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The phase behavior of the Ising model with nearest-neighbor antiferromagnetic interactions on the fcc lattice
in a homogeneous magnetic field is studied by means of large-scale Monte Carlo simulations. In accordance
with the most recent of the previous investigations, but with significantly higher accuracy, it is found that the
‘‘triple’’ point at which the disordered phase coexists with both theAB phase as well as with theA3B phase
~corresponding to the model’s lattice gas interpretation as a binary alloyAxB12x such as CuxAu12x) occurs at
a nonzerotemperature. However, there is numerical evidence that the first-order jumps on the three associated
phase coexistence lines tend tozerowhen approaching this point, which means that it is, in fact, amulticritical
point. Since the Landau theory does not support this picture, and the simulation data do not definitely exclude
a usual triple point with small jumps, the question about the nature of the point must be considered as
unresolved.

I. INTRODUCTION: HAMILTONIAN, GROUND
STATES, ORDERED PHASES

More than fifty years after its first mean-field treatment by
Shockley,1 the phase behavior of the Ising model on the face-
centered-cubic~fcc! lattice with antiferromagnetic nearest-
neighbor interactions in a homogeneous magnetic field still
remains a challenge for statistical physics. Compared to
‘‘usual’’ Ising models for antiferromagnetic ordering~or,
equivalently, lattice gas models for superstructure formation
of binary alloys, see, e. g., Ref. 2!, this Hamiltonian,

H5J(̂
i j &

SiSj2H(
i
Si ~1.1!

~where ^ i j & indicates nearest neighbors,J.0 is the ex-
change coupling,H is the magnetic field, andSi561 de-
notes an Ising spin on sitei ! has some unusual properties that
make phase diagram calculations in the (H,T) ~field–
temperature! plane particularly difficult. In what follows
only H>0 will be considered, since the phase diagram is
symmetric aroundH50.

It is impossible to assign spins to a nearest–neighbor tet-
rahedron such that all six bonds are antiferromagnetic, i.e.,
the model exhibits geometrical frustration, resulting in a lack
of three-dimensional long-range order atT50:3 While for
H.12J the ground state is trivially ordered (Si51), it is
only two dimensionally ordered forH,12J. ForH,4J, the
ground state is some arbitrary sequence of perfectly antifer-
romagnetically ordered~100! planes. Since there are two
configurations possible per plane, a 43L3 system exhibits a
ground-state degeneracy of 3322L, i.e., a vanishing ground-
state entropy per spin in the thermodynamic limit. For
4J,H,12J the ground state is a sequence of~100! planes,
which are alternatingly ferromagnetically (Si511) and an-
tiferromagnetically ordered. Again, for each antiferromag-
netic plane there are two possible configurations, resulting in
a ground-state degeneracy of 632L.

At finite temperature, however, the system exhibits ‘‘order
out of disorder.’’ This is an interesting effect of frustration

and has been shown to occur via the exact solution of certain
two-dimensional models.4,5 In the present system the same
phenomenon leads to three-dimensional long-range order for
nonzero temperatures, as has been shown via careful analysis
of low-temperature series expansions.6–9 It is most easily
understood by viewing the many ground states as corre-
sponding to a large number of thermodynamic phases, which
coexist atT50. For each of these phases, the free energy per
site f may be calculated by a low-temperature expansion. As
a result, one finds that only a small number of phases has
minimum free energy per site~these phases admit most low-
energy excitations; however, forH,4J the effect is not seen
before the third order!. Hence, only those entropically stabi-
lized phases survive in the thermodynamic limit: From Ref.
6 one concludes that the free-energy difference per site~com-
pared to the minimum value! depends on the periodicity of
the structure and may be as small asA(T)/L, where
A(T).0 is some constant that tends to zero asT→0 be-
cause of the vanishing Boltzmann weight of the correspond-
ing excitation. Hence, a ‘‘pessimistic’’ estimate of the statis-
tical weight of all the ‘‘nondominant’’ phases is
exp$BL24L3b(fmin1A/L)% where exp(BL).1 estimates the
number of phases, andb51/(kBT). For sufficiently largeL,
this is small compared to exp$24L3bfmin%, the statistical
weight of the ‘‘dominant’’ ordered phases. However, this
consideration also shows that in a Monte Carlo~MC! simu-
lation one needsunusually largesystems in order to observe
the correct asymptotic behavior, and that the effect gets
worse withdecreasingtemperature because of the proximity
of the phase transition to the less ordered phase atT50.

