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Bound-hole states induced by excess oxygen in La2CuO41d are studied in the framework of the extended
Hubbard model, with the use of the spin-wave approximation. It is shown that the bound states are subdivided
into two groups connected with different perturbations introduced by the excess oxygen in an antiferromag-
netically ordered crystal. We interpret the two-band structure of the impurity reflectivity spectrum as a mani-
festation of these two groups of bound states. Calculated binding energies are in agreement with experiment.

It is well-known that in La2CuO4 free carriers appear as a
result of rare-earth substitutions or due to excess interstitial
oxygen.1 Along with the creation of free carriers these struc-
ture defects induce bound states in the carrier energy spec-
trum. These states were detected in transport measurements,2

the Hall effect,3 and electron-energy-loss spectra.4 Of special
interest are measurements of the reflectivity spectrum of
La2CuO41d , carried out in Ref. 5, where two bands in the
forbidden gap were observed. At least one of these bands
was connected with interstitial oxygen.5 To clarify the nature
of these two bands we have carried out a theoretical investi-
gation of the bound-hole state with the use of the extended
Hubbard model.6 This model gives a realistic description of
CuO2 planes where carriers are located.

Lightly doped samples used for measurements of reflec-
tivity spectra5 were antiferromagnetically ordered. This or-
dering has a pronounced effect on bound states that can be
most easily seen by the example of a substitutional isoelec-
tronic impurity in the copper position of the CuO2 plane.

7

For a given Ne´el state carriers, which are characterized by a
certain value of thez projection of the spinSz , are mainly
located on one magnetic sublattice. We shall call it the ‘‘A’’
sublattice for these carriers, in contrast to the ‘‘B’’ sublattice
with a smaller wave-function amplitude. A perturbation pro-
duced by the impurity in the copper position resides mainly
on one sublattice and thereby influences differently on states
on the same, and on the other sublattices. As a consequence,
two systems of bound states related to perturbations on the
‘‘ A’’ and on the ‘‘B’’ sublattices arise.7 For the other Ne´el
state analogous bound states, differences only in the sign of
Sz appear. A substitutional isoelectronic impurity in the oxy-
gen position of the CuO2 plane produces equal perturbations
on both sublattices. However, in this case, too, arising bound
states can be approximately attributed to perturbations on the
‘‘ A’’ and ‘‘ B’’ sublattices.8

As will be seen below, the considered problem can be also
described by a Hamiltonian with equal perturbations on both
sublattices of a CuO2 plane. Thus, mathematical descriptions
of bound states induced by an interstitial oxygen and the
in-plane isoelectronic oxygen impurity are close. We have
found that the observed two-band structure of the impurity
reflectivity spectrum is connected with the mentioned two
groups of bound states.

The Hamiltonian of the extended Hubbard model can be
presented in the form9

H05(
m

Hm12tla(
mas

~dms
† fm1a,s1H.c.!,

Hm5Unm,11nm,211D(
s

fms
† fms

12tl0(
s

~dms
† fms1H.c.!, ~1!

where dms
† is the creation operator of electrons in the

3dx22y2 orbitals of copper in the plane sitem with spin
s561, fms

† is the Fourier transform of the operator
fks
† 5(bk /2AN)(md exp(2ikm)pm1d,s

† , constructed from
the creation operatorspm1d,s

† of electrons in the 2ps orbitals
of oxygen. Complementary linear combinations of these op-
erators, which do not hybridize with the 3dx22y2 copper or-
bitals, were omitted in Eq. ~1!. d5a/25(6a/2,0),
(0,6a/2), where a is the in-plane copper distance,
bk5$11@cos(kxa)1cos(kya)#/2%

21/2, N is the number of
sites;U, D, and t are the Hubbard repulsion on copper, the
Cu-O promotion energy and hybridization, respectively,
nms5dms

† dms , lm5N21(kexp(ikm)bk
21 , l0'0.96,

la'0.14 @other components oflm are small and the respec-
tive terms are omitted in~1!#.

