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We present a molecular-dynamics study of the energetics and structures of very large carbon cage clusters,
which has been performed using tight-binding methods, both empirical andab initio. The use of an order-N
scheme, which provides the solution of the electronic problem with an effort proportional to the size of the
system, allowed us to study clusters with up to 3840 atoms. We have considered clusters with spherical and
with toroidal topology, and systematically find that spherical clusters have lower energy than toroidal clusters
of the same size. However, the toroidal C360 and larger clusters have lower energy per atom than the fullerene
C60. Concerning the spherical fullerenes, we show that, in all cases, their minimum energy shape is markedly
polyhedral rather than spherical. The clusters present nearly flat faces between each three contiguous protrud-
ing pentagon sites. The surfaces are nevertheless smooth, without sharp edges in the lines joining the penta-
gons, which would be present in a perfect truncated icosahedron. We also discuss the energetics of the clusters
as a function of their size, and the validity of different functional forms proposed in the literature.

I. INTRODUCTION

After the discovery of the fullerene C60,
1 many kinds of

carbon structures have been observed experimentally.2 For
instance, higher fullerenes, crystals of C60 molecules, multi-
shell fullerenes,3 single wall tubes,4 polymerization of C60
molecules in the solids,5 and so on. In all these materials, the
configuration of the polygonal network of carbon bonds and
the atomic coordinates constitute important pieces of infor-
mation for finding out the formation mechanism and the
structural properties. Since a precise experimental determina-
tion of these is often very difficult, the theoretical evaluation
of the geometrical parameters is of paramount importance for
an understanding of the properties of these materials. This
has become particularly evident in the study of very large,
single-shell fullerene cages. The observation by Ugarte3 of
multishell fullerenes formed by many concentrical fullerene
balls of different sizes one inside the other, has triggered
interest in the study of large single-shell fullerenes, as a pre-
liminary step to understand the observed extremely spherical
shapes of the multishell fullerenes.

Since isolated, large defect free single-shell fullerenes
have not been observed experimentally, a theoretical investi-
gation of these forms of carbon is important, and has been
undertaken from different points of view. Theoretical work
based on elasticity theory,6,7 as well as calculations using
empirical interatomic potentials,6,8,9 seemed to establish that

the most stable form of large single-shell fullerenes is mark-
edly polyhedrally faceted instead of perfectly spherical.
Therefore, one conclusion drawn from these studies is that
the reason for the multishell fullerenes being spherical is not
the stability of the spherical single shells, and that the inter-
shell ~van der Waals! interaction, or kinetic processes, are
determinant of the experimentally observed structures. Re-
centab initio calculations10,11on large single-shell fullerenes
have challenged this view, however, indicating that nearly
spherical clusters may be more stable than polyhedral ones.
With these results, the idea that the spherical structure of
multishell clusters may be due to an intrinsic stability of the
spherical single-shell fullerenes has been retaken.12

Another important piece of information, which theoretical
atomistic simulations can provide and that is difficult to ex-
tract from the experiments, is the relative stability of each of
the different clusters as a function of its shape and size, and
compared to other forms of carbon~like graphite!, or to the
same class of materials, with different geometrical param-
eters. This is the case concerning the relative stability of
fullerenes with different topologies, like spherical and toroi-
dal clusters. Also, the specific way in which the energy of an
spherical cluster approaches that of an infinite graphite plane
as its size increases has been the subject of several
studies.6,7,13

Most of the theoretical work done so far on the energetics
and structure of giant fullerenes have been based on macro-
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scopic theories~like elasticity theory!, or in classical micro-
scopic theories~empirical interatomic potentials!. The appli-
cation of quantum-mechanical electronic structure methods
has been reduced to relatively small clusters~up to C240)
until very recently. This is naturally, due to the intense nu-
merical effort involved in this type of calculation, and the
N3 scaling of this effort with the size of the system, which
makes the calculations nonpractical for a systems larger than
a very few hundred atoms. In the past two years, however,
several techniques have emerged that allow the calculation of
the energy and the dynamics of large systems from the elec-
tronic structure, with an effort proportional to the size of the
system.14 These so-called order-N methods have allowed the
study of systems with thousands of atoms, and are, therefore,
ideal for realistic computations on complex materials like the
large fullerenes. One of these methods was used by Yang and
co-workers for theab initio study of single-shell fullerenes
mentioned above.10,11

In this work, we have applied one of these recently devel-
oped order-N methods to study the shape, structure, and en-
ergetics of giant fullerenes. In order to have a more robust
and complete picture, we have used two different electronic
structure models: an empirical tight-binding method~in
which the interaction parameters are fitted to experimental
and ab initio information of diamond and graphite!, and a
first principles approach based in the local density approxi-
mation ~LDA !. The purpose of this study is fourfold:~i! To
study the validity and accuracy of the order-N approach to
treat this important kind of material, and develop efficient
techniques to accelerate the solution of the electronic prob-
lem in these systems. We will show that the order-N algo-
rithm used here provides excellent accuracy in these systems,
compared to standard methods like diagonalization.~ii ! To
calculate the most stable shape of large single-shell
fullerenes, to help decide if sphericity is preferred or the
shapes tend to be polyhedral. The results of our calculation
support the conclusion that, for all the studied clusters larger
than C60, the shapes are markedly polyhedral, with nearly
flat facets and protruding pentagonal sites.~iii ! To study the
energetics of the clusters as a function of their size, and
compare with those of toroidal clusters to check the relative
stability. We will show that the fullerenes are always more
stable than the toroidal clusters of similar size, but that tor-
oidal clusters larger than C360 have lower energy than the
C60 spherical fullerene.~iv! To make use of the results ob-
tained for the energetics of the clusters used to test the va-
lidity of several formulas proposed in the literature for the
dependencies of the cluster energy versus size, which were
derived using macroscopic or empirical theories.