The ordered phases, which are singled out by this mecha-
nism, are commonly denoted byAB (H,4J) and A3B
(4J,H,12J), motivated by the ‘‘alloy language’’ in which
Si511 corresponds to anA atom andSi521 to aB atom.
A physical example is the Cu-Au system.10–15 Subdividing
the fcc lattice into four interpenetrating simple cubic sublat-
tices (a,b,c,d), theAB ground state is given by two sublat-
tices occupied withSi511 and the other two with
Si521. Since these sublattices can be chosen arbitrarily,
this phase is sixfold degenerate. Similarly, theA3B ground
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state is given by one sublattice withSi521, while the other
three are occupied withSi511 ~fourfold degeneracy!. Since
any sublattice permutation can be induced by geometrical
symmetry operations, it is obvious that these symmetries also
pertain toT.0. More precisely, the phases are defined via
their symmetry as follows: In both theAB phase as well as
theA3B phase there existtwo values for the sublattice mag-
netization. While in theAB phase two sublattices have the
higher magnetization value and the remaining two sublattices
the lower one, theA3B phase is described by three sublat-
tices with identical~high! magnetization, the remaining sub-
lattice having the lower magnetization.

The so-calledL8 phase, which has been found as a stable
phase of the present system in the study by Finel and
Ducastelle,16 applying the tetrahedron-octahedron approxi-
mation of Kikuchi’s cluster variation method~CVM!,17,18has
even lower symmetry: In this case there arethreesublattice
magnetization values, one of which is shared by two sublat-
tices. This phase is hence twelvefold degenerate. In the ideal
state, these two sublattices have magnetizationm511 and
the other twom521 andm50 ~i.e., random spin orienta-
tion!, respectively. While this state is a ground-state at
H54J, giving rise to a lower bound on the ground-state
entropy per spin,3 the stability of this phase in a finite region
of the phase diagram is somewhat controversial. Based on
our simulation results, we believe that it is probably an arti-
fact of the CVM ~see below!.

Even lower symmetry would be obtained ifall four sub-
lattices had different magnetizations. Such a phase would be
24-fold degenerate; however, this case has never been re-
ported as a stable phase and is not found in the present study
either.

A more convenient description of the ordering is obtained
as follows: Starting from the four sublattice magnetizations
ma , mb , mc , andmd ~varying between21 and11!, we
introduce the linearly transformed variables

c05~ma1mb1mc1md!/4,

c15~ma1mb2mc2md!/4,

c25~ma2mb1mc2md!/4, ~1.2!

c35~2ma1mb1mc2md!/4.

While c0 is simply the total magnetization,c1 , c2 , and
c3 are the components of the three-dimensional order param-
etercW : In the disordered phase all sublattice magnetizations
are the same, and hencecW 5(0,0,0). TheAB phase corre-
sponds to the six vectorscW 5(6cAB ,0,0), (0,6cAB ,0),
and (0,0,6cAB). This is the symmetry of the Heisenberg
model with cubic anisotropy, for which a first-order transi-
tion has been predicted by renormalization-group analysis.19

Hence, the transition line separating theAB phase from the
disordered phase should be of first order.

Similarly, the A3B phase is described by the four
vectors cW 5(cA3B

,cA3B
,cA3B

), (cA3B
,2cA3B

,2cA3B
),

(2cA3B
,cA3B

,2cA3B
), and (2cA3B

,2cA3B
,cA3B

), lo-
cated on the corners of a regular tetrahedron, corresponding
to theq54 state Potts model.20 Therefore, a first-order tran-

sition is also predicted betweenA3B and the disordered
phase — in three spatial dimensions the Potts model exhibits
a first-order transition forq>3.21 The same conclusion holds
for the transitionAB↔A3B, since it behaves like aq53
state Potts model:20 Starting from the, say, (1/2,1/2,1/2) state
in A3B ~i.e., ma5mb5mc51, md521), one sublattice
must be flipped in order to reachAB. Hence, the three states
(1,0,0), (0,1,0), and (0,0,1) can be reached. As in theq53
state Potts model, these states are located on the corners of a
regular triangle.

