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We calculate the infrared conductivity tensor of a layered superconductor considering two different order
parameter symmetries: strongly anisotropics wave with line nodes, and pure (dx22y2) d wave. The calcula-
tions are performed within the quasiclassical theory of superconductivity and include the effects of nonmag-
netic scattering processes. We discuss to what extent measurements of the electromagnetic absorption can be
relied upon to distinguish between these two order parameter symmetries.

INTRODUCTION

The symmetry of the superconducting order parameter in
the high-Tc cuprates is currently the source of considerable
scientific debate. A number of experiments has suggested the
presence ofd-wave pairing~see, for example, Refs. 1,2!,
while recent ARPES measurements3 appear consistent with
an anisotropics-wave state. This is an important issue to
resolve since the symmetry of the superconducting order pa-
rameter is a vital component in the understanding of the
underlying pairing mechanism at work in the high-Tc sys-
tems.

To date much theoretical effort has been directed towards
understanding the effects of strongly anisotropic pairing on
the thermodynamic and equilibrium properties of a supercon-
ducting system. This work includes studies of the behavior of
the order parameter and excitation spectrum in the presence
of impurities5–7 and interfaces.8,9 These considerations have
revealedqualitativedifferences between the properties of an-
isotropics-wave order parameters in comparison tod-wave
systems; however, there exists no unambiguous experimental
verification as yet. In this paper we seek to go beyond the
consideration of equilibrium properties by calculating the
frequency-dependent current response of an anisotropic lay-
ered superconductor to an externally applied electromagnetic
field. A study of the temperature-dependent microwave con-
ductivity has recently been put forth by Hirschfeldet al.4 and
Borkowski et al.10 We demonstrate that under certain cir-
cumstances the dynamical properties of anisotropic super-
conductors are highly sensitive to the detailed structure of
the order parameter, and thus may serve as a reliable probe
for the order parameter anisotropy.

We perform our calculations within a microscopic model
for layered superconductors which incorporates the effects of
nonmagnetic scattering processes. Considering two different
order parameter symmetries@strongly anisotropics wave
with lines of nodes, and pure (dx22y2) d wave#, we calculate
both the in-plane andc-axis current response. We observe
striking qualitative differences in the electrical current re-
sponse of the different order parameter symmetries which are
strongly correlated to the degree of~nonmagnetic! scattering
in the system. These differences arenot due just to the dif-

ferences in the excitation spectrum, but rather arise from the
formation of a band of optically active Andreev bound states
at frequencies below the gap edge.

MICROSCOPIC MODEL

We consider the microscopic model discussed in Refs.
11,12~the interlayer diffusion model!, which is based on the
quasiclassical theory of superconductivity. This model is
characterized by an infinite periodic stack ofincoherently
coupled two-dimensional Fermi liquids. The in-plane trans-
port is taken to be of the usual Fermi liquid type~i.e., medi-
ated by charged quasiparticles propagating coherently with
an in-plane velocityv f). The interlayer transport, on the
other hand, is diffusive in nature, originating from incoherent
scattering processes. Interlayer scattering may take place
through several different types of scattering processes such
as electron-electron, electron-phonon, electron-impurity, etc.
This model should be appropriate for systems whosec-axis
transport is of the SIS ~superconductor-insulator-
superconductor-•••) type. This type of behavior has recently
been observed in a class of high-Tc compounds,

13 suggesting
that this model may be appropriate for certain high-Tc mate-
rials.

A detailed description of the interlayer diffusion model,
along with the derivation of both the in-plane andc-axis
frequency-dependent conductivity, has been given
elsewhere11,12 and will not be repeated here. Instead, we
present only a brief summary of the key features of the
model along with a discussion of the necessary phenomeno-
logical parameters.

For simplicity we assume an isotropic cylindrical Fermi
surface which we parametrize by the anglef. Within
the quasiclassical formulation of superconductivity, our
model is completely defined by specifying the form of the
scattering self-energyŜl . This quantity is conveniently
written as the sum of an in-plane and two interplane
parts,Ŝ l 5Ŝl

i 1Ŝl ,l 21
' 1Ŝl ,l 11

' , wherel is the layer in-
dex. In-plane scattering is taken to be isotropic so that the
scattering self-energy can be written asŜl

i (e,t)5ci t̂ l (e,t),
where t̂ l is the single-impurityt̂ matrix,
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t̂ l ~e,t !5û01û0^ FNf R df

2p
ĝl ~f;e,t !G ^ t̂ l ~e,t !, ~1!

expressed in terms of the angular-averaged single-particle
propagatorĝl . Hereci is the effective concentration of scat-
tering centers,û05u01̂ is an isotropic scattering potential,
andNf is the total density of states~per spin! at the Fermi
energy. Following Buchholtz and Zwicknagl,14 we eliminate
the parametersci andu0 in favor of an effective normal-state
scattering rate 1/t i and a normalized scattering cross section
s̄. The normalized cross section is a measure of the relative
strength of the scattering and ranges froms̄50 for weak
scattering~Born limit!, to s̄51 for resonant scattering~uni-
tarity limit!.

