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We report results of the microscopic approach to the quadrupolar-glass problem in mixed molecular crystals
formed by linear and spherical molecules. The temperature-concentration analysis of the orientational order
parameter derived from NMR spectroscopy data is given on the two-component vector model of site-diluted
ortho-para-hydrogen-type mixtures. Two features of the short-range orientational ordering, characteristically
different from the spin-glass case, namely, incomplete freezing and residual ordering, respectively, at low and
high temperatures are discussed. It is established that the first effect is due to spatial correlated local molecular
and reaction fields and the second caused by quadrupolar intrinsic field. A zero-field freezing temperature is
estimated taking into account the threshold concentration for quadrupolar glass formation.

Ortho-hydrogen~or para-deuterium! molecules possess a
unit angular momentum,J51, which remains a good quan-
tum number even in solid state and thus can be treated as
quantum rotators or pseudospins.1 In ortho-para hydrogen
mixtures (o-pH2) spherical symmetric para-hydrogen mol-
ecules play a role of almost perfect dilutants2 and provide a
striking effect of random substitution. Molecular hydrogens
~H2, D2 , and HD! being the simplest of all molecular solids
give a rich testing ground for the investigations of random
substitution and frustration effects on cooperative phenom-
ena in different materials.3,4 The work of Sullivanet al.5

stimulated active experimental,3,4,6 theoretical,3,6–10 and
Monte Carlo simulation11,12 investigations of orientationally
disordered hydrogens in the temperature region of short-
range-order frozen states originally named by the quadrupo-
lar glass~QG!. The QG orientational order parameter, as a
direct analog of the Edwards-Anderson spin-glass~SG! mag-
netic order parameter,13 can be derived from the second mo-
ment of the NMR absorption signal line shape.3 Its tempera-
ture behavior indicates some characteristic features, which
make it possible to distinguish between two types of glasses.
First, at low temperatures the QG order parameter, observed
in a wide concentration region, being extrapolated to zero
temperature is far from its maximum value equal to
unity,14,15 which is assumable16 due to zero-point motion of
linear quadrupoles. On the other hand, such a kind of unsat-
urated orientational order effect of the same order in magni-
tude also occurs in Ar-N2 mixtures

17,18and thus is specific to
both quantum and classical QG’s. Secondly, even in the ab-
sence of external fields the orientational order parameter is
different from zero at high enough temperatures.14 This fact
points to the existence of some intrinsic field conjugate to the
local parameter order3 and characteristic of QG’s. The main
object of this paper is to draw a fundamental distinction be-
tween quadrupolar orientational and dipolar spin glasses re-
lated to the short-range-order freezing of suitable degrees of
freedom.

The pseudospin reformulation of intermolecular interac-
tion originally termed in tensorial quadrupolar dynamic
variables19 has been given for classical20 and quantum21 QG

systems. In the latter case the QG Hamiltonian for the
(J51)c(J50)12c system can be presented in the following
form:

H52 (
f. f 8

cfcf 8 (
m,m8522

2

Jf f
mm8Sm fSm8 f 8

2(
f
cf(

m
Hm f

~ Cr!Sm f . ~1a!

The orientational degrees of freedom of a given quadrupole
(J51) are described by the set of five spherical components
of the quadrupolar moment tensor given in the local spheri-
cal coordinate system, quantization axes of which coincide
with the principal-axis frame of the quadrupolar moment ten-
sor ~for details see Refs. 20–26!. Thermal expectation values
of the dynamic variables are the two-component QG local
order parameter:3,27 ^Sm f&T5dm0s f1dm2h f . An application
of microscopic statistical consideration to distinguish be-
tween random-bond and random-site effects — both are due
to random-substitutional dilution—makes it possible to

present the exchange interactionJf f 8
mm8 and crystalline field

Hm f
(Cr) given in ~1! in explicit form @see, respectively, Eqs~6!

and ~7! in Ref. 21 and Appendix in Ref. 22#. Their nonzero
expectation values are

^Jf f 8
mm8Jf f 9
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^Hm f
~Cr! Hm8 f 8

~Cr! &B 5 hCr
2 d f f 8dmm8, ~1b!

where G is electrostatic quadrupole-quadrupole~EQQ!
nearest-neighbor coupling constant.28 The random-bond av-
erage, labeled byB, includes the uniform integration over
random local-axis directions and the hcp-lattice summation
over intermolecular directions, i.e.^•••&B5^^•••&L&R . The
configurational average, labeled byC, in turn additionally
includes the average over the random-site variables
(^cf&s5c,^cfcf 8&s5cd f f 81c2(12d f f 8), c is concentration
of quadrupoles!, i.e., ^•••&C5^^•••&B&S . In the framework
of the two-component (m50,2→m,s) vector model the lo-
cal order parameters are21
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The configurational average can be performed by means of
the effective two-component vector local fielde f , which in
turn can be estimated within various mean-field~MF! type
approximations. We will calculate it on the base of the MF-
type Hamiltonian

HMF52(
f
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following from ~1! taking into account thermal and spatial
fluctuations through the trial molecularem f and fluctuation
hm f fields. The desired effective molecular field conjugate to
the local order parameterssm f ~2! can be represented in the
form22

«m f5em f1pm f1Hm f , pm f524hm fsm f ,

Hm f5dms (
n5s,h

anhn f , am5dms2dmh . ~3b!