The paper is organized as follows. Section II contains a
summary of the order-N algorithm used, and the two elec-
tronic structures models that we have utilized. Section III
describes strategies to apply efficiently the order-N tech-
niques to these systems, and shows the typical accuracies
obtained with the method. In Sec. IV, we describe our results
for the most stable shapes of large fullerenes, from C60 to
C3840, whereas in Sec. V we study the energetics of the
clusters and the dependence with the cluster size.
Finally, Sec. VI contains the conclusions of this work.

II. METHODOLOGY

The objective of the present work is to study very large
clusters, with sizes up to several thousand atoms. For these
sizes, the use of traditional techniques to solve the electronic
problem is obviously out of the question. The reason is the
N3 scaling of the required computational effort with the
number of electrons in the system. Recently, however, a
number of methods14 have been developed in which the nu-
merical load scales only linearly with the size of the system
~therefore referred to as order-N methods!. In this work, we
have applied one of these order-N schemes, the one devel-
oped by Ordejo´n et al.15 and by Mauriet al.16 We refer the
reader to Ref. 14 for a detailed description of the method.
Here, we will just outline the main ideas involved:~i! the use
of an energy functional which does not require or-
thogonalization of the electronic wave functions, and~ii ! a
description of the occupied electronic states in terms of
Wannier-like localized wave functions~LWF’s!, which are
truncated beyond a certain cutoff, instead of eigenvectors.

The band structure energy functional

Ẽbs@$c i%#52F(
i51

N

Hii2 (
i , j51

N

H ji ~Si j2d i j !G ~1!

is defined for 2N electrons, in terms ofN doubly occupied
states uc i&, i51, . . . ,N, where Si j5^c i uc j&, Hi j

5^c i uĤuc j&, and the factor 2 is for the spin. It can be shown
that the minimization ofẼbs with respect to any arbitrary set
of occupied statesuc i&, which are not restricted to be or-
thogonal, leads to the exact ground state band structure en-
ergy of the system. Moreover, the set of states that minimize
Ẽ bs is an orthogonal set. Therefore, the ground state band
structure energyEbs can be computed minimizingẼbs with-
out imposing any orthogonality constraint, using a conjugate
gradients algorithm.

In order to achieve the linear scaling, we notice that the
set of functionsuc i& defining the ground state is not unique,
since any unitary transformation of these states has the same
energy. In particular, we can describe the ground state by
means of orthonormal localized wave functions centered at
different positions. Since, similarly to the Wannier functions,
the LWF’s decay rapidly with distance,17 we can truncate
them beyond a certain cutoff radius from the center as an
approximation. The combination of the unconstrained energy
functional and the LWF’s produces a linear scaling algo-
rithm.

Our calculations are based on the tight-binding scheme.
We have used two methods, which are very different in na-
ture ~one being empirical, the otherab initio!. The first is an
empirical tight-binding~ETB! model for total energies of
carbon systems developed by Xuet al.18 The model assumes
a basis of four orbitals per C atom~ones and 3p’s!, which
are orthogonal~i.e., the overlap between orbitals in different
atoms is taken as zero, regardless of the interatomic dis-
tance!. The total energy in this scheme is computed as

Etot5Ebs1Erep, ~2!

whereEbs is the band structure energy, andErep is a repulsion
term which is defined as a sum of pairwise potentials be-
tween atoms. Both the Hamiltonian matrix elements and the
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repulsion potential are parametrized, and fitted as a function
of the interatomic distance, so as to reproduce experimental
and first principles information for different phases of car-
bon. This ETB scheme has proven useful for the study of
fullerenes and other forms of carbon. However, the empirical
nature of the method and the far from obvious transferability
of the Hamiltonian, makes it useful to compare the results
obtained with a more accurate and lessad hocmethod. For
this reason, we have also used theab initio tight-binding
~AITB ! method of Sankey and Niklewski.19 This method is
based on the LDA approximation, and uses the non-self-
consistent Harris functional, together with a minimal basis of
localized, atomic like orbitals to describe the valence elec-
trons, and pseudopotentials to eliminate the core electrons
from the calculation. It is, therefore, a nonparametrized
method, which has been extensively tested with excellent
results for systems containing carbon, as well as other ele-
ments. In this method, the total energy takes the same form
as Eq.~2!, where the band structure energy is computed from
the nonparametrized Hamiltonian, and the repulsive term in-
cludes the ion-ion interactions plus correction terms to ac-
count for overcounting of the Hartree and exchange correla-
tion energy inEbs. Since the basis used is nonorthogonal, the
overlap matrix must be taken into account when computing
the eigenvalues ofĤ.

III. LOCALIZED WAVE FUNCTION

As mentioned in Sec. II, the order-N method employed in
this work15,16is based on the use of localized wave functions,
which are truncated, instead of the extended eigenstates of
the Hamiltonian.14 There are many possible schemes to as-
sign the parameters defining each LWF’s~such as the posi-
tion of the center of each function and their radial cutoff!,
like assigning two LWF’s to the position of each C atom, so
that a total of 2N are defined. However, a more sophisticated
approach that takes into account the chemistry and local
bonding of the material can be much more advantageous
from the computational point of view. In this section, we
describe the strategy that we have followed in this work to
define and build the LWF’s.

