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Canted antiferromagnetism in an insulating lightly doped La;_,Sr,MnO ; with x<0.17

H. Kawano
Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan

R. Kajimoto, M. Kubota, and H. Yoshizawa
Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo, Shirakata 106-1, Tokai, Ibaraki 319-11, Japan
(Received 7 September 1995; revised manuscript received 18 October 1995

We have investigated the magnetic structure of an insulating lightly doped ,BaMnO3; with
x=0.04,0.125, and 0.17 with neutron scattering technique and bulk magnetization measurements. The mag-
netic structure of thex=0.04 sample 85 K is acommensurate layer-typé\ftype antiferromagnetism with
the propagation vectdr010] and the moment of 370.2ug/Mn, being parallel to thd100] axis in the
orthorhombicP nmasymmetry. In addition, a spontaneous magnetization of 0@282ug/Mn is observed at
8 K by magnetization measurement. By contrast,xhke.125 sample exhibits a large ferromagnetic moment
of 3.7£0.2ug/Mn and a smallA-type antiferromagnetic component of 028.1ug/Mn, while the
x=0.17 sample exhibits only a ferromagnetic component of8.8ug /Mn. These results are consistent with
a spin structure derived from the conventional double exchange mechanism, but rule out the possibility of a
recently suggested spiral spin structure for the insulating L.&r,MnO3 system.

Distorted perovskite manganese oxides such abut its precise direction was not determined. It was found
La;_,Sr,MnO3 and La _,Ca,MnO4 transform from an an- that the off-stoichiometry of oxygerd progressively en-
tiferromagnetic insulator to a ferromagnetic metal as substihances the spontaneous F moment. The magnetic structure of
tution of La ions by alkaline-earth iorts* Such behavior has the doped system La ,Ca,MnO; was also studied, and the
been long known as metallic transport phenomena mediatesiagnetic phase diagram of the Kfhion concentratiory
by a double exchange mechanismMThe recent discovery of versus temperature was reported, where the coexistence of F
a gigantic magnetoresistante; lattice-structure switching and AF moments was found for the Nih ion concentration
by an external fieltf as well as field-induced insulator-metal of 0.1<y<0.25. The LaMnQ@. s and Lg, _,Ca,MnO; sys-
transitions’~'°has renewed interest in these perovskite-typeems were further studied by Matsumoto in 197Dhrough
manganese oxide systems. Manganese ions in the parent mhe examination of the LaMng) ;s system, he established
terial LaMnO; have a @* configuration where three elec- that a weak ferromagnetism is intrinsic to stoichiometric
trons occupy the,, orbitals, while one electron occupies the LaMnOs.
ey orbital. The number ok, electrons in LaMnQ corre- From the measurements of resistivity and magnetization,
sponds to half filling, and makes the parent LaMy@Mott-  the Sr concentration versus temperature phase diagram for
type antiferromagnetic insulator. The substitution of La ionsthe La; _,Sr,MnO5 system was reported recently by Urush-
by divalent ions leads to doping of holes to thgorbitals, ibara etal, where the insulating phase is located for
introducing an itinerant character as well as ferromagnetism<0.175%° Following the early work on the
to well-doped samples. For a lightly doped insulating regimeLa,;_,Ca,MnO; systen? the low-temperature phase is as-
of the solid solution system La ,Sr,MnO5, however, the

double exchange model suggests a canted antiferromag- b-axis
netism as the magnetic structdr@n the other hand, based [010]
on a mean field treaFment of localizeg, electrpns and itin- Lay. S6MnOs a-axis
erante, electrons with a strong Hund coupling, Inoue and [100]

Maekawd’ recently proposed that a spiral state can be ener- S5 D> FJa9
getically more favorable than a canted antiferromagnetic
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state for a nearly half-doped insulating regime. This theory E i i
suggests that the spiral state continuously changes to the fer- | | |
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romagnetic state as a function of hole doping from half fill- < ‘&, &l &.

ing. I [ l | ! |
In a pioneering work by Wollan and Koehler in 1955, the E E E i i i

magnetic structures of the LaMnQ s system as well as the S-S e, Y,

La;_,CaMnO; system were studied by the neutron diffrac-
tion techniqué. The spin structure of the LaMng) 5 system

was reported to be a canted antiferromagnet where a layer
type (a so-calledA-type) antiferromagnetiqdAF) structure FIG. 1. Schematic illustration of a layer-type antiferromagnetic
coexists with a ferromagneti¢) moment as shown in Fig. structure. This structure is labeled Agype after Wollan and Koe-
1. The AF moment was found to lie in tienma acplane, hler (Ref. 2.

