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A stochastic formulation of the kinetic model for thermally stimulated luminescence, based on van
Kampen’sV expansion, leads to the set of deterministic macroscopic kinetic equations for the model and to a
Fokker-Planck equation that governs the various particle number fluctuations. In the weak source limit the
expansions for the steady-state macroscopic particle numbers are of fairly simple form, as are those for the
eigenvalues of the system of kinetic equations for the expectation values of the fluctuations. Also in this limit,
these eigenvalues~which are just the decay constants in the sums of exponential decays that form the recom-
bination radiation correlation functions! separate into three distinct, experimentally distinguishable, sets. These
results have been used@Phys. Rev. B45, 622 ~1992!# to deduce the model parameters for the case of one
recombination center and one trapping level; here the analysis is extended to the general case ofm ~purely
radiative! recombination centers andn trapping levels whose activation energies are so close that over a
suitable temperature range all traps can traffic in electrons with the conduction band. One can still deduce the
larger number of model parameters from measurements of the steady-state recombination radiation intensities
and their correlation function decay constants at a set of temperatures and electron-hole production rates. It is
also shown how to account for nonradiative recombinations and for deep, thermally disconnected traps~which
become filled in the steady state!.

I. INTRODUCTION

Thermally stimulated luminescence in various materials
has been studied theoretically by invoking simplified phe-
nomenological models.1,2 Not all the parameters of these
models can be determined from observations of the recom-
bination radiation that is emitted when a previously irradi-
ated sample is heated.2,3 Not only are some of the properties
of the sample undetermined; one may also question the exact
physical meaning of the model parameters as well as the
appropriateness of the model itself.

A stochastic formulation of the usual model was
developed,4 and it was shown that in principle it is possible
to derive values for all the parameters of a model with one
trapping level and one recombination center from a set of
observations of the steady-state recombination radiation au-
tocorrelation function at different sample temperatures and
with different electron-hole production rates~caused by
varying the incident radiation intensity!. Here the analysis
will be extended to the more realistic model with multiple
traps and recombination centers. There is a larger number of
parameters to be determined and equations to be solved; ex-
tracting values for the model parameters from these solutions
becomes more involved.

The analysis will initially assume that the traps are so
closely spaced in activation energy that they all contribute
appreciably to the electron traffic with the conduction band
over a suitable temperature range. All electron-hole recom-
binations are taken to be radiative~and observable!; the pres-
ence of nonradiative recombinations will be considered in
Appendix A. Since there is more than one recombination
center, one can measure not only the radiation autocorrela-
tion function for each center, but also the cross-correlation

functions between the recombination emissions from the
various centers. The redundancy from such a large number of
observations allows one to obtain values for the model pa-
rameters from several independent measurements; agreement
among the derived values would give confidence that the
parameters have physical significance and have been accu-
rately measured.

In the next section steady-state relations for the macro-
scopic variables of the model, the kinetic equations govern-
ing the expectation values of their fluctuations, and an ex-
pression for the recombination radiation correlation
functions will be quoted; they can be derived by generalizing
van Kampen’sV expansion4,5 to include multiple traps and
recombination centers. Then the weak-source steady-state
solutions will be found for the macroscopic variables, as will
weak-source expressions for the recombination radiation cor-
relation function~a sum of exponential decays! decay con-
stants. The usefulness of these latter quantities, as functions
of temperature and~weak-!source strength, in determining
the trap parameters and~with the steady-state intensities! the
recombination center parameters will then be shown.

By this stochastic formulation, one can in principle find
values for all the parameters of a model with multiple traps
and recombination centers. The trap parameters are found by
starting from a polynomial with known coefficients~deter-
mined from measurements of the decay constants! whose
roots are directly related to the trap activation energies. The
recombination parameters are then similarly found by start-
ing from a set of coupled nonlinear algebraic equations that
involve the ~now known! trap parameters, decay constants,
and steady-state recombination intensities and whose solu-
tions are the set of probabilities per unit time for a
conduction-band electron to recombine with holes in the
various centers. All these initial equations must be solved
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numerically. The approach is generalized to include the pres-
ence of deep, thermally disconnected traps; they become
filled in the steady state, which leads to excess holes in the
recombination centers. To illustrate this without excessive
algebra, only the case of no active electron traps is presented.

II. STOCHASTIC FORMULATION OF THE
THERMOLUMINESCENCE MODEL

Consider a material in which, upon electron-hole pair for-
mation due to irradiation, the holes in the valence band can
migrate to a set ofm different type recombination centers
and the electrons in the conduction band can migrate to a set
of n different type traps~from which they can escape via
thermal activation! and to the recombination centers; recom-
bination of these electrons with the holes in the centers pro-
duces the thermoluminescence. There is no direct recombi-
nation from the traps, only through the conduction band.
Recombination is the only loss mechanism for the holes, and
every electron-hole recombination results in photon emis-
sion; so the luminescence from centeri is I i , the recombi-
nation rate in that center. The photons escape from the
sample without absorption or other interaction. Nonradiative
recombination is addressed in Appendix A, where it is shown
how to obtain theI i from intensity observations. The com-
plicated details of the interaction of the incident radiation
with the sample that gives rise to the electron-hole pairs are
represented by the parameterJ, the number of electrons
~holes! produced in a unit volume of the sample conduction
~valence! band in a unit time interval. For independent, un-
correlated incident radiation, as is assumed here, thisJ is a
constant macroscopic parameter in the steady state; the mas-
ter equation for the system probability function will contain
additional terms in the presence of correlated incident
radiation.6,7

The model is illustrated by Fig. 1, and the model param-
eters and variables are defined in Table I. In the steady state
the kinetic equations yield the algebraic relations

Cifc i5Bi~Mi2c i !r5I i ~ i51, . . . ,m!, ~1!
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A generalization of the previous analysis4 that uses van
Kampen’sV expansion5 produces the set of kinetic equa-
tions, for the expectation values of the fluctuations,
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FIG. 1. Energy levels, transition probabilities, and densities for
electrons and holes in the conduction and valence bands, multiple
trapping states, and multiple recombination centers for a general-
ized kinetic model that allows electron-hole production during lu-
minescence.
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Charge conservation yields

^t&1(
i51

m

^h i&5^j&1(
j51

n

^z j&, ~9!

from which one can eliminate one of the variables,^t&, for
example, from the set~5!–~8!. The intensityHi of recombi-
nation radiation from centeri is given by the expression

VHi5VI i1V1/2hi5
Ci

V
~Vf1V1/2j!~Vc i1V1/2h i !,

~10!

and so^Hi&5I i , and in the steady state

^^Hi~0!Hk~ t !&&5^hi~0!hk~ t !&

5CiCk@f2^h i~0!hk~ t !&1c ick^j~0!j~ t !&

1fc i^j~0!hk~ t !&1fck^h i~0!j~ t !&#.

~11!

Since there is more than one intensity, one can measure the
cross-correlation as well as the autocorrelation functions for
the various intensities. All the equations in this section re-
duce to the corresponding relations for the single trap and
recombination level,m5n51,4 and the same approach will
be taken in developing their solutions.

III. STEADY-STATE SOLUTIONS

The fluctuations of a system are most readily interpreted
when they occur about the steady state, which can be estab-
lished by exposing the luminescent sample at a fixed tem-
perature to a fixed radiation field that results in a constant
electron-hole production rateJ and is described by~1!–~4!.
This production rate will be small for most experimental
situations; also in this limit the various steady-state equations
have simplified solutions which are more easily inverted to

obtain expressions for the model parameters in terms of the
observed quantities. In the weak-source limit, the autocorre-
lation decay constants will separate into three sets with 1,
m, and n components. Thus expand the macroscopic vari-
ables as a power series inJ, with the previous subscript
notation,4

r5raJ
a/21ra8J

a8/21 . . . , ~12!

f5fbJ
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b8/21 . . . , ~13!

c i5c igJ
g/21c ig8J

g8/21 . . . , ~14!

x j5x jdJ
d/21x jd8J

d8/21•••. ~15!