The carbon cage clusters that are considered here have the
following properties:~i! they contain only carbon atoms,~ii !
there are no dangling bonds, and~iii ! each atom holds cova-
lent bonds with three neighbors. These systems, therefore,
are formed by as-bonded network of atoms withsp2 hy-
bridization. Since there are four valence electrons in the 2s
and 2p orbitals of each carbon atom, three of them forms
bonds with an electron from each of the three neighbor at-
oms, respectively. The remaining one electron contributes to
thep orbitals of the cluster. Thus, for a cluster withN car-
bon atoms and 4N electrons, 3N electrons occupy 3N/2
bonds of as type andN electrons occupyN/2 bonds of a
p type.

The structure of the network ofs andp bonds suggest a
natural and efficient way of defining the localized functions
for the order-N calculation, their center of localization, and
the initial guess to start the band energy minimization. We
define 3N/2 LWF’s corresponding tos-type orbitals, and
N/2 corresponding top-type orbitals. As an initial guess for
the minimization, we use the bonding combination ofsp2

orbitals forming thes bonds, and ofp' orbitals for thep
bonds. Each of thes functions is centered at one of the
3N/2 bonds of the cage network. The choice for the location
of the p LWF’s is more subtle, since there is only onep
function per each pair of atoms, and, therefore, the choice of
the center of localization is not unique. The distribution of
centers must be homogeneous, in order to optimize the cal-
culation and to ensure local charge neutrality when truncated
LWF’s are used. The scheme that we have used here is sug-
gested by the double-single bond structure of C60: the bonds
joining different pentagons are short in length, and, there-
fore, contain ap bond, whereas the bonds shared by a pen-
tagon and a hexagon are long, singles bonds. We can, there-
fore, assign ap LWF to each of theN/2 double bonds of
C60. For larger spherical or toroidal clusters, where the struc-
ture of double and single bonds is lost~as in graphite!, we
use the same construction scheme: we start assigningp func-
tions to each of the bonds going outwards radially from the
pentagons, and continue assigningp functions to bonds in
alternating positions. It is easy to see that, using this proce-
dure, the structures are covered withN/2 bonds ofp type, in
such a way that each atom forms part of just one of these
bonds, ensuring that the distribution is homogeneous.

Once the centers of the localization of the LWF’s are as-
signed as described in the previous paragraph, a localization
radius must be chosen for the LWF’s. Usually, a real space
cutoff Rc , defined by a geometrical distance, is used to de-
termine which atoms are included in each of the localized
functions.14 Instead, for the systems under consideration, we
find it useful to use a different definition. We define the dis-
tance between an atom and the center of the LWF as the
minimum integer number of bonds between the atom and the
bond in which the LWF is centered. The atom is then in-
cluded in the LWF if this distance is smaller than a cutoff
Nc . Figure 1 shows the area enclosed by several values of
Nc , from the center of a particular bond. We see that for
Nc50, there are just two atoms in each LWF, forNc51, six
atoms are in the range, and so on. This definition has the
advantage that the number of atoms within the cutoff de-
pends only on the topology of the bonds, and not on the

FIG. 1. Schematic view of the areas enclosed by different values
of the cutoffNc from the center of a bond~marked with a cross! for
the definition of a LWF.
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curvature of the structure, and, therefore, on the size of the
cluster.

The choice of the localization rangeNc depends on the
particular system under consideration. For systems with a
large gap, the LWF’s decay very rapidly~exponentially17!, so
the value ofNc can be chosen to be small. For systems with
a small gap, or for metals, the decay is much slower~a power
law in the case of metals17!, and larger values ofNc must be
used to preserve accuracy. Figure 2 shows the decay of the
LWF’s versus the distance from their center, for the spherical
cluster C60, obtained with the ETB method with an infinite
cutoff radius. The distances corresponding to different values
of the cutoffNc are also shown in Fig. 2. As expected, the
LWF’s decay exponentially with the distance. However, the
decay is much faster for thes functions than for thep func-
tions. This characteristic is common to all carbon clusters
considered, as well as to graphite. The reason is that the
states in the vicinity of the energy gap are primarilyp states,
so their localization is weaker than fors states. Therefore,
increasing the cutoff fors orbitals will not provide much
improvement to the accuracy, while increasing the cutoff for
thep orbitals will have a much larger effect. There is obvi-
ously no reason to maintain the same cutoff for both types of
LWF’s, so we have determined the optimum values ofNc

s

andNc
p . We show, in Fig. 3, the total energies of icosahedral

C240 versus the computational time per minimization itera-
tion for several combinations of the cutoff distancesNc

s and
Nc

p . In this figure, the lower points correspond to higher
accuracy, and the points more on the left correspond to faster
computations. The increase ofNc

p from 2–4 for the same
value ofNc

s52 improves the the accuracy, while not increas-
ing the computational time much. On the other hand, increas-
ing Nc

s from 2–4 for the same distanceNc
p54 does not

change the accuracy significantly, but increases the compu-
tational time drastically. To quantify our results, the total
energies of icosahedral C60 and C240 calculated with the ETB
model, using different combinations of cutoff distances, are
listed in Table I.Nc

s52 andNc
p54 is the most optimum set

of cutoff values, providing excellent accuracy for both clus-
ters. These results hold for the AITB method as well. In what
follows, and unless specified otherwise, the results presented

have been obtained using these cutoff values.
The error in the order-N solution is larger for the C240

cluster than for C60. This is due to the closing of the gap
from 1.6 eV in C60 to 1.1 eV in C240. Increasing the cluster
size further~and, therefore, decreasing the gap value! does
not seem to further degrade the accuracy in a significant
manner. For instance, in a graphite plane~where the gap is
zero!, the error forNc

s52 andNc
p54 is 0.024 eV/atom for

ETB and 0.053 eV/atom for AITB~the total energy per atom
for the order-N solution is28.362 eV/atom, compared to
28.386 eV/atom for the exact solution in the ETB model,
and2157.848 eV/atom versus2157.900 eV/atom for the
AITB model!.

