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We present a molecular-dynamics study of the energetics and structures of very large carbon cage clusters,
which has been performed using tight-binding methods, both empiricablrniditio. The use of an ordex
scheme, which provides the solution of the electronic problem with an effort proportional to the size of the
system, allowed us to study clusters with up to 3840 atoms. We have considered clusters with spherical and
with toroidal topology, and systematically find that spherical clusters have lower energy than toroidal clusters
of the same size. However, the toroidakgand larger clusters have lower energy per atom than the fullerene
Cso- Concerning the spherical fullerenes, we show that, in all cases, their minimum energy shape is markedly
polyhedral rather than spherical. The clusters present nearly flat faces between each three contiguous protrud-
ing pentagon sites. The surfaces are nevertheless smooth, without sharp edges in the lines joining the penta-
gons, which would be present in a perfect truncated icosahedron. We also discuss the energetics of the clusters
as a function of their size, and the validity of different functional forms proposed in the literature.

[. INTRODUCTION the most stable form of large single-shell fullerenes is mark-
edly polyhedrally faceted instead of perfectly spherical.
After the discovery of the fullerenegg,! many kinds of ~ Therefore, one conclusion drawn from these studies is that
carbon structures have been observed experimeAt&ity. the reason for the multishell fullerenes being spherical is not
instance, higher fullerenes, crystals qfy@olecules, multi- the stability of the spherical single shells, and that the inter-
shell fullerenes, single wall tube$, polymerization of G,  shell (van der Waalg interaction, or kinetic processes, are
molecules in the soliddand so on. In all these materials, the determinant of the experimentally observed structures. Re-
configuration of the polygonal network of carbon bonds andcentab initio calculationd®* on large single-shell fullerenes
the atomic coordinates constitute important pieces of inforhave challenged this view, however, indicating that nearly
mation for finding out the formation mechanism and thespherical clusters may be more stable than polyhedral ones.
structural properties. Since a precise experimental determind¥ith these results, the idea that the spherical structure of
tion of these is often very difficult, the theoretical evaluationmultishell clusters may be due to an intrinsic stability of the
of the geometrical parameters is of paramount importance fospherical single-shell fullerenes has been retdken.
an understanding of the properties of these materials. This Another important piece of information, which theoretical
has become particularly evident in the study of very largeatomistic simulations can provide and that is difficult to ex-
single-shell fullerene cages. The observation by Udasfe tract from the experiments, is the relative stability of each of
multishell fullerenes formed by many concentrical fullerenethe different clusters as a function of its shape and size, and
balls of different sizes one inside the other, has triggeredompared to other forms of carbdlike graphitg, or to the
interest in the study of large single-shell fullerenes, as a presame class of materials, with different geometrical param-
liminary step to understand the observed extremely sphericalters. This is the case concerning the relative stability of
shapes of the multishell fullerenes. fullerenes with different topologies, like spherical and toroi-
Since isolated, large defect free single-shell fullereneslal clusters. Also, the specific way in which the energy of an
have not been observed experimentally, a theoretical investspherical cluster approaches that of an infinite graphite plane
gation of these forms of carbon is important, and has beeas its size increases has been the subject of several
undertaken from different points of view. Theoretical work studies> "3
based on elasticity theofy, as well as calculations using Most of the theoretical work done so far on the energetics
empirical interatomic potentiaf® seemed to establish that and structure of giant fullerenes have been based on macro-
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scopic theorieglike elasticity theory, or in classical micro- Il. METHODOLOGY
scopic theoriegsempirical interatomic potentiglsThe appli-
cation of quantum-mechanical electronic structure methodgI