II. THE CONTROVERSY ABOUT THE PHASE DIAGRAM

The phase behavior of the system is still a matter of de-
bate. The problem has mainly been attacked, with ever-
increasing sophistication, by either mean-field-like CVM cal-
culations or MC simulations. Shockley’s Bragg-Williams
~BW! treatment1 yielded a phase diagram in which, apart
from the disordered phase, onlyAB, A3B, and B3A are
present. There is no direct transition fromAB to the disor-
dered phase; instead, the system is predicted to first go
through theA3B ~or B3A) phase and then enter the disor-
dered phase—except forH50, where a direct second-order
transition to the disordered phase occurs; henceHt50,
kBTt54J is the location of a multicritical point at which all
four phases coexist. Higher orders of the CVM, i.e., the tet-
rahedron approximation~T-CVM! ~Ref. 18! and the
tetrahedron-octahedron approximation~TO-CVM! ~Ref. 22!,
found the same phases but a different topology of the phase
diagram: Here a triple point occurs at some nontrivial loca-
tion (Ht'3J, kBTt'1.6J for T-CVM, and Ht'3.5J,
kBTt'1.2J for TO-CVM!. These results were refined by the
study of Finel and Ducastelle,16 who located the triple point
in T-CVM and TO-CVM at practically the same point
(Ht'3J, kBTt'1.5J). Moreover, these authors found a
stableL8 phase at low temperatures between theAB and
A3B phases. This phase occurs not only in TO-CVM but also
in the lower approximations@T-CVM and even BW~Ref.
23!. This possibility had been overlooked in the previous
studies—the equations had been simplified byrequiring a
certain minimum symmetry.

However, from the MC studies there has been only rather
weak evidence for this phase. The results presented in Ref.
24, which is the only simulation that claims to have observed
theL8 phase, are probably severely hampered by insufficient
equilibration times near the phase transitions. As outlined
below, our present simulation does not supportL8 phase sta-
bility. Unfortunately, a resolution of the question by means
of low-temperature expansions6–8 is not possible: The tem-
perature region of validity of the low-temperature series
shrinks to zero when one approaches the ‘‘superdegenerate’’
point H54J, T50. Hence, there is no rigorous analysis
available by which one could rule out a phase diagram in
which theH region of stableL8 phase contracts to the single
point H54J when decreasingT down to zero.

The TO-CVM result was further improved by a ‘‘mixed’’
approach in which an even larger cluster was used in the
disordered phase.25 This calculation located the triple point at
a significantly lower temperature (kBTt'1.0J). It is there-
fore not clear how this result would change when increasing
the cluster size even further.
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The MC simulations first yielded a very different sce-
nario: Based on data obtained from systems of up to
L516,26–28 one of the present authors suggested 15 years
ago that the triple point actually occurs atH54J, T50 such
that the disordered phase separatesAB andA3B for all tem-
peraturesT.0. This scenario is not ruled out by the rigorous
approach either, for the same reason as outlined above. How-
ever, the later MC simulations9,29–32 found a triple point at
kBTt'1.0J ~as does the present study!. Lebowitz, Phani, and
Styer9 made use of the fact that the large ground-state degen-
eracy is lifted as soon as the Hamiltonian includes a ferro-
magnetic next-nearest-neighbor interactionJNNN,0, which
stabilizes the phasesAB andA3B down toT50. They simu-
lated the system for variousJNNN and extrapolated the triple-
point temperature toJNNN50, findingkBTt'1.0J. However,
it is not obvious thatTt(JNNN) would continue to behave
linearly when approaching the degenerate caseJNNN50 very
closely. The other MC studies29–32 worked atJNNN50 ~as
does the present investigation!, and emphasized the impor-
tance of the occurrence of antiphase boundaries~APB’s! be-
cause of the degenerate ground states, as discussed above. In
particular, it is extremely difficult to observe three-
dimensional long-range order in a reasonably long run. Diep
et al.32 tried to overcome this difficulty by studying the
Edwards-Anderson order parameter appropriate for spin-
glass order. All these studies, however, worked with system
sizes that, from the perspective of the computer power avail-
able today, must be considered as rather small, in particular
since finite-size effects are unusually important in the present
system: Aside from the effects of degenerate ground states
and APB’s, there is the additional complication of veryweak
first-order transitions in the vicinity of the triple point. This
behavior has already been observed in the CVM studies, and
probably explains why the CVM runs into particularly severe
troubles in that region of the phase diagram: Close to a weak
first-order transition one expects a finite but very large cor-
relation length exceeding the cluster size, causing the ap-
proximation to break down. Based on the results of the
present study, we actually believe that the first-order charac-
ter vanishesat the ‘‘triple point,’’ which, hence, is amulti-
critical point ~see below!.