IV. SHAPES OF FULLERENES

We have used molecular-dynamics techniques to obtain
minimum energy structures of the spherical and toroidal
fullerenes. In general, we used structures optimized with
Stillinger-Weber ~SW! potentials20 as initial coordinates.
These where then relaxed using our order-N method with
either ETB or AITB Hamiltonians. The relaxations were per-
formed using a dynamical quenching algorithm, either with
Newtonian or with first-order equations of motion. The opti-
mization continues until the maximum force is smaller than
0.04 eV/Å.21 This procedure does not warrant that the ob-
tained structures are the absolute minimum energy structures,
but rather local minima. However, further annealing and
quenching did not produce structures with lower energies.
We are, therefore, confident that our structures represent an

TABLE I. Total energies per atom~in eV! for icosahedral C60 and
C240 calculated with several combinations of cutoff distancesNc

s

and Nc
p , for the ETB model. In parentheses, we show the error

percentage, with respect to the exact (`,`) results.

(Nc
s ,Nc

p) C60 C240

~2,2! 27.942~0.82%! 28.151~1.4 %!

~3,3! 27.991~0.21%! 28.215~0.58%!

~4,4! 28.000~0.10%! 28.242~0.25%!

~2,4! 27.995~0.16%! 28.237~0.31%!

(`,`) 28.008 28.263

FIG. 2. Decay of the localized wave function of C60. s func-
tions ~white triangles! decay much faster thanp functions ~black
circles!.

FIG. 3. Energy of icosahedral C240 for several different cutoff
distancesNc

s andNc
p . The horizontal axis indicates CPU time for

one iteration of energy minimization on a SUN/Sparc-ipc worksta-
tion.
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accurate representation of the ground states for each cluster.
In order to establish the accuracy of the ETB and AITB

Hamiltonians and of the order-N algorithm used in this work,
we analyze first the results for the spherical fullerene C60.
Table II shows the lengths of single and double bonds of
spherical C60 obtained in our calculations, compared to other
calculations and with experimental data. Our results from
ETB and AITB are in excellent agreement with those of
LDA calculations22 and NMR measurement.23 In particular,
the results of the ETB Hamiltonian are exactly the same as
those obtained by Xuet al.,18 using the same Hamiltonian,
but no order-N approximation. Therefore, our order-N
method provides excellent accuracy for structural properties.

The next spherical cluster that we have studied is C240.
This cluster has been considered by several authors, which
concluded that the structure is polyhedrally faceted, with a
significant deviation from sphericity. Yoshida and Osawa8

and Dunlapet al.24 reported structures, derived from two dif-
ferent empirical potentials, which were practically identical,
with a standard deviation from a sphere of 0.17 Å. Adams25

also found a faceted structure using the same AITB model as
the one used in this work. Recently, however, York, Lu, and
Yang10 reported results of a lower energy almost spherical
structure for C240. The calculations are based on a model

closely related with the AITB method used here, combined
with an order-N algorithm developed by Yang.26 In their
study, Yorket al. considered several different geometries as
initial configurations, and relaxed the structures following a
simplex algorithm~preserving the icosahedral symmetry!.
Two of these structures where spherical~denoted ‘‘sph1’’ and
‘‘sph2’’ !, and three of them where faceted~‘‘fac1,’’ ‘‘fac2,’’
and ‘‘fac4’’!. These relaxations yielded two different struc-
tures: an almost spherical structure ‘‘SYork’’ with lower en-
ergy, and a polyhedral structure ‘‘PYork’’ higher in energy by
0.07 eV/atom. The parameters defining the initial and final
structures and their energies as calculated by Yorket al. are
summarized in Table III. The main result of their calculation
is that the spherical clusters always have lower energy than
polyhedral clusters, in contrast with the results of others. In
order to shed some light in this issue, we have used our
AITB model with the order-N formulation to relax the C240
cluster. We start with the coordinates from a relaxation of the
structure with SW potentials, and follow a dynamical
quenching algorithm described above. From this calcula-
tions, we obtain the structure that is shown in Fig. 4. The
parameters defining the structure are shown in the last row of
Table III. We see that the optimized structure for the C240
cluster is significantly faceted, with a standard deviation
from sphericity of 0.153 Å. This seems to confirm the results
of empirical potentials calculations, and is in disagreement
with the findings of Yorket al. In order to check that our
structural minimization was indeed converged to the most

TABLE III. Geometric parameters~in Å! and energies per atom~in eV, referred to that of a graphite sheet! for different forms of the
spherical C240 obtained with the AITB method. For the energies of the clusters, we show the results of the AITB Hamiltonian obtained both
with exact diagonalization~underEexact) and with our order-N formulation~underEO(N)). For comparison, we show the order-N results of
York et al. ~underEYork).