Then ~3! requires thatd5b and ~2! that b1g52 and
a52, so that~4! yields b51 (a52, b5g5d51). In ob-
taining these relations one also finds the lowest-order terms

r25
1

( iBiM i
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x j15
AjNj

s j
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c i15
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(kBkMk
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j

AjNj

s j
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TABLE I. Identification of model parameters and variables for a sample of volumeV with
i51, . . . ,m recombination centers andj51, . . . ,n traps.

Symbol Identification

mv→Vr1V1/2t number of holes per unit volume in the valence band
nc→Vf1V1/2j number of electrons per unit volume in the conduction band
mi→Vc i1V1/2h i number of holes per unit volume in recombination centeri
nj→Vx j1V1/2z j number of electrons per unit volume in trapj
Bi probability per unit time that a valence-band hole enters centeri
Ci probability per unit time that a conduction-band electron recombines

with a hole in centeri
Aj probability per unit time that a conduction-band electron enters trapj
M i number of recombination centersi per unit volume
Nj number of trapsj per unit volume
s j5sjexp(2Ej /kBT) probability per unit time for a trapj electron to escape to the

conduction band
sj trap j preexponential factor
Ej trap j activation energy
kBT Boltzmann constant3temperature
Hi→VI i1V1/2hi electron-hole recombination rate/intensity for centeri
J electron-hole production rate per unit volume
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From the next term in the power series, one findsa853,
b85g85d852. By combining~1! and ~2!, one obtains the
exact steady-state relations

Cic i

(kCkck
5
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(kBk~Mk2ck!
5

I i
(kI k

5
I i
J
. ~22!

For the intensity series expansion, one obtains
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where
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2

CkMk
2
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CiMi
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which satisfy the conditions( i I i251 and S i I i350. Thus
there are each onlym21 independentI i2 and I i3 . These
conditions are just that in the steady state there are as many
electron-hole recombinations per unit time as there are
electron-hole pairs created, but the individual recombination
rates do not scale linearly withJ; thus, the relative distribu-
tion of recombinations in the various centers is a function of
J.

Upon eliminatinĝ t& from the set of equations~5!–~8! by
the charge conservation condition~9!, one has 11m1n in-
dependent equations that can be expressed in matrix form as
dY/dt5LY , where the components of the vectorY are ar-
ranged in the order̂j&,^h1&, . . . ,̂ hm&,^z1&, . . . ,̂ zn& and
the elements of the matrixL are obtained from~6!–~8!; the
steady-state values of the macroscopic quantities are used.
The solution to this system consists of sums of various ex-
ponential decays exp(Lrt), whereL r are the roots of the
characteristic equationuL2lI u50, I being the identity ma-
trix. These eigenvalues are also the decay constants of the
recombination radiation correlation functions. One can sim-
plify the determinantuL2lI u by performing a series of op-
erations:~i! Add the lastn rows to the first row;~ii ! subtract
rows 2 throughm11 from the first row;~iii ! add column 2 to
the first column and to the lastn columns;~iv! subtract col-
umn 2 from column 3 throughm11. The elements of this
modified determinant are displayed in Table II and are exact
since no truncated expansions have been introduced yet. In

the weak-source limit, only terms inJ0 andJ1/2 are of inter-
est; when one substitutes the expansions of the macroscopic
quantities, truncated to this order inJ, the characteristic de-
terminant is simplified since all terms inr (;r2J1•••) will
vanish. This latter fact in turn allows one to separate the
rootsL r into three distinct, experimentally distinguishable,
sets. Expand the resulting determinant along the first row
~whose only nonvanishing element is in the second column!
to obtain

F(
i
Bi~Mi2c i1J

1/2!1lGDmn~l!50, ~26!

where the elements of the determinantDmn(l) are given
explicitly in Table III; it has nonvanishing terms only along
the first row, first column, and diagonal.

In the weak-source limit, the rootsl r5l r01l r1J
1/2 of

Dmn(l) separate into a set ofm with l r050 and a set ofn
with l r0Þ0. To find the latter values, retain only terms pro-
portional toJ0 upon expandingDmn, so that

~l0!
mU 1 1 ••• ••• 1

A1N1 2s12l0 0

A �

A �

AnNn 0 2sn2l0

U50.

~27!

Since this determinant is a polynomial inl0 , one cannot in
general obtain explicit expressions for the various roots~and
even in the cases where this is possible, the resulting rela-
tions are so complicated that it is not feasible to invert them
to obtain expressions for the model parameters in terms of
the observed quantitiesl0). By setting the expansion of~27!
equal to a product of terms linear in the roots

)
j51

n

~s j1l0!1(
j51

n

AjNj)
kÞ j

~sk1l0![)
r51

n

~l02L r0!50,

~28!

however, one can obtain explicit analytic expressions for
specific sums of products of the various rootsL r0 . Equate
terms in like powers ofl0 in ~28! to obtain the set of func-
tions

TABLE II. Elements of the determinant for the eigenvalues of the system~6!–~8!, with Li[Cif1Bir.

B1r @B1r1( iBi(Mi2c i)1l# (B22B1)r ••• ••• (Bm2B1)r B1r ••• ••• B1r

2C1c12L12l @2B1(M12c1)2L12l# L11l ••• ••• L11l 2L12l ••• ••• 2L12l

2C2c2 2B2(M22c2) 2L22l 0 0 0 0 0 0 0

A A 0
�

0 0 0 0 0 0

A A 0 0
�

0 0 0 0 0

2Cmcm 2Bm(Mm2cm) 0 0 0 2Lm2l 0 0 0 0

A1(N12x1) 0 0 0 0 0 (2s12A1f2l) 0 0 0

A 0 0 0 0 0 0
�

0 0

A 0 0 0 0 0 0 0
�

0

An(Nn2xn) 0 0 0 0 0 0 0 0 (2sn2Anf2l)
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The functionsF0 j are known, since they are found by adding
singlets, pairs, triplets, . . . of the observed rootsL r0 . If
there aren trapping levels, there aren of these roots, but
each root contains information about alln traps. Each trap
competes against all the other traps for its share of the
conduction-band electron traffic, and so the steady-state oc-
cupationx j and fluctuations thereof,z j , depend on the prop-
erties of all traps, not justj . In the lowest order (J0), this set
of eigenvalues does not contain any effect from the recom-
bination centers, even though they also interact with the
conduction-band electrons.

To obtain theJ1/2 coefficientsl1 for the set ofm eigen-
values withl050, set l5l1J

1/2 in Dmn and remove all
terms inJ1/2 from the lastn rows of the determinant, which
may then be expanded along the first row to yield

)
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m

~l11Cif1!1S (
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m
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D 21

f1(
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BiMi)
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m

~l12L r1!50. ~32!

