidothio=Bi(M;— thi0) p2 (60)
logical investigationd® Numerical integration of the kinetic
equations shows how fast a thermally disconnected trap wind
fill.® In addition, some laboratory resuifs® show satura-
tion in the thermoluminescent signal, which indicates trap |, =C(¢othin+ dathio) = Bil (M — thi0) pa— Yi2p2].
filling or the onset of appreciable radiation damagépw- 6
ever, a sublinear approach to constant thermoluminescent . N o
output for increasingly larger dose is not necessarily due td hese satisfy the conditions;l;,=1 andZl;;=0. Simi-
trap saturation in second order procesSeShere is thus larly, the x;, are still given by(17), while the lowest-order
both theoretical and experimental justification for considerterms of the other macroscopic quantities are found to be
ation of such filled traps; the purpose of so doing here is to
determine the effect of these deep traps on the decay con- 1 Iy -1
stants of the recombination radiation correlation functions pzzm : E:[E Bi(Mi—wio)} , (62
and on the method of deducing the model parameters from b !
them.

Assume the measurements are made over a temperature 1 lin -1
range so narrow that the shallow traps1, . . . g all traffic ¢22N2 E:[E Ci‘/’io} , (63
in electrons over this range, while the deeper traps oo U
j=g+1,...,v are always thermally disconnected and thus
filled in the steady stateg is taken to be a definite, fixed N(li2/Cy)
number. This system is still described b)—(3), (5)—(9), lﬂio:m, (64)
and (11), with the range ofland sums overj now running
only to g, not tov. The major difference is the charge con-

servation conditior{4), which becomes 1 lis o 2 s
¢'2_¢2 Ci N[5 \Cy
u g .
+ =+ +N, 56 AiN;
p 21 Yi=¢ ,Zl Xi (56) +pobr— b2 1+j21 %)“ (65)
= j
where SinceN has aJ° dependence, there is thus a different rela-
tion between the lowest-orddrexpansion terms of the mac-
Y roscopic variables.

NEj=§g;r1 N; (57) The 1+ 1+ g equationg6)—(8) for the expectation values

of the fluctuations from whickr) has been eliminated )

is the number of electrons stored in the deep traps and als¥gain yield the modified determinafiow only tog, not

the number of excess holes in the centers. If one expands thg of Table II. Substitution of thd expansions of the mac-

macroscopic variables in the power ser(&8)—(15), (1)—(3)  roscopic quantities into this characteristic equation yields a

again yields= 8 and 8+ y=2. If the total number of hole Set of equationgin determinant formfor the terms of theJ

sites in the recombination centershis, where expansion of the decay constarts. For N<M, in lowest
order these roots decouple into three sets as in the absence of

u filled traps. An immediate consequence of the presence of

RV (58) filled deep traps, and an indication of their presence, is that

= h the series expansions ihfor the observed intensitids and
decay constantd, no longer contain half-integral powers of

there are two possible casBs<M andN>M. In the first J. Also, there are now * u+g decay constants, and their

case, allN excess holes will be distributed throughout the distribution according to the lowest power i (J° or J%)

recombination centers; in the second case, the centers will allill be modified. (Presumably it would also require a much

be filled and the\—M remaining excess holes will reside in longer time to set up a steady state when one must first fill

the valence band. In either casgl,will now have al° term;  some traps; this would be another indication that thermally

thus,y=0, B=6=2, a(N<M)=2, anda(N>M)=0. The disconnected traps are presgnt.

presence of deep traps gives different exponents because of The lowest-order term of thé expansion of the charac-

the additionalNJ° term in (56). The second term in each teristic equation is obtained by using only tifeterms of the

expansion(12)—(15) is one power of] higher than the first macroscopic quantities. This leads to

term, and soy'=2, B'=6"=4, &' (N<M)=4, anda’

(N>M)=2. Here only theN<M case will be considered; “

the same approach can be used inltheM case. (N0 > Bi(M;— thi) + o |Dr(ro)=0,  (66)

