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We derive microscopically the Ginzburg-Landau equations for weak-coupling superconductors with coex-
isting s andd symmetries. The equations are derived from Gor’kov equations by using the finite temperature
Green’s-function method. We explore the physical consequences of such Ginzburg-Landau equations.

Superconducting states with mixeds and d symmetry
have been proposed for a long time. It is believed thats-d
mixing is relevant to the heavy-fermion systems.1 Most re-
cently, it is suggested some of the anomalous superconduct-
ing properties of the high-Tc superconductors could be ex-
plained bys-d mixing.2,3 The description of coexistings and
d symmetry itself is also theoretically interesting. All previ-
ous work on mixeds-d state are based on forms of a
Ginzburg-Landau~GL! free-energy functional obtained from
group-theory arguments. Since many parameters in these
theories are not known, it is not clear where the physically
relevant regions of the order parameters lie. In our earlier
work,4 we have given the first derivation of the Ginzburg-
Landau equations in a purelyd-wave superconductor. Here
we will derive the Ginzburg-Landau equations for a mixeds-
and d-wave superconductor in the weak-coupling limit by
using the same method. We will show most parameters in the
resulting Ginzburg-Landau equations are fixed by symme-
tries of the order paramters and thus not ‘‘free.’’

To this end, we begin with the Gor’kov’s equations5

H ivn2
1

2m
~2 i“1eA!21mJ G̃~x,x8,vn!

1E dx9 D~x,x9!F1~x9,x8,vn!5d~x2x8!, ~1!

H 2 ivn2
1

2m
~ i“1eA!21mJ F1~x,x8,vn!

1E dx9 D* ~x,x9!G̃~x9,x8,vn!50, ~2!

and derive equations for thek dependence of the order pa-
rameter. HereG̃ andF are, respectively, the single particle
and pair propagators.vn5(2n11)pT. The self-consistent
equation to determine the pair potential is expressed in real
space as

D* ~x,x8!5V~x2x8!T(
vn

F†~x,x8,vn!, ~3!

with 2V(x2x8) as the effective pairing interaction between
two charge carriers. When the superconductor is in the vicin-
ity of the onset of superconductivity,D(x,x8) is a small
quantity that can be expressed upon. From Eqs.~1! and ~2!,
and iterating Eq.~3! to the third order inD for F† and second
order inG, we find

D* ~x,y!5V~x2y!T(
vn

H E dx8 dx9 G̃0~x8,x,2vn!D* ~x8,x9!3F G̃0~x9,y,vn!

2E dx1 dx2 G̃0~x9,x1 ,vn!D~x1 ,x2!E dx3 dx4 G̃0~x3 ,x2 ,2vn!D* ~x3 ,x4!G̃0~x4 ,y,vn!G J , ~4!

whereG̃0 is the Green’s function of free electrons in mag-
netic field B5¹3A. In the case that we are interested in
where 1/kF (kF is the Fermi wave number! is much less than
the London penetration depth,A can be treated as a constant
over distances of many wavelengths, thusG̃0 can be related
to the zero-field Green’s functionG0 via the approximate
expression6,7

G̃0~x,x8,vn!'G0~x2x8,vn!e
2 ieA~x!•~x2x8!, ~5!

and

G0~x,vn!5
1

~2p!2
E dk eik•x

1

ivn2jk
, ~6!

wherejk5k2/2m2m is the kinetic energy of the charge car-
rier with massm measured from the chemical potentialm.
And for simplicity, we have assumed the Fermi surface is
two dimensional. A third dimension can be easily added to
the final equations if needed.
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By introducing the center-of-mass coordinates

R5
1

2
~x1y!, R85

1

2
~x81x9!, ~7!

and the Fourier transformk, k8 of the relative coordinates

r5x2y, r 85x82x9, ~8!

we obtain, using a Taylor expansion

D* ~x8,x9!'e*x
x8¹ x̂•dl̂1*y

x9
¹ ŷ•dl̂D* ~x,y! ~9!

to relateD ’s when their coordinates are close enough,

D* ~R,k!5D~1!
* ~R,k!1D~2!

* ~R,k!, ~10!

and

D~1!
* ~R,k!5E dr e2 ik•rV~r !E dR8 dr8

1

b(
vn

E dp dq

~2p!4
eip@R82R1~r 8/2!2~r /2!#1 iq@R82R2~r 8/2!1~r /2!#

1

2 ivn2jp

1

ivn2jq

3ei ~R82R!•PR1 i ~r82r !•k8E dk8

~2p!2
eik8•rD* ~R,k8!

