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A pattern of localization, called inhomogeneous localization, is found for dipolar eigenmodes~surface
plasmons or eigenstates of the corresponding Schro¨dinger equation! of fractal clusters. At any given frequency,
individual eigenmodes are dramatically different from each other, their sizes vary in a wide range, and their
internal geometry may be topologically disconnected and singular at the small scale. These properties differ
principally from the results reported for vibrational eigenmodes of fractals, which is attributed to the long-
range interaction and non-Goldstonian nature of the polar modes.

The problem of the localization of elementary excitations
in disordered condensed media has attracted a great deal of
attention, particularly due to its universality and formidabil-
ity. The localization is important for such various physical
phenomena as metal-insulator~Anderson! transitions,1

anomalous vibrational relaxation,2 and enhanced optical re-
sponses of fractal clusters3 ~from an extensive literature, only
a few examples most pertinent to the present paper are cited!.
A nontrivial geometrical structure of localized eigenmodes
described by a multifractal statistics4 has recently been es-
tablished for vibrations of fractals~‘‘fractons’’ !.2,5–7 Local-
ized excitations of fractal drums at low frequencies have
been found.8

In this paper we consider another class of excitations,
namely, polar excitations~‘‘surface’’ plasmons! of fractals.
As we show, they not only possess a nontrivial geometry
different from that for fractons~a disconnected topology and
singularity at the small scale!, but also are extremely inho-
mogeneous at any given frequency in the whole spectral
range. These principal differences are due to the long range
of the dipole interaction and non-Goldstonian nature of the
polar modes.

Surface plasmons in fractal clusters determine strong fluc-
tuations and enhancement of the local optical fields9 respon-
sible for their enhanced nonlinear-optical responses. Earlier,
Alexander and Orbach suggested that vibrational excitations
in fractals are strongly localized.10 We have formulated a
strong-localization hypothesis for surface plasmons and on
its basis obtained various scaling relations between the dis-
persion relation of the plasmons, optical absorption, and
eigenmode density.11 Strong localization of the surface plas-
mons has been confirmed by a subsequent numerical
simulation12 and observed in experiments with fractal clus-
ters in plane.13 However, high-resolution calculations of the
linear responses and dispersion relations14 have revealed
substantial disagreement with the strong-localization predic-
tions. We have also commented15 that the experimental data
of Ref. 13 do not necessarily imply a strong localization.
These findings can be understood on the basis of the present
results.

We study analytically and numerically both the localiza-
tion and internal geometry of the surface plasmons. This
plasmon problem maps to Schro¨dinger equation in the tight-
binding representation with the corresponding hopping am-

plitudes. We have shown that~i! the eigenmodes~surface
plasmons or eigenstates! at any given frequency@determined
by the spectral variableX ~Ref. 11!# are extremely inhomo-
geneous, and their localization radiiLn have a wide distribu-
tion between the radius of the clusterRc and the minimum
radius l X which is expected to scale withX. ~ii ! The eigen-
modes~especially in spectral wings! may consist of spatially
disconnected but coherent ‘‘hot spots.’’ The pair-correlation
functionGX(r ) of the eigenmodes scales with the distancer ,
indicating self-similarity~fractality! of the average internal
geometry of these modes. The Hausdorff dimensionDe of
the modes is different from that of the underlying clusters
and can be negative, which implies a singularity atr→0. The
spatial behavior of individual eigenmodes is chaotic and
does not possess the exponential tails associated with the
localization, found earlier for quantum percolation.6

Consider a fractal cluster consisting ofN monomers po-
sitioned at pointsr i , i51, . . . ,N. The monomers are sub-
jected to an external-wave electric fieldE(0) oscillating at the
optical frequency. We assume that the total size of the clus-
ter,Rc , is much less than the light wavelengthl. Thus the
field E(0) is the same at each monomer. This field polarizes
monomers, inducing oscillating dipole momentsdi which are
random quantities due to the random structure of the fractal.
The polarization causes local electric fieldsEi5Zdi , where
Z5a0

21 , anda0 is the dipole polarizability of an isolated
monomer, supposed to be scalar for the sake of simplifica-
tion. These local fields obey the well-known system of equa-
tions, Eia5E0a2Z21( jWia, jbEjb , where the Greek sub-
scripts denote vector indices, with the summation over the
repeated indices implied, andW is the dipole-interaction ten-
sor,

Wia, jb5@r i j
2 dab23~r i j !a~r i j !b#r i j

2 , ~1!

for iÞ j , and Wia, jb50 for i5 j . Introducing a 3N-
dimensional vectoruE) with the components (iauE)5Eia
~and similar for other vectors!, we obtain a single equation in
3N-dimensional space,11

uE)5uE0)2Z21WuE), ~2!

where the dipole-interaction operator is defined by its matrix
elements as (iauWu jb)5Wia, jb . Similar to Ref. 11, we in-
troduce the spectral variableX52ReZ that is convenient to
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use instead of the frequency and a parameterd52 ImZ de-
termining the dissipation in a monomer.