This has the same form as~28!, and so its roots can be specified by the functionsF of ~29!–~31! if one makes the identifi-
cationss j→Cif1 andAjNj→BiMif1((kBkMk /Ck)

21, with the products and sums now running tom instead ofn. One then
has
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where

zi[S I i2Ci
D 1

fC
, ~36!

and so( izi5fC . If there arem recombination centers, there
are m eigenvalues whose lowest dependence;J1/2. Each

such root contains information about allm recombination
centers as well as trapping-level information through the
presence of thefs . The observed correlation functions~11!
are combinations of the solutions for the kinetics of the fluc-
tuation first moments and of the steady-state second mo-
ments of the fluctuations. Since both these quantities are de-
rived from the same Fokker-Planck equation, one wants to

TABLE III. Elements of the determinantDmn(l) for the eigenvalues of the weak-source limit.

@2C1c11J
1/22C1f1J
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1/21l ••• ••• C1f1J

1/21l 2C1f1J
1/22l ••• ••• 2C1f1J
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0 0 0 0 0 0
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ensure that there is no peculiar relationship that would cause
the amplitudes of some of the exponential decays to vanish.
From the explicit calculations of them5n51 case4 and the
symmetry of theL i1

m andL j0
n in the trap and center param-

eters, one can argue that just as the singleL11 andL10 ap-
pear in theJ1/2 terms of them5n51 correlation function, so
also will the entire setsL i1

m andL j0
n appear in theJ1/2 terms

of all the generalm,n correlation functions. This is based on
the observation that each decay constantL i1

m or L j0
n contains

in a completely symmetric manner the parameters of all the
traps or centers and that in the governing equations only the
arbitrary labeling scheme distinguishes one recombination
center and its stochastic radiation from any other such center.
By similar reasoning, the third type of decay constant,LB of
~26!, will not appear in the lowest-orderJ expansion term for
any of the generalm,n correlation functions.

IV. DEDUCTION OF THE MODEL PARAMETERS

In the previous section both the macroscopic and correla-
tion function steady-state values of the model variables were
determined for weak electron-hole production in terms of the
model parameters. The purpose of this stochastic formulation
is to deduce numerical values for these parameters from the
various intensity measurements. There are 3m14n such pa-
rameters to be determined, three (Ci ,Bi ,Mi) for each of the
m recombination centers and four (Ej ,sj ,Aj ,Nj ) for each of
the n trapping levels~although in the lowest order only the
productAjNj can be determined!. The numbersm andn are
also to be determined, as isJ itself in most circumstances.
Here one considers the case in which all recombinations are
radiative and can be observed and the trapping level activa-
tion energies are so close together that they all participate in
electron trafficking over the temperature range of the obser-
vations. The observed quantities are them steady-state re-
combination radiation intensitieŝHi& and them(m11)/2
independent intensity correlation functions^^Hi(0)Hk(t)&&.
By measuring the latter for a set of time delayst, one de-
duces by standard deconvolution schemes8–10 the 11m1n
decay constantsl r . These measurements are performed at a
set of electron-hole production ratesJ for each of a set of
temperaturesT; this allows one to obtain theJ0 and J1/2

terms in the expansions of the various quantities and to sepa-
rate thel r into the three setsLB , L i1

m , L j0
n , from which one

forms theF0 j andF1i of ~29!–~31! and ~33!–~35! that are
the n1m ‘‘observed’’ or ‘‘measured’’ decay quantities. The
m decay constants associated with theF1i are immediately
identified by theirJ1/2 dependence, while then decay con-
stants associated with theF0 j are identified through their
J0 dependence and strong temperature dependence through
the s. The decay constantLB is specified by the lack of
temperature dependence in itsJ0 term. One can thus assign
the measured decay constants to their appropriate groups and
obtainm and n as well. To obtain the 3n trapping param-
eters, one must measure thenF0 j for at least three different
temperatures; to obtain the 3m recombination parameters,
one uses the 2(m21) independent (J1 andJ3/2) terms in the
J expansion of them^Hi&, the m decay quantitiesF1i and
LB0 ,LB1 .

From ~2! and ~23! one can obtainJ simply by summing

the recombination radiation̂Hi& from all centersi . By con-
sidering~23!, ~26!, and similar expressions forLn andLm at
two production ratesJ1 andJ2 , one obtains theJ expansion
coefficients; of these quantities, onlyLB0 andL j0

n ~and thus
the trap parameters! can be obtained solely from relative in-
tensity measurements, i.e., from individually unknownJ1
andJ2 that have a known ratioa5J2 /J1 .

In principle, one can use all the information contained in
measurements at only three temperatures to obtain the trap
parameters; there will be 3n equations~at three temperatures
for each of thenF0 j ) and 3n unknowns Ej , sj , and
(AjNj ). In this approach, first solve the set ofn equations at
temperatureT1 to obtain expressions for then(AjNj ) in
terms of theF0 j (T1) and thes j (T1); substitution of these
expressions into the equations forT2 andT3 eliminates the
(AjNj ) and leaves 2n equations that are nonlinear in the
2n variables. It does not seem possible to reduce signifi-
cantly the number of equations and variables by further al-
gebraic manipulation, and so one must solve numerically a
set of 2n nonlinear algebraic equations with coefficients de-
rived from observation to obtain values for the remaining
model trap parameters. This is quite difficult in general.

Since theF0 j involve only the trapping parameterss j

@5sjexp(2Ej /kBT)# andAjNj , one can try to obtain numeri-
cal values for these parameters by manipulating a set of
F0 j measured at several different temperatures. Equations
~29!–~31! are linear in the productsAjNj , and so if the
F0 j ands j are known at a single temperature, one can im-
mediately obtain values for theAjNj . Since~29! is also lin-
ear in thes j , one approach is to use justF01 evaluated at
2n11 temperatures~with T1,T2,•••,T2n11) such that

S 1

kBT1
2

1

kBT2
D5S 1

kBT2
2

1

kBT3
D

5•••5S 1

kBT2n
2

1

kBT2n11
D[h; ~37!

i.e., the difference between the inverses of adjacent tempera-
tures is constant. TheAjNj can be eliminated by forming the
difference between~29! evaluated at two adjacent tempera-
tures,

DFl ,l21[F01~Tl !2F01~Tl21!

5(
j51

n

sjexp~2Ej /kBTl21!@exp~hEj !21#.

~38!

Divide these equations~38! into two groups (DF21, . . . ,
DFn11,n) and (DFn12,n11 , . . . ,DF2n11,2n); each set can be
solved for sj or sj @exp(hEj)21# in terms of the still un-
known quantitiesxj[exp(hEj).

Extensive algebraic manipulation~the major features of
which are given in Appendix B! of these equations leads one
to a polynomial of the form

)
j51

n

~x2xj !5(
j50

n

~21! jbjx
n2 j50, ~39!
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where the coefficientsbj are known from the observed quan-
tities DFl ,l21 of ~38!. Such an equation is readily solved
numerically to give thexj and hence the activation energies
Ej ,

Ej5
1

h
lnxj , ~40!

with h given by ~37!. Since theEj are all positive, the ob-
servations must be accurate enough to ensure all the roots
xj are greater than unity. One can check these results by also
using anF1i evaluated at two temperaturesT1 andT2 , for
example,

F0n~T2!

F0n~T1!
FF1i~T2!

F1i~T1!
G2/i5expS h(

j51

n

Ej D 5)
j51

n

xj , ~41!

to obtain an independent value for the sum of the activation
energies. Once theEj are found, one finds thesj from the
intermediate equations~B1!. Finally, the AjNj are found
from ~29!–~31! evaluated at one temperatureT1 , for ex-
ample; this system has solutions (F00[1)

AjNj5
2~21!n(k50

n ~2s j !
kF0,n2k

Pk51,Þ j
n ~s j2sk!

