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Electromagnetic absorption in an anisotropic layered superconductor
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We calculate the infrared conductivity tensor of a layered superconductor considering two different order
parameter symmetries: strongly anisotropiwave with line nodes, and pure_,2) d wave. The calcula-
tions are performed within the quasiclassical theory of superconductivity and include the effects of nonmag-
netic scattering processes. We discuss to what extent measurements of the electromagnetic absorption can be
relied upon to distinguish between these two order parameter symmetries.

INTRODUCTION ferences in the excitation spectrum, but rather arise from the
formation of a band of optically active Andreev bound states
The symmetry of the superconducting order parameter it frequencies below the gap edge.
the highT cuprates is currently the source of considerable
scientific debate. A number of experiments has suggested the
presence ofd-wave pairing(see, for example, Refs. 1,2 MICROSCOPIC MODEL

while recent ARPES measuremehippear consistent with W nsider the micr ic model di d in Ref
an anisotropics-wave state. This is an important issue to € consider he Mmicroscopic model dISCUsse els.

resolve since the symmetry of the superconducting order pal—l’lz(the interlayer diffusion modglwhich is based on the

rameter is a vital component in the understanding of thequaSiCIaS.Sical theory_ OT _superc_on(_juctivity. _This model is
underlying pairing mechanism at work in the high-sys- Characterized by an infinite periodic stack iotoherently
tems. coupled two-dimensional Fermi liquids. The in-plane trans-

To date much theoretical effort has been directed towardgOrt s taken to be of the u;ual Fermi |IC]U!d type., medi- .
understanding the effects of strongly anisotropic pairing onateq by charged quaS|part|cIe_s propagating coherently with
the thermodynamic and equilibrium properties of asuperconz-in m—plane.vellocnyuf)_. The mterlgyer transport, on the
ducting system. This work includes studies of the behavior Opther h_and, is diffusive in nature, orlglnat|.ng from incoherent
the order parameter and excitation spectrum in the presen attering Processes. Interlayer scattermg may take place
of impurities~’ and interface&® These considerations have rough several different types of scattering processes such

revealedqualitativedifferences between the properties of an—_?_ii:'?ﬁé?gzlhegﬂgnBeGI:Ctr%n'rﬁ’:th% r:'selsegrrt?sn-\;vml pu”?é’ ete.
isotropic s-wave order parameters in comparisondtavave pprop Yy

systems; however, there exists no unambiguous experimenttESf’mSport is of the SIS (supercondgctor—lnsuIator—
verification as yet. In this paper we seek to go beyond th Uperconductor- -) type. This type of behavior has recently

consideration of equilibrium properties by calculating the een observed in a class of high-compounds;’ suggesting

frequency-dependent current response of an anisotropic Ia#]al‘;th's model may be appropriate for certain highmate-

r rcon r to an externall lied electromagnetié® _ . . e
T s o b et  detaed desrpion of th ineyer difusion mode
ductivity has recently been put forth by Hirschfeltlal* and along with the derivation of bOFh. the in-plane andams.
Borkowski et al!® We demonstrate that under certain cir- frequency-quendent conductivity, ~has been  given
cumstances the dynamical properties of anisotropic Supep_lsewherél’ and _W'” not be repeated here. Instead, we
conductors are highly sensitive to the detailed structure opresent only a bnef_summary of the key features of the
the order parameter, and thus may serve as a reliable pro O.del along with a discussion of the necessary phenomeno-
for the order parameter anisotropy. ogical parameters. . . N .

We perform our calculations within a microscopic model For S|mp!|0|ty We assume an Isotropic cylmdrlca_l Ferml
for layered superconductors which incorporates the effects OTFurface which we parametrize by the angfe Within
nonmagnetic scattering processes. Considering two differeff® qu.a5|cIaSS|caI formulatlon of syperconducuvny, our
order parameter symmetrigstrongly anisotropics wave ~model is completely defined by specifying the form of the
with lines of nodes, and purel{>_,2) d wavel, we calculate ~ SCaltering self-energy, . This quantity is conveniently
both the in-plane and-axis current response. We observe Written as the sum of an in-plane and two interplane
striking gualitative differences in the electrical current re- parts,2/=2ﬁ+2j/_1+ 3, /1, Where/ is the layer in-
sponse of the different order parameter symmetries which aréex. In-plane scattering is taken to be isotropic so that the
strongly correlated to the degree (@bnmagneticscattering — scattering self-energy can be written E&(e,t)=cit/(e,t),
in the system. These differences a@ due just to the dif- wheret, is the single-impurity matrix,
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do A
N¢ é %g/(qﬁ;e,t) ot (et), (1)