III. MONTE CARLO SIMULATION RESULTS

We employed a standard single spin-flip Metropolis algo-
rithm on N543L3 lattices with periodic boundary condi-
tions. The program was vectorized by a four-sublattice
checkerboard decomposition and obtained 3.13106 spin-flip
trials per second on one Cray YMP processor.

The first test runs using anL516 system atH50,
kBT51.7J showed that a system initialized with a random
spin configuration would not order and not even slowly relax
into a three dimensionally ordered state, although the state
point is well within theAB phase, rather far away from
T50, and the system was observed for 106 Monte Carlo
steps ~MCS’s, one MCS being defined as a full sweep
through the lattice!. Instead, the system remained stable in
some configuration with APB’s. We attempted to circumvent
the problem in a similar way as Diepet al.;32 however, we
did not look at the Edwards-Anderson order parameter but
rather at a two-dimensional order parameter: For each~100!

plane perpendicular to thex axis, the staggered magnetiza-
tion is measured separately and summed up in a root-mean-
square sense. This is also done for they andz directions, and
finally the order parameter is obtained as the maximum over
the directions. Indeed, such an order parameter is a good
indication for a state deep in the ordered phases, and, in
principle, its distribution could be used for a finite-size scal-
ing approach to first-order phase transitions.33 However, it
turned out that near the phase boundaries the distribution is
extremely broad without exhibiting a well-defined two-peak
structure, which is a necessary condition for these methods
to work. This is easily understandable, since now there are
only 2L2 spins in a plane instead of 4L3 spins in the bulk
available for averaging, resulting in an enormous broaden-
ing. Moreover, one should not trust results for such a small
system anyway, regardless of the type of order-parameter
definition: The occurrence and stability of the APB’s clearly
shows that anL516 system does not yet behave asymptoti-
cally, and hence the phase stability near the superdegenerate
pointH54J, T50 might well be severely affected by finite-
size effects, even including two-dimensional ordering. We,
hence, studied larger lattices and performed the above-
mentioned test forL532 and 64. While theL532 system is
still somewhat hampered by APB’s, theL564 system
showed a reasonable tendency towards three-dimensional or-
dering. We therefore believe thatL564 is thesmallestsize
for which acceptable results can be expected for the present
system, and mere limitations of computer resources pre-
vented us from studying an even larger one.

In this system we carefully searched for a stable disor-
dered and a stableL8 phase at low temperatures: For many
field valuesH in the vicinity ofH54J we looked at the time
development of the sublattice magnetizations after initializ-
ing the system in~a! a random configuration of spins and~b!
a configuration with two sublattices occupied withSi511,
one sublattice withSi521 and one sublattice randomly oc-
cupied. In all cases, we observed a rather quick development
of a three dimensionally ordered state belonging to either the
AB or theA3B phase. These results, therefore, rule out both
the existence of a stableL8 phase as well as a triple point at
T50.

The topology of the phase diagram thus being clarified,
we mapped out the phase boundaries. For such a large sys-
tem we found a finite-size scaling analysis rather hard, be-
cause of long equilibration times to sample the full configu-
ration space. Instead we pursued the same approach as in
Refs. 26–28 and sampled averages both in the stable as well
as the metastable state to obtain hysteresis loops, using not
too long runs and relying on the self-averaging property of
magnetizationc0 , internal energyU5^H&, etc. We then
calculated branches of the free energyF of the system by
thermodynamic integration along suitable paths in the phase
diagram and found the location of the first-order transitions
at the intersection point of these branches. In particular, we
used the relationsNc052]F/]H for integrations along
paths parallel to theH axis, andU52T2](F/T)/]T for in-
tegrations parallel to theT-axis, starting at state points where
the free energy is trivially known, i.e., the ground state or the
T5` state. Data were usually obtained from runs of
10 000 MCS’s after discarding 2500 MCS’s. Near the triple
point we ran the system for 30 000 MCS’s after discarding

53 2347NEAREST-NEIGHBOR ISING ANTIFERROMAGNET ON THE . . .



5000 MCS’s. The integral values were then found by fitting
cubic splines to the MC data, while the error in the free
energies could be easily estimated using standard error
propagation: After the usual MC error analysis34,35 we used
the fact that the data for each state point are statistically
independent from each other and that they enter the integral
linearly ~however, for simplicity we assumed integration ac-
cording to the trapezoidal rule!.