, ~42!

where thes andF are evaluated atT1 . From observations at
2n11 temperatures, analysis of~29! allows one to deduce
the trapping parametersEj ,sj and the productsAjNj . Most
of the information available from the observations is not
used, since onlyF01 is considered. An unfavorable conse-
quence of this is that, since a minimum temperature separa-
tion is needed to yield an accurateDF, in the case of many
trapping levelsn the 2n11 measurements will be spread
over a temperature range that may be larger than the region
in which all traps partake in electron trafficking@which de-
pends on the function exp(2E/kBT)].

Since it becomes more difficult to determine the trapping
parameters as the numbern of trapping states increases, an
alternative approach to these measurements may be useful.
Start the set of measurements at a temperature so high that
only the deepest trap contains charges in the steady state; the
other traps are relatively shallow, and so at this temperature

electrons escape so quickly the traps are empty. This tem-
perature must be consistent with the ability to measure the
luminescence; for example, it cannot be so high that black-
body radiation from the sample material masks the lumines-
cent radiation. The idea is to make the effectiven, the num-
ber of traps partaking in electron trafficking, as small as
possible. To be definite, this is taken to ben51. The param-
eters of this trap are then determined by measurements at
three temperatures or at two temperatures with bothF01 and
F11. These temperatures are all so high that only the one
deepest trap contains electrons. Now lower the temperature
into a region in which only a second trap~the second deepest
one! also contains electrons. The parameters for thisn52
system could be found by using the methods discussed ear-
lier in this section; however, it would be much easier to use
the already determinedj5n trapping state parameters to re-
duce this to a single trap problem for thej5n21 trap. Re-
duce the temperature until a third trap contains electrons and
treat this as a single trapj5n22 problem since the param-
eters of the other two traps are already known. Continue this
process to determine the trap parameters one trap at a time
until they have all been found. If some trapping states are so
close together in activation energy that they are always
empty or always contain some electrons together, one would
use the equation for this effectiven, which is still a great
advantage over solving at once for alln trapping states.

In the general step of this process, suppose that there are
j11 trapping states and that the parameters ofj of them are
known. Then thej11 equations for theF0k

( j11) are not inde-
pendent. For convenience, considerF01

( j11) and F0,j11
( j11) ,

which are the sum and product of thej11 trapping state
decay constants. They satisfy

F01
~ j11!~r !2F01

~ j !~r !5sn2 j~r !1An2 jNn2 j , ~43!

F0,j11
~ j11!~r !5sn2 j~r !F0,j

~ j !~r !

1sn2 j11~r !•••sn~r !An2 jNn2 j , ~44!

where the temperatureTr is denoted byr in the arguments of
the functions and all quantities are known exceptsn2 j (r )
andAn2 jNn2 j . One immediately finds

An2 jNn2 j5
F0,j11

~ j11!~r !2F0,j
~ j !~r !@F01

~ j11!~r !2F01
~ j !~r !#

@sn2 j11~r !•••sn~r !#2F0,j
~ j !~r !

, ~45!

sn2 j~r !5
2F0,j11

~ j11!~r !1@sn2 j11~r !•••sn~r !#@F01
~ j11!~r !2F01

~ j !~r !#

@sn2 j11~r !•••sn~r !#2F0,j
~ j !~r !

[Rn2 j~r !. ~46!

Evaluate~46! at temperaturesT1 andT2 to obtain

En2 j5S 1

kBT1
2

1

kBT2
D 21

lnFRn2 j~2!

Rn2 j~1!G ~47!

and

sn2 j5Rn2 j~1!FRn2 j~2!

Rn2 j~1!G
T2 /~T22T1!

. ~48!

The value ofAn2 jNn2 j can be obtained from~45! evaluated
at T1 .

To find the parameters for the first, deepest, trap, one used
measurements at three temperatures. Only two temperatures
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each are needed to determine the parameters of the subse-
quent traps one by one; overall, then, one measures at
2n11 temperatures, just as in the first method proposed.
Similarly, one also does not use all the informationF0 j avail-
able from these measurements; however, the temperatures
used here are chosen under the constraint of the distribution
of the trap activation energiesEj and not according to the
h prescription of ~37!. Consequently, by combining the
methods of determination of the trap parameters all at once
or one by one, one can use 2n11 temperature measurements
to obtain the parameters for a fairly arbitrary distribution of
trapping state activation energiesEj .

From the previous discussion, it is possible to determine
the model parameters of the trapping states solely from the
set of recombination intensity correlation decay constants
L j0

n . One can now turn to the problem of finding the recom-
bination center parametersCi , Bi , andMi from the set of
intensity correlation decay constantsL1i

m and LB and the
macroscopic recombination intensitiesI i2 andI i3 . From~26!
one has

LB052(
i51

m

BiMi , ~49!

LB15
1

f1( iBiM i
(
k51

m Bk
2Mk

Ck
, ~50!

so that~24! and ~25! yield (i51, . . . ,m)

BiMi52LB0I i2 ~51!

and

CiMifC5
I i2

@~LB1 /2LB0!2~ I i3 /I i2!#fs
. ~52!

Since the quantityfs can be found from theLn roots,~33!–
~35! are a set ofm nonlinear equations inm unknown quan-
tities zi . From ~36! one finds

Ci5
I i2

zi(kzk
. ~53!

One first solves them equations~33!–~35! to obtain thezi .
From ~53! one then obtains values for the electron-hole re-
combination ratesCi , while ~52! yields the number of re-
combination centers,

Mi5
zi

@~LB1 /2LB0!2~ I i3 /I i2!#fs
. ~54!

Substitution of theseMi into ~51! then yields values for the
Bi . Thus one can obtain numerical values for the recombi-
nation parametersCi , Bi , andMi in a straightforward man-
ner.

Since the factorsfs and theF1i have the same tempera-
ture dependence, the right-hand sides of~33!–~35! are tem-
perature independent; thus, evaluation of these equations at
different temperatures will not aid in their solution. For ar-
bitrary m, one must use numerical methods to obtain values
for thezi from the set of nonlinear equations~33!–~35!. The
general approach to such a problem is to find initial estimates
for the zi that are as accurate as possible and then to refine
these estimates by iterative or other schemes that converge to
the correct solution. This can be very difficult to do in sev-
eral dimensions.11,12 There may be some assistance in that
the ~always positive! magnitude of theCi or zi will have
typical values that arise from the physical properties of the
sample material.

From theL j0
n one could only obtain the productsAjNj for

the trapping parameters. By also considering the next terms
L j1

n in the J expansion of these decay constants, one can
obtain theAj by themselves~and thus also theNj ). The
L j1

n are found from the sum of 11m1n determinants, which
are all the possible ways the determinant for the lowestJ0

order characteristic equation can have onlyJ1/2 terms in only
one column at a time andJ0 terms in all the other columns.
Since the originalJ0 characteristic equation vanishes for any
of then eigenvaluesL j0

n , any terms or combination of terms
that are proportional to it will vanish. One thus obtains, after
some algebraic manipulation,

(
k51

n

AkL j0
n f1F SAkNk

sk
21D)

lÞk
~s l1L j0

n !1(
lÞk

AlNl )
rÞk,l

~s r1L j0
n !G

5L j1
n L j0

n (
k51

n F)
lÞk

~s l1L j0
n !2(

lÞk
AlNl )

rÞk,l
~s r1L j0

n !G1
1

f1
)
l51

n

~s l1L j0
n !. ~55!

Since theAjNj are known, this set ofn equations~for
j51, . . . ,n) linear in then unknown quantitiesAk is readily
solved to yield theAk ~and thus also theNk) in terms of
observable properties of the recombination radiation. One
only needs to be able to associate theL j1

n with the appropri-
ateL j0

n for all n decay constants.