An interstitial oxygen ion O22 is positioned above a
plane oxygen halfway between two neighboring CuO2
planes10 ~see Fig. 1!. Supposing that the ion is located above

FIG. 1. A part of a Cu-O plane with an excess interstitial oxygen
above it. Oxygen and copper ions are shown by filled and open
circles, respectively.
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the plane oxygen sitel2y/2, we add the following terms in
the Hamiltonian:

H i5VCu~nl1nl2y!1VOnl2y/2 , ~2!

wherenl5(snls , nl2y/25(spl2y/2,s
† pl2y/2,s , y5(0,a). By

analogy with the Wannier exciton11 the dielectric description
with the high-frequency dielectric constant« can be used for
potentialsVCu andVO as the distancesrCu and rO between
the interstitial ion and the respective plane sites are larger
than (\2/mEG)

1/2<1 Å, wherem;10m0 is the carrier ef-
fective mass12 andEG'2eV is the forbidden gap.13 Thus,

VCu,O5
2e2

«rCu,O
~3!

@we use the electronic picture in Eq.~2!, therefore potentials
VCu andVO are positive#. In notations of Eq.~1! terms ~2!
can be rewritten as

H i5(
s

VO

b0
2

4
~f ls

† f ls1f l2y,s
† f l2y,s1f ls

† f l2y,s

1f l2y,s
† f ls!1VCu~nl1nl2y!, ~4!

whereb0'1.29 is them50 component of the Fourier trans-
form of bk ~again we dropped out small terms!.

For the low-energy part of the spectrum and for
parameters14 of La2CuO4 Hamiltonian~1! can be reduced9 to
the effectivet-J Hamiltonian. This reduction is based on the
separation of the Hamiltonian into the one- and two-site parts
as indicated in Eq.~1!. These two parts are characterized by
energy parameters differing by one order of magnitude, that
provides an appropriate starting point for the perturbation
theory. The zero-order, one-site, part of the Hamiltonian has
two sets of states well separated from other states. These
states, which correspond to unoccupied and occupied states
of the t-J model, can be written in the form

um2&5Fc21 1A2 ~fm,11
† dm,21

† 2fm,21
† dm,11

† !

1c22fm,21
† fm,11

† 1c23dm,21
† dm,11

† G uvm&,

um3s&5@c31fms
† fm,2s

† dms
† 1c32fms

† dm,2s
† dms

† #uvm&,
~5!

where uvm& is the site vacuum state and the coefficientsci j
are obtained in the course of the diagonalization ofHm @re-
call that besides~5! there are two other occupied oxygen
states which do not hybridize with copper; thus, the unoccu-
pied and occupied states of thet-J model correspond to four-
and five-electron site states of the Hubbard model, respec-
tively#. Omitting unessential terms, Hamiltonians~1! and~4!
can be rewritten in terms of state vectors~5!
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1
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where
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l85l,l2y, andteff andJ are the effective hopping and super-
exchange constants, respectively~in terms of the coefficients
ci j and site energies these constants are given in Ref. 9!.

Further simplifications of Hamiltonians~6! and~7! can be
achieved with the use of the spin-wave approximation15,16

which has been shown to be remarkably accurate in the de-
scription of undoped and lightly doped samples as mean
numbers of magnons are usually small.16,17 The approxima-
tion reduces to neglecting terms of the third and higher or-
ders in the spin-wave operatorsbm introduced in Eq.~6! by
the formulas

Sm
115FmbmPm

111bm
† FmPm

21 , Sm
215~Sm

11!†,

Fm5A12bm
† bm, Sm

z 5eiPmS nm2 2bm
† bmD ,

whereP5(p/a,p/a),Pm
s 5@11sexp(iPm)#/2.