We assume thec-axis coupling to be weak, and thus write
the interlayer scattering self-energy in the Born approxima-
tion,

Ŝl ,l 61
' ~f;e,t !5Û l ,l 61~ t !

^ F \

2p R df8

2p

1

t'~f,f8!
ĝl 61~f8;e,t !G

^ Û l ,l 61
† ~ t !. ~2!

The gauge operatorsÛ l ,l 61 are defined in terms of an av-
eraged interlayer vector potentialAl ,l 61

z (t) by
Û l ,l 61(t)5exp[2 (ied/\c)Al ,l 61

z (t) t̂3], where d is the
layer spacing. The effective interlayer scattering lifetime
t'(f,f8) is taken to be anisotropic. We describe this anisot-
ropy phenomenologically ast'(f,f8)}exp@2gcos(f
2f8)#. The Fermi surface anglesf andf8 give the in-plane
directions of the quasiparticle velocity before and after scat-
tering to an adjacent layer. The parameterg specifies to what
degree the scattered electrons ‘‘remember’’ their initial mo-
mentum. Isotropic scattering corresponds tog50, while ex-
treme forward scattering corresponds tog→`. Since we
neglect coherent transport along thec axis ~i.e., we set the
Fermi velocity along thec axis to zero!, the interlayer scat-
tering self-energy is theonly source of interlayer coupling in
the model.

The in-plane electrical current density is given in terms of
the Keldysh component of the quasiparticle propagator,
ĝl
K , by standard equations of Fermi liquid theory,15

j l ~ t !5eNfE de

4p i R df

2p
vf~f!Tr$t̂3ĝl

K~f;e,t !%, ~3!

where t̂3 is the third Pauli matrix. The microscopic expres-
sion for the interlayer current density was derived for isotro-
pic interlayer scattering in Ref. 11, and is generalized below
to anisotropic scattering:

j l ,l 11
z ~ t !52

eNfd

i\ E de

4p i R df

2p
Tr$t̂3~Ŝl ,l 11

',R
^ ĝl

K

1Ŝl ,l 11
',K

^ ĝl
A2ĝl

R
^ Ŝ l ,l 11

',K 2ĝl
K

^ Ŝl ,l 11
',A !%.

~4!

We compute the electrical conductivity by calculatingj l and
j l ,l 11
z in the presence of a weak electric field, and then
reading off the appropriate coefficient. The procedure is

rather involved and we thus refer the reader to Ref. 12 for
details of the calculation and the resulting expressions.

RESULTS

We discuss the electromagnetic absorption in the super-
conducting state for each of the following order parameter
models:

DASW~f!5D0@11cos~4f!#/2, ~5!

DXSW~f!5D0@113cos~4f!#/4, ~6!

DDW~f!5D0cos~2f!. ~7!

In our notation the subscripts ASW, XSW, and DW denote
anisotropics wave, extendeds wave, andd wave, respec-
tively. In terms of the irreducible representations of the
D4h ~tetragonal! group,DASW(f) and DXSW(f) transform
like the A1g ~identity! representation, whileDDW(f) trans-
forms like theB1g (dx22y2) representation. All three order
parameters possess nodes on the Fermi surface, but only
DXSW(f) andDDW(f) change sign.

We calculate the supercurrents and associated conductivi-
ties by numerically solving the quasiclassical transport
equations.11,12 These solutions must be carried out self-
consistently for the order parameter amplitudeD0 , the scat-
tering self-energyŜl , and the quasiclassical propagator
ĝl . The conductivity can then be calculated from the ana-
lytic expressions derived in Ref. 12 by carrying out the nec-
essary integrations.

