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Nearest-neighbor Ising antiferromagnet on the fcc lattice: Evidence for multicritical behavior
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The phase behavior of the Ising model with nearest-neighbor antiferromagnetic interactions on the fcc lattice
in a homogeneous magnetic field is studied by means of large-scale Monte Carlo simulations. In accordance
with the most recent of the previous investigations, but with significantly higher accuracy, it is found that the
“triple” point at which the disordered phase coexists with both & phase as well as with th&;B phase
(corresponding to the model’s lattice gas interpretation as a binary &By_, such as CyAu,_,) occurs at
anonzerotemperature. However, there is numerical evidence that the first-order jumps on the three associated
phase coexistence lines tendzerowhen approaching this point, which means that it is, in fachticritical
point. Since the Landau theory does not support this picture, and the simulation data do not definitely exclude
a usual triple point with small jumps, the question about the nature of the point must be considered as

unresolved.
I. INTRODUCTION: HAMILTONIAN, GROUND and has been shown to occur via the exact solution of certain
STATES, ORDERED PHASES two-dimensional modef$® In the present system the same

phenomenon leads to three-dimensional long-range order for
More than fifty years after its first mean-field treatment bynonzero temperatures, as has been shown via careful analysis
Shockley! the phase behavior of the Ising model on the face-of low-temperature series expansiéns.It is most easily
centered-cubidfcc) lattice with antiferromagnetic nearest- understood by viewing the many ground states as corre-
neighbor interactions in a homogeneous magnetic field stilsponding to a large number of thermodynamic phases, which
remains a challenge for statistical physics. Compared tcoexist afT =0. For each of these phases, the free energy per
“usual” Ising models for antiferromagnetic orderin@r,  sitef may be calculated by a low-temperature expansion. As
equivalently, lattice gas models for superstructure formatiora result, one finds that only a small number of phases has
of binary alloys, see, e. g., Ref),2his Hamiltonian, minimum free energy per sit¢hese phases admit most low-
energy excitations; however, fét<4J the effect is not seen
o before the third order Hence, only those entropically stabi-
"75_‘1% SiSi— HZJ Si (1.1 lized phases survive in the thermodynamic limit: From Ref.
6 one concludes that the free-energy difference pefsi-
(where (ij) indicates nearest neighbord>0 is the ex- pared to the minimum valyedepends on the periodicity of
change couplingH is the magnetic field, an&==1 de- the structure and may be as small &¢T)/L, where
notes an Ising spin on sit¢ has some unusual properties that A(T)>0 is some constant that tends to zeroTas0 be-
make phase diagram calculations in thel,T) (field— cause of the vanishing Boltzmann weight of the correspond-
temperature plane particularly difficult. In what follows ing excitation. Hence, a “pessimistic” estimate of the statis-
only H=0 will be considered, since the phase diagram idtical weight of all the “nondominant” phases is
symmetric aroundd = 0. exp(BL—4L3B(fin+ A/L)} where expBL)>1 estimates the
It is impossible to assign spins to a nearest—neighbor tetiumber of phases, amg=1/(kgT). For sufficiently largd-,
rahedron such that all six bonds are antiferromagnetic, i.ethis is small compared to ekp4L3Bf.}, the statistical
the model exhibits geometrical frustration, resulting in a lackweight of the “dominant” ordered phases. However, this
of three-dimensional long-range order B&0:3 While for  consideration also shows that in a Monte CAMC) simu-
H>12J the ground state is trivially ordered5(=1), it is lation one needsnusually largesystems in order to observe
only two dimensionally ordered fdd <12J. ForH<4J, the the correct asymptotic behavior, and that the effect gets
ground state is some arbitrary sequence of perfectly antifemorse withdecreasingemperature because of the proximity
romagnetically ordered100 planes. Since there are two of the phase transition to the less ordered phaSe=.
configurations possible per plane, x &2 system exhibits a The ordered phases, which are singled out by this mecha-
ground-state degeneracy ok22', i.e., a vanishing ground- nism, are commonly denoted b&B (H<4J) and A;B
state entropy per spin in the thermodynamic limit. For(4J<H<12J), motivated by the “alloy language” in which
4J<H<12] the ground state is a sequence(bd0) planes, S;=+1 corresponds to aA atom andS;=—1 to aB atom.
which are alternatingly ferromagneticallg& +1) and an- A physical example is the Cu-Au systéfii'® Subdividing
tiferromagnetically ordered. Again, for each antiferromag-the fcc lattice into four interpenetrating simple cubic sublat-
netic plane there are two possible configurations, resulting itices @,b,c,d), the AB ground state is given by two sublat-
a ground-state degeneracy ok@". tices occupied withS=+1 and the other two with
At finite temperature, however, the system exhibits “orderS,= —1. Since these sublattices can be chosen arbitrarily,
out of disorder.” This is an interesting effect of frustration this phase is sixfold degenerate. Similarly, #¢B ground
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state is given by one sublattice wih= — 1, while the other sition is also predicted betweefA;B and the disordered
three are occupied witg = + 1 (fourfold degeneragy Since  phase — in three spatial dimensions the Potts model exhibits
any sublattice permutation can be induced by geometricaa first-order transition foqg= 32! The same conclusion holds
symmetry operations, it is obvious that these symmetries alsfor the transitionAB— A;B, since it behaves like g=3
pertain toT>0. More precisely, the phases are defined viastate Potts modéf Starting from the, say, (1/2,1/2,1/2) state
their symmetry as follows: In both th&B phase as well as in A;B (i.e., my=my=m.=1, my=—1), one sublattice