This procedure is illustrated in Figs. 1 and 2: Figure 1
shows hysteresis loops inc0(H) for three temperatures
rather close to the triple point, for the transitionAB↔A3B.
For the highest temperature, Fig. 2 shows the corresponding
intersection of the free-energy branches. It turns out that
upon approaching the triple point the magnetization jump,
i.e., the slope difference between the branches, becomes very
small, resulting in considerable difficulty to locate the tran-
sition field accurately. It is hence very important to have
reasonable control over the statistical errors inF, as indi-
cated in Fig. 2.

Similarly to c0 , the other quantitities also exhibit very
small first-order jumps when approaching the triple point, on
all three transition lines. In particular, this is true for the
internal energy whose jump can be used for locating the
transition temperature along a line of constant field. On all
three lines, we hence found that the free-energy intersection
method works well only sufficiently far away from the triple
point. Close to it, the error in the critical field or temperature,
as obtained from plots similar to Fig. 2, is larger than the
width of the hysteresis loop, which then is used for a direct
rough estimate of the location of the transition. Of course, in
this case one has to study a quantity that is rather different in
the coexisting phases, i.e., the order parameter. Although this
method did not work in the immediate vicinity of the triple
point either, because of small first-order jumps and large
fluctuations, we were able to get at least somewhat closer, as
demonstrated in Fig. 3, where the hysteresis in one order-
parameter component (c3) as a function of field is shown for
three temperatures rather close to the triple point, again for
the transitionAB↔ A3B.

The resulting phase diagram is shown in Figs. 4 (H-T
plane! and 5 (c0-T plane!, respectively. The different meth-

FIG. 1. Total magnetizationc0 as a function of magnetic field
H, for different temperaturesT as indicated in the figure. Hysteresis
loops indicate the first-order nature of the transitionAB ↔ A3B.

FIG. 2. Branches of the free energy per lattice site in units of the
nearest-neighbor couplingF/(NJ), corresponding to theAB phase
and theA3B phase, at temperaturekBT/J50.85, as a function of
magnetic fieldH. These branches were obtained from thermody-
namic integration of the internal energy along paths parallel to the
temperature axis~not shown here!, and of the magnetization along a
path parallel to the field axis~cf. Fig. 1!. The free energies~thick
lines! result from a cubic spline fit to the data, while the error bars
~thin lines! were estimated from standard error propagation of the
errors of the individual data points. This allows an estimation of the
critical field with well-controlled accuracy,Hc /J'3.7060.003.
The first-order jump of the magnetization corresponds to a nonzero
angle between the two branches, which is, however, so small that it
would be invisible in a simple plot ofF vs H. Hence, we rather
show a functionDF/(NJ)5F/(NJ)10.22(H/J)11.316 044, in
order to make the two branches visible and to demonstrate the
smallness in free-energy differences.

FIG. 3. Hysteresis loop of the order parameter componentc3 as
a function of magnetic fieldH, at the transitionAB ↔ A3B, for
various temperatures as indicated in the figure. The coordinate sys-
tem in the three-dimensional order-parameter space~see text! was
chosen such that theAB state is described by a vector

cW 5(cAB ,0,0) with cAB.0, while theA3B state corresponds to a

vectorcW 5(cA3B ,cA3B ,cA3B) with cA3B.0 ~cf. text!. The scatter
in the data~in particular the nonzero values ofc3 in theAB phase!,
observed at the higher temperatures, is because of statistical inac-
curacy, indicative of increased sampling problems~slow dynamics
and small free-energy barriers between the phases! when approach-
ing the triple~or multicritical! point.
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ods of locating the transition~free-energy intersection vs di-
rect inspection of order parameter hysteresis! are indicated.
Altogether, we locate the triple point atkBTt /J
50.9860.02 andHt /J53.6060.04. These values are well
consistent with the previous studies but distinctly more ac-
curate. As discussed above, all three phase-transition lines
should be first order, because of symmetry. The only possible
scenario apart from a standard triple point~with small but
finite first-order jumps! is a multicritical point: In this case
all the jumps would tend tozeroupon approaching the point.
However, our numerical resolution is not sufficient to answer
this question unambiguously. Nevertheless, we have tried to
check if our order parameter data are consistent with tricriti-
cal scaling,c}uT2Ttu1/4, wherec is the order parameter of
the ordered phase along the first-order transition line. This is
done in Fig. 6 for the transitionAB↔A3B, where the order-

parameter componentc3 ~which is nonzero only in the
A3B phase! is plotted vs temperature~for the other two lines
we do not have enough data to make such a comparison
meaningful!. As shown in the figure, the data are well con-
sistent with tricritical behavior. However, it should be
pointed out that this plot proves neither that the order param-
eter actually tends to zero whenT→Tt ~it might remain fi-
nite, as it should for a standard triple point!, nor that the
exponent is 1/4 ifc should actually tend to zero: Depending
on the value ofTt , we were able to fit exponents in the range
0.2, . . . ,0.3.

