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Writing ^RN
2 &5AN2n(11BN2D11CN211•••) for the mean square end-to-end length^RN

2 & of a self-
avoiding polymer chain ofN links, we have calculatedD1 for the two-dimensionalcontinuumcase from a
finite perturbation method based on the ground state of Edwards self-consistent solution which predicts the
~exact! n53/4 exponent. This calculation yieldsD151/2. A finite-size scaling analysis of data generated for
the continuum using a biased sampling Monte Carlo algorithm supports this value, as does a reanalysis of exact
data for two-dimensional lattices.

A polymer chain is self-avoiding due to the excluded vol-
ume effect between monomer units which causes an expan-
sion or ‘‘swelling’’ of the chain when compared to the free
random walk. The central quantity of interest is therefore the
mean square end-to-end length^RN

2 &. This is believed to
have the form

^RN
2 &5AN2n~11BN2D11CN211••• !, ~1!

whereN is the number of chain links,n is the leading scaling
exponent,A,B,C are excluded volume-dependent coeffi-
cients, andD1 is the leading correction-to-scaling exponent.
It is now firmly established1–4 that in two dimensions~2D!
n53/4 is exact. Despite this, there is very little agreement
about the value ofD1 . Nienhuis

1 predictsD153/2, while
Rapaport5 has argued that there is no need for a correction
term other than the analytic correction, i.e.,D151. However,
many numerical studies have disagreed with these results,
with estimates forD1 of 1.2,6 0.84,7 and 0.65.3,4,8 These
numerical estimates are based on results obtained from self-
avoiding walks on 2D lattices. With the exception of a very
few authors9,10 ~these studies however were not concerned
with the correction to scaling terms!, it appears that little
work has been done in the continuum. Theoretical results are
also in disagreement. Besides Nienhuis’s prediction, which
relies on a mapping to an exactly solvable solid-on-solid

model on the honeycomb lattice, Bakeret al.11 predict
D151.18 using renormalization-group arguments, while
Saleur12 predictsD1511/16 by conformal invariance. Inter-
estingly, Saleur also gives evidence for a termD151/2, but
he then rejects this result. Perturbation expansion
techniques,13,14which start from the free random-walk solu-
tion, have also been used to predict^RN

2 &, but these methods
have resulted in series which are divergent inN andv, the
excluded volume parameter, and hence a value forD1 cannot
be predicted. The obvious confusion in both the numerical
and theoretical estimates forD1 , lack of corresponding data
for the continuum, and the possibility of using a better per-
turbation expansion to determine^RN

2 & form the motivation
of this study.

We have used a perturbation method, which unlike previ-
ous studies, starts from a ground state that already correctly
predicts theexact largeN behavior in 2D, namely the Ed-
wards self-consistent solution.15 Although it has been
shown16 that the Edwards solution cannot be the correct form
for the self-avoiding random walk end-to-end distribution
function,17 it has mathematically convenient features that en-
able a perturbation expansion to be performed. We believe its
use here underpins the essential physics and thatD1 thus
obtained may well be exact in 2D. In path-integral
representation,18 the exact distribution function, or Green’s
function, for the end-to-end distanceR is

G~ R,L !5E
r ~0!5 0

r ~L !5 R
D@ r #expF2

1

l E0
L

dsS ] r ~s!

]s D 22 v
l 2E0

L

dsE
s

L

ds8d2@ r ~s!2 r ~s8!#G , ~2!

whereL is the total chain lengthL5Nl, l being the step length of one link, andv is the excluded volume. Two problems arise
in dealing with this intractable path integral. Firstly, divergences appear in the calculation which must be handled carefully, and
secondly, the resulting series expansion is a power series of increasingL andv. This leads to a divergent result unless the
value ofv is assumed to be very small. This divergent property is the hallmark of modern critical phenomena theory whose
resolution was offered by the renormalization-group approach.19,20Historically Edwards avoided the divergence problems of
such an approach by replacing the point contact potential by a self-consistent fieldW(r ) which in 2D is equal tov p̃(r )/ l ,
wherep̃(r ) is the one-particle potential proportional tor22/3.15,21Therefore

W~r !5C v2/3r22/3, ~3!