t(e,t)=Ug+Up®

expressed in terms of the angular-averaged single-particle

propagatoq,, . Herec, is the effective concentration of scat-
tering centersfip=uyl is an isotropic scattering potential,
and N; is the total density of state@er spin at the Fermi
energy. Following Buchholtz and Zwicknalflwe eliminate
the parameters; andug in favor of an effective normal-state

scattering rate I and a normalized scattering cross section
o. The normalized cross section is a measure of the relative

strength of the scattering and ranges froens0 for weak
scattering(Born limit), to =1 for resonant scatterin@ini-
tarity limit).

We assume the-axis coupling to be weak, and thus write

the interlayer scattering self-energy in the Born approxima-

tion,

SLo(die)=U, ()
d¢’ 1

T
%27 P 2m mge0 e
UL, ..(b). )

The gauge operato@/,/il are defined in terms of an av-
eraged interlayer vector potential AZ/’/ﬂ(t) by
U, +1(t)=exp[- (ledAc)A’ ,.41(t)75], where d is the

(¢';€t)
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FIG. 1. The in-plane infrared conductivity in the unitarity limit
(o0=1) for the ASW (dotted ling, XSW (dashed ling and DW
(solid line models in units of the dc Drude conductivity
a‘,‘D(O)zeszvfru. The inset shows the corresponding excitation
spectra.

rather involved and we thus refer the reader to Ref. 12 for
details of the calculation and the resulting expressions.

RESULTS

We discuss the electromagnetic absorption in the super-
conducting state for each of the following order parameter
models:

layer spacing. The effective interlayer scattering lifetime

7,(p,¢") is taken to be anisotropic. We describe this anisot-

ropy phenomenologically asr, (¢,¢’)xexd—ycos@
—¢')]. The Fermi surface angles and¢’ give the in-plane

directions of the quasiparticle velocity before and after scat-

tering to an adjacent layer. The parametespecifies to what
degree the scattered electrons “remember” their initial mo-
mentum. Isotropic scattering correspondsyte 0, while ex-
treme forward scattering corresponds ye-. Since we
neglect coherent transport along tbexis (i.e., we set the
Fermi velocity along the axis to zerg, the interlayer scat-
tering self-energy is thenly source of interlayer coupling in
the model.

The in-plane electrical current density is given in terms o
the Keldysh component of the quasiparticle propagato
g5, by standard equations of Fermi liquid thedty,

i (=eNy f f}g S (D THrE (e}, (3

where 73 is the third Pauli matrix. The microscopic expres-
sion for the interlayer current density was derived for isotro

Apsw( @) =A¢[1+cog4¢)]/2, (5
Axsw( ) =A¢[1+3cog44¢)]/4, (6)
Apw(@)=A,c082¢). (7)

In our notation the subscripts ASW, XSW, and DW denote
anisotropics wave, extended wave, andd wave, respec-
tively. In terms of the irreducible representations of the
Dy, (tetragonal group, Aasw( @) and Axsw(¢) transform

like the A,4 (identity) representation, whilépy(¢) trans-
forms like theB,4 (dy2_2) representation. All three order
parameters possess nodes on the Fermi surface, but only
f sw(¢) andApw(#) change sign.

We calculate the supercurrents and associated conductivi-
ties by numerically solving the quasiclassical transport
equations'? These solutions must be carried out self-
consistently for the order parameter amplitutig, the scat-
tering self-energy,, and the quasiclassical propagator
g, . The conductivity can then be calculated from the ana-
ytic expressions derived in Ref. 12 by carrying out the nec-

r

pic interlayer scattering in Ref. 11, and is generalized belovgssary integrations.

to anisotropic scattering:

.Z eNf dé
17 e1()=— J A jg Tr{T3(2/ 21008

E/ /+1®@¢_@5®2L/,’5+1_@5® / /+1)}
(4)