Morphology Bonds (b1 ,b2 ,b3 ,b4 ,b5)
a Radii (r 1 ,r 2 ,r 3)

a r̄ (s) b EO(N) Eexact EYork

sph1c ~1.44,1.43,1.44,1.43,1.44! ~7.12,7.12,7.12! 7.120~0.000! 0.185 0.169 0.128
sph2c ~1.43,1.44,1.43,1.43,1.44! ~7.12,7.12,7.12! 7.120~0.000! 0.194 0.176 0.128
fac1c ~1.48,1.44,1.48,1.44,1.48! ~7.03,7.42,6.97! 7.098~0.188! 0.502 0.488 0.248
fac2c ~1.47,1.43,1.47,1.43,1.47! ~7.63,7.21,6.75! 7.085~0.367! 0.241 0.232 0.278
fac4c ~1.45,1.40,1.47,1.45,1.46! ~7.49,7.19,7.05! 7.195~0.180! 0.141 0.131 0.208
SYork

c ~1.43,1.43,1.45,1.42,1.44! ~7.01,7.13,7.14! 7.106~0.056! 0.210 0.195 0.108
PYork

c ~1.43,1.42,1.51,1.47,1.46! ~7.66,7.19,7.07! 7.247~0.244! 0.212 0.200 0.178
YO d ~1.43,1.38,1.45,1.42,1.43! ~7.36,7.06,6.92! 7.065~0.180! 0.122 0.111
This work ~1.42,1.38,1.45,1.42,1.43! ~7.32,7.06,6.94! 7.065~0.153! 0.120 0.108

aInequivalent bonds and radii. See Ref. 10 for the definition.
bAverage radius and standard deviation~in parentheses!.
cOptimized structures obtained by Yorket al. ~Ref. 10!.
dOptimized structure obtained by Yoshida and Osawa~Ref. 8!.

TABLE II. Bond lengths~in Å! of spherical C60.

Double bond Single bond

Present~ETB! 1.396 1.458
Present~AITB ! 1.400 1.449
SWa 1.592 1.604
TB b 1.396 1.458
LDA c 1.40 1.45
NMR d 1.4060.015 1.4560.015

aReference 29.
bReference 18.
cReference 22.
dReference 23.

FIG. 4. Optimized C240 cluster, viewed along three different
axes:~a! a twofold rotation axis,~b! a fivefold rotation axis, and~c!
a threefold axis.
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stable structure for the C240 cluster, we have also calculated
the energy of all the structures considered by Yorket al.The
results are also shown in Table III. We see that our optimized
structure is significantly lower in energy than the rest of the
structures considered, including the minima found by York
et al.Only the polyhedral structure proposed by Yoshida and
Osawa,8 which is very similar to our optimized structure, is
energetically comparable to it. It is interesting to see that
even the ordering of energies is very different for our results
and those of Yorket al. In order to check that our order-N
results are genuine, and not an artifact of the order-N ap-
proximation, we have computed the exact energy~within the
AITB Hamiltonian!, using diagonalization for all the struc-
tures. We see in Table III that the energy ordering is the same
as the one obtained in the order-N calculation~in particular,
our optimized structure is still the minimum energy struc-
ture!. The difference between the exact and the order-N re-
sults seems to be a shift of about 0.01–0.02 eV. Most of this
error comes from the fact that the accuracy of the order-N
method for graphite is slightly different than for the C240
fullerenes. We conclude, therefore, that our order-N results
are accurate, and describe properly the energetics of the
C240 cluster, within the AITB model utilized. The results
obtained using the ETB model are essentially the same, as
discussed in the next paragraph, which indicates that the
preference towards a polyhedral shape is a robust result,
since it does not depend on the particular Hamiltonian uti-
lized. The source of discrepancy between our results and
those of Yorket al. is unknown at this point. Since these
authors use a Hamiltonian model, which is rather similar to
the AITB model used by us, one would expect the same
qualitative results.

We have performed similar calculations for larger spheri-
cal fullerenes, using both the ETB and the AITB models. We
have considered the clusters C240, C540, C960, C2160, and
C3840. For all the cases~except for C3840, which was com-
puted only with the ETB model! minimum energy structures
were obtained using both Hamiltonians. The general result is
that, for all sizes and with both models, the clusters are
markedly polyhedral, with a larger deviation from sphericity
for the larger clusters. We show in Table IV the average
radius and the standard deviation from sphericity for all the
clusters, computed for the optimum geometries obtained
with SW potentials and with the ETB and AITB models. The
agreement between ETB and AITB is remarkable, and con-
firms that the ETB model of Xuet al. is an excellent Hamil-
tonian for these systems. Figure 5 shows a scheme of the
structures optimized with the ETB model, from C240 to

C3840. We see that, although the clusters are polyhedral, with
flat facets between the protruding pentagons, the edges join-
ing the pentagonal sites are not sharp, but rounded, in order
to minimize the bending energy. Our calculations confirm the
results obtained with empirical potentials by Maitiet al.,9

who predicted polyhedral shapes for the large fullerenes.
Also Witten and Li7 predicted shapes similar to those ob-
tained by us, based on elasticity arguments. They, in fact,
predicted that the elastic energy would be concentrated in the
round edges regions, whereas the flat faces would be similar
to graphite. These results emerge from an analysis of the
balance between the energy cost of bending at the edges, and
the elastic energy that represents any deviation from the flat
graphite structure: bond stretching energy is stored in the
planes for any deviation from the perfect polyhedral shape;
the balance between this energy and the energy cost of bend-
ing at the edges determines the shape of the clusters. Witten
and Lu predicted that the clusters would have flat facets~to
minimize the elastic energy!, but soft, round edges~to mini-
mize the bending energy!. Our results agree with these pre-
dictions.