has been reduced to relatively small clust@ip 10 Cou  gjzes, the use of traditional techniques to solve the electronic
unt|I_ very rece.ntly. ThIS' is ngturally, due to thg intense NU-problem is obviously out of the question. The reason is the
méerlcal_effort myolved in _thls typg of calculation, and t_he N3 scaling of the required computational effort with the
N* scaling of this effort with the size of the system, which nymper of electrons in the system. Recently, however, a
makes the calculations nonpractical for a systems larger thagumber of method4 have been developed in which the nu-
a very few hundred atoms. In the past two years, howevemerical load scales only linearly with the size of the system
several techniques have emerged that allow the calculation gfherefore referred to as ordBrmethods. In this work, we
the energy and the dynamics of large systems from the eledrave applied one of these orderschemes, the one devel-
tronic structure, with an effort proportional to the size of theoped by Ordejn et al® and by Mauriet all® We refer the
system** These so-called ordet-methods have allowed the reader to Ref. 14 for a detailed description of the method.
study of systems with thousands of atoms, and are, thereforklere, we will just outline the main ideas involve@: the use
ideal for realistic computations on complex materials like theof an energy functional which does not require or-
large fullerenes. One of these methods was used by Yang af@ogonalization of the electronic wave functions, diid a
co-workers for theab initio study of single-shell fullerenes description of the occupied electronic states in terms of
mentioned above®1! Wannier-like localized wave functiond WF's), which are

In this work, we have applied one of these recently develiruncated beyond a certain cutoff, instead of eigenvectors.
oped ordeN methods to study the shape, structure, and en- 1h€ band structure energy functional
ergetics of giant fullerenes. In order to have a more robust N N
and complete picture, we have used two different electronic Eud{ti}]1=2 > Hi— > H;i(S;— &) (1)
structure models: an empirical tight-binding methéid i=1 =1
which the. _int_eraction_ parame_ters are fitied to experimenta‘IS defined for N electrons, in terms o doubly occupied
and ab initio information of diamond and graphjteand a = ;oo ), i=1,...N, where S;=(gls), H;
first principles approach based in the local density.approxi—=<wi||:||l//_'>, and the factor 2 is for the sjpin. Ilt cén be sHown
mation (LDA). The purpose of this study is fourfol) To that the m]inimization £, With respect to any arbitrary set
study the validity and accuracy of the ordérapproach to OFbs P y y

S . : _~of occupied state$y;), which are not restricted to be or-
treat Fhls important kind of materl_al, and develop ef.f'C'entthogonaI, leads to the exact ground state band structure en-
technigues to accelerate the solution of the electronic pro

) . ergy of the system. Moreover, the set of states that minimize
lem in these systems. We will show that the orerlgo- - 9y y

. ) ) E s is an orthogonal set. Therefore, the ground state band
rithm used here provides excellent accuracy in these systems bs g groury

compared to standard methods like diagonalizati@n.To structure energy,s can be computed minimizingps with-
: ut imposing any orthogonality constraint, using a conjugate
calculate the most stable shape of large smgle-she@

full to helo decide if sphericity i ferred h radients algorithm.
ulierenes, 10 help decide It sphencity 1S preteérred or €=, oqer to achieve the linear scaling, we notice that the

shapes tend to be polyhedral. The results_of our calculanoget of functiong ;) defining the ground state is not unique,
support the conclusion that, for all the studied clusters largegince any unitary transformation of these states has the same
than Cgo, the shapes are markedly polyhedral, with nearlyenergy. In particular, we can describe the ground state by
flat facets and protruding pentagonal sité) To study the  means of orthonormal localized wave functions centered at
energetics of the clusters as a function of their size, andjifferent positions. Since, similarly to the Wannier functions,
compare with those of toroidal clusters to check the relativeahe LWF's decay rapidly with distandé,we can truncate
stability. We will show that the fullerenes are always morethem beyond a certain cutoff radius from the center as an
stable than the toroidal clusters of similar size, but that torapproximation. The combination of the unconstrained energy
oidal clusters larger than £, have lower energy than the functional and the LWF's produces a linear scaling algo-
Ceo Spherical fullerene(iv) To make use of the results ob- rithm.
tained for the energetics of the clusters used to test the va- Our calculations are based on the tight-binding scheme.
lidity of several formulas proposed in the literature for the We have used two methods, which are very different in na-
dependencies of the cluster energy versus size, which wef&re (one being empirical, the otheib initio). The first is an
derived using macroscopic or empirical theories. empirical tight-binding(ETB) model for total energies of
The paper is organized as follows. Section Il contains &arbon systems developed by ¥tial.” The mod,el assumes
summary of the ordelt algorithm used, and the two elec- @ Pasis of four orbitals per C atofones and 3p’s), which
tronic structures models that we have utilized. Section 11127 Orthogonali.e., the overlap between orbitals in different