We compute the electrical conductivity by calculatjngand

In Fig. 1 we show the real part of the in-plane frequency-
dependent conductivity for the three order parameter models
presented above, together with the corresponding excitation
spectra(insed. These data are for a fairly clean system with
a dimensionless scattering rate=fi/(2mw7kgT o) =0.02,
where T is the transition temperature in the absence of
scattering. We consider here resonant scatteriog-1),
since it displays the most striking features, and we take the
temperature equal to zero. As was pointed out previouSly,

i ,41 in the presence of a weak electric field, and theneven a small amount of scattering opens a gap in the excita-

reading off the appropriate coefficient. The procedure i

gion spectrum of the ASW model, while the other two models
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display a finite density of states even at zero energy. The

low- energy enhancement in the density of states of the XSW T=00

and DW models can be interpreted as a band of optically a=01

active Andreev bound statds? These qualitative features 030

are also represented in the absorption spectrum. The ASW £

order parameter has a finite gap for any nonzero lifetime, \b° XSW Model
7|, Which results in a vanishing absorption below a critical 3 0.20 ~ ‘ ode
frequencyw<we~1/7. The XSW and DW order param- = \ SN 05 10 15 20
eters still possess nodes, however, and exhibit a significantly 20 010 o T elh,

increased absorption fédro<A,. The enhanced absorption
at low o has a width of the order of the crossover energy =

€* ~ il o/47), and comes from transitions within the bound 0.00, 5 10 20 3.0
band (resonant scattering while the small feature at ho/A,

hw=~Ag is a result of transitions from the bound band to the
gap edge. Figure 1 demonstrates that the low-frequency be-
havior of the conductivity is highly sensitive to sign changes
in the order parameter, even though the density of states
displays rather slight differences.

Surprisingly, thew— 0 absorption in the XSW model is
actually larger than in the DW model. This difference can be _
quantitatively accounted for in terms of phase-space arguvanishes 4;=0) so thatA oy (w— 0)=e?Ngv 4/, which
ments. AtT=0 one can show that! | (w—0) is just propor- is completely independent of the degree of scattelirfgg-
tional to[the total number of nodes ii($)] X [the slope of ~ Uré 2 shows a series of absorption spectra for an XSW order

A(¢) at the nodel . Hence, for our order parameter mod- Parameter with a dimensionless scattering rate0.1 for
els, ol (0—0)~(4)x(2)"1 which is less than several different values af. Note that thew—0 limits for

I N 1 the conductivity all lie within~10% of each other while the
Txsw(®—0) (S)X(Z\/E) by a factor of W2 (plus zero-energy values of the corresponding excitation spectra

terms of the order-4/ 74]). This estimate is in quantita- are very different. In the case of weak scattering, the limitin
tive agreement with the numerical result in Fig. 1. Our analy- y 9, 9
regime is only realized at very low frequencies; however,

sis can be set on a more ngorous footing by noting that for
rather clean s stems’(2<A ) at T=0, the low-frequency this region attains an appreciable width for larger cross-
. Sy 0/ < . . section values. It is important to point out that EtQ) quan-
limit of the in-plane conductivity can be written approxi- titatively accounts for thas—0 limits in Fig. 2, and thus
mately as allows one, in principle, to obtain an estimate for the gap-
anisotropy parameteB from a knowledge of the low-
d¢ €2 cos(¢) (8  frequency absorption spectrum.
27 [A2( )+ €*2]32' A similar analysis of the low-frequency limit for the
c-axis conductivity shows that this frequency range is domi-
where A, (¢) is the real part of the scattering-renormalized nated by the in-plane scattering properties. For brevity we
order parameter a¢=0. We can represem (¢) inavery restrict our analysis to the diffuse transmission limit

FIG. 2. The in-plane conductivity in the XSW model, for

o=0.0 (dotted ling, c=0.5 (dashed ling ando 1. O(solrd ling)

in units of the dc Drude conductrvrtw (0)=e vafTH The
—0 limits are indicated by open circles. The inset shows the

corresponding excitation spectra.

(r”l(w—>0)=eszv%ﬁ 3§

general way by (v=0) and the specular transmission limig-G ). Any fi-
- nite y value will only change the absolute value of the result
A (@) =Ao[1— B+ pcog2ned) +A,], (90 but not its physical behavior. For weakly coupled layers at
zero temperature, the-axis conductivity has the general

whereA,~ 1/7 is the real part of the off-diagonal contribu- form
tion to the scattering self-energy. Note that all three models
being considered here may be represented in this way. If