The intensity expansiof23) becomes i=1

M
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whereDg()\) is the determinant of27) with the first rows  p, to give —I;,; addition of the second to the first column
of ones replaced bj— (¢, *+Xg),—\o, . ..,—Aol; it de-  yields a new column whose only nonzero term is its first one.
fines a polynomial of ordeg+1, and ¢, is also given by One then obtainsl(,=C;¢,+ B;p,)

(63). The equatiorDg(\g) =0 is solved by expanding the

polynomial analogous t@28) and equating like powers of

No to yield the set of equations for theFy, iz (LitNp) oo oo (Lt Ap)
(j=1,...g+1) for theg+1 rootsAfJ ; these are given in lop  (—Ly—\p) 0
terms of Eqs(29)—(31) for the Fy;, _o
g+1 : .
I [ J -1
Fiy ;1 A%={Fol+ ¢, ", (67) » 0 (—L,2—X\) -

g g+l

I:02—2 E A?oAgo {F0§+¢212 oy, (68

which yields the polynomial

"

n—1
> |i2£&[i (Lk2+)\2)5£[1 (A—A%)=0. (73

g+l g+l g
1 By expanding(73) and matching powers ok,, one will
—bf H Aroz A, ={Fogh+¢2 H i 2 o obtain ©—1 equations for thex quantitiesL;, (each of
(69)  which contains the two unknown paramet€sandB;) in
terms of the observable intensitits and decay constants
g+1 AfuZ!

Fogr1=(— 1)9+1H A%=¢5 H o, (70

'
Fog=(

where the{Fg;} refer to the expressions on the right-hand

side of(29)—(31) with » replaced byg. This set of equations Fa=— 21 Aﬁ‘z:_zl |i2§_ Li2, (74)
can be used to obtain tg , s;, (A;N;), andé; *, which is "~ " '

independent of temperature. ConsidEf, evaluated at

2g+ 1 temperatures chosen to sati$dy), and eliminate the w-2 p—1 P

AN; and ¢, * by definingAF|,_,=Fg,(T)—Fgy(T| ) as Fo= 2 > ABAL= 2 I,2 2 Lk2 > L
in (38). Then use the approach of Appendix B to obtain a =1 s=r+1 I=k+1#i
polynomial of the form(39), whose roots yield the activation (79

energies; . Then the analog aBy) is solved for thes; , and
finally theA N; and ¢2 are found by solving the set of
g+1 equations(67)—(70) at one particular temperaturie ,
for example. One finds

n—=1 "
, Fou1=(—D* ] AL=2 1p]] Lo (76)
¢_1 FO,g+1(T1) (71) r=1 =1 k#i
2 :—’
Hgfl‘fj(Tl) An additional relation involving thé;, will thus be needed
while (42) again gives thé\N; (with v replaced byg). Thus  to solve ﬂl1is system for the individuél. _
one can find the trap parameters apg® for N<M (and The J° term Ag, for the decay constant with

also forN>M) from the set ofg+1 decay constanta %, Ago=—ZiBj(M;— ¢;o) of (66) can be found from the deter-
which are distinguished by thed® dependence and by thejr Minant of Table I,
fairly strong temperature dependence throughdhe

To obtain the)! coefficientsh , for the set ofu— 1 eigen-
values with\o=0 of Dg(\)=0, keep thel® terms in the
first two and the lasj columns of the determinant of Table Il
and substitute théd! terms in the third through g+ 1)
columns of the determinant. If any of the latter columns werdt will also be useful to have expressions for the,, the
to containd® terms, it(and thus the determinantould van- ~ J* terms for the decay constants that start with g of
ish for A\y=0; this prescription then gives thi terms one (67)—(70). The characteristic equation for these eigenvalues
seeks. Each of the lagtcolumns contains a single nonzero can be found by replacing th# terms of the lowest-order
termo; ; since these are arranged diagonally, the determinartharacteristic equation with the appropridfeterms one col-
can be immediately reduced to one with+1 rows and umn at a time. In evaluating these determinants, all terms or
columns. The first column terms—C, ;o) of this reduced combination of terms that are proportional to the original
determinant can be multiplied by ¢, to give +1;,, and the  lowest-order determinarDF(A]go) will vanish. After some
second column ternms—B;(M;— #;0) ] can be multiplied by algebraic manipulation, one obtains