the A;B phase there exidtvo values for the sublattice mag- must be flipped in order to readB. Hence, the three states
netization. While in theAB phase two sublattices have the (1,0,0), (0,1,0), and (0,0,1) can be reached. As ingthe3
higher magnetization value and the remaining two sublatticestate Potts model, these states are located on the corners of a
the lower one, theA;B phase is described by three sublat-regular triangle.

tices with identicakhigh) magnetization, the remaining sub-
lattice having the lower magnetization.

The so-called.’ phase, which has been found as a stable
phase of the present system in the study by Finel and The phase behavior of the system is still a matter of de-
Ducastell€}® applying the tetrahedron-octahedron approxi-bate. The problem has mainly been attacked, with ever-
mation of Kikuchi’s cluster variation methd@VM),*"*8has  increasing sophistication, by either mean-field-like CVM cal-
even lower symmetry: In this case there #eeesublattice  culations or MC simulations. Shockley’s Bragg-Williams
magnetization values, one of which is shared by two sublattBW) treatment yielded a phase diagram in which, apart
tices. This phase is hence twelvefold degenerate. In the ideflom the disordered phase, onAB, A;B, and B;A are
state, these two sublattices have magnetizatien+1 and  present. There is no direct transition frohB to the disor-
the other twom=—1 andm=0 (i.e., random spin orienta- dered phase; instead, the system is predicted to first go
tion), respectively. While this state is a ground-state athrough theA;B (or B;A) phase and then enter the disor-
H=4J, giving rise to a lower bound on the ground-statedered phase—except fét=0, where a direct second-order
entropy per spirl,the stability of this phase in a finite region transition to the disordered phase occurs; hehte-0,
of the phase diagram is somewhat controversial. Based og,T,=4J is the location of a multicritical point at which all
our simulation results, we believe that it is probably an arti-four phases coexist. Higher orders of the CVM, i.e., the tet-
fact of the CVM (see below rahedron approximation(T-CVM) (Ref. 18 and the