Recently, Lu and Yang11 performed a study of large
fullerene balls, similar to the one reported here. They used
the same method as the one used by Yorket al. for the study
of C240, and obtained qualitatively similar results for the
larger clusters: large, isolated clusters were predicted to be
spherical, in contrast with our findings. Based on their re-
sults, Lu and Yang explained the experimental observation of

TABLE IV. Average (r̄ ) and standard deviation (s) of radii and planarityf5360°2(u11u21u3)
around pentagons in the spherical clusters. SW, ETB, and AITB indicate results obtained using Stillinger-
Weber potentials, the empirical tight-binding method, and theab initio tight-binding method, respectively.

r̄ (s,s/ r̄ ) f
SW ETB AITB SW ETB AITB

C240 7.86 ~0.29, 0.037! 7.06 ~0.17, 0.025! 7.06 ~0.15, 0.021! 13.16 8.92 7.88
C540 11.75~0.46, 0.040! 10.53~0.36, 0.034! 10.53~0.35, 0.033! 13.13 9.92 9.19
C960 15.64~0.64, 0.041! 14.02~0.53, 0.038! 14.01~0.52, 0.037! 13.11 9.95 9.28
C2160 21.65~1.18, 0.054! 20.95~0.82, 0.039! 20.95~0.82, 0.039! 13.10 10.05 9.31
C3840 29.13~1.68, 0.058! 27.95~1.08, 0.039! 13.07 10.05

FIG. 5. Nonperspective view of the optimized structures of large
fullerene balls, obtained with the ETB model, and viewed from a
twofold symmetry axis.
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spherical, multishell fullerenes,3 as a consequence of the sta-
bility of spherical single-shell fullerenes. Our results contra-
dict these arguments, and suggest that there must be a differ-
ent mechanism~like intershell interactions! to explain the
stability of spherical multishell fullerenes.

The results of Table IV indicate that, as a general result,
the optimum structures of large fullerene balls are polyhe-
dral, with a larger deviation from sphericity for larger sizes.
The ratio of deviation to the average radius of the cluster
saturates, however, for about 2160 atoms. This seems to in-
dicate that these clusters have reached the asymptotic large
size regime, and increasing the size roughly preserves the
shape of the cluster, with rescaled dimensions. Another mea-
sure of the nonsphericity is provided by the amount of non-
planarity of the surface at the pentagonal sites. In the poly-
hedral structures, the pentagons are protruding, and,
therefore, there is a large deviation from planarity at those
sites. Following Yorket al.,10 we define the planarity at an
atom by the anglef[360°2(u11u21u3), whereu1 , u2 ,
andu3 are the angles formed by the threes bonds between
the atom and its three nearest neighbors. Therefore,f50°
for a planar site. We show, in Table IV, the results of the
planarity anglef for atoms in the pentagons, for all the
clusters from C240 to C3840. We see that, as observed in the
deviation from sphericity, the planarity at pentagonal sites
approaches a constant value for the larger clusters, again
indicating that the asymptotic region has been reached. It is
interesting to observe that the quantum-mechanical results,
both with the ETB and the AITB models, predict a behavior,
which is qualitatively different from the results of Stillinger-
Weber potentials. Whereas the increase in the ratios/ r̄ is
observed in all cases, the SW potentials predict a decrease in
the nonplanarity at pentagonal sites with the cluster size,
whereas the ETB and AITB models predict an increase for
larger sizes. This indicates that, although empirical models
can be appropriate for describing the main features of the
clusters, the details are far from accurately described.

We have also initiated a study of the shapes and energies
of toroidal carbon clusters. Itoh and co-workers27–29 pro-
posed several possibilities of toroidal clusters, using molecu-
lar dynamics with SW potentials20 determined for graphite
by Abraham and Batra.30 The negative curvature is obtained
by a combination of pentagons~in the outer face of the torus!
and heptagons~in the inner face!. Very similar structures
have been found experimentally,31 although multilayed and
larger than the theoretically proposed structures. We have
relaxed the structure of toroidal C240, C360, and C960, both
with the ETB and AITB models. The tendency of the surface
curvature for the toroidal clusters is very similar to that for
the spherical clusters. Only the regions around the pentagons
are protrusive and the planarityf around the pentagons
reaches the same value as that of spherical clusters. An ex-
tensive study of the shapes of these and larger toroidal clus-
ters is underway, and will be published elsewhere.32

V. ENERGIES OF FULLERENES

We have investigated the total energy of the relaxed
fullerenes, as a function of their size. Figure 6 shows the
total energy per atom relative to that of monolayer graphite.
We show the results for the spherical and the toroidal

fullerenes, obtained both with the ETB and AITB models. It
is worth mentioning that there is remarkable agreement be-
tween these two models for all the cases studied, which con-
firms that the simple ETB model produces a very reliable
description of this kind of carbon materials. Table V shows
the values for the relaxed spherical fullerenes, with both
Hamiltonian models. The results of Fig. 6 show that the
spherical fullerenes are more stable than the toroidal
fullerenes of the same size. The toroidal C240 is still less
stable than icosahedral C60, although larger toroidal clusters
are more stable than C60. These results agree with previous
calculations done in the tight-binding approximation33 and
with ab initio self-consistent field calculations.34

As shown in Fig. 6, the energies of the fullerenes ap-
proach the energy of graphite, as expected since the local
bonding in the fullerenes is very close to that in graphite, and
increasing the size of the cluster should make the energy
approach the value of a graphite plane. Moreover, as we have
seen, in the large fullerenes the clusters are faceted, and large
portions of the surface are flat, so that the resemblance to
graphite is ever more pronounced. However, the detailed
way in which the energy approaches that of graphite is an
interesting issue, which has attracted some interest in the
past. Several studies were made to derive expressions for this
dependence, reaching different functional forms depending

FIG. 6. Total energy per atom for spherical~circles! and toroidal
~squares! carbon cage clusters against the total number of carbon
atoms. The open symbols correspond to the results of the ETB
model, and the black symbols to the AITB model.