M 1 M
Ago=2, Bithio— —3— 2, Biliz. (77)
i=1 BO i=1
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g 3 2
AjN; AN; 1 1
2 —— g — . g 2
—[ b+ (= A) 2 +Ag) Aka ;1 Ciligt(—A 0)2 Cithia+ (—ARp) E o+ AL) (O'J+Ako)
(78)
|

For each of thg+1 AJ,, there will be aA?,. The unknown C

quantities in(78) will be A;, =,Cil;»,andX;C;¢;,. The sim- =-1 |22 lﬁkz"' Ago iz (80)

plest casdthe only one considered heris that for which
there are no active trapgi=0. Physically, there are two B.
ways this can come about. First, if the temperature of the |2E ( )zjsz (—AI )z/qz, (81
sample is so low that all traps are thermally disconnected BO
from the conduction band, there will be no active traps. Theyhich along with(65) yields
second possibility is to raise the sample temperature so high
that all the active traps are so active that any trapped elec-
trons are immediately thermally activated into the conduc- (lin /L) 1 1
tion band, while the thermally disconnected traps are so deep 273 (2L 12) ( o _ABO> '
they are still disconnected and filled in the steady state. In 9
either case, (78) simplifies to the single eigenvalue If one momentarily assumes the, are all known[from the
[Ag2=Af(g=0) and similarly forA 4] w—1 equations(74)—(76) and another as yet unspecified
equatior, one can find theC; andB; in terms of thesd.;,
and the observed quantities. SinEeIM:O, (80) or (81
- - comprisesu— 1 independent equations; the additional equa-
Ago=—¢> 2 CihZH_AgO); Cithiz|- (79) tion independent of these is given K¥9) or (77), and one
has u equations for thew unknownsC; [(79) and (80)] or
B; [(77) and(81)]. The ;, in all these equations are known
From (56), (60)—(63), (66), and(67) with g=0 and(29) by (82), since thel;, are assumed to be known. These two
with v=0 (S0 A go=— ¢§1), one obtains sets have solutions

(82

( Ci ):LiZEr(IrZ/LrZ)[Ii_A_ AgZ(AAO)+Er(Ir2/Lr2)Ek|k4|—k2} 3
—Ago (AAy) Lo —Ago(AAg)+Z,(12/L2) Zil bz
and
( B; ):l—izzr(hz/'—rz)[_|i_4Jr Aga(AAg) =2, (Ir2/L2) Zilialkz 84)
—Ago (AAp) —Ago(AAg) =2 (12/L2) Ziliolko

[with AAOE(—AQO)‘l—(—ABO)‘l], and so one can obtain th@, andB;. If one adds(83) and (84) and eliminates the
common factorL;,, one has an additional equation for thg,

1=

1 ( lo @5

(AAQ) 4

[ ~ Ag(AAQ) +Z (2 Lr2) Zidal o Aga(AAg) =2 (Ir2/L2) Zilial iz }

+ L
r2 AgO(AAO)+Er(Ir2/Lr2)Ek|k2|—k2 _ABO(AAO)_Er(lr2/|-r2)2k|k2|—k2

which in combination with(74)—(76) providesu equations 1
for the . unknownL;,. These equations are nonlinear in the M= '2(C & + —) (86)

