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Inhomogeneous localization of polar eigenmodes in fractals
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A pattern of localization, called inhomogeneous localization, is found for dipolar eigennisddace
plasmons or eigenstates of the corresponding Siihger equationof fractal clusters. At any given frequency,
individual eigenmodes are dramatically different from each other, their sizes vary in a wide range, and their
internal geometry may be topologically disconnected and singular at the small scale. These properties differ
principally from the results reported for vibrational eigenmodes of fractals, which is attributed to the long-
range interaction and non-Goldstonian nature of the polar modes.

The problem of the localization of elementary excitationsplitudes. We have shown thdk) the eigenmodegsurface
in disordered condensed media has attracted a great deal pfismons or eigenstajest any given frequenchdetermined
attention, particularly due to its universality and formidabil- by the spectral variablX (Ref. 11)] are extremely inhomo-
ity. The localization is important for such various physical geneous, and their localization radj have a wide distribu-
phenomena as metal-insulatofAnderson transiti0n§; tion between the radius of the clusteg and the minimum
anomalous vibrational relaxatidnand enhanced optical re- radiusly which is expected to scale witd. (ii) The eigen-
sponses of fractal clustérérom an extensive literature, only modes(especially in spectral wingsnay consist of spatially
a few examples most pertinent to the present paper are citedlisconnected but coherent “hot spots.” The pair-correlation
A nontrivial geometrical structure of localized eigenmodesfunctionGy(r) of the eigenmodes scales with the distance
described by a multifractal statistfchas recently been es- indicating self-similarity(fractality) of the average internal
tablished for vibrations of fractal§‘fractons”).>°~" Local- ~ geometry of these modes. The Hausdorff dimendnof
ized excitations of fractal drums at low frequencies havethe modes is different from that of the underlying clusters
been found and can be negative, which implies a singularity-at0. The

In this paper we consider another class of excitationsspatial behavior of individual eigenmodes is chaotic and
namely, polar excitationg‘surface” plasmons of fractals. does not possess the exponential tails associated with the
As we show, they not only possess a nontrivial geometr)}ocalization, found earlier for quantum percolatﬁ)n.
different from that for fractonga disconnected topology and ~ Consider a fractal cluster consisting Nf monomers po-
singularity at the small scalgbut also are extremely inho- sitioned at points;, i=1,... N. The monomers are sub-
mogeneous at any given frequency in the whole spectrgected to an external-wave electric fidi oscillating at the
range. These principal differences are due to the long rangeptical frequency. We assume that the total size of the clus-
of the dipole interaction and non-Goldstonian nature of thder, R., is much less than the light wavelength Thus the
polar modes. field E(© is the same at each monomer. This field polarizes

Surface plasmons in fractal clusters determine strong fluecmonomers, inducing oscillating dipole momedtsvhich are
tuations and enhancement of the local optical fieléspon-  random quantities due to the random structure of the fractal.
sible for their enhanced nonlinear-optical responses. Earlieffhe polarization causes local electric fieHs=Zd;, where
Alexander and Orbach suggested that vibrational excitationg=a,*, and «y, is the dipole polarizability of an isolated
in fractals are strongly localizéd.We have formulated a monomer, supposed to be scalar for the sake of simplifica-
strong-localization hypothesis for surface plasmons and otion. These local fields obey the well-known system of equa-
its basis obtained various scaling relations between the disions, E;,=E,~Z 'S;W,, sE;z, where the Greek sub-
persion relation of the plasmons, optical absorption, andcripts denote vector indices, with the summation over the
eigenmode density. Strong localization of the surface plas- repeated indices implied, aWl is the dipole-interaction ten-
mons has been confirmed by a subsequent numericgbr,
simulatiort? and observed in experiments with fractal clus-
ters in planel.3 However, high-resolution calculations of the Wia,jﬁ=[ri2j 50‘,3—3(rij)a(rij)ﬁ]ri2j , (1)
linear responses and dispersion relatiérisave revealed o _ o :
substantial disagreement with the strong-localization predic‘pr =1, and Wia jp=0 for i=J. Introduglng a i
tions. We have also comment@dhat the experimental data d|men§|o_nal vectotE) with the com.pone.nt5|(x|E):I.Eia .
of Ref. 13 do not necessarily imply a strong Iocalization.(and .S'm"af for othercéecto}swe obtain a single equation in
These findings can be understood on the basis of the prese"#t\l'd'mens'onall Space,
results. _ -1

We study analytically and numerically both the localiza- [B)=[Eo) =27 "W[B), @
tion and internal geometry of the surface plasmons. Thisvhere the dipole-interaction operator is defined by its matrix
plasmon problem maps to Schlinger equation in the tight- elements asiex|W|j,8)=Wiayjﬁ. Similar to Ref. 11, we in-
binding representation with the corresponding hopping amtroduce the spectral variab¥= —ReZ that is convenient to
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use instead of the frequency and a paraméter- ImZ de-
termining the dissipation in a monomer.

