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The problem of ripplon damping on superfluid4He is reexamined to show how imposing the boundary
condition constraint at the perturbed rather than unperturbed surface position results in strong cancellation of
the previous result for the three-ripplon interaction. This has orders of magnitude consequences for the relax-
ation rate of subthermal ripplons, which is shown to be dominated instead by ripplon-phonon scattering
}qT4, in excellent quantitative agreement with recent experiments.

I. INTRODUCTION

Atkins1 first proposed the idea of treating the long-
wavelength excitations at the free surface of superfluid he-
lium as quantized capillary waves, or ripplons. It was very
successful in explaining the temperature dependence of the
surface tension and also accounts well for the frequencies.2–4

The idea was further developed by Saam to examine the
stability of ripplons to decay by ripplon-ripplon5 and
ripplon-phonon6 scattering as a result of hydrodynamic non-
linearity. Saam’s formalism was consequently used to esti-
mate finite temperature lifetimes7,8 where it was concluded
that subthermal ripplon decay should be dominated by
ripplon-ripplon scattering. Experiment however shows rip-
plons to be much longer lived than these predictions. The
upper bound on the damping deduced from observed life-
times of coupled surface charge-ripplon modes3,4 was al-
ready 2 orders of magnitude lower, but was conceivably
within the range of error introduced by approximations.8

Now that measurements of ripplon damping9 have revealed a
six orders of magnitude discrepancy, a bolder explanation is
called for. Either there is an error in the logic relating the
calculated result to the model or the model itself is wrong.

We have therefore reexamined the formalism. The con-
straint imposed by the surface boundary condition relates the
velocity potential to the surface deformation and thereby de-
termines the form of the Lagrangian in terms of the surface
variables. The correction to the ripplon-ripplon scattering
Hamiltonian, introduced by applying the constraint at the
perturbed rather than the unperturbed surface configuration,
is of the same order as the term obtained by Saam using the
unperturbed constraint. The sign, however, is opposite and
the two terms almost exactly cancel in the limit of subther-
mal ripplons. Indeed, the cancellation is so strong
('10212) that the mechanism of ripplon-phonon scattering,
previously thought to be unimportant, becomes dominant. An
explicit calculation shows that this process accounts well for
the new experimental results.

In what follows, we dissert the problem in such a way as
to try to understand why taking account of the curvature on
applying the surface boundary condition—itself a well-
known procedure10—leads to such a dramatic cancellation in
the damping rate.

In a coordinate system defined by the three unit vectors

( x̂,ŷ,ẑ), let the liquid be located, at timet, in the half space
z<z(x,y,t). In the absence of any excitation,z50. The su-
perfluid is described by an irrotational velocity field
v5¹f(x,y,z,t) subject to the boundary condition that there
be no particle flow though the free surface. For an element
ds of the boundary surface with normal vectorn̂,
ẑ–n̂żds5v–n̂ds. Since n̂ is proportional to (ẑ2¹iz),
@¹i5(]/]x) x̂1(]/]y) ŷ#, the boundary condition becomes10

ż5~]f/]z!uz5z2¹iz–¹ifuz5z . ~1!

Expanding Eq.~1! to second order in (z,f),

ż5
]f

]z U
z50

1z
]2f

]z2 U
z50

2¹iz–¹ifuz50 . ~2!

This is the constraint which was approximated to the first
term in Ref. 5. We define Fourier transforms in the (x,y)
planer i5xx̂1yŷ

f~r i ,z!5(
q

fq~z!eiq–r i, z~r i!5(
q

zqe
iq–r i. ~3!