IV. LANDAU THEORY

It is worthwhile to discuss the existence of a multicritical
point analytically also. As will become clear below, Landau
theory doesnot support this scenario but rather predicts ei-
ther a standard triple point or a multicritical point atH50, at
which all four phases coexist~as in Shockley’s mean-field
phase diagram1!. After outlining the theory, we briefly specu-

FIG. 4. The phase diagram in the field-temperature plane. The
critical fields or temperatures were obtained by thermodynamic in-
tegration where possible~filled symbols, cf. Fig. 2! and otherwise
by direct inspection of the order-parameter hysteresis loops~open
symbols, cf. Fig. 3!. The errors are always smaller than the symbol
size. All transition lines are of first order. The lines connecting the
data points are guides to the eye only.

FIG. 5. The phase diagram in the magnetization-temperature
plane. The first-order lines of Fig. 4 correspond to two-phase re-
gions, which become extremely narrow when approaching the triple
~or multicritical! point. For the meaning of closed and open sym-
bols, see Fig. 4.

FIG. 6. Order-parameter componentc3 of theA3B phase, along
the phase coexistence line with theAB phase, as a function of

temperature. For definition of the order parametercW and choice of

the coordinate system incW space, see text and Fig. 3. The squares
represent the Monte Carlo data, while the line is given by the equa-
tion c350.443 436 (0.992kBT/J)

0.2416. Here, the triple tempera-
ture kBTt /J50.99 was chosen ‘‘by hand’’ in order to obtain an
exponent close to 1/4. The other two parameters were then obtained
by a linear least-squares fit.

FIG. 7. The phase diagram of the Landau theory in thea-b
plane forg521, d52, andn51 ~see text!. In this case, the phase
diagram exhibits two symmetrical standard triple points.
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late about its validity and possible refinements.
In order to find the expression for the Landau free energy,

we first wrote down the free energy as a function of the
sublattice magnetizations within the mean-field~BW! ap-
proximation, transformed this to order parameters@Eq.
~1.2!#, and expanded up to sixth order incW . From this one
obtains the invariant polynomials incW and the Landau free
energy:

F5
a

2
cW 22

b

3)i c i1
g

4
~cW 2!21

d

4 F ~cW 2!22(
i

c i
4G

1
m

5
cW 2)

i
c i1

n

6
~cW 2!31

s

6 F ~cW 2!32(
i

c i
6G

1
t

6)i c i
2 . ~4.1!

a is a temperaturelike variable, whileb can be varied via the
field H. All other coefficients are considered constants, and
we study the phase diagram of the system in the (a,b)
plane.

For the AB phase, we evaluateF on the line
cW 5(cAB ,0,0), resulting in

FAB5
a

2
cAB
2 1

g

4
cAB
4 1

n

6
cAB
6 , ~4.2!

where, of course,n.0. A first-order transition fromAB to
the disordered phase~free energy 0! can only occur if
g,0. In this case one easily shows that the condition for
phase coexistence isa5(3g2)/(16n), since then the free
energy simplifies to

FAB5
1

96n
cAB
2 ~4ncAB

2 13g!2. ~4.3!

If this first-order line would exhibit a tricritical point, one
would needg50 at that point. We will henceforth concen-
trate on the case of small~positive or negative! values of
g, and, in particular, assume 3g12d.0. The coefficientd
must be positive, since this term is responsible for the stabi-
lization of theAB phase:@(cW 2)22( ic i

4# is positive for all

cW and vanishes only on the~100! axes.
For the A3B and B3A phases, we evaluateF along

cW 5(cA3B
,cA3B

,cA3B
):

FA3B
5
3

2
acA3B

2 2
b

3
cA3B
3 1

3

4
~3g12d!cA3B

4 . ~4.4!