(a) A-type AF (b) A-type canted AF
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signed to the canted AF phase fo< 0.1, and to the insulat-
ing F phase for 0.4 x<0.175. To our knowledge, however,

La{xSrMnO3

there is no neutron diffraction study on the magnetic struc- 8000 @xc004 | 1) xc004 2000
ture in an insulating La_,Sr,MnO; system, although the 5000 E——10K ——10K
ferromagnetic metallic sample witk=0.3 has been studied ——200K] A ——200K 1500
very recently?! Consequently, we have studied the magnetic a000 [ (010) $

structure of insulating lightly doped La,Sr,MnO4 Tea (020)
samples withx=0.04,0.125, and 0.17 by the neutron scat- 3000 | -136K 2 {1000

tering technique as well as magnetization measurements in
order to examine the possible existence of a spiral state. For 2000
three samples we have also found an interesting variation of

the lattice structure as a function of temperature and hole —
doping, and such results will be reported separétely.

1000

ooy
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Polycrystalline samples were prepared by powdering § ° =0.'12&"> (d) x=0.125 °
melt-grown samples. First, a prescribed amount of dried 5 10K ——30K
powder of La,03, SrCO; and Mn,O3 was well mixed in 800F — 170K T ——300K 72000

y (ar

ethanol and dried, and then fired at 1000 °C in air for 6 h. on .o (101)

The precalcined powder was pressed into rods with a hydro-g 600 5 T (020) 11500

static pressure of 1.4 ton/émand fired again at 1100 °C in GCJ e
air for 38 h. Second, the single-crystal samples were melt’E 400} T 1000
grown with the floating zone method. A prepared rod was T, (010)
loaded to a floating zone furnace with a flow of Ar gas of 400 & 599} 1 1500

3 i : ; = Tea~150K
cm®/min and traveled at 2 mm/h. Finally, the single-crystal ® T 230K
samples were powdered. Measurements of x-ray powder dif- g 0 C , , o
fraction showed that the obtained materials were of single 3 € x=0.17  I(f)x=0.17
phase. For the three samples studied, all magnetic as well as 250F —e—115K ] 8K
structural transition temperatures were consistent with the ——200K _:320K 1000
reported values in Ref. 15. 200 (010) 1 (101

Neutron diffraction measurements were performed with 0 % w | (020) 13000
the triple-axis spectrometers GPTAS and HER at the 150F W‘.W'
JRR-3M in JAERI, Tokai. The spectrometers were operated ° *°°%,°1 12000
with their double-axis mode, and t1t@02) reflection of py- 100f 1
rolytic graphite composite monochromators was utilized to C ! Jioco
obtain incident neutron momentum &=2.67 A™! at S0F T -288K ]
GPTAS andk;=1.55 A~ at HER, respectively. For the o o
GPTAS experiments, collimators of 4Q0'-20" were placed 074 078 082 08 15 155 16 165 17
at three positions from inpile to monochromator, between Q(A-) Q(A-1)

monochromator and sample, and between sample to detector,
while for the HER experiments, 4@ollimators were placed
before and after sample, respectively. Samples were set into FiG. 2. Selected portion of powder patterns for the
an aluminum capsule, and it was placed in a closed cyclg=0.04,0.125, and 0.17 samples. Parfels (c), and(e) give the
helium gas refrigerator, and the sample temperature rangingbserved scattering patterns near the magrieti¢) Bragg reflec-
from 10 K to 350 K was controlled within accuracy of tion, while those of(b), (d), and (f) illustrate the profiles of the
0.1°. orthorhombic(101) and (020 Bragg reflections, respectively. Note
Magnetization measurements were performed with thehat, in panel(f), (012 is the correct index for the rhombohedral
use of a conventional superconducting quantum interferencgymmetry at 320 K.
device(SQUID) magnetometer. The sample was cooled in a
field of 0.01 T from the paramagnetic phase, and then thétantsa=5.697(1) A,b=7.709(2) A, anct=5.547(1) A at
temperature dependence of the magnetizatidr) (vas re- 200 K, and a=5.701(1) A, b=7.687(2) A, and
corded with rising temperature. The measurements were caé=5.550(1) A at 10 K, respectively. These lattice constants
ried out in a field of 0.01 T in order to minimize a rounding satisfy the relatiorb/ \2<c<a for a so-calledO’ ortho-
of the ferromagnetic transition due to an applied field. rhombic structure, indicating that the lattice distortion is
Figure 2 shows part of the powder patterns for threecaused by the Jahn-Teller effect of Kih ions?* Only
samples withx=0.04, 0.125, and 0.17. The antiferromag- nuclear Bragg reflections were observed in the paramagnetic
netic (010 Bragg reflection is shown in the left column, phase at 200 K, while magnetic superlattice reflections ap-
while nuclear as well as ferromagnetit01) and (020 re-  peared at 10 K, e.g., tH®10 AF Bragg reflection shown in
flections are shown in the right column, respectively. We firstFig. 2[@). From the reflection condition and intensity analy-
describe the results of the LggSrg MnO5 sample. Powder sis, we have found that the magnetic structure in the
patterns were observed at 200 K and 10 K. Standard Rietvek=0.04 sample is aA-type AF structure as shown in Fig. 1,
analyse®’ showed that the crystal of the y3Sr,0MnO; and the ordered moment is determined to be
sample belongs to the space graBpmawith lattice con-  3.7ug*0.2ug/Mn, being parallel to th¢100] axis. In early
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Returning to Fig. 2, the profiles of the AF and F Bragg
peaks in thex=0.125 sample are illustrated in the middle