describes strategies to apply efficiently the omdetech- atoms is taken as zero, regardless Of. the interatomic  dis-
niques to these systems, and shows the typical accuracié%nce' The total energy in this scheme is computed as
obtained with the method. In Sec. IV, we describe our results
for the most stable shapes of large fullerenes, frogg ©
Cas40, Whereas in Sec. V we study the energetics of thewhereEyis the band structure energy, agd,is a repulsion
clusters and the dependence with the cluster sizeerm which is defined as a sum of pairwise potentials be-

Finally, Sec. VI contains the conclusions of this work. tween atoms. Both the Hamiltonian matrix elements and the

The objective of the present work is to study very large
usters, with sizes up to several thousand atoms. For these

Etot= Epst Erep ) (2
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repulsion potential are parametrized, and fitted as a function
of the interatomic distance, so as to reproduce experimental
and first principles information for different phases of car-
bon. This ETB scheme has proven useful for the study of
fullerenes and other forms of carbon. However, the empirical
nature of the method and the far from obvious transferability
of the Hamiltonian, makes it useful to compare the results
obtained with a more accurate and lesshocmethod. For
this reason, we have also used thie initio tight-binding
(AITB) method of Sankey and Niklewskl.This method is
based on the LDA approximation, and uses the non-self-
consistent Harris functional, together with a minimal basis of
localized, atomic like orbitals to describe the valence elec-
trons, and pseudopotentials to eliminate the core electrons
from the calculation. It is, therefore, a nonparametrized
method, which has been extensively tested with excellent
results for systems containing carbon, as well as other ele- FIG. 1. Schematic view of the areas enclosed by different values

ments. In this method, the total energy tak_es the same fo”@f the cutoffN, from the center of a bon@arked with a crogsfor
as Eq.(2), where the band structure energy is computed fromy,o gefinition of a LWE.