. . 2 Bipz
L;» and must be solved numerically. If there are no active
traps @=0) andN<M, one can thus obtain numerical val-
ues for all the model parameters from the observed intensi- For the more general casbl<M) g+ 0, the major com-
ties and correlation decay constants through the analytic replication is that the single decay constahgy (= —¢; %)
lations of this section. The numbét of electrons in the now becomes a set aj+1 decay constantd,, and so
thermally disconnected trager, equivalently, the number of determination of theAJ becomes more involved algebra-
excess holes in the recombination centéssthen immedi- ically, but follows theg=0 approach. The decay constants
ately found from(63), while the number of recombination Agy and Ag, are the same, while the single rootg, and
centers is given by60), Ay, are replaced by thg+1 roots ofD (A »)=0 and the
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g+1 associated’\?2 roots, which can be shown to satisfy so there can be several independent sets of measurements; in
(78). The presence of deep traps introduces an additiongiractice, the autocorrelation functioitrs k may be easier to
parametelN; to determine its value, one must observe someobtain. While at the same temperature, repeat the correlation
additional quantity. For a steady state to exist, the deep tragdsinction measurementat all the timeg) for a set of differ-

must be filled; if such filling cannot be done, an alternativeent electron-hole production rat@sthen, for a set of differ-
approach is to use nonthermal means, such as optical excitant temperatures, repeat the setJofndt measurements.

tion at a wavelength that affects only the deep and not th@ne then ha(J,T) for a set of production rates and tem-
shallow traps, to stimulate electron trafficking from the deepperatures. If theJ are small, one can obtain the, and

traps to the conduction band. This is in addition to the steady . terms for theJ expansion of the decay constants as well
irradiation and electron-hole productidnby ionizing radia- .5 the lower order termis, and| 5 for the expansion of the

282&4& S;Cshmilltl:asrféé?oesggp?i?:;@piomgtgr?tt br?ufr:ilggr’ 2?te\1‘gl(|:intensities. Parenthetically, if one measured the recombina-
. ’ i . ' ' tion radiation during the transient stages of chan d
trons in the steady state; this is basically the first proble g 9 gingn

, one would have another way to deduce some of the
treated here. . :
sample material properties.
So far, no theoretical model has been used; one has sim-
VI. CONCLUSION ply observed the steady-state intensitieand their fluctua-
tions, from which one has deduced decay constaptand

obtain the model parameters for a thermoluminescent mat their J and T dependences. The exact functional form of

rial from measurements of the steady-state recombination rzbese_ dependenc_:es |nd|cates_wh|ch theoretical model is ap-
diation intensities and their correlation function decay conProPriate to use in the analysis; the number of each such
stants has been extended to include multiple trapping leveiy/P€ Will also yield the number of traps andu of recom-

and recombination centers. The simple case of radiative reination centers. Once the proper theoretical model is deter-
combination (so all recombinations are observabland Mined from the data, one can use the analysis presented here
closely spaced activation energie® all traps can traffic in o obtain values for the model parameters.

electrons over some temperature rarigas been considered ~ One can modify this stochastic model to include more
initially. The larger number of coupled nonlinear equationsrealistic features that are fairly common. The first is to incor-
makes their solution and inversion algebraically more comporate the possibility of nonradiative recombinations, as is
plicated; however, even if one uses only the lowest-ordedone in Appendix A, for which one cannot directly observe
terms in the] expansions, it is still possible to obtain expres-all the recombinations. The discrete nature of recombination
sions for the model parameters in terms of observed quantinto a particular center causes fluctuations in the number of
ties (although at this level the trap paramet&¢sandN; only  electrons and holes in the conduction and valence bands,
appear as the productgN;). The main conclusion is that at which in turn causes fluctuations in the observable recombi-
least in principle one can obtain numerical values for thenation radiation that determines the correlation functions;
parameters of the usual thermoluminescence model by ohhis observable effect is independent of whether the original
serving the statistics of the recombination radiation; the acrecombination is radiative or nonradiative. Since the correla-
tual determination of these values can be reduced 10 gon decay constants can still be measured and since they
smaller set of equations which must be solved numerically. It ntain information about all the trap and recombination

is also shown that the model parameters can still be obtaineghyier harameters, one can still obtain quantitative informa-
in the presence of deep traps and of nonradiative recombmz—l)ron in the presence ofand even about thenonradiative