The solution of Eq(2) is determined by the eigenvalues
w, and eigenmodefn) of the W operator:!

(W=w,)[n)=0. (3)

Such dipolar eigenmodes are traditionally called surface

plasmons. EquatiofB) has the form of a Schdinger equa-
tion for vector(spin 1) particles on &fractal) lattice {r;} in
the tight-binding approximation, whefs) are the eigenkets.

Thus, the present results are valid also for the quantum tight-

binding vector problem.
We will study the spatial localization and delocalization
of the surface plasmons or eigenkétoth are called below

as eigenmodegs Each of these eigenmodes has intensity

(quantum probability (i «|n)? at anith monomer. It is natu-

ral to introduce the pair-correlation function of these intensi-

ties in space for amth eigenmode,

gn<r>=igﬁ5<r—|ri—rj|><ia|n>2<jﬂ|n>2. (4)

We can also average this correlation function over all eigen

modes with eigenvalues close to some spectral p&int

within spectral widths. Assuming the homogeneous nature
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FIG. 1. The localization radiL, of the eigenmodes vs their
normalized eigenvaluesv, for a CCA cluster [whose two-
dimensional2D) projection is shown in the insktThe “dispersion
relations” LXEL§<2) calculated for the given cluster and for the en-

semble of 1000 clusters are also shown.

of spectral broadening for isolated monomers, the correErom Eq.(5), we can find the average localization radius

sponding weight factorg,(X) can naturally be chosen in a
Lorentz form,v,(X) =[(X—w,)%+ 6%]" 1. We note that the
eigenmode density i8(X) =3, v,(X).™ In such a way, we
obtain for the spatial pair-correlation functiddy(r) at a
spectral poin{“frequency”) X the expression

Gx<r>=<§ (N va(X) V(X)) . (5

L{® of the eigenmodes calculated from thgh moment of
the distribution,L{® =3[ 5Gy(r)r%dr].

Self-similarity of a fractal associated with strong fluctua-
tion of its density at all scales suggests that eigenmodes of
any size are scattered from the inhomogeneities of the corre-
sponding scales and, consequently, may be strongly local-
ized. The strong localization implies that the eigenmodes
with w,~X are characterized by a single sikg which is

FIG. 2. The spatial intensity
distribution of four eigenmodes
for the cluster shown in Fig. 1,
displayed over a 2D projection of
the cluster. The values OR3w,
and L,/R. for each eigenmode
shown in the figure aréa) R3w,
=-—1.28 andL,/R.=0.034, (b)
Riw,=-1.20 and L./R,
=0.89, (c) R3w,=-0.097 and
L/R.=0.21, and (d) Rdw,=
—0.099 andL/R.,=0.60.
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simultaneously their wavelength and localization radfus.
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intensity is concentrated on virtually a single monomer. The

possible form ofGy(r) in this case is given by the superlo- weak-localization mode has a disconnected topology, con-

calization ansatz

Gy(r)oexp{—(r/Ly)%}, (6)

sisting of two highly localized hot spots separated by a dis-
tance on the order of and limited by the total sike This is
likely to be due to the long range of the dipole interaction. As

3 . . .
where d,, is the superlocalization exponent. In this case,RolX| decreasesi.e,, the excitation frequency approaches
L@ ~Ly; i.e. it does not depend dR, and can only weakly the plasmon resonance of the monomettse minimum size

depend org.

of the eigenmodes increasdsg. 2(c)], while the maximum

An alternative to the strong localization is the scaling cor-SiZ€ remains as-R [Fig. 2(d)]. The internal structure of the

relation of the eigenmode intensities,

Gy(r)ocrPe 1,

()

eigenmodes is irregular with strong spatial fluctuations.

The excitation-intensity correlation functio@y(r) of

Egs.(4) and(5) averaged over a 1000-member ensemble of

] ] . . N=300 CCA clusters is shown in Fig(& and the corre-
whereD, is an index. IfD >0, it can be interpreted as the sponding localization radiL§<U') in Fig. 3(b). The general

Hausdorff dimension of the excitation intensity as a measure.
A negative value oD, would imply an essential singularity
at the small scale. DistributiofY) is applicable in the inter-
mediate region of distancég>r>1y, whereR; is the clus-
ter radius, andy is a minimum correlation radius for the
given frequencyX. As one can see from Eg&l)—(3), the
change ofX is equivalent to the change of the spatial scale
(by a factor =|X|'3), under which the underlying fractal
cluster is invariant. This scaling argument suggests Ehat

should not depend oX; i.e., D should be an index charac- 10 ~

teristic of a given type of fractals and not of a position in the
spectrum. Distributior(7) implies that the ensemble of the

N
D)

P

eigenmodes at any given frequency possesses self-similarit;f*b

as the underlying fractal support do@s contrast, individual
eigenmodes break the scale invariance due to the localiza-
tion). In the case of Eq(7), the effective localization radius
L significantly depends on the power

De 1—(Ix/Ry)Perd]ta

L(Q)%|
XX Dgtq 1—(Iyx/R)Pe |

)

and it also depends on the maximum-scale §ize

Numerical calculations have been made using cluster-
cluster aggregategCCA’s), both original and diluted
(DCCA),* and random-walk and random-gaslusters, em-
ploying the Lanczos diagonalization algorithm fir=300
andN=1024. The Monte Carlo simulation has invoked en-
sembles of 1000 clusters witki=300.