the nonparametrized Hamiltonian, and the repulsive term in-
cludes the ion-ion interactions plus correction terms to ac- _ )
count for overcounting of the Hartree and exchange correla@rbitals forming theo bonds, and op, orbitals for ther
tion energy inEy. Since the basis used is nonorthogonal, thebonds. Each of ther functions is centered at one of the
over|ap maitrix must be taken into account when ComputingﬁN/Z bonds of the cage network. The choice for the location
the eigenvalues ofl. of the = LWF’'s is more subtle, since there is only ome
function per each pair of atoms, and, therefore, the choice of
the center of localization is not unique. The distribution of
centers must be homogeneous, in order to optimize the cal-
As mentioned in Sec. II, the ord&-method employed in  culation and to ensure local charge neutrality when truncated
this work™®®is based on the use of localized wave functions,L\WF’s are used. The scheme that we have used here is sug-
which are truncated, instead of the extended eigenstates gested by the double-single bond structure gf:@he bonds
the Hamiltonian** There are many possible schemes to asjoining different pentagons are short in length, and, there-
sign the parameters defining each LWEssich as the posi- fore, contain ar bond, whereas the bonds shared by a pen-
tion of the center of each function and their radial cutoff tagon and a hexagon are long, singl®onds. We can, there-
like assigning two LWF'’s to the position of each C atom, sofore, assign ar LWF to each of theN/2 double bonds of
that a total of A are defined. However, a more sophisticatedCg,. For larger spherical or toroidal clusters, where the struc-
approach that takes into account the chemistry and locaure of double and single bonds is Idsts in graphitg we
bonding of the material can be much more advantageousse the same construction scheme: we start assigningc-
from the computational point of view. In this section, we tions to each of the bonds going outwards radially from the
describe the strategy that we have followed in this work topentagons, and continue assigningfunctions to bonds in
define and build the LWF's. alternating positions. It is easy to see that, using this proce-
The carbon cage clusters that are considered here have thare, the structures are covered witf2 bonds ofr type, in
following propertiesi(i) they contain only carbon atomdi)  such a way that each atom forms part of just one of these
there are no dangling bonds, afiiil) each atom holds cova- bonds, ensuring that the distribution is homogeneous.
lent bonds with three neighbors. These systems, therefore, Once the centers of the localization of the LWF’'s are as-
are formed by ar-bonded network of atoms witep? hy-  signed as described in the previous paragraph, a localization
bridization. Since there are four valence electrons in the 2 radius must be chosen for the LWF’s. Usually, a real space
and 2o orbitals of each carbon atom, three of them fosm cutoff R;, defined by a geometrical distance, is used to de-
bonds with an electron from each of the three neighbor attermine which atoms are included in each of the localized
oms, respectively. The remaining one electron contributes téunctions'* Instead, for the systems under consideration, we
the 7r orbitals of the cluster. Thus, for a cluster withcar-  find it useful to use a different definition. We define the dis-
bon atoms and M electrons, Bl electrons occupy M/2  tance between an atom and the center of the LWF as the
bonds of ac type andN electrons occupWN/2 bonds of a minimum integer number of bonds between the atom and the
T type. bond in which the LWF is centered. The atom is then in-
The structure of the network ef and 7 bonds suggest a cluded in the LWF if this distance is smaller than a cutoff
natural and efficient way of defining the localized functionsN.. Figure 1 shows the area enclosed by several values of
for the orderN calculation, their center of localization, and N, from the center of a particular bond. We see that for
the initial guess to start the band energy minimization. WeN,=0, there are just two atoms in each LWF, fég=1, six
define AN/2 LWF’s corresponding tar-type orbitals, and atoms are in the range, and so on. This definition has the
N/2 corresponding ter-type orbitals. As an initial guess for advantage that the number of atoms within the cutoff de-
the minimization, we use the bonding combinationsgf ~ pends only on the topology of the bonds, and not on the

Ill. LOCALIZED WAVE FUNCTION



53 STRUCTURE AND ENERGETICS OF GIANT FULLERENES: ... 2135

1 ° T i T T T T T -8.14 [ ?2’2) T T T T T T
o -8.16 |
1k e 4 E 5
SN * | S -8.18 |
o b= AN e 3 @3
F o=l "4 e iy ; o 820
- Ne=1 A e > i
Ne=2 a8 2 822}
PA A ' 2 |
001 | %%A 3 w (24)
e Y -8.24 | &
Ne=3 N I (3.4)
. . .  Ne=4i Nce=5 -8.26 PR T TR TP
W T T a4 5 6 7 0 200 400 600 800 1000
dIA] Computational time (sec)

FIG. 3. Energy of icosahedral,g, for several different cutoff
distancesN7 and N7 . The horizontal axis indicates CPU time for
one iteration of energy minimization on a SUN/Sparc-ipc worksta-
tion.

FIG. 2. Decay of the localized wave function off o func-
tions (white triangle$ decay much faster tham functions (black
circles.

curvature of the structure, and, therefore, on the size of thBave been obtained using these cutoff values.
cluster. The error in the ordeN solution is larger for the &g

cluster than for g,. This is due to the closing of the gap
rom 1.6 eV in Ggyto 1.1 eV in G,q. Increasing the cluster

articular system under consideration. For systems with a. .
E’:\r e ga t%/e LWF’s decay very rapidigx onen)tliallfﬂ) o ize further(and, therefore, decreasing the gap valdees
g€ gap, y Very rap P ' not seem to further degrade the accuracy in a significant

the value ofN. can be chosen to be small. For systems withyanner. For instance, in a graphite plaméere the gap is
a small gap, or for metals, the decay is much slof@gvower zero, the error forNJ=2 andN7=4 is 0.024 eV/atom for
law in the case of metdl§, and larger values dfi; must be  ETB and 0.053 eV/atom for AITBthe total energy per atom
used to preserve accuracy. Figure 2 shows the decay of ther the orderN solution is —8.362 eV/atom, compared to
LWF's versus the distance from their center, for the spherical- 8,386 eV/atom for the exact solution in the ETB model,
cluster Gy, obtained with the ETB method with an infinite and —157.848 eV/atom versus 157.900 eV/atom for the
cutoff radius. The distances corresponding to different valueg\|TB model).