whereC5(A3/4p l )2/3. Thus the Edwards Green’s functionGE( R,L) becomes
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Our approach relies on obtaining a better first-order perturbation expansion by starting from the Edwards ground state and then
perturbing this with thedifferencebetween the self-consistent field and the true point contact potential.22 Thus
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r ~0!5 0

r ~L !5 R
D@r #expF2
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where the difference potential in the second exponential term
is now being treated as a perturbation. The Fourier transform
of Eq. ~5! thus becomes

Ĝ~ k,L !5ĜE~ k,L !1Ĝ1~ k,L !1Ĝ2~ k,L !1•••, ~6!

whereĜ1( k,L) andĜ2( k,L) are the first-order terms in the
perturbation expansion. By using the method of Fourier and
Laplace transformation as in Ref. 14, we derive the follow-
ing functions to leading order inL:

ĜE~ k,L !512
k2

4 SA2L3/21
3

2B
L1••• D ,

Ĝ1~ k,L !5
3

16
k2A2L3/21•••, ~7!

Ĝ2~ k,L !52LF22C2k2S 2A2F

5
L5/21

3F

4B
L2

2ACL3/21••• D ,
whereA and B are excluded volume and step-length-
dependent quantities that appear in the 2D Edwards solution,
andF andC, which also depend onA andB, are well
behaved convergent integrals in the largeL limit.21 The cal-
culation of these functions required the exact form of the
L-dependent normalization factor of the 2D Edwards solu-
tion. However, unlike the normalization for the free walk
solution which leads to logarithmic divergences and hence
the introduction of a cutoffe, see Ref. 14, the normalization
for the 2D Edwards solution has a form such that a term
corresponding toe appears naturally. As we know its exactL
dependence, integrals which would otherwise diverge remain
controlled. The subsequent calculation of^R2& from these
results gives21

^R2&5
4

5
A2L3/2F11

15

8A2B
L21/2

2S 54 16wC11

8wF DL211••• G . ~8!

It should be noted that in deriving this result, unlike previous
perturbation calculations, no divergences are encountered,
and no restriction is placed on the value ofv since the series

is convergent inL. When comparing Eq.~8! with Eq. ~1!, we
see that it predicts a valueD151/2, as well as anegative
value of the coefficientC. If we assumea/ l50.5, corre-
sponding to the maximum excluded volumev5pa2, we cal-
culateA'0.793,B'1.13,C'0.107, andF'0.226. Sub-
stituting these into Eq.~8! the scaling amplitudes of Eq.~1!
becomeA'0.50, B'2.65, andC'22.07. However these
‘‘mean field’’ values for the amplitudes are not expected to
agree well with numerical or exact results.23

We now turn to numerical studies. In order to create 2D
self-avoiding chains in the continuum we have used abiased
sampling Monte Carlo method dating back to Rosenbluth
and Rosenbluth.24 Although more efficient algorithms exist
for creating longer chains25 we are unsure about their reli-
ability for studying the correction-to-scaling terms in the
continuum. As our chains are in the continuum, the simula-
tion procedure is considerably more complicated than that in
Ref. 24. Given a chain consisting ofn circles, the area avail-
able to the (n11)th circle must be determined. If no areas
are large enough, the chain is discarded and a new one
started, otherwise the position of the next circle is picked
randomly from the available areas and the chain at that po-
sition weighted with a factoru/(2p2b), where u is the
total available angle andb is the angle excluded by the
(n21)th circle as no doubling back is permitted. This
weighting factor distinguishes polymer statistics from the
‘‘true’’ self-avoiding walk.26 In this way relatively long
chains can easily be built even with the maximum excluded
volume. We have checked the program against the analytic
solution for the three step walk27 and against a similar simple
sampling program up to much longer chain lengths, with
satisfactory results. The method has also been tested against
Guttman’s exact enumeration data on the lattice.2

To analyze our data, we have used the finite-size scaling
method of Privman and Fisher28 which is based on the can-
cellation of leading terms. We plot the estimating function

AN,k~D!5
ND22nRN

22~N2k!D22nRN2k
2

ND2~N2k!D . ~9!