The solution of Eq.~2! is determined by the eigenvalues
wn and eigenmodesun) of theW operator,11

~W2wn!un)50. ~3!

Such dipolar eigenmodes are traditionally called surface
plasmons. Equation~3! has the form of a Schro¨dinger equa-
tion for vector~spin 1! particles on a~fractal! lattice $r i% in
the tight-binding approximation, whereun) are the eigenkets.
Thus, the present results are valid also for the quantum tight-
binding vector problem.

We will study the spatial localization and delocalization
of the surface plasmons or eigenkets~both are called below
as eigenmodes!. Each of these eigenmodes has intensity
~quantum probability! ( iaun)2 at ani th monomer. It is natu-
ral to introduce the pair-correlation function of these intensi-
ties in space for annth eigenmode,

gn~r !5 (
i ,a, j ,b

d~r2ur i2r j u!~ iaun!2~ jbun!2. ~4!

We can also average this correlation function over all eigen-
modes with eigenvalues close to some spectral pointX
within spectral widthd. Assuming the homogeneous nature
of spectral broadening for isolated monomers, the corre-
sponding weight factorsnn(X) can naturally be chosen in a
Lorentz form,nn(X)5@(X2wn)

21d2#21. We note that the
eigenmode density isn(X)5(nnn(X).

11 In such a way, we
obtain for the spatial pair-correlation functionGX(r ) at a
spectral point~‘‘frequency’’! X the expression

GX~r !5K (
n

gn~r !nn~X!/n~X!L . ~5!

From Eq. ~5!, we can find the average localization radius
LX
(q) of the eigenmodes calculated from theqth moment of

the distribution,LX
(q)5@ 1

2*0
`GX(r )r

qdr ] 1/q.
Self-similarity of a fractal associated with strong fluctua-

tion of its density at all scales suggests that eigenmodes of
any size are scattered from the inhomogeneities of the corre-
sponding scales and, consequently, may be strongly local-
ized. The strong localization implies that the eigenmodes
with wn'X are characterized by a single sizeLX which is

FIG. 1. The localization radiiLn of the eigenmodes vs their
normalized eigenvalueswn for a CCA cluster @whose two-
dimensional~2D! projection is shown in the inset#. The ‘‘dispersion
relations’’LX[LX

(2) calculated for the given cluster and for the en-
semble of 1000 clusters are also shown.

FIG. 2. The spatial intensity
distribution of four eigenmodes
for the cluster shown in Fig. 1,
displayed over a 2D projection of
the cluster. The values ofR0

3wn

and Ln /Rc for each eigenmode
shown in the figure are~a! R0

3wn

521.28 andLn/Rc50.034, ~b!
R0
3wn521.20 and Ln/Rc

50.89, ~c! R0
3wn520.097 and

Ln/Rc50.21, and ~d! R0
3wn5

20.099 andLn/Rc50.60.
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simultaneously their wavelength and localization radius.10 A
possible form ofGX(r ) in this case is given by the superlo-
calization ansatz

GX~r !}exp$2~r /LX!df%, ~6!

where df is the superlocalization exponent. In this case,
LX
(q);LX ; i.e., it does not depend onRc and can only weakly

depend onq.
An alternative to the strong localization is the scaling cor-

relation of the eigenmode intensities,

GX~r !}r De21, ~7!

whereDe is an index. IfDe.0, it can be interpreted as the
Hausdorff dimension of the excitation intensity as a measure.
A negative value ofDe would imply an essential singularity
at the small scale. Distribution~7! is applicable in the inter-
mediate region of distancesRc@r@ l X , whereRc is the clus-
ter radius, andl X is a minimum correlation radius for the
given frequencyX. As one can see from Eqs.~1!–~3!, the
change ofX is equivalent to the change of the spatial scale
~by a factor}uXu1/3), under which the underlying fractal
cluster is invariant. This scaling argument suggests thatDe
should not depend onX; i.e.,De should be an index charac-
teristic of a given type of fractals and not of a position in the
spectrum. Distribution~7! implies that the ensemble of the
eigenmodes at any given frequency possesses self-similarity
as the underlying fractal support does~in contrast, individual
eigenmodes break the scale invariance due to the localiza-
tion!. In the case of Eq.~7!, the effective localization radius
LX
(q) significantly depends on the powerq,

LX
~q!' l XF De

De1q

12~ l X /Rc!
De1q

12~ l X /Rc!
De G1/q, ~8!

and it also depends on the maximum-scale sizeRc .
Numerical calculations have been made using cluster-

cluster aggregates~CCA’s!, both original and diluted
~DCCA!,11 and random-walk and random-gas14 clusters, em-
ploying the Lanczos diagonalization algorithm forN5300
andN51024. The Monte Carlo simulation has invoked en-
sembles of 1000 clusters withN5300.