V. DEEP TRAPS

If the trap activation energies are widely separated, the
deep traps will be thermally disconnected from the conduc-
tion band for temperatures at which luminescence observa-
tions are made. In the steady state these deep traps will be
filled and their only effect is an excess number of holes in the
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recombination centers and in the valence band; one must be
able to fill these deep traps in a reasonable time in order to
use the stochastic approach. Previous theoretical investiga-
tions have assumed that this deep trap filling is possible,13,14

as have studies of old samples~such as quartz! in archaeo-
logical investigations.15 Numerical integration of the kinetic
equations shows how fast a thermally disconnected trap will
fill. 16 In addition, some laboratory results17,18 show satura-
tion in the thermoluminescent signal, which indicates trap
filling or the onset of appreciable radiation damage;19 how-
ever, a sublinear approach to constant thermoluminescent
output for increasingly larger dose is not necessarily due to
trap saturation in second order processes.20 There is thus
both theoretical and experimental justification for consider-
ation of such filled traps; the purpose of so doing here is to
determine the effect of these deep traps on the decay con-
stants of the recombination radiation correlation functions
and on the method of deducing the model parameters from
them.

Assume the measurements are made over a temperature
range so narrow that the shallow trapsj51, . . . ,g all traffic
in electrons over this range, while the deeper traps
j5g11, . . . ,n are always thermally disconnected and thus
filled in the steady state;g is taken to be a definite, fixed
number. This system is still described by~1!–~3!, ~5!–~9!,
and ~11!, with the range of~and sums over! j now running
only to g, not ton. The major difference is the charge con-
servation condition~4!, which becomes

r1(
i51

m

c i5f1(
j51

g

x j1N, ~56!

where

N[ (
j5g11

n

Nj ~57!

is the number of electrons stored in the deep traps and also
the number of excess holes in the centers. If one expands the
macroscopic variables in the power series~12!–~15!, ~1!–~3!
again yieldd5b andb1g52. If the total number of hole
sites in the recombination centers isM , where

M[(
i51

m

Mi , ~58!

there are two possible casesN<M andN.M . In the first
case, allN excess holes will be distributed throughout the
recombination centers; in the second case, the centers will all
be filled and theN2M remaining excess holes will reside in
the valence band. In either case,c i will now have aJ0 term;
thus,g50, b5d52, a(N,M )52, anda(N.M )50. The
presence of deep traps gives different exponents because of
the additionalNJ0 term in ~56!. The second term in each
expansion~12!–~15! is one power ofJ higher than the first
term, and sog852, b85d854, a8 (N,M )54, and a8
(N.M )52. Here only theN,M case will be considered;
the same approach can be used in theN.M case.

The intensity expansion~23! becomes

^Hi&5I i5I i2J1I i4J
21•••, ~59!

where

I i25Cif2c i05Bi~Mi2c i0!r2 ~60!

and

I i45Ci~f2c i21f4c i0!5Bi@~Mi2c i0!r42c i2r2#.
~61!

These satisfy the conditions( i I i251 and ( i I i450. Simi-
larly, the x j2 are still given by~17!, while the lowest-order
terms of the other macroscopic quantities are found to be

r25
1

~M2N!(i
I i2
Bi

5F(
i
Bi~Mi2c i0!G21

, ~62!

f25
1

N(
i

I i2
Ci

5F(
i
Cic i0G21

, ~63!

c i05
N~ I i2 /Ci !

(k~ I k2 /Ck!
, ~64!

c i25
1

f2
H I i4Ci

2
c i0

N F(
k

S I k4Ck
D

1r2f22f2
2S 11(

j51

g
AjNj

s j
D G J . ~65!

SinceN has aJ0 dependence, there is thus a different rela-
tion between the lowest-orderJ expansion terms of the mac-
roscopic variables.

The 11m1g equations~6!–~8! for the expectation values
of the fluctuations from whicĥt& has been eliminated by~9!
again yield the modified determinant~now only to g, not
n) of Table II. Substitution of theJ expansions of the mac-
roscopic quantities into this characteristic equation yields a
set of equations~in determinant form! for the terms of theJ
expansion of the decay constantsL r . ForN,M , in lowest
order these roots decouple into three sets as in the absence of
filled traps. An immediate consequence of the presence of
filled deep traps, and an indication of their presence, is that
the series expansions inJ for the observed intensitiesI i and
decay constantsL r no longer contain half-integral powers of
J. Also, there are now 11m1g decay constants, and their
distribution according to the lowest power inJ (J0 or J1)
will be modified.~Presumably it would also require a much
longer time to set up a steady state when one must first fill
some traps; this would be another indication that thermally
disconnected traps are present.!

The lowest-order term of theJ expansion of the charac-
teristic equation is obtained by using only theJ0 terms of the
macroscopic quantities. This leads to

~l0!
m21F(

i51

m

Bi~Mi2c i0!1l0GDF~l0!50, ~66!
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whereDF(l0) is the determinant of~27! with the first rows
of ones replaced by@2(f2

211l0),2l0 , . . . ,2l0#; it de-
fines a polynomial of orderg11, andf2 is also given by
~63!. The equationDF(l0)50 is solved by expanding the
polynomial analogous to~28! and equating like powers of
l0 to yield the set of equations for theF0 j8
( j51, . . . ,g11) for theg11 rootsL j0

g ; these are given in
terms of Eqs.~29!–~31! for theF0 j ,

F018 [2 (
r51

g11

L r0
g 5$F01%1f2

21 , ~67!

F028 [(
r51

g

(
s5r11

g11

L r0
g Ls0

g 5$F02%1f2
21(

j51

g

s j , ~68!

•••

F0g8 [~21!g)
r51

g11

L r0
g (
s51

g11
1

Ls0
g 5$F0g%1f2

21)
j51

g

s j(
k51

g
1

sk
,

~69!

F0,g118 [~21!g11)
r51

g11

L r0
g 5f2

21)
j51

g

s j , ~70!

where the$F0 j% refer to the expressions on the right-hand
side of~29!–~31! with n replaced byg. This set of equations
can be used to obtain theEj , sj , (AjNj ), andf2

21 , which is
independent of temperature. ConsiderF018 evaluated at
2g11 temperatures chosen to satisfy~37!, and eliminate the
AjNj andf2

21 by definingDFl ,l218 5F018 (Tl)2F018 (Tl21) as
in ~38!. Then use the approach of Appendix B to obtain a
polynomial of the form~39!, whose roots yield the activation
energiesEj . Then the analog of~38! is solved for thesj , and
finally the AjNj and f2

21 are found by solving the set of
g11 equations~67!–~70! at one particular temperatureT1 ,
for example. One finds

f2
215

F0,g118 ~T1!

P j51
g s j~T1!

, ~71!

while ~42! again gives theAjNj ~with n replaced byg). Thus
one can find the trap parameters andf2

21 for N,M ~and
also forN.M ) from the set ofg11 decay constantsL j0

g ,
which are distinguished by theirJ0 dependence and by their
fairly strong temperature dependence through thes j .

To obtain theJ1 coefficientsl2 for the set ofm21 eigen-
values withl050 of DF(l)50, keep theJ0 terms in the
first two and the lastg columns of the determinant of Table II
and substitute theJ1 terms in the third through (m11)st

columns of the determinant. If any of the latter columns were
to containJ0 terms, it~and thus the determinant! would van-
ish for l050; this prescription then gives theJ1 terms one
seeks. Each of the lastg columns contains a single nonzero
terms j ; since these are arranged diagonally, the determinant
can be immediately reduced to one withm11 rows and
columns. The first column terms (2Cic i0) of this reduced
determinant can be multiplied by2f2 to give1I i2 , and the
second column terms@2Bi(Mi2c i0)# can be multiplied by

r2 to give 2I i2; addition of the second to the first column
yields a new column whose only nonzero term is its first one.
One then obtains (Li2[Cif21Bir2)

U I 12 ~L121l2! ••• ••• ~L121l2!