A, (¢) possesses nodes, then the largest contribution to thel 2e2d2 d¢’ N(¢;0)N(¢’;0)
integral in Eq. (8) comes from the regions where 01(w—0)= % fﬁ T bd) , (1D
~ . . . L
A, (¢)=~0. In this case we obtain the simple result
fvfﬁ 1 where N(¢;0) is the angle-resolved density of states at
0'”1((1)—>0)~ , (100 €=0,and¢ and ¢’ refer to Fermi surface positions in two
™o BZ—(1-B+A1)? adjlacent planles. In the diffuse transmission limit,
which is valid as long as mia, ($)]< — €*. Itis interesting '+ (¢,¢")=7. " and we obtain the simple resilt
to note that our result does not depend on the value of the
“symmetry parameter’h in Eq. (9). 26242
Equation (10) implies that the quantity\oo'}(w—0) is o1 (0—0)= N7 (N(¢;0))3, 12
1

relatively independent of both the scattering lifetimeand

cross sectiowr; these quantities only enter indirectly through

the scattering self-energy pieck;. In fact, for the DW  where(- - -), denotes a Fermi surface average. This is what
model (h=1,8=1), the off-diagonal scattering self-energy one expects for incoherent quasiparticle tunneling between
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transmission limit for the three different order parameter
T=00 ‘ models. For the XSW and DW models we have plotted re-
sults for both the Born and unitarity limitkhe differences
are very slight for the ASW modgel Note that the XSW
model no longer has a larger— 0 limit than the DW case;
nor do any of the models obey a universal low-frequency
limit. This is the behavior expected from E(.2), since the

—— DW Model, Unitarity | | zero-energy density of states in the XSW model is lower than
-~~~ DWModel, Bon that of the DW model for this choice of parameters. The
——— XSW Model, Unitarity| | . . . . . .
—-—. XSWModel, Born situation is not significantly altered in the case of specular
-------- ASW Model, Unitarity transmission, except for slight quantitative differences. We
20 3.0 note, however, that the value gfhas a much more profound
fim/ A, effect on the coherent-axis transporfi.e., Josephson tun-

neling. In fact, one finds that a finitg is necessary for the
FIG. 3. Thec-axis infrared conductivity for our three order DW model to exhibit a finite Josephson efféét.
parameter models in units of the normal-state value
oy =2e*Nd?/ 7, for diffuse transmission. CONCLUSION

two identical superconductors. Note that the zero-energy We have shown that anisotropic superconductors with
density of stategN(¢;0)),, depends in a complicated way lines of nodes exhibit, al =0 and w—0, a strongly en-
on the in-plane scattering parametefsando. In the specu-  hanced infrared absorption, and we have derived explicit ex-
lar transmission limit,7, (¢,¢")=2776(¢—¢') and  pressions for its magnitude in terms of the order parameter
Eq. (11) becomes anisotropy. The in-plane conductivity becomes universal for
a pured-wave order parameté? while an extended-wave
(N2($:0 (13 pairing state displays a nearly universal behavior in the clean
N¢r, $:0)) - limit. Conversely, thec-axis conductivity(for diffuse inter-

] ] ) ] layer coupling is notuniversal, but rather resembles the den-
Following the same analysis as in the case of the in-plangjty of states in the layers.

conductivity, we find for specular transmission the result The extension of the results presented here to finite tem-

ot 12 . peratures also provides interesting insight$.Indeed, the
2e’Nd € (14) existence of a finite temperatukgT=% w can have a highly
Ao BT (1-B+A)? nontrivial effect on the behavior of,(w—0), especially

. . . . ... .. when scattering is weak. Nevertheless, our results imply that
which dependg gxpllcnly on .the interplane scattering lifetimey o could, in principle, at sufficiently low frequency and
7., and implicitly on the in-plane parameterg and o

. , sufficiently low temperature, quantitatively ascertain the or-
through* and A,. Equations(12) and (14) show that N0 e parameter anisotropy through either a study of the scal-

universal beha_\/ior is expected. in the interplgne transport. "ihg of the @—0 absorption with impurity concentration, or
fact, thec-axis infrared absorption spectrum is very nearly apy searching for an impurity induced gap.

direct map of the density of states in the laydfer
hw=Ag). Again one finds that the ASW model opens a gap
for any finite in-plane lifetime (always assuming that
7,> 7). Note that in general the crossover energy is The authors thank D. Rainer and J.A. Sauls for many
quite different for different anisotropic pairing states as wellvaluable discussions. The research of M.P. was supported by
as for weak and strong scattering, providing a way to distinthe Alexander von Humboldt-Stiftung, and that of M.J.G.
guish between these various scenarios. was supported by the NSEDMR 91-20000 through the
In Fig. 3 we show thec-axis conductivity in the diffuse Science and Technology Center for Superconductivity.
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