Incompressible fluid: the three-ripplon interaction.The equa-
tion of continuity in the incompressible liquidDf50 leads
to fq(z)5fqe

qz, with q5uqu. The boundary condition~1!
imposes

qfq5 żq2(
q8

q–q8

q8
żq8zq2q8, ~4!

where the last term corresponds to the sum of the second-
order terms in Eq.~2!. The Lagrangian of a nonviscous in-
compressible fluid isL5T2V, where

T5
r0
2 E2`

`

dxdyE
2`

z~x,y!

v2~x,y,z!dz ~5!

represents the kinetic energy11 and

V5s0E
2`

`

dxdy$@11¹i
2z#1/221% ~6!

is the potential energy from surface-tension forces.12 r0 rep-
resents the bulk4He density ands0 the surface tension at
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zero temperature. ExpandingT and V to order three in
(z,f), one obtains the same expression as Saam:5

L5
r0
2 (

q
qufqu22

s0

2 (
q
q2uzqu2

2
r0
2 (
q,q8

$q–q82qq8%fqz2q2q8fq8. ~7!

The variables (fq ,zq) are coupled through Eq.~4!, from
whichL5L01L1 with

L05
r0
2 (

q

1

q
u żqu22

s0

2 (
q
q2uzqu2,

L15
r0
2 (
q,q8

H q–q81qq8

qq8 J żqz2q2q8żq8 ~8!

and the classical Hamiltonian, correct to order 3, is
H5H01H1 with

H05
1

2r0
(
q
qupqu21

s0

2 (
q
q2uzqu2,

H152
1

2r0
(
q,q8

$q–q81qq8%pqz2q2q8pq8, ~9!

wherep2q5]L/]żq is the momentum conjugate tozq . The
quantum version is obtained through the usual transforma-
tion of canonical variables into Bose operators.5

The interaction HamiltonianH1 differs from Eq.~6! of
Ref. 5 only in the sign of theqq8 term. This seemingly
innocent remark is crucial. First of all, the sign ensures the
invariance of the physics to az translation of the coordinate
system. In a new set of coordinates defined by (x85x,
y85y, z85z1e) the new Fourier components are related to
the old by zq85zq , ;qÞ0, andz05z01e and the Hamil-
tonian is transformed into

H85H~zq5zq8 ,pq5pq8;q!

2
e

2r0
(
q

$q–q81qq8%q852qupqu2. ~10!

Only if the term in curly brackets is null are the form and the
physical results invariant; otherwise an arbitrary effective
mass term is added toH resulting in arbitrary ripplon fre-
quencies depending on the choice of coordinate reference.

By the same token, the present form changes radically the
previous result for the damping of subthermal ripplons. For
ripplons of wave vectorQ, the dominant effect arises from
terms involvingzQ . Taking account of the vector addition
Q52q82q, these now become

1

2r0
(
q

1

2
$~q2q8!22Q2%pqzQp2q2Q ~11!

instead of

1

2r0
(
q

1

2
$~q1q8!22Q2%pqzQp2q2Q . ~12!

The new coefficients are bounded byQ2/2, whereas previ-
ously the only bound was imposed by the availability of
thermally excited ripplonsq,q8'qT . Very roughly, the ef-
fect on the damping is to introduce a factor
(Q/q)4;(\vQ /kBT)

8/3;10213 in the typical conditions of
the experiment of Ref. 9. In fact, in contrast with the previ-
ous result, the principal contribution now arises fromq*Q
and not fromq;qT , so that the decay rate becomes propor-
tional to T. A good approximation to the numerically inte-
grated result, accurate to 15% for 1025,\vQ /kBT,1023 is
given by

~vQtQ!215
1.2

18p
~aQ!2

kBT

s0a
2 . ~13!

If a is taken to be the Wigner-Seitz radius ('2.2 Å),
s0a

2/kB'1.4 K. It is related to the previous estimate7 by a
factor 0.05(\vQ /kBT)

7/3 ('10212 for 10mm wavelength at
0.5 K!. In view of the dramatic reduction factor for this
mechanism, it becomes important to estimate other mecha-
nisms and in particular the ripplon-phonon interaction.

Compressible fluid: the one-ripplon–two-phonon interac-
tion. Saam6 also set up a formalism for the compressible
fluid using linearized continuity equations. We shall see how-
ever that the second-order terms in the continuity equations
have only a small effect on the ripplon-phonon interaction
for subthermal ripplons.