5E dk8

~2p!2
V~k82k!H T(

vn

1

vn
21jk82

1
T

2(vn
F 1

~2m!2
2jk8

2
26vn

2

~vn
21jk8

2
!3

~kx8
2Px

21ky8
2Py

2!

2
1

2m

jk8
~vn

21jk8
2

!2
P2G J D* ~R,k8!, P52 i¹22eA, ~11!

D~2!
* ~R,k!52E dk8

~2p!2
V~k2k8!T(

vn

1

~vn
21jk8

2
!2

3uD* ~R,k8!u2D* ~R,k8!. ~12!

We expanded the exponential containing the center-of-mass
coordinates but that containing the relative coordinates have
to be retained.

To obtain the Ginzburg-Landau equations for a mixeds-
andd-wave superconductor, we make the following ansatz:8

V~k2k8!5Vs1Vd~ k̂x
22 k̂y

2!~ k̂x8
22 k̂y8

2!, ~13!

D* ~R,k!5Ds* ~R!1Dd* ~R!~ k̂x
22 k̂y

2!, ~14!

wherek̂ is the unit vector in the direction ofk. Vd andVs are
both positive, which corresponds to attractive interactions in
both s andd pairing channel.

From Eqs.~11!, ~12! and comparing both sides of Eq.~10!
for k̂-independent terms and terms proportional to
( k̂x

22 k̂y
2), we obtain

Ds*5N~0!VsDs* ln
2egvD

pT
2

7z~3!

8~pT!2
N~0!VsH 14 vF2P2Ds*

1
1

8
vF
2~Px

22Py
2!Dd*1uDsu2Ds*1uDdu2Ds*

1
1

2
Dd*

2DsJ , ~15!

Dd*5
1

2
N~0!VdDd* ln

2egvD

pT
2

7z~3!

8~pT!2
N~0!VdH 18 vF2P2Dd*

1
1

8
vF
2~Px

22Py
2!Ds*1uDsu2Dd*1

1

2
Ds*

2Dd

1
3

8
uDdu2Dd* J . ~16!

Hereg is the Euler constant,N(0) is the density of states at
the Fermi surface,vF is the Fermi velocity, andvD is the
cutoff frequency for the interactions.

The free energy obtained from the above equations is

f522 ln~Ts/T!uDsu22 ln~Td /T!uDdu21aldF uDsu4

1
3

8
uDdu412uDsu2uDdu21

1

2
~Ds*

2Dd
21Dd*

2Ds
2!G

1
1

4
aldvF

2@2uPDs* u21uPDd* u21~Px*DsPxDd*

2Py*DsPyDd*1 H.c.!#, ~17!

where a5@7z(3)/8#@1/(pT)2#, and ld5(1/2)N(0)Vd .
Here we defineTs andTd to be the apparent superconducting
transition temperature fors wave andd wave,

N~0!Vsln
2egvD

pTs
51, ~18!

N~0!Vdln
2egvD

pTd
51/2, ~19!
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respectively.
The corresponding expression for the supercurrent can be

obtained from Gor’kov’s equations:

j ~R!5
eaN~0!EF

2m FDs*P*Ds1
1

2
Dd*P*Dd1

1

2
~Ds*Px*Dd

1Dd*Px*Ds!x̂2
1

2
~Ds*Py*Dd1Dd*Py*Ds!ŷG1H.c.

~20!

It is interesting to note that in the free energy, the coeffi-
cients of the termsuDsu2uDdu2 and (Ds*

2Dd
21Dd*

2Ds
2) are

both positive and their relative magnitudes guarantee the
overall stability of the free energy. Their signs are not known
from group-theory arguments but are very crucial for decid-
ing the symmetry of the ground state. Generally, we expect
that whenT is lower than both transition temperatures, i.e.,
T,Ts andT,Td , thes-wave andd-wave solution will co-
exist in the bulk. And because of the positive coefficients of
Ds*

2Dd
2 term,s1 id symmetry is favored. WhenT is between

the two transition temperatures, only one symmetry is
present in the bulk, depending on which has the higher tran-
sition temperature. To see exactly what happens, we have to
minimize the free energy in the bulk. We obtain

] f

]Ds*
522 ln~Ts /T!Ds1a~2uDsu2Ds12uDdu2Ds1Dd

2Ds* !