Even lower symmetry would be obtainedalll four sub-  tetrahedron-octahedron approximati@©-CVM) (Ref. 22,
lattices had different magnetizations. Such a phase would bigund the same phases but a different topology of the phase
24-fold degenerate; however, this case has never been rgiagram: Here a triple point occurs at some nontrivial loca-
ported as a stable phase and is not found in the present studlgn (H,~3J, kgT,~1.6) for T-CVM, and H,~3.5],
either. kgTy~1.2] for TO-CVM). These results were refined by the

A more convenient description of the ordering is obtainedstudy of Finel and Ducastelf& who located the triple point
as follows: Starting from the four sublattice magnetizationsis T-CVM and TO-CVM at practically the same point
My, My, M, andmy (varying between-1 and +1), we  (H,~3J, kgT,~1.5]). Moreover, these authors found a

Il. THE CONTROVERSY ABOUT THE PHASE DIAGRAM

introduce the |inear|y transformed variables stableL’ phase at low temperatures between kB and
A3B phases. This phase occurs not only in TO-CVM but also
ho=(mMya+mp+mc+mg)/4, in the lower approximation§T-CVM and even BW(Ref.
23). This possibility had been overlooked in the previous
1= (My+Mmp—me—mg)/4, studies—the equations had been simplified rbguiring a
certain minimum symmetry.
o= (Ma—My+me—my)/4, (1.2 However, from the MC studies there has been only rather
weak evidence for this phase. The results presented in Ref.
3= (—my+my+m.—my)/4. 24, which is the only simulation that claims to have observed

) o o theL’ phase, are probably severely hampered by insufficient
While ¢ is simply the total magnetization,, ¢, and  equilibration times near the phase transitions. As outlined
i3 are the components of the three-dimensional order parankelow, our present simulation does not suppdrphase sta-

eter <Z: In the disordered phase all sublattice magnetizationsility. Unfortunately, a resolution of the question by means

are the same, and henge=(0,0,0). TheAB phase corre- Of low-temperature expansidhd is not possible: The tem-
sponds to the six vectoréf:(tl,//AB 0,0), (0 ¢ag,0) perature region of validity of the low-temperature series
and (0,0% yag). This is the symme,tr3; of’ thehHeisénb,erg shrinks to zero when one approaches the “superdegenerate”

model with cubic anisotropy, for which a first-order transi- point H=4J, T=0. Hence, there is no rigorous analysis

tion has been predicted by renormalization-group analysis. ave_ulable by Wh'Ch one cou!d rule out a phase d|agr_am In
Hence, the transition line separating A8 phase from the Wh_'Ch theH region of StabIG.L phase contracts to the single
disordered phase should be of first order. point H=4) when decreasing dowh to zero. i

Similarly, the A;B phase is described by the four The TOTCVM.resuIt was further improved by a m'x‘?d