The fifth- and sixth-order terms have been omitted, since Eq.
~4.4! is already sufficient to describe the phases. Forb.0,
positive values ofcA3B

are stabilized, corresponding to the

A3B phase, whileb,0 stabilizes negativecA3B
values, i.e.,

theB3A phase. Along the linea5(2b2)/@81(3g12d)# the
free energy simplifies to

FA3B
5

1

108~3g12d!
cA3B
2 ~9~3g12d!cA3B

22b!2,

~4.5!

which means that here a first-order transition to the disor-
dered phase occurs.

A multicritical point at which the disordered phase coex-
ists with bothAB as well as withA3B ~but not withB3A)
would require a tricritical point on theAB-disordered line,
i.e., a5g50 as well as on theA3B-disordered line,
a5b50. Apart from the fact that this is one condition more
than the number of available parameters, this is also incon-
sistent with the topology of the phase diagram: Forg,0 the
phase diagram looks as in Fig. 7 (g521, d52, n51), i.e.,
two standard triple points occur at

a t5
3g2

16n
, ~4.6!

b t56
9

4
gA9g16d

2n
. ~4.7!

When g tends to zero, the two triple points move to
a5b50. For g.0 the phase diagram topology is qualita-
tively different. In this case, theAB phase can only be stable
for a,0, as seen from Eq.~4.2!, which can be further sim-
plified by truncation ofFAB after the fourth order. Since,
however, the transition toA3B occurs already at positivea
values, no direct transition from the disordered phase toAB
is possible except forb50. Figure 8 shows this case
(g51, d52, n51). The transition line separatingAB from
A3B or B3A is of first-order and occurs at

a52
~A212A!b2

36~3g12d!
~4.8!

with

A5
1

d
~2g1A4g212gd!. ~4.9!

The pointa5b50 is then a multicritical point~which oc-
curs forall values ofg.0), but at which not three butall
four phases coexist. For symmetry reasons, such a point can
only occur at vanishing fieldH50. In fact, it is nothing but
the already well-known multicritical point in Shockley’s BW
phase diagram,1 which, in reality, is supposed to appear for
sufficiently strong ferromagnetic next-nearest-neighbor
interactions.9 It should be noted that forg50 the phase dia-
gram looks the same, the only difference being that the tran-
sition lineAB↔A3B/AB↔B3A is now given by

FIG. 8. Same as Fig. 7 but forg51, d52, andn51. This phase
diagram exhibits a multicritical point ata5b50; however, at this
point four phases coexist.
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a52nS 3d

2n D 2/3S b

6d D 8/3. ~4.10!

In summary, we find that Landau theory permits only a
multicritical point at whichfour phases coexist. Two multi-
critical points with three-phase coexistence could only occur
for nonvanishingb values, but there the transitionA3B ↔
disordered is always of first order, as seen from Eq.~4.5!.
Hence the hypothesis of a multicritical point in our system is
only supported by some numerical evidence, but not by Lan-
dau theory arguments.

On the other hand, it is questionable if Landau theory is
able to describe the phenomena in the present system at all.
First, the transition lineAB ↔ disordered belongs to the
universality class of the three-dimensional Heisenberg model
with cubic anisotropy. For this system, Landau theory pre-
dicts a second-order transition. It is only the inclusion of
fluctuations that leads to the prediction of a first-order
transition.19 It is not at all obvious that one can include these
effects consistently by simply requiringg,0, in particular
when theA3B phase is present as well. We therefore believe
that a real understanding is impossible without a full
renormalization-group analysis. Second, one should note that
our Hamiltonian is marginal in the sense that for ferromag-
netic next-nearest-neighbor couplingJNNN,0 the phases re-

main the same but are stable down toT50, while for
JNNN.0 new phases appear that are more complicated and
that need a more refined order parameter thancW . We expect
that quite a lot could be learned by considering a three-
dimensional phase diagram withJNNN as third axis.

V. DISCUSSION

Our simulation has yielded the location of the triple point
of the nearest-neighbor fcc Ising antiferromagnet much more
accurately than previous studies. As discussed in Sec. III,
there are numerical hints of possible multicritical behavior.
However, our data are by far too inaccurate to answer this
subtle question. A definitive resolution by numerical simula-
tion would probably require by far more computer power
than was available to us. Landau theory predicts a standard
triple point, but this result should be taken with care. The
system is therefore also a challenge for analytical
renormalization-group theory.
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