I 22 ~2L222l2! 0

A �

A �

Im2 0 ~2Lm22l2!

U50,

~72!

which yields the polynomial

(
i51

m

I i2)
kÞ i

~Lk21l2![ )
r51

m21

~l22L r2
m !50. ~73!

By expanding~73! and matching powers ofl2 , one will
obtain m21 equations for them quantitiesLi2 ~each of
which contains the two unknown parametersCi andBi) in
terms of the observable intensitiesI i2 and decay constants
L i2

m ,

F21[2 (
r51

m21

L r2
m 5(

i51

m

I i2(
kÞ i

Lk2 , ~74!

F22[ (
r51

m22

(
s5r11

m21

L r2
m Ls2

m 5(
i51

m

I i2 (
k51,Þ i

m21

Lk2 (
l5k11,Þ i

m

Ll2 ,

~75!

•••

F2,m21[~21!m21)
r51

m21

L r2
m 5(

i51

m

I i2)
kÞ i

Lk2 . ~76!

An additional relation involving theLi2 will thus be needed
to solve this system for the individualLi2 .

The J1 term LB2 for the decay constant with
LB052( iBi(Mi2c i0) of ~66! can be found from the deter-
minant of Table II,

LB25(
i51

m

Bic i22
1

2LB0
(
i51

m

BiI i2 . ~77!

It will also be useful to have expressions for theL j2
g , the

J1 terms for the decay constants that start with theL j0
g of

~67!–~70!. The characteristic equation for these eigenvalues
can be found by replacing theJ0 terms of the lowest-order
characteristic equation with the appropriateJ1 terms one col-
umn at a time. In evaluating these determinants, all terms or
combination of terms that are proportional to the original
lowest-order determinantDF(L j0

g ) will vanish. After some
algebraic manipulation, one obtains
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2Ff2
211~2Lk0

g !2(
j51

g
AjNj

~s j1Lk0
g !2

GLk2
g 5(

i51

m

CiI i21~2Lk0
g !(

i51

m

Cic i21~2Lk0
g !2(

j51

g Aj
2Nj

~s j1Lk0
g !

F 1

~s j1Lk0
g !

1
1

s j
G .
~78!

For each of theg11 Lk0
g , there will be aLk2

g . The unknown
quantities in~78! will be Aj , ( iCi I i2 ,andS iCic i2 . The sim-
plest case~the only one considered here! is that for which
there are no active traps,g50. Physically, there are two
ways this can come about. First, if the temperature of the
sample is so low that all traps are thermally disconnected
from the conduction band, there will be no active traps. The
second possibility is to raise the sample temperature so high
that all the active traps are so active that any trapped elec-
trons are immediately thermally activated into the conduc-
tion band, while the thermally disconnected traps are so deep
they are still disconnected and filled in the steady state. In
either case, ~78! simplifies to the single eigenvalue
@Lg2[Lk2

g (g50) and similarly forLg0]

Lg252f2F(
i51

m

CiI i21~2Lg0!(
i51

m

Cic i2G . ~79!

From ~56!, ~60!–~63!, ~66!, and~67! with g50 and~29!
with n50 ~soLg052f2

21), one obtains

I i452I i2(
k

S Ck

2Lg0
Dck21S Ci

2Lg0
Dc i2 ~80!

5I i2(
k

S Bk

2LB0
Dck22S Bi

2LB0
Dc i2 , ~81!

which along with~65! yields

c i25
~ I i2 /Li2!

( l~ I l2 /Ll2!
S 1

2Lg0
2

1

2LB0
D . ~82!

If one momentarily assumes theLi2 are all known@from the
m21 equations~74!–~76! and another as yet unspecified
equation#, one can find theCi andBi in terms of theseLi2
and the observed quantities. Since( i I i450, ~80! or ~81!
comprisesm21 independent equations; the additional equa-
tion independent of these is given by~79! or ~77!, and one
hasm equations for them unknownsCi @~79! and ~80!# or
Bi @~77! and~81!#. Thec i2 in all these equations are known
by ~82!, since theLi2 are assumed to be known. These two
sets have solutions

S Ci

2Lg0
D5

Li2( r~ I r2 /Lr2!

~DL0!
F I i4I i2 2

Lg2~DL0!1( r~ I r2 /Lr2!(kI k4Lk2
2Lg0~DL0!1( r~ I r2 /Lr2!(kI k2Lk2

G ~83!

and

S Bi

2LB0
D5

Li2( r~ I r2 /Lr2!

~DL0!
F2

I i4
I i2

1
LB2~DL0!2( r~ I r2 /Lr2!(kI k4Lk2

2LB0~DL0!2( r~ I r2 /Lr2!(kI k2Lk2
G ~84!

@with DL0[(2Lg0)
212(2LB0)

21], and so one can obtain theCi andBi . If one adds~83! and ~84! and eliminates the
common factorLi2 , one has an additional equation for theLi2 ,

15
1

~DL0!
(
r

S I r2Lr2
D F2

Lg2~DL0!1( r~ I r2 /Lr2!(kI k4Lk2
2Lg0~DL0!1( r~ I r2 /Lr2!(kI k2Lk2

1
LB2~DL0!2( r~ I r2 /Lr2!(kI k4Lk2

2LB0~DL0!2( r~ I r2 /Lr2!(kI k2Lk2
G , ~85!

which in combination with~74!–~76! providesm equations
for them unknownLi2 . These equations are nonlinear in the
Li2 and must be solved numerically. If there are no active
traps (g50) andN,M , one can thus obtain numerical val-
ues for all the model parameters from the observed intensi-
ties and correlation decay constants through the analytic re-
lations of this section. The numberN of electrons in the
thermally disconnected traps~or, equivalently, the number of
excess holes in the recombination centers! is then immedi-
ately found from~63!, while the number of recombination
centers is given by~60!,

Mi5I i2S 1

Cif2
1

1

Bir2
D . ~86!

For the more general case (N,M ) gÞ0, the major com-
plication is that the single decay constantLg0 (52f2

21)
now becomes a set ofg11 decay constantsL j0

g , and so
determination of theL j2

g becomes more involved algebra-
ically, but follows theg50 approach. The decay constants
LB0 andLB2 are the same, while the single rootsLg0 and
Lg2 are replaced by theg11 roots ofDF(L j0

g )50 and the
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g11 associatedL j2
g roots, which can be shown to satisfy

~78!. The presence of deep traps introduces an additional
parameterN; to determine its value, one must observe some
additional quantity. For a steady state to exist, the deep traps
must be filled; if such filling cannot be done, an alternative
approach is to use nonthermal means, such as optical excita-
tion at a wavelength that affects only the deep and not the
shallow traps, to stimulate electron trafficking from the deep
traps to the conduction band. This is in addition to the steady
irradiation and electron-hole productionJ by ionizing radia-
tion. In such a case, the deep traps will not be filled, but will
contain a small, macroscopically constant, number of elec-
trons in the steady state; this is basically the first problem
treated here.

