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Corrections to scaling in two-dimensional polymer statistics
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Writing (R3)=AN?"(1+BN “1+CN"!+...) for the mean square end-to-end lengf%) of a self-
avoiding polymer chain oN links, we have calculated, for the two-dimensionatontinuumcase from a
finite perturbation method based on the ground state of Edwards self-consistent solution which predicts the
(exac) v=23/4 exponent. This calculation yields, = 1/2. A finite-size scaling analysis of data generated for
the continuum using a biased sampling Monte Carlo algorithm supports this value, as does a reanalysis of exact
data for two-dimensional lattices.

A polymer chain is self-avoiding due to the excluded vol-model on the honeycomb lattice, Baket all! predict

ume effect between monomer units which causes an expark;=1.18 using renormalization-group arguments, while
sion or “swelling” of the chain when compared to the free Saleut? predictsA;=11/16 by conformal invariance. Inter-
random walk. The central quantity of interest is therefore theestingly, Saleur also gives evidence for a tefg=1/2, but
mean square end-to-end |eng<[ﬁﬁ>_ This is believed to he then rejects this result. Perturbation expansion

have the form techniques?**which start from the free random-walk solu-
tion, have also been used to prediB), but these methods
(Rﬁ,)zANZV(lJrBN’AlJr CN 1+...), (1) have resulted in series which are divergeniNirandv, the

) o i , ) excluded volume parameter, and hence a valué fotannot
whereN is the number of chain links; is the leading scaling  pe predicted. The obvious confusion in both the numerical
exponent,A,B,C are excluded volume-dependent coeffi- 3nq theoretical estimates far,, lack of corresponding data
cients, andA, is the leading correction-to-scaling exponent. for the continuum, and the possibility of using a better per-
It is now firmly establisheti that in two dimension$2D)  tyrbation expansion to determi®2) form the motivation
v=3/4 is exact. Despite this, there is very little agreemenipf this study.
about the value ofv;. Nienhuis predictsA;=3/2, while We have used a perturbation method, which unlike previ-
Rapaport has argued that there is no need for a correctiorpus studies, starts from a ground state that already correctly
term other than the analytic correction, i&,,=1. However, predicts theexactlarge N behavior in 2D, namely the Ed-
many numerical studies have disagreed with these resultsjards self-consistent solutidn. Although it has been
with estimates forA; of 1.2° 0.84/ and 0.65>*® These = showrt®that the Edwards solution cannot be the correct form
numerical estimates are based on results obtained from seler the self-avoiding random walk end-to-end distribution
avoiding walks on 2D lattices. With the exception of a veryfunction?’ it has mathematically convenient features that en-
few author$? (these studies however were not concernedable a perturbation expansion to be performed. We believe its
with the correction to scaling termsit appears that little  use here underpins the essential physics and Ahathus
work has been done in the continuum. Theoretical results arebtained may well be exact in 2D. In path-integral
also in disagreement. Besides Nienhuis's prediction, whicliepresentatioh® the exact distribution function, or Green’s
relies on a mapping to an exactly solvable solid-on-solidfunction, for the end-to-end distande is

(=R YL OIS N L L o
G(R,L)—fr(o)OD[r]ex;{ I—fods(?) I—;fodsLdsé[r(s) r(s"1|, (2

wherelL is the total chain length =NI, | being the step length of one link, ands the excluded volume. Two problems arise

in dealing with this intractable path integral. Firstly, divergences appear in the calculation which must be handled carefully, and
secondly, the resulting series expansion is a power series of incrdasingv. This leads to a divergent result unless the
value ofv is assumed to be very small. This divergent property is the hallmark of modern critical phenomena theory whose
resolution was offered by the renormalization-group apprdaéhHistorically Edwards avoided the divergence problems of
such an approach by replacing the point contact potential by a self-consistert/{ieldwhich in 2D is equal ta p(r)/I,
wherep(r) is the one-particle potential proportional to%3.2>?* Therefore

W(r): v 2/3r—2/3' (3)

where 7= (\/3/471)?3. Thus the Edwards Green’s functi@( R,L) becomes
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r(L)=R 1L [ar(s)\? [t
Ge( R,L):f D[ r]ex ——f ds| —— —f W(s)ds
r(0)=0 I Jo Js 0
Our approach relies on obtaining a better first-order perturbation expansion by starting from the Edwards ground state and then
perturbing this with thalifferencebetween the self-consistent field and the true point contact potéhiials

