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Interpretation of the low damping of subthermal capillary waves (ripplons) on superfluid *He
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The problem of ripplon damping on superfluftie is reexamined to show how imposing the boundary
condition constraint at the perturbed rather than unperturbed surface position results in strong cancellation of
the previous result for the three-ripplon interaction. This has orders of magnitude consequences for the relax-
ation rate of subthermal ripplons, which is shown to be dominated instead by ripplon-phonon scattering
«q T4, in excellent quantitative agreement with recent experiments.

. INTRODUCTION (X,y,2), let the liquid be located, at tim in the half space
z<{(x,y,t). In the absence of any excitatiof/=0. The su-
Atkins® first proposed the idea of treating the long- perfluid is described by an irrotational velocity field
wavelength excitations at the free surface of superfluid hev=V¢(x,y,z,t) subject to the boundary condition that there
lium as quantized capillary waves, or ripplons. It was verybe no particle flow though the free surface. For an element
successful in explaining the temperature dependence of this of the boundary surface with normal vectar,
surface tension and also accounts well for the frequericfes. 2.Azds=v-Ads. Since i is proportional to V)0,
The idea was further developed by Saam to examine thEEVH:(a/ax)§<+(a/(9y)9], the boundary condition becont8s
stability of ripplons to decay by ripplon-ripplénand )
ripplon-phonofi scattering as a result of hydrodynamic non- §=(&¢/&z)|2:§—V”5~VH¢|Z:g. (1)
linearity. Saam’s formalism was consequently used to esti- i )
mate finite temperature lifetimé& where it was concluded EXPanding Eq(1) to second order in,¢),
that subthermal ripplon decay should be dominated by

2
ripplon-ripplon scattering. Experiment however shows rip- Z:% +§t? —V\|§'V|\¢|z=o- 2)
plons to be much longer lived than these predictions. The iz|, _, "I,

upper bound on the damping deduced from observed life- . . . . . ,
times of coupled surface charge-ripplon modesias al- This is the constraint which was approximated to the first

ready 2 orders of magnitude lower, but was conceivabl)}erm in Ref. 5. We define Fourier transforms in they(

within the range of error introduced by approximatidns. Pl2N€r=xx+yy

Now that measurements of ripplon dampimgve revealed a

six orders of magnitude discrepancy, a bolder explanation is é(r) 2)=> qsq(z)eiq'fu, g(r”)=2 gqeiq'ru_ (3

called for. Either there is an error in the logic relating the q q

calculated result to the model or the model |ts_elf IS wrong. Incompressible fluid: the three-ripplon interactiorhe equa-

e v hereore reexamin the formalsm. The Cofion of coninuiy n he ncompressile it =0 feads
= .92 with q= iti

velocity potential to the surface deformation and thereby deimggs(z)s $qe™, with q=|g|. The boundary conditiori1)

termines the form of the Lagrangian in terms of the surface

variables. The correction to the ripplon-ripplon scattering . q-q’ -

Hamiltonian, introduced by applying the constraint at the q¢>q=§q—2 —{qlq-q' (4)

perturbed rather than the unperturbed surface configuration, o d

is of the same order as the term obtained by Saam using thghere the last term corresponds to the sum of the second-

unperturbed constraint. The sign, however, is opposite angrder terms in Eq(2). The Lagrangian of a nonviscous in-
the two terms almost exactly cancel in the limit of subther-compressible fluid isz=T—V, where
mal ripplons. Indeed, the cancellation is so strong

(=10 '?) that the mechanism of ripplon-phonon scattering, po [* oy
previously thought to be unimportant, becomes dominant. An T=% | dx yf Y (x,y,2)dz 6)
explicit calculation shows that this process accounts well for
the new experimental results. represents the kinetic enerfgyand
In what follows, we dissert the problem in such a way as
to try to understand why taking account of the curvature on e
applying the surface boundary condition—itself a well- V:‘Tof_dedy{[lJFVﬁg]l/z_ 1} (6)

known procedurf—leads to such a dramatic cancellation in
the damping rate. is the potential energy from surface-tension fortes, rep-
In a coordinate system defined by the three unit vectorsesents the bulkHe density andr, the surface tension at
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zero temperature. Expanding and V to order three in The new coefficients are bounded Bf/2, whereas previ-