. approach in which an even larger cluster was used in the

vectors y=(dap . ¥as ¥a): (Vng ~¥a ~¥ap).  disordered phas®.This calculation located the triple point at
(= ¥np ¥ap .~ ¥ap), and (—¢ap.~¥ap.¥ap):. l0-  a significantly lower temperaturekgT,~1.00). It is there-
cated on the corners of a regular tetrahedron, correspondirfgre not clear how this result would change when increasing
to theq=4 state Potts modéf. Therefore, a first-order tran- the cluster size even further.
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The MC simulations first yielded a very different sce- plane perpendicular to the axis, the staggered magnetiza-
nario: Based on data obtained from systems of up tdgion is measured separately and summed up in a root-mean-
L=162"%one of the present authors suggested 15 yearsquare sense. This is also done foryrendz directions, and
ago that the triple point actually occurstit=4J, T=0 such finally the order parameter is obtained as the maximum over
that the disordered phase separat@andA3B for all tem-  the directions. Indeed, such an order parameter is a good
peraturesI >0. This scenario is not ruled out by the rigorous indication for a state deep in the ordered phases, and, in
approach either, for the same reason as outlined above. Howrinciple, its distribution could be used for a finite-size scal-
ever, the later MC simulatiof$®~**found a triple point at ing approach to first-order phase transitiShsdowever, it
kgTi=1.QJ (as does the present stydiebowitz, Phani, and turned out that near the phase boundaries the distribution is
Styer made use of the fact that the large ground-state degerextremely broad without exhibiting a well-defined two-peak
eracy is lifted as soon as the Hamiltonian includes a ferrostructure, which is a necessary condition for these methods
magnetic next-nearest-neighbor interactihy<0, which  to work. This is easily understandable, since now there are
stabilizes the phaseésB andA;B down toT=0. They simu-  only 2L? spins in a plane instead ofL4 spins in the bulk
lated the system for varioukyyy and extrapolated the triple- available for averaging, resulting in an enormous broaden-
point temperature tdynn=0, findingkgT;~1.0]. However, ing. Moreover, one should not trust results for such a small
it is not obvious thafT,(Jynn) Would continue to behave system anyway, regardless of the type of order-parameter
linearly when approaching the degenerate cagg=0 very  definition: The occurrence and stability of the APB'’s clearly
closely. The other MC studi&&32 worked atJyy=0 (as  shows that ar. = 16 system does not yet behave asymptoti-
does the present investigatjprand emphasized the impor- cally, and hence the phase stability near the superdegenerate
tance of the occurrence of antiphase boundg@é®B’s) be-  pointH=4J, T=0 might well be severely affected by finite-
cause of the degenerate ground states, as discussed abovesilze effects, even including two-dimensional ordering. We,
particular, it is extremely difficult to observe three- hence, studied larger lattices and performed the above-
dimensional long-range order in a reasonably long run. Diepnentioned test fot. =32 and 64. While th& =32 system is
et al® tried to overcome this difficulty by studying the still somewhat hampered by APB's, the=64 system
Edwards-Anderson order parameter appropriate for spinshowed a reasonable tendency towards three-dimensional or-
glass order. All these studies, however, worked with systendering. We therefore believe that=64 is thesmallestsize
sizes that, from the perspective of the computer power availfor which acceptable results can be expected for the present
able today, must be considered as rather small, in particulaystem, and mere limitations of computer resources pre-
since finite-size effects are unusually important in the presentented us from studying an even larger one.
system: Aside from the effects of degenerate ground states In this system we carefully searched for a stable disor-
and APB's, there is the additional complication of vevgak  dered and a stable’ phase at low temperatures: For many
first-order transitions in the vicinity of the triple point. This field valuesH in the vicinity of H=4J we looked at the time
behavior has already been observed in the CVM studies, ardevelopment of the sublattice magnetizations after initializ-
probably explains why the CVM runs into particularly severeing the system ir{a) a random configuration of spins ario)
troubles in that region of the phase diagram: Close to a weak configuration with two sublattices occupied wih=+ 1,
first-order transition one expects a finite but very large corone sublattice witt§=—1 and one sublattice randomly oc-
relation length exceeding the cluster size, causing the apeupied. In all cases, we observed a rather quick development
proximation to break down. Based on the results of theof a three dimensionally ordered state belonging to either the
present study, we actually believe that the first-order characAB or the A;B phase. These results, therefore, rule out both
ter vanishesat the “triple point,” which, hence, is anulti-  the existence of a stable’ phase as well as a triple point at
critical point (see below. T=0.