tions. S )
. . . recombinations. The main difficulty is in finding expressions
The results of this paper can be summarized and the major replace those for the now un)(;bservab-leagr]]d t?]us to
I

aspects highlighted by sketching how one would actually I . lution for th binati i A
implement this stochastic analysis. One first exposes th@"ow 3 un'?ﬁf? solu |(_)nfor he recombination parame ers.b
sample material at a constant temperafliro a steady ra- Second modi ication is for the trap activation energies to be

diation source(either ionizing or optical radiation that will SO Widely separated that when the deepest traps are active
produceJ electron-hole pairs per second, witha known traffickers the sha]low ones will be empty and Whe.n the shal-
quantity if possible and observes the recombination radia-1ow traps are actlve.traﬁlckers the deep ones will be ther-
tion until all such emissionsl; have stationary mean values Mally disconnected, i.e., not release any electrons to the con-
(H;)=1,. One then observes the fluctuatidmsaround the duction band. In the steady state, the deep traps will be filled
steady-state intensities; to ensure the system is in the line&nd their only effect is to produce an inequality in the num-
noise regime that the approximations of this paper assumdgr of electrons and holes in the bands, recombination cen-
these fluctuations must have a Gaussian distributigith  ters, and active traps. The power series of Irexpansions
(h;)=0). These conditions of stationary recombination ra-for the various quantities will be different in this case. An-
diation with Gaussian fluctuations are to be monitoredother model modification is the effect of fluctuationsdn
throughout whatever series of measurements one will makédue to either intrinsic fluctuations in the radiation source
One then measures the intensity correlation functiondtself or the discrete nature of the interactions between this
{(H;(0)H(t)))=(h;(0)h(t))==,Q(i,k,r)expp,t) for a radiation and the atoms of the samplen the correlation
large enough number of timeso allow one to invert these functions of the recombination radiation. If these source fluc-
functions to obtain tha, . Each such correlation function for tuations are uncorrelated, the original assumption of a deter-
the varioud ,k will lead to the set of decay constamts, and  ministic J is still valid. The next step is to show that one can

The application of van Kampen& expansion method to
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actually measure the correlation functions and steady-sta®; (J,) at a series ofu different production rates, (not
recombination intensities with enough accuracy to obtaimecessarily smallform a set of independent equations
meaningful numerical values for the parameters that describe

the sample material. This will involve both experimental ~
technique and numerical analysis of sets of nonlinear equa- > 3=
tions in the presence of experimental uncertainty. =t '

£ 00

I (k=1,... ). (A2)

These can be solved to yield tiegand thus the; by (A1), if
APPENDIX A: NONRADIATIVE RECOMBINATION one knows theJ,. If one only knows the ratiosa,
J= ayJ for some unknownl, one can only determine the
In this stochastic analysis one uses the electron-hole rgelative magnitudes of the;. For weak fields, if one can
combination rated;, and I3 to obtain the recombination measure th@®;,, for the firstu terms of thel expansion of
center parameter@nd the separat®; andN; for the trap$. the O;, one can solve=0;,/e;=1 and =O;,/=0
For complete radiative recombination, these are just the oqm=3, ... u+1) to obtain thes; .
served intensities. If nonradiative recombinations occur, as For some materials thermal effects are the cause of non-
they do in many materials, the observed intensi@@drom  radiative recombination, and one Ra&
the various recombination centers are related to the recom-
bination rated; by 1

ST 1+ Gexp—W, /kgT)
OiZEiIi, (Al) . . C
Observe the recombination radiation at three temperatures
wheree; is the radiative efficiency of the recombinations in that satisfy(37), which will be done anyway to obtain the

centeri. From (1)—(4) the I; do not scale linearly with trap parameters. Thig, are independent of temperature, so
(although their sum dogsand so the observed intensities one has

(A3)

0i2(T2) = 0i2(T1) =Gi[Oja(Ty)exp — W; /kgT1) — Oi2( To)expl— W, /kgT5) ] (A4)
and similarly forT; andT,. Then the ratio of these two equations yields the quadratic equation