_[rL=R 1L [ar(s)\? (L
G( R’L)_J’r<0)=o D[r]ex;{—l—Jo ds( s ) —fo W(s)ds

><exp( fLW(s)ds— Iv—zfl-dsjl-ds' 5[ r(s)— r(sr)]), (5)
0 0 S

: (4)

where the difference potential in the second exponential terrs convergent i.. When comparing Eq8) with Eq. (1), we
is now being treated as a perturbation. The Fourier transforraee that it predicts a valué,;=1/2, as well as aegative

of Eq. (5) thus becomes value of the coefficienC. If we assumea/l =0.5, corre-
- - . A sponding to the maximum excluded volume 7a?, we cal-
G(k,L)=Ge(kL)+Gi(kL)+Ga(kL)+---, (6)  culate. #~0.793,.%#~1.13,¥~0.107, andb~0.226. Sub-

stituting these into Eq(8) the scaling amplitudes of Eql)
ecomeA~0.50, B~2.65, andC~ —2.07. However these
mean field” values for the amplitudes are not expected to
agree well with numerical or exact resudfs.

We now turn to numerical studies. In order to create 2D
self-avoiding chains in the continuum we have usdiesed
sampling Monte Carlo method dating back to Rosenbluth
and Rosenblutf* Although more efficient algorithms exist
for creating longer chaifid we are unsure about their reli-
él( k,L):ikzxzzL3’2+ . @ abilit.y for studying theT correc_tion—to—sca'ling terms in the

16 continuum. As our chains are in the continuum, the simula-
tion procedure is considerably more complicated than that in
272D 5n, 3P Ref. 24. Given a chain consisting pfcircles, the area avail-
TL + ﬁ'— able to the (+1)th circle must be determined. If no areas
are large enough, the chain is discarded and a new one
started, otherwise the position of the next circle is picked
' randomly from the available areas and the chain at that po-
) sition weighted with a factow/(27— 8), where 0 is the
where .7 and .7 are excluded volume and step-length- total available angle ang is the angle excluded by the
dependent quantities that appear in the 2D Edwards solutior@n_ 1)th circle as no doubling back is permitted. This
and® and ¥, which also depend onZ and.7, are well  weighting factor distinguishes polymer statistics from the
behaved convergent integrals in the latgéimit.** The cal-  “rue” self-avoiding walk?® In this way relatively long
culation of these functions required the exact form of thechains can easily be built even with the maximum excluded
L-dependent normalization factor of the 2D Edwards soluyolume. We have checked the program against the analytic
tion. However, unlike the normalization for the free walk solution for the three step W&ﬁ(and against a similar Simp|e
solution which leads to logarithmic divergences and hencgampling program up to much longer chain lengths, with
the introduction of a cutoft, see Ref. 14, the normalization satisfactory results. The method has also been tested against
for the 2D Edwards solution has a form such that a terrTGuttman’S exact enumeration data on the |a‘|iice_
corresponding t@ appears naturally. As we know its exact To analyze our data, we have used the finite-size scaling
dependence, integrals which would otherwise diverge remaimethod of Privman and Fistf8nwhich is based on the can-

controlled. -lg—lhe subsequent calculation (&) from these  cellation of leading terms. We plot the estimating function
results give

whereG,( k,L) andG,( k,L) are the first-order terms in the
perturbation expansion. By using the method of Fourier an
Laplace transformation as in Ref. 14, we derive the follow-
ing functions to leading order ih:

G (kL)=1—k—2 ey S
B 4\ 2.5

Gyl k,L)=2L<I>—2\If—k2(

— VL2

NA*ZVRIQ\I_(N_k)A72VR27k

<R2>=g,///2L3’2[1+8%2ﬁL‘1’2 Anid8)= NA—(N—k)* ' ©
- Assuming Eq(1) with v=3/4, then
516W¥+1|
laTawe 8T ® Ani(A)=A+(1-1ADACN T+, (10