0.30 T T T T T T T T T T T T 1200
(a) x=0.04 ]\. (b) x=0.04 panels Figs. @) and Zd). A weak AF Bragg reflection was
0.25 TY (010) 1000 observed at010. The increase of intensity at 170 K is due
0.20 s 1800 to the paramagnetic scattering of Mn moments. A similar
| [} increase of the background intensity in the paramagnetic
0.15 + '-. 600 phase is also seen in Figda® 2(b), and Zd). The moment
0.10 . of the AF component was determined to be
. TCA" 1 e TCA"’ 1400 . . .
S 136K s 0.23+0.1ug/Mn at 10 K. In Fig. 2d) is shown the profiles
0.051 . . o oo, of the (101) and(020) Bragg reflections. Compared with the
=~ 0.0b——t% L e L S corresponding Bragg peaks for the=0.04 sample shown in
§ Hn— LR & = Fig. 2(b), the (101 and (020 reflections for thex=0.125
B 025; ‘ oo, 22)2(1); 1000 = sample appear at almost the same scattering vector. The in-
g ol T ¢; - %%, {900 € crease at 30 K is due to the F component with a moment of
E 0-201 150K ] A oo = 3.7+0.2ug/Mn. From the temperature dependence of the F
. I ® . . .
S 0.15- . 1 Tea~ A Te- 2 component as well as that of the magnetization shown in
g JTow  [150K Je 230K 700 = Figs. 3c) and 3d), we have found that the=0.125 sample
3 0.10p #280K 7 % \l/ 600 & orders ferromagnetically atc~230 K, but transforms to a
S o0.0s- ‘.\L 1 BG__ ™, _lg0 T cantedA-type AF structure below -4~ 150 K. To determine
(c) x=0.125 x=0.125 c ca, the temperature dependence of the AF component was
g 1 1 | |‘k (d)l i 1 1 Il T A = T h d d f h AF
00—+ 00 = measured with the use of a single-crystal sample. Finally, the
(101) ) ' N ) )
0.40L L e (020) {800 profiles of thex=0.17 sample are shown in pa_ne_ls Fig®)2
e/ \ % T~ and Zf). No AF Bragg peak was observed within the accu-
o.30L I wosed 0 racy of scatter of the data. By contrast, a clear intense F
o I 1600 component of 3.6 0.2ug/Mn is seen at th¢101) and(020
0.20f Te~ A . positions. The Curie temperature of tlke=0.17 sample is
288K\, [ ‘l’ 1500 determined to bel'-~288 K from the temperature depen-
0.10- e 1 BG_____ 400 dence of the magnetization and that of the profileg16r1)
(e) x=0.17 o |Hx=0.17 and (020 shown in Figs. &) and 3f), from which one can
0.0

clearly see the onset of the F long-range ordérat 288 K.