Assuming Eq.~1! with n53/4, then

AN,1~D!5A1~121/D1!ACN
211•••, ~10!

whenD5D1 . The curves for differentN will thus cross at a
point close to the correct value ofA andD1 assuminguCu is
small compared touAu. Figure 1~a! shows this technique ap-
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plied to the exact square lattice data of Guttmann2 for values
N515 toN527. In this casek52 is used and the resulting
AN,2(D) data averaged with theAN21,2(D) data to eliminate
the odd-even effect. As can be seen the curves cross at a
valueD'0.65 andA'0.765, in agreement with Ishinabe,3

while D150.65 was also reported by Privman8 using the
same technique on the triangular lattice data of
Grassberger.29 However, these authors assumeduCu!uAu,
even though no clear evidence was given to support this
assumption. Figure 1~b! also shows the results obtained us-

ing the same method on data calculated from Eq.~1! ~here-
after called ‘‘simulated data’’! with A50.760, B50.227,
C50.18, andD150.5. These values ofA, B, andC were
obtained from a least-squares fit to the data2 having set
D150.5. The resulting curves are virtually indistinguishable
from the exact data even though the values ofD1 differ. We
have confirmed that any positive value ofC will shift the
crossing point to higher values ofD. It thus appears that for
the latticeD1 could be as large as 0.66, butD150.5 is pos-
sible. The same procedure using exact triangular lattice
data29 yielded excellent agreement with simulated data for
A50.704,B50.175,C50.128, andD150.5.

Figure 2 shows the resulting curves when the estimating
function Eq.~9! is applied to our continuum data for chain
lengths ofN510 toN525 with the maximum excluded vol-
ume ratio of 0.5. The estimate of^RN

2 & for N525 comes
from averaging approximately 1.873108 walks, resulting in
an error of less than 0.1%. Clearly the data show no sign of
crossing, and we suggest that this is due to a large negative
C. An estimator, similar to Eq.~9!, but which gives simul-
taneous estimates ofB andD1 ,

3 was also studied, but it too
showed no evidence of crossing. Due to the largeC value
and small random errors in our Monte Carlo continuum data
it is difficult to use other graphical techniques4,7 to determine

FIG. 2. Plot ofAN,1(D) vsD for our Monte Carlo 2D continuum
data, with maximum excluded volume.

FIG. 3. Plot ofAN,1(D) vsD for simulated continuum data with
A51.023,B50.491,C520.681, andD150.666.

FIG. 4. Plot ofAN,1(D) vsD for simulated continuum data with
A50.990,B50.489,C520.839, andD150.5.

FIG. 1. ~a! Plot ofAN,2(D) vsD for simulated square lattice data
with A50.760, B50.227, C50.18, andD150.5. ~b! shows the
same plot for the exact square lattice data of Ref. 2.
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D1 . We therefore use the above method of comparison be-
tween simulated and Monte Carlo data.

We first assumed a value ofD150.666, in agreement with
Ref. 4, and using a least-squares curve fit to our data from
N510 toN525, we found a best fit with coefficient values
of A51.023, B50.491, andC520.681. We then used
these values to create simulated^RN

2 & data to which we ap-
plied theAN,1(D) vs D analysis. The resulting curves are
shown in Fig. 3. They are very different from those of the
Monte Carlo continuum data. We then assumed a value of
D150.5 from which we obtained a best fit with coefficient
values ofA50.990,B50.489, andC520.839. The result-
ing curves, as shown in Fig. 4, are in excellent agreement
with the continuum data. The large negativeC should be
noted. Thus to assumeC is negligible, as has often been

done when analyzing 2D lattice data,3,4,8 is a mistake and
could lead to poor estimates ofD1 .

In conclusion, we have presented strong evidence that
D151/2 for 2D chains in the continuum. Although this value
does not agree with any of those suggested by other authors
for 2D chains on the lattice,,3,4,7,8 their data are compatible
with D150.5 when the effects due to the next order term in
Eq. ~1! are considered. Unless there is a breakdown of the
universality of bothn andD1 ,

20,30we suggest that Saleur’s12

rejection ofD151/2 should be reexamined. Since our pertur-
bation method and our Monte Carlo analysis agree, we sug-
gest that the leading correction-to-scaling term in two-
dimensions isD151/2.
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