The Lagrangian of the ideal compressible fluid is
L5T2V2V8, where

T5
1

2E2`

`

dxdyE
2`

z

dz@r01r8#v2 ~14!

represents the kinetic energy,V is given by Eq.~6! and

V85
s2

2r0
E

2`

`

dxdyE
2`

z

dzr82 ~15!

is the contribution to the energy due to the compression of
the liquid. r8 represents the variation of the density
r5r01r8 from the equilibrium valuer0 and s is the first
sound velocity.z is coupled tof by Eq. ~2! and r8 is
coupled tov5¹f through the equation of continuity in the
bulk12

ṙ81~r01r8!Df1¹f–¹r850. ~16!

We write f as the sum of two terms,f5f01f1, where
f0 satisfies the continuity equation to first order

ṙ81r0Df050 ~17!

andf1 is a second-order term satisfying

r0Df11r8Df01¹f0
–¹r850. ~18!

The quadratic part of the Lagrangian,L05T02V02V08 , is
obtained by expandingT, V, andV8 to second order,
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T05
r0
2 E2`

`

dxdyE
2`

0

dzu¹f0u2,

V05
s0

2 E2`

`

dxdy¹iz
2,

V085
s2

2r0
E

2`

`

dxdyE
2`

0

dzr82, ~19!

and restricting the continuity equations~2! and~16! to linear
terms. The normal modes ofL0 are expressed in Ref. 6. We
shall however reformulate the problem somewhat differently.
The key point is that it is only possible to eliminate variables
through the constraints of Eqs.~2! and ~16! taken to second
order if we chooser8 andz rather thanf andz ~Ref. 6! as
independent generalized coordinates. In addition to the Fou-
rier transforms of Eq.~3!, we introducerq,k defined by

r8~x,y,z!5(
q,k

rq,ke
i ~q–r i1kz!, rq,k5r2q,2k* . ~20!

f0 must satisfy Eq.~17!, the general solution for which is a
sum over

fq
0~z!5fq

Reqz1
1

r0
(
k

ṙq,k
q21k2

eikz. ~21!

The coefficientfq
R is fixed by the boundary condition~2! at

the free surface.f1 is determined by Eq.~18! to be of order
2.

To first order in the surface constraint

qfq
R5ḣq with hq5zq2

1

r0
(
k

ik

q21k2
rq,k . ~22!

Settingrq,2k52Rq,krq,k , where

Rq,k5
q21k222ibqk

q21k212ibqk
with bq5

s0q
2

2r0s
2 ~23!

represents the reflection coefficient for phonons impinging
on the surface, the LagrangianL0 takes the diagonal form of
Ref. 6

L05
r0
2 (

q

uḣqu2

~q21bq
2!1/2

2
s0

2 (
q

q2kquhqu2

~q21bq
2!1/2

1
1

4r0
(
q,k

ur8 q,ku2

q21k2
2

s2

4r0
(
q,k

ur̃q,ku2, ~24!

wherekq52bq1(q21bq
2)1/2 and

r̃q,k5rq,k2
4ibqkr0

q21k222ibqk
hq . ~25!

The eigenfrequencies for ripplons arevq5(s0kqq
2/r0)

1/2

and for phononsÃq,k5s(q21k2)1/2.6

The next higher order introduces the interaction terms
which give rise to damping. We shall limit ourselves here13

to the terms of interest for damping of subthermal ripplons
(\vq!kBT). Only three-ripplon and one-ripplon–two-
phonon scattering is allowed by the kinematics. Futhermore

we retain only the lowest order inbq /q ('0.015 for thermal
phonons at 1 K!. Within this approximation,Rq,k'1,
r8uz50'0, andrq,k'r̃q,k . Hence, we neglect the third-order
term @order (bq /q)

2# in the expansion ofV8. After an inte-
gration by parts with the help of Eq.~18!, the kinetic energy
may be writtenT5T01T1 where

T15E
2`

`

dxdyFr0z

2
u¹f0uz50

2 2E
2`

0

dz
r8

2
u¹f0u2G

1E
2`

`

dxdyFr0f
0
]f1

]z
1r8f0

]f0

]z G
z50

. ~26!

(]f1/]z)uz50 can be expressed in terms of its Fourier trans-
form in the (x,y) plane, after integration of Eq.~18!