Let us introduce the hole creation operator
hm
† 5(sPm

s um2&^m3su for the Néel state uN &
5Pm((sPm

s um3s&) ~the second Ne´el state and the respec-
tive hole operator can be obtained by substitutingPm

s with
12Pm

s in these formulas!. After the unitary transformation16

which diagonalizes the spin part of the Hamiltonian, it reads

H5H01H i

5teff (
mm8a

@hm1ahm
† bm2m8

†
~um81a1vm8!1H.c.#

1
J

2 (
mm8

vm8bm
† bm1m81e~ ñl1ñl2y!, ~8!

where um ,vm and vm are the Fourier transforms of
cosh(ak),2sinh(ak), and vk54A12gk

2, respectively,
ak5(1/8)ln@(11gk)/(12gk)#, gk5@cos(kxa)1cos(kya)#/2,
ñl5hl

†hl . Due to the fast decrease ofum81a1vm8 andvm8
with the growth of um8u, only the components withm8
5(6a,0),(0,6a) for the sum in the first, kinetic energy
term and components withm85(0,0),(6a,6a),(62a,0),
(0,62a) for vm8 in the second, magnetic energy term will
be retained in Eq.~8! in subsequent calculations~before the
unitary transformation the kinetic term has only an addend
with m852a @see Eq.~8!# and the magnetic energy term is
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comprised of one-site and nearest-neighbor addends; the uni-
tary transformation, which takes into account transversal
spin fluctuations, does not significantly increase the ranges of
these interactions!. The eigenstates are characterized by the
value ofSz . In the considered caseJ/teff>0.2, the lowest
eigenstates ofH0 correspond toSz561/2 and can be ap-
proximately presented in the form16

uk&5A2

N(
L

eikL Fc0khL†1
c1kteff
Vk

3(
a,b

eik„a1b…~ua1b1vb!bL
†hL1b

† G uN &, ~9!

where the summation overL proceeds over sites of one su-
blattice ~in dependence on the selected sublatticeSz equals
1/2 or21/2),

c0k5F11S Vk

«k2Ek
D 2G21/2

, c1k5
Vk

«k2Ek
c0k ,

«k5
Ek

2
2A1

4
Ek
21Vk

2,

Ek5
J

2

teff
2

Vk
2 (
abcm

cos@k~a2b!#~ua1c1vc!

3~ub1c2m1vc2m!vm ,

Vk
25teff

2 (
abc

cos@k~a2b!#~ua1c1vc!~ub1c1vc!,

«k is the eigenvalue corresponding touk&, the wave vector
k belongs to the magnetic Brillouin zone, and
a,b,c5(6a,0),(0,6a).

In Eq. ~9! uc0ku2@uc1ku2. Thus, in the stateuk& the hole is
mainly located on the sublattice labeled by the indexL . This
sublattice is the ‘‘A’’ sublattice for the given stateuk&, while
the complementary sublattice is the ‘‘B’’ one. If the site l in
H i belongs to the ‘‘A’’ sublattice, the sitel-y is of the ‘‘B’’
sublattice. Thus, as mentioned above, the impurity Hamil-
tonian contains two equal terms corresponding to perturba-
tions on both sublattices.

Since the band formed by states~9! is well separated from
other bands withSz561/2,16 the bound states are mainly
constructed from states~9!. In this case the equation for the
bound states reads

det~ I12pG0W!50, ~10!

whereI is the unit matrix,

GLL 8
0

~E!5
2

~2p!3
E dk eik„L2L8…

1

~E2«k!

is the unperturbed Green’s function~the integration is per-
formed over the magnetic Brillouin zone!,

WLL 852e^L u~ ñl1ñl2y!uL 8&,

uL & is the Wannier function built from states~9!, and the
indicesL andL 8 run over sites of the same magnetic sublat-
tice as in function~9!.

Weak dependences ofc0k ,c1k , andVk on k can be ne-
glected and these quantities can be approximated by their
values atk5(7p/2a,7p/2a), where the minimum of«k is
situated atJ/teff>0.2.16 We denote these values withc0 ,
c1 andV. In this approximation,

WLL 852ec0
2dL ,ldLL 82e

teff
2

V2 c1
2(
abc

~ua1b1vb!

3~uc1b1vb!dL ,l2y1adL2a,L82c .

Two terms in the right-hand side of this equation are con-
nected with the perturbations produced by the interstitial
oxygen on the ‘‘A’’ and ‘‘ B’’ sublattices, respectively.