The topology of the phase diagram thus being clarified,
we mapped out the phase boundaries. For such a large sys-
tem we found a finite-size scaling analysis rather hard, be-

We employed a standard single spin-flip Metropolis algo-cause of long equilibration times to sample the full configu-
rithm on N=4x L3 lattices with periodic boundary condi- ration space. Instead we pursued the same approach as in
tions. The program was vectorized by a four-sublatticeRefs. 26—28 and sampled averages both in the stable as well
checkerboard decomposition and obtained@L0° spin-flip  as the metastable state to obtain hysteresis loops, using not
trials per second on one Cray YMP processor. too long runs and relying on the self-averaging property of

The first test runs using abh=16 system atH=0, magnetizationy, internal energyl =(.7), etc. We then
kgT=1.7] showed that a system initialized with a random calculated branches of the free eneffgyof the system by
spin configuration would not order and not even slowly relaxthermodynamic integration along suitable paths in the phase
into a three dimensionally ordered state, although the statdiagram and found the location of the first-order transitions
point is well within the AB phase, rather far away from at the intersection point of these branches. In particular, we
T=0, and the system was observed fo Monte Carlo used the relationdNy,=—dF/JH for integrations along
steps (MCS’s, one MCS being defined as a full sweep paths parallel to thél axis, andU=—T?9(F/T)/dT for in-
through the lattice Instead, the system remained stable integrations parallel to th&-axis, starting at state points where
some configuration with APB’s. We attempted to circumventthe free energy is trivially known, i.e., the ground state or the
the problem in a similar way as Diegt al;®? however, we T=o state. Data were usually obtained from runs of
did not look at the Edwards-Anderson order parameter butO 000 MCS'’s after discarding 2500 MCS's. Near the triple
rather at a two-dimensional order parameter: For €¢466) point we ran the system for 30 000 MCS's after discarding

IIl. MONTE CARLO SIMULATION RESULTS
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This procedure is illustrated in Figs. 1 and 2: Figure 1
shows hysteresis loops igy(H) for three temperatures
rather close to the triple point, for the transitigiB« A;B.

For the highest temperature, Fig. 2 shows the corresponding
intersection of the free-energy branches. It turns out that
upon approaching the triple point the magnetization jump,
i.e., the slope difference between the branches, becomes very
small, resulting in considerable difficulty to locate the tran-
T =075 sition field accurately. It is hence very important to have

[ P ] reasonable control over the statistical errorsFinas indi-
/ - k, T/ = 0.80 (O
 k,T/T = 0.85 cated in Fig. 2.

Similarly to ¢y, the other quantitities also exhibit very
, , , . small first-order jumps when approaching the triple point, on
3.7 3.8 3.9 4.0 4.1 all three transition lines. In particular, this is true for the
H/J internal energy whose jump can be used for locating the
transition temperature along a line of constant field. On all
FIG. 1. Total magnetizatiomy, as a function of magnetic field three lines, we hence found that the free-energy intersection
H, for_diff_erent temperature]; as indicated in the f_igure. Hysteresis method works well only sufficiently far away from the triple
loops indicate the first-order nature of the transitioB « AsB. point. Close to it, the error in the critical field or temperature,
as obtained from plots similar to Fig. 2, is larger than the
5000 MCS's. The integral values were then found by fittingwidth of the hysteresis loop, which then is used for a direct
cubic splines to the MC data, while the error in the freerough estimate of the location of the transition. Of course, in
energies could be easily estimated using standard errdhis case one has to study a quantity that is rather different in
propagation: After the usual MC error analy$i® we used the coexisting phases, i.e., the order parameter. Although this
the fact that the data for each state point are statisticallymethod did not work in the immediate vicinity of the triple
independent from each other and that they enter the integrabint either, because of small first-order jumps and large
linearly (however, for simplicity we assumed integration ac-fluctuations, we were able to get at least somewhat closer, as
cording to the trapezoidal rule demonstrated in Fig. 3, where the hysteresis in one order-
parameter componeni/§) as a function of field is shown for
three temperatures rather close to the triple point, again for