TABLE V. Total energies relative to the graphite monolayer~in
eV/atom!.

N ETB AITB

60 0.3674 0.3279
240 0.1253 0.1204
540 0.0693 0.0726
960 0.0430 0.0511
2160 0.0166 0.0221
3840 0.0084
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on which assumptions were made about the shape and about
the most important contributions to the energy. We are aware
of three theories for the evolution of fullerene energy as a
function of n.6,7,13 The assumption of spherical symme-
try and consideration of fullerene topology, leads to an
asymptotic functional form:13

E1~n!5A/n1B/n2, ~3!

for some coefficientsA andB. Such a form should be ex-
pected to be most successful for perfectly spherical
fullerenes, since there is no assumption of faceting in the
model. Adamset al.13 usedab initio local basis methods to
obtain energies for many fullerenes, with up to 240 atoms,
and found Eq.~3! to provide a satisfactory fit to their ener-
gies, even for nonicosahedral balls. A second model is due to
Tersoff,6 who has used elasticity theory to compute asymp-
totic estimates of the energies. His functional form is

E2~n!5A/n1Bln~n!/n. ~4!

Tersoff also found good agreement with data generated from
his empirical potential for carbon.35Witten and Li7 have cor-
rectly predicted polyhedral structures and performed calcula-
tions, which suggest that the deviation of energy from graph-
ite is mostly due to strain at facet faces. Since the energy is
predicted to scale like the ball radiusR1/3, the relative energy
should behave like

E3~n!5A/n5/6. ~5!

For completeness, we will also considered the general single
power-law decay:

E4~n!5A/nB. ~6!

To attempt to gauge the suitability of these predictions, we
have performed least squares fits36 of our energies to each of
E12E4 . Since the energies obtained with the ETB and AITB
models are quite similar~see Table V!, we used those from
the ETB model to perform the fits. We did two sets of fits,
one including the energies of all~six! fullerenes, and another
with just the largest three~C960, C2160, and C3840). The
latter calculations were performed to obtain better estimates
of the asymptotic behavior of the energy. We also report the
squared deviation of the fits:

x25(
i51

Np

~Ei2Ei !
2, ~7!

whereEi is our calculated energy,Ei is the value of the
fitting function ~one of E1–E4), andNp is the number of
points ~3 or 6! used in the fitting. The result of these fits is
summarized in Table VI. It is clear that all the proposed

forms offer an acceptable fit to the data of Table V. The best
overall fit forNp56 is from the Tersoff form,E2 , though it
should be emphasized that the other functional forms are also
quite reasonable. What is perhaps of greater interest is the
case of fits to the three largest fullerenes. The best fit is for a
simple power-law withN21.176 scaling. This result provides
some evidence that a simple power-law decay is the appro-
priate asymptotic form, but with only three points, this view
must be held with caution. Certainly the Tersoff and Adams
forms cannot be discarded. Each of these forms has two free
parameters adjusted to minimizex2. The form of Witten and
Li has only one parameter, and also fits reasonably well. In
Fig. 7, we plot our computed energies, and a pair of illustra-
tive fits. As the plot is doubly logarithmic, its near linearity
suggests that a power law is reasonable, particularly for the
last three points, as we have seen.

Unfortunately it is difficult to indicate a strong preference
for one of these models over the others. For one thing, the
values of the fitting parameters areverysensitive to the num-
ber of points used~not surprising with such a small number
of points!. In addition, the basic nature of the functional
forms is so similar, especially with two free parameters, that
a simple judgment does not seem to be possible. In the pres-
ence of more data, and a detailed understanding of the nature
of errors in the calculations, the methods of Bayesian model
selection37 would be appropriate to assign probabilities to
each model. This would enable a quantitative measure of the
trade-off between the higherx2 of Witten and Li7 and the
smaller number of parameters being fit, for example.

TABLE VI. Fits of calculated energies to functional formsE1–E4 . E(n! refers to the number of data
points used:n53 refers to a fit only to C960, C2160, and C3840; n56 refers to these plus C60, C240, and
C540. The resulting fits are in units of eV/atom.

E1(3) E1(6) E2(3) E2(6) E3(3) E3(6) E4(3) E4(6)

A 30.71 34.81 86.83 23.06 12.20 11.28 138.6 9.06
B 10254 2766.8 26.62 6.13 1.18 0.783
x2 1.131027 1.631024 4.631029 5.231025 4.131025 2.331024 2.4310210 7.931025

FIG. 7. Log-log plot of cluster size (N) versus relative energy.
Diamonds are the result of the present calculation, and the line is a
guide to the eye. Two fits to the energies are shown. Squares depict
a power law @E4(6)#, and triangles depict the Tersoff form
@E2(6)#.
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VI. CONCLUSION

We have used molecular-dynamics techniques to study the
energetics and shapes of giant fullerenes. The atomic forces
and total energies were computed from the electronic struc-
ture, using two different tight-binding models~one empirical,
the otherab initio!. The solution of the electronic problem
was obtained using a recently developed order-N method,
which produces the solution with an effort that scales lin-
early with the size of the system, therefore allowing the cal-
culation of systems with thousands of atoms. We have devel-
oped efficient techniques to apply these order-N methods to
the specific problem of large fullerenes, by using two differ-
ent cutoff distances for thes andp wave functions. This
reduces the computational time, while maintaining an excel-
lent accuracy. The results of our simulations show that, for
large spherical clusters, the polyhedrally faceted shape is
preferred, both for the empirical and for theab initio calcu-
lations. These results contradict recent claims10,11 that iso-
lated clusters may have rather spherical shapes, and rule out
the possibility of an intrinsic stability of the spherical shape

in single-shell clusters as the cause of the observed sphericity
of multishell fullerenes. We have also shown that the spheri-
cal cage clusters have lower energy than toroidal cage clus-
ters of the same size. However, the toroidal C360 and larger
clusters have larger cohesive energies than the fullerene C60
and they are energetically stable. We also have studied the
detailed way in which the energy of the spherical fullerenes
approaches that of monolayer graphite when the size of the
cluster is increased and used our computed energies to test
several functional forms proposed in the literature.