0i2(T,)—0Oix(Ty) —exp(— W) Oi2(Ty)exp— W) —O;x(T»)
02(T3)—05(T2) T 01(Ty) exp(— 7W,) = Oyo(T3) |’

(A5)

which can be solved for the unknown expgW,) and thus case, all the recombination rates andl;; are known, and
for the W, in terms of the observed intensiti€s, at differ-  so one can proceed as in the main body of the text to obtain
ent temperatures. Th@; are then found fron{A4), and so all the model parameter@ven for the totally nonradiative
one has thes; and thus thd;,, as well as values for the centej. Form<u—1, one needs additional relations to find
G; and theW, of the centers. With the; one also finds the expressions for the individualy® and I or equivalent re-
l;3 from the O;5. lations to substitute for them. With additional algebraic effort
Now suppose some of the recombination centers are tane could use higher-order terms in thexpansions of the
tally nonradiative €,=0 for somei). One can still obtain decay constants, or of the recombination intensitids, or
the decay constantdg, A%, and Ag; from the radiative one could use the amplitudes of the various exponential de-
centers, and from tha$ one can still obtain th&;, s;, and  cay terms in _the.intensity correla_tion functions. The steady-
AN; for the traps. The number of4 roots is equal to the state r(_acomblnatlons and fluctuatlpn§ thereof of electrons and
total numberu of radiative and nonradiative recombination noles in one centefwhether radiative or notaffect the
centers. If the radiative efficiencies are given by(A3) or  Steady state and fluctuations of the conduction-band elec-
by some other function of the temperature, intensity Obsertrons, the valence-band hOleS, and the electrons and holes in

vations at a set of temperatures allow one to obtain values fdf€ other(radiative centers. Physically, this allows one to

the ¢ and thel; for the radiative centers. If one divides the detérmine the nonradiative center parameters solely from op-

centers into radiativé® (i=1, ...m) and totally nonradia- tc@l observations of the steady state and fluctuations of the
; -

radiative recombination intensities.

tive IM? (i=m+1,... u), one has
“ m APPENDIX B: INVERSION OF TRAP
> INR=3-> IR (AB) PARAMETER EQUATIONS
i=m+1 =1

To obtain values for the trap model parameters f@®)
If m=ux—1, there is only one nonradiative center, and oneevaluated at 2+ 1 temperatures arranged accordind3d),
immediately hasl}5=1-3I% and I}5=—SI7%; in this  one solves the two sets of equations



53 STOCHASTIC ANALYSIS OF MULTIPLE-LEVEL ... 2365

AFZl 1 1 A l Sl(xl_l)exq_EllkBTl)
AF32 X1 Xo s X, SZ(XZ_l)eXF(_EZIkBTl)
I : . (B1)
AFv+l,v Xzil X]2)71 e Xzil Sv(xv_l)exq_Ev/kBTl)
and
AF 12,41 1 i - 1 S1(X;—1)exp( —Es1/kgT,+1)
AF 13042 Xp Xz X, Sa(Xa—1)exp( —Ez/KgT,+1)
= . ; : (B2)
AF21/+1,2V Xz_l Xs_l T X:j_l SV(XV_l)qu_EV/kBTv+1)

wherex;=exp(7E;). These equations are of the fodF=HS, and AF,=HS,, with S;;=S;;x{’. SinceH is the same for
both setsS;;— S;x;=0 can be expressed in determinant form as

(AF, 2,41~ AF2X{) 1 1 T .- 1
(AF, . 3,+2— AF3X]) Xy o Xjo1 Xjrro o X,
. : =0 (B3)
(AF2v+1,2v_AFv+l,vxjv) lelj_il o XJV:]:.L X]V;% e X571
for eachj=1, ... v. An overall factor (- 1)! ~* that arises in interchanging columte place thgth columnAF in the first

column has been removed. Tt have now been eliminated, and so only theremain.