Herepm f is a QG analog of the reaction Onsager field, in-
troduced in SG theory in Ref. 29;Hm f stands for the intrinsic
quadrupolar Zeeman-type field and is due to the kinematic
properties of the dynamic quadrupolar variables:30

2Sm f
2 511amSs f . The mean and variance of the isotropic on

the average fluctuation field~3!, respectively,h1 andh2 have
been calculated in Ref. 22. The variance of the effective
molecular field components («s and«h) are reestimated here
and given by the relationships

«m~c,T!25e2
2H 12S JTD 2 12q

q
@2q~pm2qm!2~11k2!

3qm~12q!#J 1
J4k2

8 S 12q
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with e2
25^em f

2 &C5J2q and J(c)5GAzc, where z512 is
nearest-neighbor number on the hcp lattice. The second term
comes from the reaction-field effects and the last term is
caused solely by the quadrupolar intrinsic field. Here new
orientational order parameter components are introduced:
qm5^^Sm&T

2&C ,pm5^^Sm
2 &T&C , which obey the relations

qs1qh5q and ps1ph51. The fluctuation-field parameter
k(c) appears in~4! to describe the random-substitution ef-
fects through the random-bond correlation coefficientKB ,
namely,
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One can expect that for the QG phase bounded in the con-
centration rangec0<c<cM(cM50.55 andc0;0.1, seeo-p-
H2 diagrams in Refs. 1 and 3! the QG fluctuation

fields introduced through the Hamiltonian~3! should be also
restricted, i.e.,k(cM)<k(c)<k(c0). Formally, we intro-
duce the lower critical concentrationc0 as a singular point of
the amplitude of the effective molecular field
@«(c,T)5(«s

21«h
2)1/2# ~4! at which the leading terms of the

reaction-field effects disappear in high-T and low-T asymp-
totics of the QG order parameter. We see that this critical
condition is k(c0)51 which gives c05(11z/KB

2)21.
Adopting a Gaussian estimation for the random-bond corre-
lation coefficient31 ~5!, KB5A3, and comparing with the
findings of dynamic NMR experiments5,32,33 for the QG
lower critical concentration mentioned above, we conclude
that low-T consideration requires accounting of the next-
nearest-neighbor interactions.

The self-consistent equations for the orientational order
parameterq(c,T)5^s f

21h f
2&C follow from ~2! and should

be completed by the equations(c,T)5^s f&C , namely,
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where^•••&x,y denotes nonsymmetrical Gaussian integration
(x15«1 /«s) over the local fields («s f5x«s and
«h f5y«h). To give low-T consideration in the explicit
form34 we introduce the following asymptotic representa-
tions:

q~c,T!;123^wq~x,y!&x,y , T→0,

with

wq~x,y!5 exp~ax2by!/@11exp~ax2by!#2 , ~7a!

s~c,T!; 1
21 3

2 ^ws~x,y!&x,y , T→0,

with ws~x,y!5 exp~ax2by!/@11exp~ax2by!# ~7b!

in the range of variablesuxu,` and y,`. As a further
simplification, we define the followingT→0 asymptotic
equivalent functions: wq(x,y);d(ax2by) and
ws(x,y);Q(ax2by), with usual notations for the Diracd
function and the Heaviside step function. After performing
integration the order-parameter-equation system can be pre-
sented in the explicit form

q~c,T!512A3/2p T/«LT~c,T! 1O~T/J!3,

«LT5 1
2A3«s

21«h
2, ~8a!

s~c,T!5
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«h~c,T!

«s~c,T! D1
3
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«s~c,T!
1OS TJ D

2

,

«1~c,T!524s~c,T!h1~c,T!. ~8b!
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To illuminate the low-T behavior of the effective MF char-
acteristic energy«LT5e2AgLT we introduce the reaction-field
factorgLT by means of relations

g LT~c,T!512
J2~c!

2
$@12q~c,T!#/T%2lLT~c,T!;

lLT~c,T!512k2~c!2 3k2~c!/16q~c,T! , ~9a!

which in turn can be formally interpolated to low tempera-
tures:

gLT~c,T!5
1

11 @J2~c!/2# @12q0~c!/T#2lLT~c,0!
,

q05q~c,0!. ~9b!

For the MF characteristic energy«LT one has the following
asymptotics:

«LT~c,T!;TA2q0~cM !/@12q0~c!#, T→0. ~9c!