It should be noted that in deriving this result, unlike previouswhenA=A. The curves for differeni will thus cross at a
perturbation calculations, no divergences are encountere@pint close to the correct value 8f andA; assumingC| is
and no restriction is placed on the valuevo$ince the series small compared toA|. Figure 1a) shows this technique ap-
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FIG. 3. Plot ofAy 1(A) vs A for simulated continuum data with
A=1.023,B=0.491,C=—0.681, andA,=0.666.

ing the same method on data calculated from @&gj.(here-
after called “simulated datg” with A=0.760, B=0.227,
C=0.18, andA;=0.5. These values ok, B, andC were
obtained from a least-squares fit to the dataving set
A,;=0.5. The resulting curves are virtually indistinguishable
from the exact data even though the valued\gfdiffer. We
have confirmed that any positive value 6fwill shift the
crossing point to higher values df. It thus appears that for
the latticeA; could be as large as 0.66, AN} =0.5 is pos-
sible. The same procedure using exact triangular lattice
data® yielded excellent agreement with simulated data for
FIG. 1. (a) Plot of Ay 5(A) vs A for simulated square lattice data A=0.704,B=0.175,C=0.128, andA;=0.5.
with A=0.760, B=0.227, C=0.18, andA;=0.5. (b) shows the Figure 2 shows the resulting curves when the estimating
same plot for the exact square lattice data of Ref. 2. function Eq.(9) is applied to our continuum data for chain
lengths ofN=10 toN= 25 with the maximum excluded vol-
plied to the exact square lattice data of Guttnfdion values  ume ratio of 0.5. The estimate ¢R2) for N=25 comes
N=15 toN=27. In this cas&=2 is used and the resulting from averaging approximately 1.871.0° walks, resulting in
Ay o(A) data averaged with th&y_; [(A) data to eliminate  an error of less than 0.1%. Clearly the data show no sign of
the odd-even effect. As can be seen the curves cross atcossing, and we suggest that this is due to a large negative
value A~0.65 andA~0.765, in agreement with IshinaBe, C. An estimator, similar to Eq(9), but which gives simul-
while A;=0.65 was also reported by Privnfansing the  taneous estimates & andA;,? was also studied, but it too
same technique on the triangular lattice data ofshowed no evidence of crossing. Due to the la@yealue
Grassberger? However, these authors assumpg|<|A|,  and small random errors in our Monte Carlo continuum data
even though no clear evidence was given to support thig is difficult to use other graphical techniqd€do determine
assumption. Figure(lb) also shows the results obtained us-
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FIG. 2. Plot ofAy 1(A) vs A for our Monte Carlo 2D continuum FIG. 4. Plot ofAy ;(A) vs A for simulated continuum data with

data, with maximum excluded volume. A=0.990,B=0.489,C=—0.839, andA,=0.5.
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A;. We therefore use the above method of comparison bedone when analyzing 2D lattice dat&® is a mistake and
tween simulated and Monte Carlo data. could lead to poor estimates af; . .
We first assumed a value af, = 0.666, in agreement with In conclusion, we have presented strong evidence that

Ref. 4, and using a least-squares curve fit to our data fror@lzl/2 for 2D chains in the continuum. Although this value
N=10 toN=25, we found a best fit with coefficient values &ocs not agree with any of those suggested by other authors
: for 2D chains on the latticé;*"®their data are compatible
of A=1.023, B=0.491, andC=—0.681. We then used i A ,=0.5 when the effects due to the next order term in
these values to create simulaigR) data to which we ap- Eq. (1) are considered. Unless there is a breakdown of the
plied the Ay 1(A) vs A analysis. The resulting curves are universality of bothw andA ;,%%*°we suggest that Saleut’s
shown in Fig. 3. They are very different from those of therejection ofA;=1/2 should be reexamined. Since our pertur-
Monte Carlo continuum data. We then assumed a value dbation method and our Monte Carlo analysis agree, we sug-
A;=0.5 from which we obtained a best fit with coefficient gest that the leading correction-to-scaling term in two-

values ofA=0.990B=0.489, andC= —0.839. The result- dimensions isA;=1/2.
ing curves, as shown in Fig. 4, are in excellent agreement T.C.C. would like to thank Professor Sir S. F. Edwards,

with the continuum data. The large negati@eshould be Professor D. Sherrington, Professor R. Stinchcombe, and
noted. Thus to assumé is negligible, as has often been Professor M. Barma for helpful discussions.
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