In Fig. 1 for a singleN51024 CCA cluster, we present
the localization radii of the eigenmodesLn[

1
2*0

`gn(r )r
2dr

versus their normalized eigenvalues~‘‘eigenfrequencies’’!
R0
3wn , whereR0 is the minimum characteristic distance be-

tween the monomers. We see that the eigenmodes at any
frequency form an extremely heterogeneous distribution be-
tween the maximum sizeRc and some minimum size; l X ~a
similar distribution has been found for two-dimensional pro-
jected clusters.15! Clearly, the eigenmodes in Fig. 1 cannot be
characterized by a single dispersion relation. The minimum
cutoff lengthl x increases withuXu→0 in a manner that does
not contradict the scaling ansatz of Ref. 11,
l x;R0(R0

3uXu)(12do)/(32D), wheredo<1 is the optical spec-
tral dimension, andD is cluster’s Hausdorff dimension.

Further insight into the internal geometry of the eigen-
modes can be obtained from the spatial distribution of the
intensities of four sample eigenmodes shown in Fig. 2. For
R0
3uXu'1, two extreme cases of a strong@Fig. 2~a!# and weak

@Fig. 2~b!# localization are shown. In the first case, all the

intensity is concentrated on virtually a single monomer. The
weak-localization mode has a disconnected topology, con-
sisting of two highly localized hot spots separated by a dis-
tance on the order of and limited by the total sizeRc . This is
likely to be due to the long range of the dipole interaction. As
R0
3uXu decreases~i.e., the excitation frequency approaches

the plasmon resonance of the monomers!, the minimum size
of the eigenmodes increases@Fig. 2~c!#, while the maximum
size remains as;Rc @Fig. 2~d!#. The internal structure of the
eigenmodes is irregular with strong spatial fluctuations.

The excitation-intensity correlation functionGX(r ) of
Eqs.~4! and ~5! averaged over a 1000-member ensemble of
N5300 CCA clusters is shown in Fig. 3~a! and the corre-
sponding localization radiiLX

(q) in Fig. 3~b!. The general

FIG. 3. Pair-correlation functionGX(r /Rc) ~a! and localization
radiusLX

(q) as a function ofq ~b! for CCA clusters, found by Monte
Carlo simulation for the values ofX shown. The solid lines in~b!
are obtained from Eq.~8! for the values ofl X /Rc50.07, 0.22, 0.29,
and 0.33 forR0

3X522, 20.5, 20.1, and 0.
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form ofGX(r ) is incompatible with the strong localization in
general and superlocalization form~6! in particular. The
dropoff ofGX(r ) for Rc@r@R0 is consistent with the scal-
ing behavior of~7! for R0

3uXu52 and is slower for smaller
uXu. We attribute the lack of scaling for these smalleruXu to
comparatively large values ofl X @see the caption to Fig.
3~b!#, which leave a little space for the scaling. In all cases,
GX(r ) differs substantially from the support-density correla-
tion functionC(r )5^N22( i jd(r2ur i2r j u)& @see Fig. 3~a!#.
This implies that there exists a substantial correlation within
the individual eigenmodes, in addition to the density corre-
lation C(r )}r D21 inherent in the fractal support.

From GX(r ) for R0
3X522 @Fig. 3~a!#, we find that

De521.3. A negative value ofDe indicates that there is a
singularity of the eigenmodes at the minimum scale, which is
consistent with the previous spectroscopic results of Ref. 14.
Thus,De for CCA’s cannot be treated as the Hausdorff di-
mension. In the extreme scaling case wherel X!Rc , one gets
from Eq. ~8! that LX

(q); l x for q&2De ~which signifies the
small-scale singularity!, andLX

(q)→Rc asq→`. This type of
behavior is actually observed forR0

3X522 in Fig. 3~b!. In
this case, there exists a multitude of radii characterizing the
eigenmodes at a given frequency, in accordance with Fig. 1.
This situation is analogous to multifractality,4,7 but multifrac-
tality does not necessarily imply the heterogeneity of indi-
vidual eigenmodes at a given frequency.

The results for DCCA clusters~data not shown! are simi-
lar to those shown for CCA’s in Fig. 3 except for one sig-
nificant difference. Namely, we have foundDe50.18. Con-
sequently,De can be treated as the excitation Hausdorff
dimension. In contrast to fractals, a principally different situ-
ation exists for random clusters consisting of noncorrelated
monomers~data not shown!. In this case, we have found that
GX(r )'C(r ) for r@ l X . The variation of the localization
radii LX

(q) with q is negligible, andLX
(q)'Rc . These results

mean that the excitations are delocalized over the whole
cluster, and there is no nontrivial correlation in their internal
geometry. Thus, fractality of the support and not just its dis-
order is a determining factor of the inhomogeneous localiza-
tion.

To summarize briefly, we have found a pattern of local-
ization of dipolar eigenmodes characteristic of fractals that
we call the inhomogeneous localization. Distinct from vibra-
tional excitations,5–8 individual polar eigenmodes even at the
same frequency are dramatically different from each other.
They possess localization radii varying in a wide range, a
singularity at a small scale, and may have a disconnected
topology. The pronounced distinction from the situation with
vibrational eigenmodes is supposedly due to two facts:~i!
The dipole interaction is a long-range one, and~ii ! the dipo-
lar eigenmodes are non-Goldstonian, in contrast to vibra-
tions.
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