VI. CONCLUSION

The application of van Kampen’sV expansion method to
obtain the model parameters for a thermoluminescent mate-
rial from measurements of the steady-state recombination ra-
diation intensities and their correlation function decay con-
stants has been extended to include multiple trapping levels
and recombination centers. The simple case of radiative re-
combination ~so all recombinations are observable! and
closely spaced activation energies~so all traps can traffic in
electrons over some temperature range! has been considered
initially. The larger number of coupled nonlinear equations
makes their solution and inversion algebraically more com-
plicated; however, even if one uses only the lowest-order
terms in theJ expansions, it is still possible to obtain expres-
sions for the model parameters in terms of observed quanti-
ties~although at this level the trap parametersAj andNj only
appear as the productsAjNj ). The main conclusion is that at
least in principle one can obtain numerical values for the
parameters of the usual thermoluminescence model by ob-
serving the statistics of the recombination radiation; the ac-
tual determination of these values can be reduced to a
smaller set of equations which must be solved numerically. It
is also shown that the model parameters can still be obtained
in the presence of deep traps and of nonradiative recombina-
tions.

The results of this paper can be summarized and the major
aspects highlighted by sketching how one would actually
implement this stochastic analysis. One first exposes the
sample material at a constant temperatureT to a steady ra-
diation source~either ionizing or optical radiation that will
produceJ electron-hole pairs per second, withJ a known
quantity if possible! and observes the recombination radia-
tion until all such emissionsHi have stationary mean values
^Hi&5I i . One then observes the fluctuationshi around the
steady-state intensities; to ensure the system is in the linear
noise regime that the approximations of this paper assume,
these fluctuations must have a Gaussian distribution~with
^hi&50). These conditions of stationary recombination ra-
diation with Gaussian fluctuations are to be monitored
throughout whatever series of measurements one will make.
One then measures the intensity correlation functions
^^Hi(0)Hk(t)&&5^hi(0)hk(t)&5( rQ( i ,k,r )exp(lrt) for a
large enough number of timest to allow one to invert these
functions to obtain thel r . Each such correlation function for
the variousi ,k will lead to the set of decay constantsl r , and

so there can be several independent sets of measurements; in
practice, the autocorrelation functionsi5k may be easier to
obtain. While at the same temperature, repeat the correlation
function measurements~at all the timest) for a set of differ-
ent electron-hole production ratesJ; then, for a set of differ-
ent temperatures, repeat the set ofJ and t measurements.
One then hasl r(J,T) for a set of production rates and tem-
peratures. If theJ are small, one can obtain thel r0 and
l r1 terms for theJ expansion of the decay constants as well
as the lower order termsI i2 and I i3 for the expansion of the
intensities. Parenthetically, if one measured the recombina-
tion radiation during the transient stages of changingJ and
T, one would have another way to deduce some of the
sample material properties.

So far, no theoretical model has been used; one has sim-
ply observed the steady-state intensitiesI i and their fluctua-
tions, from which one has deduced decay constantsl r and
their J and T dependences. The exact functional form of
these dependences indicates which theoretical model is ap-
propriate to use in the analysis; the number of each suchl
type will also yield the numbern of traps andm of recom-
bination centers. Once the proper theoretical model is deter-
mined from the data, one can use the analysis presented here
to obtain values for the model parameters.

One can modify this stochastic model to include more
realistic features that are fairly common. The first is to incor-
porate the possibility of nonradiative recombinations, as is
done in Appendix A, for which one cannot directly observe
all the recombinations. The discrete nature of recombination
into a particular center causes fluctuations in the number of
electrons and holes in the conduction and valence bands,
which in turn causes fluctuations in the observable recombi-
nation radiation that determines the correlation functions;
this observable effect is independent of whether the original
recombination is radiative or nonradiative. Since the correla-
tion decay constants can still be measured and since they
contain information about all the trap and recombination
center parameters, one can still obtain quantitative informa-
tion in the presence of~and even about the! nonradiative
recombinations. The main difficulty is in finding expressions
to replace those for the now unobservableI i and thus to
allow a unique solution for the recombination parameters. A
second modification is for the trap activation energies to be
so widely separated that when the deepest traps are active
traffickers the shallow ones will be empty and when the shal-
low traps are active traffickers the deep ones will be ther-
mally disconnected, i.e., not release any electrons to the con-
duction band. In the steady state, the deep traps will be filled
and their only effect is to produce an inequality in the num-
ber of electrons and holes in the bands, recombination cen-
ters, and active traps. The power series of theJ expansions
for the various quantities will be different in this case. An-
other model modification is the effect of fluctuations inJ
~due to either intrinsic fluctuations in the radiation source
itself or the discrete nature of the interactions between this
radiation and the atoms of the sample! on the correlation
functions of the recombination radiation. If these source fluc-
tuations are uncorrelated, the original assumption of a deter-
ministic J is still valid. The next step is to show that one can
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actually measure the correlation functions and steady-state
recombination intensities with enough accuracy to obtain
meaningful numerical values for the parameters that describe
the sample material. This will involve both experimental
technique and numerical analysis of sets of nonlinear equa-
tions in the presence of experimental uncertainty.

APPENDIX A: NONRADIATIVE RECOMBINATION

In this stochastic analysis one uses the electron-hole re-
combination ratesI i2 and I i3 to obtain the recombination
center parameters~and the separateAj andNj for the traps!.
For complete radiative recombination, these are just the ob-
served intensities. If nonradiative recombinations occur, as
they do in many materials, the observed intensitiesOi from
the various recombination centers are related to the recom-
bination ratesI i by

Oi5e i I i , ~A1!

wheree i is the radiative efficiency of the recombinations in
center i . From ~1!–~4! the I i do not scale linearly withJ
~although their sum does!, and so the observed intensities

Oi (Jk) at a series ofm different production ratesJk ~not
necessarily small! form a set of independent equations

(
i51

m

I i~Jk!5(
i51

m
Oi~Jk!

e i
5Jk ~k51, . . . ,m!. ~A2!

These can be solved to yield thee i and thus theI i by ~A1!, if
one knows theJk . If one only knows the ratiosak ,
Jk5akJ for some unknownJ, one can only determine the
relative magnitudes of thee i . For weak fields, if one can
measure theOim for the firstm terms of theJ expansion of
the Oi , one can solve(Oi2 /e i51 and (Oim /e i50
(m53, . . . ,m11) to obtain thee i .

For some materials thermal effects are the cause of non-
radiative recombination, and one has21,22

e i5
1

11Giexp~2Wi /kBT!
. ~A3!

Observe the recombination radiation at three temperatures
that satisfy~37!, which will be done anyway to obtain the
trap parameters. TheI i2 are independent of temperature, so
one has

Oi2~T2!2Oi2~T1!5Gi@Oi2~T1!exp~2Wi /kBT1!2Oi2~T2!exp~2Wi /kBT2!# ~A4!

and similarly forT3 andT2 . Then the ratio of these two equations yields the quadratic equation

Oi2~T2!2Oi2~T1!

Oi2~T3!2Oi2~T2!
5exp~2hWi !FOi2~T1!exp~2hWi !2Oi2~T2!

Oi2~T2!exp~2hWi !2Oi2~T3!
G , ~A5!

which can be solved for the unknown exp(2hWi) and thus
for theWi in terms of the observed intensitiesOi2 at differ-
ent temperatures. TheGi are then found from~A4!, and so
one has thee i and thus theI i2 , as well as values for the
Gi and theWi of the centers. With thee i one also finds the
I i3 from theOi3 .