]fq
1

]z
U
z50

5 i(
q8,k

~k212q2!q8~q82q!2qq8k2

r0kq8~k
214q2!

ḣq8r̃q2q8,k .

As T1 is already of order 3, the variablefq
0 may be elimi-

nated from it by using the first-order surface boundary con-
dition of Eq. ~22! and Eq.~21!. The resulting contribution to
the three-ripplon interaction is

L1
a5

r0
2 (
q,q8

H 2q–q81qq8

qq8 J ḣqh2q2q8ḣq8. ~27!

Neglecting terms of orderḣr̃r8 compared withhr8 r8 , the
lowest order one-ripplon–two-phonon interaction fromT1 is
described by

L1852
1

2r0
(
q,k
q8,k8

kk8

~q21k2!~q821k82!
r8 q,kh2q2q8r8 q8,k8.

~28!

Additional interaction terms, those omitted in Ref. 6, arise
from T0 on expressingfq

R in terms of the generalized coor-
dinates by means of the surface boundary condition of Eq.
~2! taken to second order. Equation~22! is then replaced by

qfq
R5ḣq2(

q8

q–q8

q8
ḣq8hq2q82

]fq
1

]z
U
z50

2
1

r0
(
q8,k

ikq–q8ḣq8r̃q2q8,k

q8@~q2q8!21k2#
. ~29!

The first second-order term in Eq.~29! contributes to the
three-ripplon interaction

L1
b5r0(

q,q8
H q–q8

qq8 J ḣqh2q2q8ḣq8. ~30!

The sumL15L1
a1L1

b is identical to the three-ripplon term
of Eq. ~8! for the incompressible fluid. The other second-
order terms induce two-ripplon–one-phonon interactions that
are kinematically forbidden in the regime that we consider
here. The relevant Lagrangian is thenL5L01L11L18 . In
terms of the conjugate momentap2q5]L/]ḣq and
c2q,2k5]L/]r8 q,k , the Hamiltonian is H5H01H1

1H18 with
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H05(
q

F ~q21bq
2!1/2

2r0
upqu21

s0q
2kq

2~q21bq
2!1/2

uhqu2G
1(

q,k
Fr0~q

21k2!ucq,ku21
s2

4r0
ur̃q,ku2G ,

H152
1

2r0
(
q,q8

$q–q81qq8%pqh2q2q8pq8,

H1852r0(
q,k

(
q8,k8

kk8cq,kh2q2q8cq8,k8. ~31!

The three-ripplon termH1 is identical to Eq.~9! and, as
already pointed out, differs from the previously accepted re-
sult. Our leading termH18 for the one-ripplon–two-phonon
interaction, on the other hand, is identical to that derived in
Ref 6; the higher order terms in the continuity equations
make no significant contribution here. The ripplon damping
factor associated withH18 for \vQ!kBT is

2

3
~vQtQ!21'S 23D p2

60

\Q

r0vQ
S kBT\s D 4

'7.7S W0

s0a
2D

1
2S TuDD 4~Qa!21/2. ~32!

The Stefan-Boltzmann like part of this result arises from the
energy~momentum! loss associated with the Doppler shift of
phonons reflected from the moving surface and theQ/r0 part
from the ripplon effective mass. Introducing the Wigner-
Seitz radius,a, highlights the more evidently dimensionless
second form whereW05\2/ma2'2.5K (m is the 4He atom
mass! is a measure of the zero point energy and the Debye
temperatureuD is defined in the usual way.

The result is compared in Fig. 1 with recent measure-

ments of the damping factor for ripplons with wavelength in
the range 3–20mm.9 The agreement with thisab initio cal-
culation is remarkable.

We conclude that the basic physics of the quantum hydro-
dynamical model of Atkins and Saam is not put into question
by the new experiments. The problem stems rather from an
inconsistency in the formalism. Once this is put right, the
model, which contains no adjustable parameters, gives an
extremely good quantitative account of the laboratory results
on ripplon lifetimes.
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FIG. 1. Theoretical damping factor~straight lines! for wave-
length 3.3 and 20mm compared to experimental data~Ref. 9!.
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