In Fig. 1 we show the real part of the in-plane frequency-
dependent conductivity for the three order parameter models
presented above, together with the corresponding excitation
spectra~inset!. These data are for a fairly clean system with
a dimensionless scattering ratea[\/(2pt ikBTc0)50.02,
where Tc0 is the transition temperature in the absence of
scattering. We consider here resonant scattering (s̄51),
since it displays the most striking features, and we take the
temperature equal to zero. As was pointed out previously,5,7

even a small amount of scattering opens a gap in the excita-
tion spectrum of the ASWmodel, while the other two models

FIG. 1. The in-plane infrared conductivity in the unitarity limit
(s̄51) for the ASW ~dotted line!, XSW ~dashed line!, and DW
~solid line! models in units of the dc Drude conductivity
sD

i (0)5e2Nfv f
2t i . The inset shows the corresponding excitation

spectra.
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display a finite density of states even at zero energy. The
low- energy enhancement in the density of states of the XSW
and DW models can be interpreted as a band of optically
active Andreev bound states.6,12 These qualitative features
are also represented in the absorption spectrum. The ASW
order parameter has a finite gap for any nonzero lifetime,
t i , which results in a vanishing absorption below a critical
frequencyv,vcr;1/t i . The XSW and DW order param-
eters still possess nodes, however, and exhibit a significantly
increased absorption for\v&D0 . The enhanced absorption
at low v has a width of the order of the crossover energy
e*;A\D0/4t i, and comes from transitions within the bound
band ~resonant scattering!, while the small feature at
\v'D0 is a result of transitions from the bound band to the
gap edge. Figure 1 demonstrates that the low-frequency be-
havior of the conductivity is highly sensitive to sign changes
in the order parameter, even though the density of states
displays rather slight differences.

Surprisingly, thev→0 absorption in the XSW model is
actually larger than in the DW model. This difference can be
quantitativelyaccounted for in terms of phase-space argu-
ments. AtT50 one can show thats1

i (v→0) is just propor-
tional to @the total number of nodes inD(f)# 3@ the slope of
D(f) at the nodes# 21. Hence, for our order parameter mod-
els, sDW

i (v→0);(4)3(2)21 which is less than
sXSW

i (v→0);(8)3(2A2)21 by a factor of 1/A2 ~plus
terms of the order;\/@t iD0#). This estimate is in quantita-
tive agreement with the numerical result in Fig. 1. Our analy-
sis can be set on a more rigorous footing by noting that for
rather clean systems (e* 2!D0

2) at T50, the low-frequency
limit of the in-plane conductivity can be written approxi-
mately as

s1
i ~v→0!.e2Nfv f

2\ R df

2p

e* 2 cos2~f!

@D̃r
2~f!1e* 2#3/2

, ~8!

where D̃r(f) is the real part of the scattering-renormalized
order parameter ate50. We can representD̃r(f) in a very
general way by

D̃r~f!5D0@12b1bcos~2nf!1D1#, ~9!

whereD1;1/t i is the real part of the off-diagonal contribu-
tion to the scattering self-energy. Note that all three models
being considered here may be represented in this way. If
D̃r(f) possesses nodes, then the largest contribution to the
integral in Eq. ~8! comes from the regions where
D̃r(f)'0. In this case we obtain the simple result

s1
i ~v→0!.

e2Nfv f
2\

pD0

1

Ab22~12b1D1!
2
, ~10!

which is valid as long as min@D̃r(f)#&2e* . It is interesting
to note that our result does not depend on the value of the
‘‘symmetry parameter’’n in Eq. ~9!.

Equation~10! implies that the quantityD0s1
i (v→0) is

relatively independent of both the scattering lifetimet i and
cross sections̄; these quantities only enter indirectly through
the scattering self-energy pieceD1 . In fact, for the DW
model (n51,b51), the off-diagonal scattering self-energy

vanishes (D150) so thatD0s1
i (v→0).e2Nfv f

2\/p, which
is completely independent of the degree of scattering.16 Fig-
ure 2 shows a series of absorption spectra for an XSW order
parameter with a dimensionless scattering ratea50.1 for
several different values ofs̄. Note that thev→0 limits for
the conductivity all lie within;10% of each other while the
zero-energy values of the corresponding excitation spectra
are very different. In the case of weak scattering, the limiting
regime is only realized at very low frequencies; however,
this region attains an appreciable width for larger cross-
section values. It is important to point out that Eq.~10! quan-
titatively accounts for thev→0 limits in Fig. 2, and thus
allows one, in principle, to obtain an estimate for the gap-
anisotropy parameterb from a knowledge of the low-
frequency absorption spectrum.