Now suppose some of the recombination centers are to-
tally nonradiative (e i50 for somei ). One can still obtain
the decay constantsLB , L1

m , and L0
n from the radiative

centers, and from theL0
n one can still obtain theEj , sj , and

AjNj for the traps. The number ofL1
m roots is equal to the

total numberm of radiative and nonradiative recombination
centers. If the radiative efficienciese i are given by~A3! or
by some other function of the temperature, intensity obser-
vations at a set of temperatures allow one to obtain values for
the e i and theI i for the radiative centers. If one divides the
centers into radiativeI i

R ( i51, . . .m) and totally nonradia-
tive I i

NR ( i5m11, . . . ,m), one has

(
i5m11

m

I i
NR5J2(

i51

m

I i
R. ~A6!

If m5m21, there is only one nonradiative center, and one
immediately hasIm2

NR512(I i2
R and Im3

NR52(I i3
R ; in this

case, all the recombination ratesI i2 and I i3 are known, and
so one can proceed as in the main body of the text to obtain
all the model parameters~even for the totally nonradiative
center!. Form,m21, one needs additional relations to find
expressions for the individualI i2

NR and I i3
NR or equivalent re-

lations to substitute for them. With additional algebraic effort
one could use higher-order terms in theJ expansions of the
decay constantsl r or of the recombination intensitiesI i , or
one could use the amplitudes of the various exponential de-
cay terms in the intensity correlation functions. The steady-
state recombinations and fluctuations thereof of electrons and
holes in one center~whether radiative or not! affect the
steady state and fluctuations of the conduction-band elec-
trons, the valence-band holes, and the electrons and holes in
the other~radiative! centers. Physically, this allows one to
determine the nonradiative center parameters solely from op-
tical observations of the steady state and fluctuations of the
radiative recombination intensities.

APPENDIX B: INVERSION OF TRAP
PARAMETER EQUATIONS

To obtain values for the trap model parameters from~38!
evaluated at 2n11 temperatures arranged according to~37!,
one solves the two sets of equations
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S DF21

DF32

A

DFn11,n

D 5S 1 1 ••• 1

x1 x2 ••• xn

A A A

x1
n21 x2

n21
••• xn

n21
D S s1~x121!exp~2E1 /kBT1!

s2~x221!exp~2E2 /kBT1!

A

sn~xn21!exp~2En /kBT1!

D ~B1!

and

S DFn12,n11

DFn13,n12

•••

DF2n11,2n

D 5S 1 1 ••• 1

x1 x2 ••• xn

A A A

x1
n21 x2

n21
••• xn

n21
D S s1~x121!exp~2E1 /kBTn11!

s2~x221!exp~2E2 /kBTn11!

A

sn~xn21!exp~2En /kBTn11!

D , ~B2!

wherexj[exp(hEj). These equations are of the formDFI5HSI andDFII5HSII , with SII j5SI j xj
n . SinceH is the same for

both sets,SII j2SI j xj
n50 can be expressed in determinant form as

U ~DFn12,n112DF21xj
n! 1 ••• 1 1 ••• 1

~DFn13,n122DF32xj
n! x1 ••• xj21 xj11 ••• xn

A A A A A

~DF2n11,2n2DFn11,nxj
n! x1

n21
••• xj21

n21 xj11
n21

••• xn
n21

U50 ~B3!

for eachj51, . . . ,n. An overall factor (21) j21 that arises in interchanging columns~to place thej th columnDF in the first
column! has been removed. Thesj have now been eliminated, and so only theEj remain.

To evaluate the determinants~B3!, first simplify them by in turn subtracting columnn21 from columnn, columnn22
from columnn21, and so on to end by subtracting column 2 from column 3. Thus the first two columns are unchanged, while
the remaining columns have a vanishing first row and all other rows are of the formxr

n2xr21
n . Now

xn2zn5~x2z!(
k50

K

@xkzk~xn2122k1zn2122k!2~xz!~n21!/2dk,~n21!/2#

[~x2z! f n21~x,z!, ~B4!

whereK5(n/2)21 (n even! or K5(n21)/2 (n odd!. From each of the lastn22 columns, one then extracts then22
common factors (xn2xn21), (xn212xn22), . . . ,(xj112xj21), . . . ,(x22x1). These columns will now have their second row
equal to unity. Subtract adjacent columns as before to replace the 1 by 0 in the lastn23 columns. Since

f n21~x,y!2 f n21~y,z!5 (
k50

n22

yk~xn212k2zn212k!5 (
k50

n22

yk~x2z! f n222k~x,z!, ~B5!

one can again extract the common factors, which now differ by 2 in the subscripts, (xn2xn22),
(xn212xn23), . . . ,(xj112xj22), . . . ,(x32x1). This process is repeated until the determinant is reduced to the form~here
j51 is illustrated!

U ~DFn12,n112DF21x1
n! 1 0 0 0 ••• •••

~DFn13,n122DF32x1
n! x2 1 0 0 ••• •••

~DFn14,n132DF43x1
n! x2

2 ~x21x3! 1 0 ••• •••

~DFn15,n142DF54x1
n! x2

3 ~x2
21x3

21x2x3! ~x21x31x4! 1 ••• •••

A A A A �

A A A A �

U50. ~B6!

This is expanded to yield

~DFn12,n112DF21x1
n!)

j52

n

xj2~DFn13,n122DF32x1
n!)

j52

n

xj(
k52

n
1

xk
1•••

1~21!n~DF2n,2n212DFn,n21x1
n!(

j52

n

xj2~21!n~DF2n11,2n2DFn11,nx1
n!50. ~B7!
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There aren such equations; call themB( j ) for j51, . . . ,n. Form the new set ofn equations by taking the differences
B(1)2B(2), B(2)2B(3), . . . ,B(n21)2B(n), B(n)2B(1). Each of these equations has an overall factor that may be
removed;DF2n11,2n is eliminated from all of them. For example, inB(1)2B(2) each term will contain (x12x2). Again, form
the differences between these equations after removing these difference factors. The new equations will again each have an
overall factor that can be removed, andDF2n,2n21 will be eliminated. Repeated application of this procedure will eliminate
DF2n11,2n throughDFn13,n12 and reduce the original system to one equation

DF21)
j51

n

xj2DF32)
j51

n

xj(
k51

n

xk
211•••1~21!n11DFn11,n(

j51

n

xj1~21!n12DFn12,n1150. ~B8!

This equation was obtained by using the 2n11 temperatures that give the set (DF21, . . . ,DF2n11,2n); one can also use the
sets (DF32, . . . ,DF2n12,2n11), . . . ,(DFn12,n11 , . . . ,DF3n11,3n). Each such set will yield an equation like~B8!, the only
difference being in the subscripts of theDF. One then has a set ofn equations

S DF21 2DF32 ••• ~21!n11DFn11,n

DF32 2DF43 ••• ~21!n11DFn12,n11

A A A

DFn11,n 2DFn12,n11 ••• ~21!n11DF2n,2n21

D S vn

vn21

A

v1

D 52~21!n12S DFn12,n11

DFn13,n12

A

DF2n11,2n

D , ~B9!

wherev j is the sum of allj -tuple products of thexj ,

v15(
j51

n

xj , v25 (
j51

n21

xj (
k5 j11

n

xk ,

•••

vn215)
j51

n

xj(
k51

n

xk
21 , vn5)

j51

n

xj . ~B10!

One can solve the system~B9!, DFv5g, to obtain expressions for thev j in terms of known quantities; call these

v j5bj~DF!5
uDFj u
uDFu

, ~B11!

whereuDFj u is the determinant obtained when the (n112 j )th column ofuDFu is replaced byg. One then has the polynomial
~with b0[1)

)
j51

n

~x2xj !5(
j50

n

~21! jbjx
n2 j50. ~B12!
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