To evaluate the determinan®3), first simplify them by in turn subtracting columm—1 from columnv, columny—2
from columny—1, and so on to end by subtracting column 2 from column 3. Thus the first two columns are unchanged, while
the remaining columns have a vanishing first row and all other rows are of thexfbrm;'_,. Now

K
Xn_ Zn: (X_ Z)kZO [szk(xn—l—2k+ Zn—1—2k) _ (XZ)(n_l)/zak,(n—l)/Z]

E(X_Z)fn_l(X,Z), (B4)

whereK=(n/2)—1 (n even or K=(n—1)/2 (n odd). From each of the last—2 columns, one then extracts the-2
common factorsx, —X,-1), (X,—1=X,—-2), - - - ,(Xj+1—Xj-1), - . . ,(X2—X4). These columns will now have their second row
equal to unity. Subtract adjacent columns as before to replace the 1 by 0 in the-lastolumns. Since

n-2 n—-2

foo1(X,y)— fn_l<y,z>=k§0 yk<x"*1*k—z”*1*k>=k§0 Y (x—2)fn 2 (X,2), (B5)

one can again extract the common factors, which now differ by 2 in the subscripts:x(_,),
(Xp—1=Xp-3)s -+ s (Xjr1—Xj-2), - - . ,(X3—X1). This process is repeated until the determinant is reduced to the(fere
j=1 is illustrated

(AF, 2,11~ AF2x)) 1 0 0 0

(AF,i3,12—AF3X]) X, 1 0 0

(AF,papia—AF4X]) X3 (XotXg) 1 0 0 @6
(AF i, 4—AFsxd) X3 (G+X3+%%s) (XptXatXg) 1 '

This is expanded to yield

14 14

’ 1
(AFV+2,v+1_AF21XI)H Xj—(AFv+3,v+2_AF32XDH ij —+--
=2 =2 k=2 Xk

14

+ ( - 1)V(AF2V,2v—1_ AFV,V—lxllj);z Xj - ( - 1)V(AF2v+l,2V_ AFv+l,VX]If) =0. (87)
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There arev such equations; call theB(j) for j=1,... . Form the new set ofr equations by taking the differences
B(1)—B(2), B(2)—B(3),...,B(v—1)-B(v), B(v)—B(1). Each of these equations has an overall factor that may be
removedAF,,. 1 ,, is eliminated from all of them. For example,B{1)—B(2) each term will containx; —x,). Again, form

the differences between these equations after removing these difference factors. The new equations will again each have an
overall factor that can be removed, ané,, 5, will be eliminated. Repeated application of this procedure will eliminate

AF;, 112, throughAF, .5 ,., and reduce the original system to one equation

ALl %= AFgl] X X xi M-+ (= 1) *AF 11,2 Xj+(=1)"*?AF,42,41=0. (B8)
j=1 j=1 k=1 =1
This equation was obtained by using the21 temperatures that give the sé&tK,,, ... ,AF,,,1,,); one can also use the
sets AF3,, ... AF,00041), - (AF 42,41, ... AF3,413,). Each such set will yield an equation likB8), the only

difference being in the subscripts of thd-. One then has a set of equations

AFy —AF3; o (FD)YTIAR g, v, AF, 2041

AF3 —AFg3 (_1)V+1AFV+2,V+1 Uy-1 2 AF, 3042
. . : =—(-1)" : , (BY)

AFv+l,v _AFV+2,V+1 e (_1)V+1AF2V,2v—1 U1 A|:21/+l,21/

whereu; is the sum of allj-tuple products of the;,
v v—1 v
Ul—z Xj, U2= Z Xj Xk
j=1 j=1 “k=j+1
UV71:H XJE X;l, U,= Xj' (BlO)
=1 k=1 =1

One can solve the syste(B89), AFv=g, to obtain expressions for thg in terms of known quantities; call these

oy=byap)= 20l (B1D)
=P AF]

where|AF;| is the determinant obtained when thet{1— j)th column of|AF| is replaced byy. One then has the polynomial
(with by=1)

J_];[1 (x—xj):;0 (—1)bjx*"I=0. (B12)
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