0.28 |

0.26 |

VYo 024}

0.22

0.20

_ the transitionAB « A3B.
The resulting phase diagram is shown in Figs.H-T
°r plane and 5 (o-T plane, respectively. The different meth-
q T T T
\Z-/ UF 0 3 4
= -
< Xr
7
02}
TF Y
i ’ - kT =0.75
. . ! —— & T/ =085 |
i 3.69 3.70 3.71 01 XT/) = 0.9
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FIG. 2. Branches of the free energy per lattice site in units of the 0.0 ’””'_\\/\ ”ﬁ?ﬂﬂ("\
nearest-neighbor couplirig/(NJ), corresponding to thAB phase

and theA;B phase, at temperatulgT/J=0.85, as a function of 3.5 3.6 37 3.8 3.9
magnetic fieldH. These branches were obtained from thermody- H/J

namic integration of the internal energy along paths parallel to the
temperature axignot shown herg and of the magnetization along a ] R -
path parallel to the field axi&cf. Fig. 1. The free energiegthick ~ @ function of magnetic field, at the transitiorAB «— A3B, for

lines) result from a cubic spline fit to the data, while the error barsvarious temperatures as indicated in the figure. The coordinate sys-

(thin line9 were estimated from standard error propagation of the!®™ in the three-dimensional order-parameter sgiaee text was

errors of the individual data points. This allows an estimation of the“10sen such that theAB state is described by a vector

critical field with well-controlled accuracyH,/J~3.70=0.003.  #=(¥ag,0,0) with ¢,g>0, while theA;B state corresponds to a
The first-order jump of the magnetization corresponds to a nonzeroector «Z:(z/xAgs ,Wasg  Wass) With s3>0 (cf. tex)). The scatter
angle between the two branches, which is, however, so small that it the data(in particular the nonzero values ¢t in the AB phase,
would be invisible in a simple plot oF vs H. Hence, we rather observed at the higher temperatures, is because of statistical inac-
show a functionAF/(NJ)=F/(NJ)+0.22H/J)+1.316 044, in  curacy, indicative of increased sampling problefsi®w dynamics
order to make the two branches visible and to demonstrate thand small free-energy barriers between the phashen approach-
smallness in free-energy differences. ing the triple(or multicritical) point.

FIG. 3. Hysteresis loop of the order parameter compogigras
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FIG. 4. The phase diagram in the field-temperature plane. The g 6. Order-parameter componefy of the A;B phase, along
critical fields or temperatures were obtained by thermodynamic iny,e phase coexistence line with teB phase, as a function of
tegration where possibléilled symbols, cf. Fig. 2and otherwise temperature. For definition of the order parame;}emnd choice of

by direct inspection of the order-parameter hysteresis Igopen . = .

symbols, cf. Fig. R The errors are always smaller than the symbol € coordinate system igr space, see text and Fig. 3. The squares

size. Al transition lines are of first order. The lines connecting the'€Present the Monte Carlo data, ‘Q’m‘g the line is given by the equa-

data points are guides to the eye only. tion ¥3=0.443 436 (0.99 kgT/J)*=*° Here_, the triple temp_era—
ture kgT;/J=0.99 was chosen “by hand” in order to obtain an

exponent close to 1/4. The other two parameters were then obtained

ods of locating the transitioffree-energy intersection vs di- by a linear least-squares fit.

rect inspection of order parameter hysteresi® indicated.
Altogether, we locate the triple point atkgT,/J Lo .
—~0.98+0.02 andH,/J=3.60+0.04. These values are well PArameter component; (which is nonzero only in the
consistent with the previous studies but distinctly more ac#\3B Phas¢is plotted vs temperaturéor the other two lines
curate. As discussed above, all three phase-transition lingée do not have enough data to make such a comparison
should be first order, because of symmetry. The only possibl’eaningful. As shown in the figure, the data are well con-
scenario apart from a standard triple poinith small but ~ Sistent with tncnpcal behavior. However, it should be
finite first-order jumpsis a multicritical point: In this case Pointed out that this plot proves neither that the order param-
all the jumps would tend taeroupon approaching the point. €ter actually tends to zero whéh-T, (it might remain fi-
However, our numerical resolution is not sufficient to answerite, as it should for a standard triple poinhor that the
this question unambiguously. Nevertheless, we have tried tgXponent is 1/4 ity should actually tend to zero: Depending
check if our order parameter data are consistent with tricrition the value ofl;, we were able to fit exponents in the range
cal scaling,yroc| T—T,| ¥4 wherey is the order parameter of 0.2,....,0.3.