Unusual for SG’s reaction-field behavior,35 this leads to the
low-T effect of the disappearing of the molecular field~9c!.
The latter has been derived from NMR data14 by Li et al.
~see Fig. 9 of Ref. 16 and recently discussed in Ref. 25. To
examine a correspondence with experiment in concentrations
and in a way to verify the microscopic description of spatial
correlations we have used~9c! to find a nontrivial zero-
temperature asymptotic solution for the QG orientational or-
der parameter36 ~8a!, namely,

q0
2/qM 2@12k2~c!#q01

3
16 k2~c!50, qM5q~cM,0! ~10!

with qM53/4p @ the solution s(c,T);T2 ~8b! is taken
into account#. Analysis of ~10! and its comparison with ex-
periment is given in Fig. 1.

The high-T asymptotics for the orientational order param-
eter follows immediately from~6!:

q~c,T!5
hCr
2 1h2
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2T2
1
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2 ~c,T!
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2OS hCr2 h2
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~11a!

«HT~c,T!5J~c!Aq~c,T!F12
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2 S 12q~c,T!

T D 2
3@12k2~c!#G1/2. ~11b!

In contrast to the low-T case small-amplitude crystalline-
field effects~1! should be taken into account.22 Formally, the
first term in ~11! is due to ‘‘external’’ random fields. In the
spirit of mean-field theory of SG’s in an external field one
can estimate a zero-field freezing temperatureT0F . Omitting
formally hCr andh2 in ~11a! we have the following equation
for the freezing temperatureTF now improved by the
reaction-field effects:

T̄0F
4

TF
2~c!

2T̄0F
2 1@12k2~c!#T̄F

2~c!50, TF~c!5GAzc/2.

~12a!

This square equation has a nontrivial solution, which for in-
structiveness can be approximated asT̄0F(c);GAc2c0. It
holds in the narrow concentration range,c0<c<5c0/4,
where the value@12k2(c)# is small. Considering formally
the latter as a small parameter the iteration corrections to the
last term in~12a! have been found in all orders of its mag-
nitude to extend the applicability of the solution of Eq.~12a!
to the whole QG concentration range, namely,

FIG. 1. Quadrupolar glass orientational order parameter against ortho-
concentration in ortho-para-hydrogen mixtures. Closed and open points cor-
respond to the extrapolated to zero-temperature NMR data of, respectively,
Refs. 14 and 15. Solid and dashed-dotted lines show the solutions of Eq.
~10!, respectively, in the nearest-neighbor (z512) and effective mean-
distance-neighbor (zeff) interaction approximations @qM50.72 and
k(cM)50 are adopted#. Inset: reduced number of the effective mean-
distance neighborszeff(c)/125(R̄/R0)

3 with R̄(c)5(3R0/4pA2c)1/3 and
R0 are, respectively, the mean and nearest-neighbor distances on the hcp
lattice.

FIG. 2. Phase diagram for ortho-para-hydrogen mixtures. Lines: mean-
field estimations for zero-field freezing temperature within the quadrupolar
glass vector model:~1! TF ~12a!, in the absence or the reaction and instrinsic
fields; ~2! T̄0F ~12a! and~3! T0F ~12b! in the presence of the reaction field,
respectively;~4! Almeida-Thouless instability line within the quadrupolar
glass infinite-range axial model in the presence of the quadrupolar intrinsic
field ~Ref. 37!. Points: the dynamic NMR anomalies observed by Sullivan
et al. (d) ~Ref. 5!, Ishimoto et al. (m) ~Ref. 32!, and Husa and Daunt
(.) ~Ref. 33!. ~See also comments in Ref. 3.!
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T0F
4 /TF

2~c! 2T0F
2 1S 11

1

12k2~c!

T̄0F
2 ~c!

TF
2~c!

D 21

T̄0F
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~12b!

where T̄0F
2 (c) stands for one of the solutions of the first-

order-approximation Eq.~12a!. Both solutions are illustrated
in Fig. 2. In the next step one should include the ‘‘external’’
fields mentioned above to reveal the para-rotational phase
instability37 in the spirit of that obtained for SG’s in a con-
stant external field.38

The microscopic analysis of the competing ordering fields
given above permits one to conclude that the glasses under
discussion are characteristically different rather in the local
reaction-polarization effects that in the kinematic properties
of their dynamic variables. We summarize the main results of
the microscopical approach to the QG problem as follows.
~1! Orientational ordering in QG’s has a collective character

and is not caused by the intrinsic quadrupolar field as earlier
suggested in Ref. 3. In contrast to SG’s where the reaction-
field effects can be reduced to corrections~see, e.g., Ref. 39
and discussion in Ref. 25!, the QG orientational freezing is
due to the correlated reaction and molecular fields.~2! Non-
zero variance of the fluctuation field specific of QG systems
gives rise to incomplete low-temperature orientational order-
ing ~Fig. 1!. ~3! The QG phase formation requires a certain
threshold concentrationc0 ~Fig. 2!, above which the variance
of the fluctuation field is relatively small.~4! The quadrupo-
lar intrinsic field dominates at high temperatures and can be
self-consistently treated as an effective external field.
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