(¢,¢), one obtains the same expression as Saam: ously the only bound was imposed by the availability of
thermally excited ripplong|,q’~qy. Very roughly, the ef-

._ Po 2 90 20, 12 fect on the damping is to introduce a factor
7=3 % al ¢l 2 % %4 (Q/9)*~(fiwg/kgT)®3*~10"23in the typical conditions of

the experiment of Ref. 9. In fact, in contrast with the previ-
_ Po P ous result, the principal contribution now arises from Q
2 % {a-9"~aq'} ¢alq-q bar- @) and not fromg~qy, so that the decay rate becomes propor-
) ’ tional to T. A good approximation to the numerically inte-
The variables ¢q,{,) are coupled through Ed4), from  grated result, accurate to 15% for To<% wq /kgT<10" % is

which Z'= %4+ %7 with given by
. _Po 1. 0o
Fo=52 4P 52 dlgg? o, 12 KT
2 g 2 g 1_ 2
q g q (wgTQ) 1877(3Q) eyl (13
:%;12@2 [M}quqq,zq, (8) If a is taken to be the Wigner-Seitz radius-2.2 A),
249 aq ooa?lkg~1.4 K. It is related to the previous estimatey a
713 ( ~ — 12
and the classical Hamiltonian, correct to order 3, isfactor 0'056.“’QIKBT) (~10 .for 10'“.m wavelength at
W= Ao+ A, with 0.5 K). In view of the dramatic reduction factor for this

mechanism, it becomes important to estimate other mecha-
1 o0 nisms and in particular the ripplon-phonon interaction.
J/fozz—E gl g2+ ?Z a°[Z4)%, Compressible fluid: the one-rippletwo-phonon interac-
Poa q tion. Saanf also set up a formalism for the compressible
1 fluid using linearized continuity equations. We shall see how-
oy — - / ever that the second-order terms in the continuity equations
7 2p %: {0-0"+ 90’ 7ol —g-q Ta', © have only a small effect on the ripplon-phonon interaction
for subthermal ripplons.

wherenr_q=9.219{4 IS the momentum conjugate 4g. The The Lagrangian of the ideal compressible fluid is
quantum version is obtained through the usual transformas,—1_v—v’ where
tion of canonical variables into Bose operators.
The interaction HamiltonianZ; differs from Eq.(6) of .
Ref. 5 only in the sign of theyq’ term. This seemingly _1 ¢ y2
e ; O D - T=5| dxdy] dZpotp’lv (14
innocent remark is crucial. First of all, the sign ensures the — —o
invariance of the physics to atranslation of the coordinate
system. In a new set of coordinates defined by=(x,  represents the kinetic energy,is given by Eq.(6) and
y' =y, Z' =z+ €) the new Fourier components are related to
the old by {q=¢4, Yq#0, and{,={o+ € and the Hamil- 2 [ ¢ )
tonian is transformed into V':z—pofdedyJ'deP' (15)

T =T L=, mq= TN
({q=¢q:Tq= gV 0) is the contribution to the energy due to the compression of

€ , ) ) the liquid. p' represents the variation of the density

- 2_Po§q: {a-a'+aq"} g - gl mgl*. (10 p=p,+p’ from the equilibrium valugy, ands is the first
sound velocity.{ is coupled to¢ by Eq. (2) and p’ is

Only if the term in curly brackets is null are the form and the coupled tov=V¢ through the equation of continuity in the

physical results invariant; otherwise an arbitrary effectivebulk!?

mass term is added t@ resulting in arbitrary ripplon fre-

guencies depending on the choice of coordinate reference. p'+(pot+p )Ap+Vep-Vp' =0. (16)