the ordered phase along the first-order transition line. This is

done in Fig. 6 for the transitioAB«— A3B, where the order- IV. LANDAU THEORY

It is worthwhile to discuss the existence of a multicritical
point analytically also. As will become clear below, Landau
theory doesot support this scenario but rather predicts ei-

disordered

12 | ther a standard triple point or a multicritical pointkat=0, at
which all four phases coexistas in Shockley’s mean-field
1071 phase diagram. After outlining the theory, we briefly specu-
5
~X 08}
|_m 0.5
X 06}
04
0.4 }
0.3
| o
0.2 02
0.10 0.15 0.20 0.25 0.30 0.35 .
)4
0 R 0 2 4
FIG. 5. The phase diagram in the magnetization-temperature B

plane. The first-order lines of Fig. 4 correspond to two-phase re-

gions, which become extremely narrow when approaching the triple FIG. 7. The phase diagram of the Landau theory in ¢h@
(or multicritical) point. For the meaning of closed and open sym- plane fory=—1, §=2, andv=1 (see text In this case, the phase
bols, see Fig. 4. diagram exhibits two symmetrical standard triple points.
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late about its validity and possible refinements.

In order to find the expression for the Landau free energy, 0.01
we first wrote down the free energy as a function of the
sublattice magnetizations within the mean-fiéBW) ap-
proximation, transformed this to order paramet¢Esy. % 901
(1.2)], and expanded up to sixth order #h From this one
obtains the invariant polynomials iﬁ and the Landau free
energy: -2 -1 0 1 2

o -
ry wz)z—Z w“}

-0.02

a., B v o
= sz— gH it Z(¢2)2+
: FIG. 8. Same as Fig. 7 but fgr=1, =2, andv=1. This phase
diagram exhibits a multicritical point at=8=0; however, at this

+ ,pZH gt ,p )34 —Ei: 1//?} point four phases coexist.

, which means that here a first-order transition to the disor-
+-I1 w2 (4.1  dered phase occurs.

6% A multicritical point at which the disordered phase coex-
ists with bothAB as well as withA;B (but not with B;A)
cyvould require a tricritical point on thé&B-disordered line,

e, a=y=0 as well as on theAzB-disordered line,
a= B=0. Apart from the fact that this is one condition more
than the number of available parameters, this is also incon-
sistent with the topology of the phase diagram: ker0 the
phase diagram looks as in Fig. 7€ —1, =2, v=1), i.e,,
two standard triple points occur at

« is a temperaturelike variable, whifgcan be varied via the
field H. All other coefficients are considered constants, an
we study the phase diagram of the system in theg]
plane.

For the AB phase, we evaluatec on the line

#=(as,0,0), resulting in

a Y v
FAB:§¢,2AB+ Z¢AAB+ g‘ﬁgB’ (4.2) 342 ws
=77, .
where, of coursep>0. A first-order transition fromAB to 16v

the disordered phaséree energy D can only occur if
y<0. In this case one easily shows that the condition for B :+2y /97+65 4.7
phase coexistence i8=(37%)/(16v), since then the free T4 2v '

energy simplifies to

When y tends to zero, the two triple points move to
1 a=B=0. For y>0 the phase diagram topology is qualita-
FAB:§¢/2AB(4V¢/2AB+3Y)2- (4.3 tively different. In this case, thAB phase can only be stable
v for @<0, as seen from Ed4.2), which can be further sim-
If this first-order line would exhibit a tricritical point, one Plified by truncation off ,g after the fourth order. Since,
would needy=0 at that point. We will henceforth concen- however, the transition 1&3B occurs already at positive
trate on the case of smalpositive or negativevalues of ~Values, no direct transition from the disordered phasé#o
y, and, in particular, assumey3-25>0. The coefficients IS Possible except for3=0. Figure 8 shows this case
must be positive, since this term is responsible for the stabit¥=1, 6=2, v=1). The transition line separatinfyB from