The decrease of the magnetizatioriTat 170 K is correlated
with the structural transition from rhombohedral symmetry
to orthorhombicPnma °%2

FIG. 3. Left column: temperature dependences of field cooled 1 he concentration dependence of the magnetic structure is

magnetization observed Bt=0.01 T forx=0.04, 0.125, and 0.17 Summarized in Fig. 4. The upper panel shows the concentra-
samples. Right column: temperature dependences of the integraté@n dependence of the moment of the AF and F components,
intensity observed a@=(010) forx=0.04, and aQ=(101) and  While the lower panel gives that of the position in momen-
(020) forx=0.125 and 0.17 samples, respectively. tum space. The dominant component crosses over from the
AF component to the F component at aroud0.08 in the
La;_,Sr,MnO; system. A similar crossover was observed
near x~0.15 in the Lg_,CaMnO3; system in the early
study? From the lower panel, one can see that the positions
of the magnetic Bragg reflections are locked at either the AF
position (0zr,0) or the F position (0,0,0). If the spin struc-
ture continuously varies from (8,0) to (0,0,0) through a
spiral spin arrangement due to hole doping, the locus of the
peak position should follow the dashed line in the panel, and

spontaneous magnetization appear§ @t~ 136 K and in- this argument holds for a fan-type spin structure as well.
creases monotonically beloW., with decreasing tempera- It is interesting to point out that there is a rathe_r sharp
ture. This indicates the existence of the ferromagnetic comchangeover of the AF and F components in the
ponent belowTc,. The spontaneous magnetization at 8 K Lai-xSryMnO3 system despite a linear variation of the hole
was determined to be 0.28.02ug/Mn. The temperature density over the interested insulating region of the Sr con-
dependence of the AF component is shown in Figy).3 centration, and this changeover takes place-a0.08 which
Combining the results of magnetization measurements anig almost half the corresponding dopant concentration in the
neutron diffraction experiments, we have found that the AH.a,_,Ca,MnO5 system. Recently, a phase diagram of the
and F long-range orders take place at the same temperatusmperature versus tolerance factor for the closely related
Tca~136 K in the La ¢eSrp0dMNnO5 sample. Namely, the system with a fixed hole concentration was repoffefiom
magnetic structure of the l@agSrg,MnO5; sample is a which one can see that the ferromagnetic metal-insulator
canted-layer-type A-type) antiferromagnetic order with transition boundary is very much sensitive to the cation size
propagation vector[010] and an ordered moment of through the tolerance factor. A larger cation, and therefore a
3.7£0.2ug/Mn. larger tolerance factor, favors the metallic phase for the fixed

1 i 1 1 1 N INOUN WU E B S | 300
0 100 200 3000 100 200 300
Temperature (K)

neutron worké the AF moment in the LaMn@sample was
reported to lie in thec plane, whereas in the present study,
we have found that it is parallel to tH&00] axis. It should
be noted that Matsumoto predicted {H€0] axis as the mo-
ment direction from consideration of the spin Hamiltonian
formalism?

To examine the ferromagneti&) component, the tem-
perature dependence of the magnetizationl) (of the
x=0.04 sample was measured and is shown in Fig\. &
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4T . . place at smaller dopant ion concentration in the
2 ¢ 8T La;_,Sr,MnO; syst
3 AN y; al_x rx n 3 SyS em.
23f AN ! 7 In summary, we have studied the magnetic behavior of
s N\ La;_Sr,MnO; samples withx=0.04, 0.125, and 0.17. In
2 2r ,<\ ] Lag 9eSro 0aMNO 3, magnetic Bragg reflections are observed
g4t S eF below Tc4~136 K. The magnetic structure determined is a
=S P AN © AF 3 commensurate layer-typeAftype) antiferromagnetism with
S ohes? e \O‘Ps_: ] the propagation vector[010] and the moment of

x & antiferromagnetism (Q=r) 3.7+ 0.2ug/Mn at 5 K, being parallel to th€100] axis. In
B \V addition, a spontaneous magnetization of
i ) T 0.28+0.02ug /Mn is observed 88 K by magnetization mea-
spiral structure
o T ~(Q=10) i surements. The Lgg755rg 12gMNO 5 sample orders ferromag-
L ~ | netically atT-~ 230 K, but accompanies a cantédype AF
~ order belowT,~ 150 K, and exhibits a large F moment of
0 ferromagnetism (Q=o‘) * 3.720.2ug/Mn as well as anA-type AF moment of

0.23+0.1ug/Mn at 10 K. For the Lg g25ry 1 MnO 3 sample,

it orders ferromagnetically af-~288 K, and shows a F

moment of 3.6:0.2ug/Mn at 8 K, but no AF Bragg reflec-

FIG. 4. Upper panel: Sr concentration dependence of the F anH.On within accuracy of the_data. C_ombining _these r_esul_ts, we
peonclude that the magnetic ordering of an insulating lightly

doped Lg _,Sr,MnO5 with x<0.17 is a canted antiferro-

magnetism rather than a spiral order.

0 005 01 045 02
Sr concentration x

AF components. Lower panel: Sr concentration dependence of tl
Bragg peak positions for the AF and F components.
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