50, ~21!

] f

]Dd*
52 ln~Td /T!Dd1aS 34uDdu2Dd12uDsu2Dd1Ds

2Dd* D
50, ~22!

and their Hermitian conjugates.
Equations~21! and ~22! have different solutions depend-

ing on the temperatureT. Two obvious solutions are

Ds50, uDdu25
4

3a
ln~Td /T!, ~23!

Fd52
2

3a
ln2Td /T, ~24!

and

Dd50, uDsu25
1

a
ln~Ts /T!, ~25!

Fs52
1

a
ln2Ts /T. ~26!

These are the only possible solutions corresponding to
T.Ts andT.Td , respectively.

WhenT,Ts andT,Td , s andd can coexist in two kinds
of combinations,s1d or s6 id. For thes6 id state, we ob-
tain

uDdu25
4

a
ln
Td
Ts
, ~27!

uDsu25
1

a
ln
Ts
3

Td
2T

, ~28!

Fs6 id52
1

a
~3 ln2Ts /T24 lnTs /T lnTd /T12 ln2Td /T!,

~29!

which requiresT,Ts
3/Td

2 andTd.Ts . It can be shown that
the s1d state is never stable for our GL free energy.

Thus we have a peculiar situation; whenTd.Ts , there
will be a second-order transition fromd symmetry tos6 id
symmetry atT*5Ts

3/Td
2 . On the other hand, ifTs.Td ,

there will be no transition froms symmetry tos1 id sym-
metry. This is because of the generic form of coupling be-
tweens-wave andd-wave components, which seems to be
independent of particular form of interaction, as long as te-
tragonal symmetry and isotropic Fermi surface are assumed.
A plausible explanation of thiss andd asymmetry is that the
transition fromd to s6 id is one from a state with zero gap
nodes to a gapless state, which is expected to lower the free
energy; while the transition froms to s1 id is not necessarily
favored in energy.

The s1 id ands2 id states are degenerate in energy, and
each of them breaks time-reversal symmetry since time re-
versal transformsD to D* . There have been many proposed
experimental consequences of thes1 id phase, due to the
time-reversal breaking property of such a state. There are
also calculations done on systems with a second phase tran-
sition to mixeds and d symmetry that suggest measurable
effects will be observed in the behavior ofHc2 . Even though
such calculations are done in the limit, the coefficients of the
mixed terms are treated as a small perturbation, while our
microscopic calculation suggests they are actually compa-
rable to the other terms, we believe qualitatively their con-
clusion remains correct. A detailed calculation of theHc2
needs to be done numerically.

Our result also suggests that in tetragonal systems with
mixed s and d symmetry, thes1d state is never a stable
solution. Thes1d state is not only higher in energy than
s6 id states, but it is also not a local minimum of free en-
ergy. This surprising conclusion is due to the fact that even
though there are many different competing terms in the free
energy, their relative sign and magnitude are decided only by
two interactions. Since the validity of Ginzburg-Landau ex-

FIG. 1. Phase diagram of coexistings andd symmetry.
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pansion depends on the smallness of the order parameters,
our equations are only exact in the limit whereTs andTd are
sufficiently close. It is interesting to note many realistic ap-
plications are just in this limit.2 On the other hand, the con-
dition for the two order parameters to be small,T2Ts!Ts
andT2Td!Td are not difficult to meet even for quite dif-
ferentTd andTs , and we expect our equations to be quali-
tatively correct. Our equations can also be extended to the
casesVs!Vd or Vd!Vs . In this limit, it is also close to
being exact, since one of the order parameters is automati-
cally small. However, a Pade´ approximation has to be used
in the derivation to avoid unphysical results, just as we did in
our previous work.4 The resulting phase diagram is given in
Fig. 1.

In summary, we have derived microscopically the
Ginzburg-Landau equations for a weak-coupling supercon-
ductor with mixeds and dx22y2 symmetry. The phase dia-

gram of such a superconductor is determined. We found that
an additional second-order transition will take place within a
certain interaction range, i.e., if the apparent transition tem-
peratureTd.Ts , but not vice versa. The second transition is
to a mixeds6d phase which breaks time-reversal symmetry.
The Ginzburg-Landau equations that we obtained should
provide a convenient starting point for studying various
properties of the superconducting state in such a supercon-
ductor if they are proved to exist, as many theories have
proposed in the past.
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