lization of the AB phase] (4?)?—=4}] is positive for all AsB or ByA is of first-order and occurs at

 and vanishes only on thd00) axes. (A2+2A) B2
For the A;B and B;A phases, we evaluateé along = 383y120) (4.8
=(Ynp ¥ap ¥ap): with
F =§a¢2 —E¢3 +§(3 +20) Yk (4.9 1
AgBT 5 A¥ABT WA 19V AgB* ' A= 3(2'y+ VAy?+2y6). 4.9

The fifth- and sixth-order terms have been omitted, since E
(4.4) is already sufficient to describe the phases. por0, curs forall values ofy>0), but at which not three buall

positive values of,_g are stabilized, corresponding to the . )
. 3 . . ) four phases coexist. For symmetry reasons, such a point can
A3B phase, whilgs<0 stabilizes negativg g values, i.e.,  only occur at vanishing fieléi = 0. In fact, it is nothing but
the B;A phase. Along the linee=(232)/[81(3y+26)] the  the already well-known multicritical point in Shockley’s BW
free energy simplifies to phase diagrarhwhich, in reality, is supposed to appear for
1 sufficientlysq strong ferromagnetic next-nearest-neighbor
_ 2 2 interactions. It should be noted that fop=0 the phase dia-
Fag= 1083y+296) ¢A33(9(37+25) lﬂAsB_Z'B) ' gram looks the same, the only difference being that the tran-
(4.5  sition line AB«—Az;B/AB+—B3A is now given by

%he pointa= B=0 is then a multicritical poinfwhich oc-
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38 2/3
i

8/3 main the same but are stable down Te=0, while for
(410 Jyun>0 new phases appear that are more complicated and

that need a more refined order parameter tﬁaNVe expect
In summary, we find that Landau theory permits only athat quite a lot could be learned by considering a three-
multicritical point at whichfour phases coexist. Two multi- dimensional phase diagram wiflyyy as third axis.
critical points with three-phase coexistence could only occur
for nonvanishingB values, but there the transitioh;B —
disordered is always of first order, as seen from &q5). V. DISCUSSION
Hence the hypothesis of a multicritical point in our system is

oy ot o et i, L 3 ST s et of b po.
dau theory arguments. g 9 g

accurately than previous studies. As discussed in Sec. lll,

On the other hand, it is questionable if Landau theory IStpere are numerical hints of possible multicritical behavior.

able to describe the phenomena in the present system at ail. ) ;
. o ! . owever, our data are by far too inaccurate to answer this
First, the transition lineAB « disordered belongs to the . " . . .
ﬁubtle guestion. A definitive resolution by numerical simula-

universality class of the three-dimensional Heisenberg mOdenon would probably require by far more computer power

with cubic anisotropy. For this system, Landau theory pre- ; .
dicts asecondorder transition. It is only the inclusion of than was available to us. Landau theory predicts a standard

fluctuations that leads to the prediction of a first-ordertrlple point, but this result should be taken with care. The

transition®® It is not at all obvious that one can include theseSyStem Is _therefore also a challenge for analytical
. ) . . . renormalization-group theory.

effects consistently by simply requiring<<O, in particular

when theA;B phase is present as well. We therefore believe

that a real understanding is impossible without a full

renormalization-group analysis. Second, one should note that

our Hamiltonian is marginal in the sense that for ferromag- We thank the computer center at the University of Kaisers-

netic next-nearest-neighbor couplidgyn<O0 the phases re- lautern(RHRK) for generous allocation of Cray time.
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