By the same token, the present form changes radically the

previous result for the damping of subthermal ripplons. FORyse \yrite & as the sum of two termsp=¢°+ 41, where

ripplons of wave vectoR, the dominant effect arises from #° satisfies the continuity equation to first order

terms involving{y. Taking account of the vector addition

Q=-q'—q, these now become

p'+pod°=0 17
1 1 1\2 2 1; H H
2_po§ E{(q—q )°— QT mqloT—q-0 (11) and¢" is a second-order term satisfying
instead of poAdt+p'ApP+Vepl.Vp'=0. (18
1 1 ; ey ;o
=S Tig+a’)2— 02 o 12 The quadratic part of the Lagrangia#y=Ty—Vy—Vy, IS
2p 2 51(a1a)" = QY malom-q-o 12 obtained by expanding, V, andV' to second order,
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po [~ 0 we retain only the lowest order in,/q (~0.015 for thermal
T :_0 dxd dzlVv 0|2 e . . . ~
e xay . V7%, phonons at 1 K Within this approximation, R ~1,
p'|,=0~0, andpq k=pq«- Hence, we neglect the third-order
oo [ term [order (bq/q)z] in the expansion o¥/’. After an inte-
V0:70J dxdyV”gz, gration by parts with the help of E4L8), the kinetic energy
- may be writtenT=Ty+ T, where

2
S ] 0 o 0 ’
r__— 12 _ Pog 012 P 012
Vo=3,, ﬁdxdyﬁmdm , (19 Ti= f_xdxdy{TWqS 20— j_md27|V¢ |
and restricting the continuity equatio(® and(16) to linear o agpt 9¢°
terms. The normal modes of; are expressed in Ref. 6. We + J dxdy{po¢°—+p’ ¢0—} . (26)
shall however reformulate the problem somewhat differently. - 9z 9z 7=0

The key point is that it is only possible to eliminate variables
through the constraints of Eg&) and (16) taken to second
order if we choose' and{ rather thang and{ (Ref. 6 as
independent generalized coordinates. In addition to the FOU'0.,¢1
rier transforms of Eq(3), we introducep  defined by a_q

(991 92)|,—o can be expressed in terms of its Fourier trans-
form in the ,y) plane, after integration of Eq18)

oS (K*+29%)q'(q'=q)—qq'k*.

o dne pokq'(kKP+agh)  TwParatk

p'(XY,2)=2 pai€ @I, poi=p*y . (20  As T, is already of order 3, the variablg) may be elimi-
a.k - . .
nated from it by using the first-order surface boundary con-
¢° must satisfy Eq(17), the general solution for which is a dition of Eq.(22) and Eq.(21). The resulting contribution to

sum over the three-ripplon interaction is
1 p k . —q. /+ !
05y 4R q, k _a_ Po q-9 +qq | . .
bq(2) = g+ %Ek q2+kze' % (21) (/?:72, {T NgN-q-q' - (27)
a.q

The coefficient¢§li_s fixed by_ the boundary conditiof2) at Neglecting terms of ordefypp compared withypp, the
the free surfaces™ is determined by Eq(18) to be of order  |oyest order one-ripplon—two-phonon interaction framis

2. ] ] ] described by
To first order in the surface constraint
1 kk' . .
. . 1 Ik ,,,(,/;(},z__ 7 7 0 __r~r .
AgG=77q With 7q=Lq— 2 7 zpak- (22 = 2 3t (@I Pk
po k q +k q’,k’
(28)
Settin «=—R , Where . ) ) . . :
9Pa.k akPak Additional interaction terms, those omitted in Ref. 6, arise
g%+ k2—2ibqk _ o9 from Ty on expressingﬁge in terms of the generalized coor-
Rq,k:m with bq:m (23)  dinates by means of the surface boundary condition of Eq.
d (2) taken to second order. Equati@2?) is then replaced by
represents the reflection coefficient for phonons impinging
on the surface, the Lagrangias, takes the diagonal form of e q-q’ . 34’3
Ref. 6 q¢q:7lq_2 _/nq’nq—q’_ﬁ
q’ q z=0
o _POE |.71q|2 0'02 q2Kq| 7]q|2 1 ikg-q’ ;7q’l~)q7q’ K
LOT 5 i T 12 5 L 7, p212 - - - =, 29
270 (g 277 (aT+by poim A'1(a—q) 2+ K] 29
+i2 |l§q,k|2 _5_22 Pk (24) The first second-order term in ER9) contributes to the
dpost 2+ K2 dpyy 'Pakl three-ripplon interaction
where kq= —bq+ (9?+b3)*2 and . 99" . .
. '%121)02 (_/]ﬂqn—q—q’ﬂq'- (30
. 4ibgkpg (25 aq L 9d
k= Pak™ 22 12_oinh K Ta- ,\ o . .
Pak=Pak™ g2+ k2—2ibgk " The sum¥;= 72+ #® is identical to the three-ripplon term