In Fig. 1 for a singleN=1024 CCA cluster, we present
the localization radii of the eigenmodés=3/5g.(r)r2dr
versus their normalized eigenvalué®igenfrequenciesy
ngn, whereR, is the minimum characteristic distance be-
tween the monomers. We see that the eigenmodes at any
frequency form an extremely heterogeneous distribution be-
tween the maximum sizB. and some minimum size |y (a
similar distribution has been found for two-dimensional pro-
jected cluster$® Clearly, the eigenmodes in Fig. 1 cannot be
characterized by a single dispersion relation. The minimum
cutoff lengthl, increases withX|—0 in a manner that does
not contradict the scaling ansatz of Ref. 11,
Iy~ Ro(R3|X|) 1 ~9)/(3=D)  whered,<1 is the optical spec-
tral dimension, andD is cluster’s Hausdorff dimension.

Further insight into the internal geometry of the eigen-

R3|X|~1, two extreme cases of a stroffgig. 2(a)] and weak
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! : y ot FIG. 3. Pair-correlation functio®x(r/R;) (a) and localization
modes can be obtained from the spatial distribution of thgagiusL (% as a function ofy (b) for CCA clusters, found by Monte

intensities of four sample eigenmodes shown in Fig. 2. FOtarlo simulation for the values of shown. The solid lines irib)

are obtained from Ed8) for the values ofy /R.=0.07, 0.22, 0.29,

[Fig. 2(b)] localization are shown. In the first case, all the and 0.33 forR3X=—2, —0.5, —0.1, and 0.
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form of Gy(r) is incompatible with the strong localization in
general and superlocalization forg®) in particular. The
dropoff of Gy(r) for R.>r>R, is consistent with the scal-
ing behavior of(7) for R3|X|=2 and is slower for smaller
|X|. We attribute the lack of scaling for these smal[ to
comparatively large values df; [see the caption to Fig.

3(b)], which leave a little space for the scaling. In all cases,g
G(r) differs substantially from the support-density correla-

tion functionC(r)=(N"2%;;8(r —|r;—r}|)) [see Fig. 8a)].
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The results for DCCA clusterglata not shownare simi-

lar to those shown for CCA's in Fig. 3 except for one sig-
nificant difference. Namely, we have foumm,=0.18. Con-
sequently,D, can be treated as the excitation Hausdorff
dimension. In contrast to fractals, a principally different situ-
ation exists for random clusters consisting of noncorrelated
monomergdata not shown In this case, we have found that
x(r)=C(r) for r>Iy. The variation of the localization
radii L{¥ with q is negligible, and_{~R;. These results
mean that the excitations are delocalized over the whole

This implies that there exists a substantial correlation withircluster, and there is no nontrivial correlation in their internal
the individual eigenmodes, in addition to the density corre-geometry. Thus, fractality of the support and not just its dis-

lation C(r)=rP~1 inherent in the fractal support.

From Gy(r) for R3X=—-2 [Fig. 3@)], we find that
D.=—1.3. A negative value oD, indicates that there is a
singularity of the eigenmodes at the minimum scale, which i

consistent with the previous spectroscopic results of Ref. léh

Thus, D, for CCAs cannot be treated as the Hausdorff di-
mension. In the extreme scaling case wHgrgR.., one gets
from Eq. (8) thatL§<q)~IX for g=<— D, (which signifies the
small-scale singularity andL {— R, asq—c. This type of
behavior is actually observed f&X=—2 in Fig. 3b). In

this case, there exists a multitude of radii characterizing th

eigenmodes at a given frequency, in accordance with Fig.
This situation is analogous to multifractalfty,but multifrac-

tality does not necessarily imply the heterogeneity of indi-

vidual eigenmodes at a given frequency.

order is a determining factor of the inhomogeneous localiza-
tion.
To summarize briefly, we have found a pattern of local-

é'zation of dipolar eigenmodes characteristic of fractals that

we call the inhomogeneous localization. Distinct from vibra-
onal excitations; 8individual polar eigenmodes even at the
same frequency are dramatically different from each other.
They possess localization radii varying in a wide range, a
singularity at a small scale, and may have a disconnected
topology. The pronounced distinction from the situation with
vibrational eigenmodes is supposedly due to two fa@ls:

he dipole interaction is a long-range one, di@ithe dipo-

ar eigenmodes are non-Goldstonian, in contrast to vibra-
lons.
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