After the unitary transformation with the matrix

S5S 1 0 0 0

0 1/A2 0 1/A2
0 0 1 0

0 1/A2 0 21/A2
D ,

Eq. ~10! splits into two equations

112p~G11
0 2G13

0 !~W222W13!50, ~11!

detF 2pS G11
0 G12

0 A2 G13
0

G12
0 A2 G11

0 1G13
0 G12

0 A2
G13
0 G12

0 A2 G11
0
D

3S W11 W12A2 W13

W12A2 W221W13 W12A2
W13 W12A2 W22

D 1IG50 ~12!

for bound states belonging to theA9 andA8 representations
of the Cs group, respectively. In Eqs.~11! and ~12! sites
l,l2y1x,l22y, andl2y2x are denoted by numbers 1 to 4,
correspondingly.

As mentioned, the perturbation on the ‘‘A’’ sublattice
;ec0

2 is contained in the matrix elementW11 only, and
uW11u@uW12u,uW13u,uW22u. Besides, uG11

0 u@uG12
0 u,uG13

0 u in
the considered energy interval. As a consequence, Eq.~12!
can be approximately rewritten in a block-diagonal form by
neglecting nondiagonal elements in the first row and column
of the matrices@the validity of this approximation, which is
conditioned by large energy and configuration differences of
the respective states, was verified by comparing with exact
solutions of Eq.~12!#. Thus, Eq.~12! splits into two equa-
tions. One of these equations describes a bound state con-
nected with the perturbation on the ‘‘A’’ sublattice and the
other equation is for two bound states due to the perturbation
on the ‘‘B’’ sublattice. We denote these states asA18 and
A28 ,A38 , respectively. As can be seen from Eq.~11!, the level
A9 is determined by the perturbation on the ‘‘B’’ sublattice.

For parameters14 of La2CuO4 the ratioJ/teff can be esti-
mated to lie in the range 0.2–0.5. For some values in this
range calculated energies of the statesA9, A18 , and A28 ,
counted from the bottom of the band«(k), are listed in Table
I. The high-frequency dielectric constant5 «`55 was used in
these calculations. TheA38 level is split off the band bottom
only at large perturbations and therefore is not considered
here.
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As follows from Table I, the levelsA9 and A28 , which
appear due to the perturbation on the ‘‘B’’ sublattice, are
close in energy. TheA18 level, connected with the perturba-
tion on the ‘‘A’’ sublattice, is much more deep. Thus, one can
speak about two groups of bound states connected with dif-
ferent perturbations and well separated in energy.

We can identify these two groups of bound states with
two bands observed5 in reflectivity spectra of La2CuO41d at
0.13 and 0.5 eV. These values contain a contribution of the
polaronic effect that apparently comprises the main part of
the difference between the observed positions of the reflec-
tivity bands and the binding energies in Table I. These ener-
gies were obtained in the rigid lattice, i.e., without consider-
ing the polaronic effect. We note that the simple dielectric

description for this effect is inapplicable in the considered
case. The binding energy of the levels, without a polaronic
contribution, can be obtained from measurements of the Hall
effect. For the band at 0.13 eV this energy was found3 to be
0.035 eV which is close to the values given in Table I for
the A9 andA28 levels. Thus, the polaronic shift can be ap-
proximately estimated as 0.08 eV. The differences between
the position of the second band, 0.5 eV, and the binding
energies of theA18 level in Table I are also close to this value.

Analogously two sets of qualitatively different bound
states can be expected to appear also for other impurities.
Since these two sets are conditioned by the antiferromagnetic
order, they can serve as its indicator.

In summary, we calculated level energies of bound-hole
states induced by excess oxygen in La2CuO41d. These levels
were shown to be subdivided into two groups connected with
perturbations on the ‘‘A’’ and ‘‘ B’’ sublattices and well sepa-
rated in energy. The first of these groups consists of theA18
level and the second one, of the closely spacedA9 andA28
levels. We identified these two groups of levels with two
bands observed in the reflectivity spectra of La2CuO41d at
0.5 and 0.13 eV, respectively. Calculated binding energies of
the levels are in agreement with experiment.
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TABLE I. Bound level energies in dependence on the ratio
J/teff .

J/teff DE,eV

A9 A28 A18

0.214 0.063 0.066 0.467
0.275 0.059 0.063 0.472
0.421 0.053 0.056 0.492
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