ACKNOWLEDGMENTS

One of us~S.I.! acknowledges funding from Hitachi, Ltd.
and would like to thank Dr. Sugie and Dr. Ihara for their
encouragement. This work was partially supported by the
NSF under Contracts Nos. DMR-89-20538 and DMR-93-
22412, and by DOE Grant No. DEFG 02-91ER45439. Some
of the computations were performed in the Convex C-3880
at the NCSA.

*Present address: Departamento de Fı´sica, Universidad de Oviedo
~Spain!.
1H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E.
Smalley, Nature~London! 318, 162 ~1985!; W. Krätschmer, L.
D. Lamb, K. Fostriropoulos, and D. R. Huffman,ibid. 347, 354
~1990!.

2See the collection of review articles published in MRS Bull.XIX ,
11 ~1994!.

3D. Ugarte, Nature~London! 359, 707~1992!; Europhys. Lett.22,
45 ~1993!.

4S. Iijima and T. Ichihashi, Nature~London! 363, 603 ~1993!;
364, 737~E! ~1993!; D. S. Bethune, C. H. Klang, M. S. de Vries,
G. Gorman, R. Savoy, J. Vazquez, and R. Beyers,ibid. 363, 605
~1993!.

5A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hanger, J. M. Holden, Y.
Wang, W. -T. Lee, X. -X. Bi, P. C. Eklund, D. S. Cornett, M. A.
Duncan, and I. J. Amster, Science259, 955 ~1993!.

6J. Tersoff, Phys. Rev. B46, 15 546~1992!.
7T. A. Witten and H. Li, Europhys. Lett.23, 51 ~1993!.
8M. Yoshida and E. Osawa, Fullerene Sci. Tech.1, 55 ~1993!.
9A. Maiti, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.70, 3023

~1993!.
10D. York, J. P. Lu, and W. Yang, Phys. Rev. B49, 8526~1994!.
11J. P. Lu and W. Yang, Phys. Rev. B49, 11 421~1994!.
12D. Ugarte, MRS Bull.XIX , 39 ~1994!.
13G. B. Adams, O. F. Sankey, M. O’Keefe, J. B. Page, and D. A.

Drabold, Science256, 1792~1992!.
14P. Ordejón, D. A. Drabold, R. M. Martin, and M. P. Grumbach,

Phys. Rev. B51, 1456~1995!, and references therein.
15P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin,

Phys. Rev. B48, 14 646~1993!.
16F. Mauri, G. Galli, and R. Car, Phys. Rev. B47, 9973~1993!.
17W. Kohn, Phys. Rev.115, 809 ~1959!.
18C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.

Condens. Matter4, 6047~1992!; C. Z. Wang, C. T. Chan, and K.

M. Ho, Phys. Rev. B46, 9761~1992!.
19O. F. Sankey and D. J. Niklewski, Phys. Rev. B40, 3979~1989!
20F. H. Stillinger and T. A. Weber, Phys. Rev. B31, 5262 ~1985!;

33, 1451~E! ~1986!.
21In the case of the spherical C2160 and C3840, the tolerance in the

maximum force was reduced to 0.02 eV/Å. A uniform expansion
or contraction of a large fullerene produces small atomic forces,
because the stress is distributed over the surface of the sphere,
with a very small strain on each bond. Therefore, smaller toler-
ances in the forces are required for larger clusters.

22Q. Zhang, J. -Y. Yi, and J. Bernholc, Phys. Rev. Lett.66, 2633
~1991!.

23C. S. Yannoni, P. P. Bernier, D. S. Bethune, G. Meijer, and J. R.
Salem, J. Am. Chem. Soc.113, 3190~1991!.

24B. I. Dunlap, D. W. Brenner, J. W. Mintmire, R. C. Mowrey, and
C. T. White, J. Phys. Chem.95, 8737~1991!.

25G. B. Adams~unpublished!.
26W. Yang, Phys. Rev. Lett.66, 1438~1991!.
27S. Itoh, S. Ihara, and J. Kitakami, Phys. Rev. B47, 1703~1993!.
28S. Ihara, S. Itoh, and J. Kitakami, Phys. Rev. B47, 12 908~1993!.
29S. Itoh and S. Ihara, Phys. Rev. B48, 8323~1993!.
30F. F. Abraham and I. P. Batra, Surf. Sci.209, L125 ~1989!.
31S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett.69,

3100 ~1992!; M. Endo ~private communication!.
32S. Itoh and P. Ordejo´n ~unpublished!.
33J. K. Johnson, B. N. Davidson, M. R. Pederson, and J. Q. Brough-

ton, Phys. Rev. B50, 17 575~1994!.
34J. C. Greer, S. Itoh, and S. Ihara, Chem. Phys. Lett.222, 621

~1994!.
35J. Tersoff, Phys. Rev. B37, 6991~1988!.
36W.H. Presset al., Numerical Recipes, The Art of Scientific Com-

puting ~Cambridge University Press, Cambridge, England,
1986!.

37G. L. Bretthorst,Bayesian Spectrum Analysis and Parameter Es-
timation ~Springer-Verlag, Berlin, 1988!, Chap. 5.
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