A similar analysis of the low-frequency limit for the
c-axis conductivity shows that this frequency range is domi-
nated by the in-plane scattering properties. For brevity we
restrict our analysis to the diffuse transmission limit
(g50) and the specular transmission limit (g→`). Any fi-
nite g value will only change the absolute value of the result
but not its physical behavior. For weakly coupled layers at
zero temperature, thec-axis conductivity has the general
form

s1
'~v→0!.

2e2d2

Nf
R df

2p R df8

2p

N~f;0!N~f8;0!

t'~f,f8!
, ~11!

where N(f;0) is the angle-resolved density of states at
e50, andf andf8 refer to Fermi surface positions in two
adjacent planes. In the diffuse transmission limit,
t'

21(f,f8)[t'
21 and we obtain the simple result

s1
'~v→0!.

2e2d2

Nft'
^N~f;0!&f

2 , ~12!

where^•••&f denotes a Fermi surface average. This is what
one expects for incoherent quasiparticle tunneling between

FIG. 2. The in-plane conductivity in the XSW model, for
s̄50.0 ~dotted line!, s̄50.5 ~dashed line!, and s̄51.0 ~solid line!
in units of the dc Drude conductivitysD

i (0)5e2Nfv f
2t i . The

v→0 limits are indicated by open circles. The inset shows the
corresponding excitation spectra.
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two identical superconductors. Note that the zero-energy
density of states,̂N(f;0)&f , depends in a complicated way
on the in-plane scattering parameterst i ands̄. In the specu-
lar transmission limit,t'

21(f,f8)[2pt'
21d(f2f8) and

Eq. ~11! becomes

s1
'~v→0!.

2e2d2

Nft'
^N2~f;0!&f . ~13!

Following the same analysis as in the case of the in-plane
conductivity, we find for specular transmission the result

s1
'~v→0!.

2e2Nfd
2

t'D0

e*

Ab22~12b1D1!
2
, ~14!

which depends explicitly on the interplane scattering lifetime
t' , and implicitly on the in-plane parameterst i and s̄
throughe* andD1 . Equations~12! and ~14! show that no
universal behavior is expected in the interplane transport. In
fact, thec-axis infrared absorption spectrum is very nearly a
direct map of the density of states in the layers~for
\v&D0). Again one finds that the ASW model opens a gap
for any finite in-plane lifetime ~always assuming that
t'@t i). Note that in general the crossover energye* is
quite different for different anisotropic pairing states as well
as for weak and strong scattering, providing a way to distin-
guish between these various scenarios.

In Fig. 3 we show thec-axis conductivity in the diffuse

transmission limit for the three different order parameter
models. For the XSW and DW models we have plotted re-
sults for both the Born and unitarity limits~the differences
are very slight for the ASW model!. Note that the XSW
model no longer has a largerv→0 limit than the DW case;
nor do any of the models obey a universal low-frequency
limit. This is the behavior expected from Eq.~12!, since the
zero-energy density of states in the XSWmodel is lower than
that of the DW model for this choice of parameters. The
situation is not significantly altered in the case of specular
transmission, except for slight quantitative differences. We
note, however, that the value ofg has a much more profound
effect on the coherentc-axis transport~i.e., Josephson tun-
neling!. In fact, one finds that a finiteg is necessary for the
DW model to exhibit a finite Josephson effect.17

CONCLUSION

We have shown that anisotropic superconductors with
lines of nodes exhibit, atT→0 andv→0, a strongly en-
hanced infrared absorption, and we have derived explicit ex-
pressions for its magnitude in terms of the order parameter
anisotropy. The in-plane conductivity becomes universal for
a pured-wave order parameter,16 while an extendeds-wave
pairing state displays a nearly universal behavior in the clean
limit. Conversely, thec-axis conductivity~for diffuse inter-
layer coupling! is notuniversal, but rather resembles the den-
sity of states in the layers.

The extension of the results presented here to finite tem-
peratures also provides interesting insights.4,10 Indeed, the
existence of a finite temperaturekBT*\v can have a highly
nontrivial effect on the behavior ofs1(v→0), especially
when scattering is weak. Nevertheless, our results imply that
one could, in principle, at sufficiently low frequency and
sufficiently low temperature, quantitatively ascertain the or-
der parameter anisotropy through either a study of the scal-
ing of thev→0 absorption with impurity concentration, or
by searching for an impurity induced gap.
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sn

'52e2Nfd
2/t' for diffuse transmission.

2264 53BRIEF REPORTS