The eigenfrequencies for ripplons aig= (corqa? po) 2 of Eq. (8) for the incompressible fluid. The other second-

and for phononanq'kzs(q2+k2)l’2.6 order_terms !nduce twc_)-nppk_)n—one-phonon mteractlons_that
The next higher order introduces the interaction term&€ kinematically forbidden in the regime that we consider

which give rise to damping. We shall limit ourselves Hére here. The relevant Lagrangian is thef= 2o+ %, + ;. In

to the terms of interest for damping of subthermal ripplonsterms of the conjugate momentar_q,=4//d7, and

(hwyg<kgT). Only three-ripplon and one-ripplon—two- Y_q-k=0%1dpqk, the Hamiltonian is 7=7y+ .7

phonon scattering is allowed by the kinematics. Futhermorer.7; with
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b2 1/2

2
, 2 709" Kq 2
'//7 = + G D NG
S % { |7Tq| 2(q2+b§)1’2| 77(1|

102 .

Theory for A=20 pm

T T T TTT

[ B

&2
po( Q%+ K2)| gl >+ _|Pq Kl }

+ _
q,k

%’1———2 {9:0"+99"} 747 q-q' g, T -
3 ]
6 i
//, ZPOE 2 ¢ ’ﬁq k7-q-q’ wq’ k' (3D a i

Kq' Kk
The three-ripplon term7; is identical to Eq.(9) and, as + A=3.3 um

already pointed out, differs from the previously accepted re-
sult. Our leading term7; for the one-ripplon—two-phonon

) . T ! f . Th for »=3.
interaction, on the other hand, is identical to that derived in cory Tor » |3 3 Hm | I

Ref 6; the higher order terms in the continuity equations 400 1000
make no significant contribution here. The ripplon damping Temperature (mK)
factor associated with7] for Zwq<kgT is

FIG. 1. Theoretical damping factdstraight lineg for wave-

E -1 E 77_2 AQ kB_T ! length 3.3 and 2Qum compared to experimental dafef. 9.
(CUQTQ) =~
ments of the damping factor for ripplons with wavelength in
Wn |2 4 the range 3—2Q:m.° The agreement with thiab initio cal-
%7_7( ° 11— (Qa)~¥2. (32 culation is remarkable.
oo We conclude that the basic physics of the quantum hydro-

dynamical model of Atkins and Saam is not put into question

The Stefan-Boltzmann like part of this result arises from theby the new experiments. The problem stems rather from an
energy(momentunm oss associated with the Doppler shift of inconsistency in the formalism. Once this is put right, the

phonons reflected from the moving surface andQitg, part model, which contains no adjustable parameters, gives an

fro_m the_ ”Pp'or? ef_fecuve mass. Introducmg_ the ngner- extremely good quantitative account of the laboratory results
Seitz radiusa, highlights the more evidently dimensionless g ripplon lifetimes.

second form wher&V,=#%2%/ma?~2.5< (m is the *He atom

mas$ is a measure of the zero point energy and the Debye

temperaturedp is defined in the usual way. It is a pleasure to thank G. Deville, S. Balibar, and N. J.
The result is compared in Fig. 1 with recent measureAppleyard for many stimulating discussions.
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