of the cutoff N, are also shown in Fig. 2. As expected, the

LWF's decay exponentially with the distance. However, the IV. SHAPES OF FULLERENES

decay is much faster for the functions than for ther func- We have used molecular-dynamics techniques to obtain
tions. This characteristic is common to all carbon clustersninimum energy structures of the spherical and toroidal
considered, as well as to graphite. The reason is that thgjlerenes. In general, we used structures optimized with
states in the vicinity of the energy gap are primarilystates,  Stillinger-Weber (SW) potential® as initial coordinates.

so their localization is weaker than for states. Therefore, These where then relaxed using our orMemethod with
increasing the cutoff fowr orbitals will not provide much either ETB or AITB Hamiltonians. The relaxations were per-
improvement to the accuracy, while increasing the cutoff forformed using a dynamical quenching algorithm, either with
the 7 orbitals will have a much larger effect. There is obvi- Newtonian or with first-order equations of motion. The opti-
ously no reason to maintain the same cutoff for both types ofization continues until the maximum force is smaller than
LWF’s, so we have determined the optimum valuesNgf  0.04 eV/A?! This procedure does not warrant that the ob-
andN7 . We show, in Fig. 3, the total energies of icosahedraltained structures are the absolute minimum energy structures,
C,40 Versus the computational time per minimization itera-but rather local minima. However, further annealing and

tion for several combinations of the cutoff distanéé&and ~ quenching did not produce structures with lower energies.
N7. In this figure, the lower points correspond to higher We are, therefore, confident that our structures represent an

accuracy, and the points more on the left correspond to faster TABLE |. Total energies per atorfin eV) for icosahedral g and
computations. The increase dff from 2—4 for the same C,,, calculated with several combinations of cutoff distandés
value ofNJ=2 improves the the accuracy, while not increas-and N7, for the ETB model. In parentheses, we show the error
ing the computational time much. On the other hand, increaseercentage, with respect to the exast¢) results.

ing N from 2—-4 for the same distandd? =4 does not

The choice of the localization rand¢, depends on the

change the accuracy significantly, but increases the compu- (Ne.N) Ceo Conn
tational time drastically. To quantify our results, the total 2,2 —7.942(0.82% —8.151(1.4 %
energies of icosahedrakgand G, calculated with the ETB 3,3 —7.991(0.21% —8.215(0.58%
model, using different combinations of cutoff distances, are (4,4 —8.000(0.10% —8.242(0.25%
listed in Table .Ng=2 andNZ=4 is the most optimum set (2,9 —7.995(0.16% —8.237(0.31%
of cutoff values, providing excellent accuracy for both clus- (0,) —8.008 —8.263

ters. These results hold for the AITB method as well. In what
follows, and unless specified otherwise, the results presented
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TABLE II. Bond lengths(in A) of spherical G,.

Double bond Single bond
Presen{ETB) 1.396 1.458
Presen(AlITB) 1.400 1.449
sw?2 1.592 1.604
TBP 1.396 1.458
LDA € 1.40 1.45 FIG. 4. Optimized G4, cluster, viewed along three different
NMR ¢ 1.40+0.015 1.45-0.015 axes:(a) a twofold rotation axis(b) a fivefold rotation axis, ancc)

a threefold axis.

8Reference 29.
bReference 18.
‘Reference 22.
dReference 23.

closely related with the AITB method used here, combined
with an orderN algorithm developed by Yar@. In their
study, Yorket al. considered several different geometries as
initial configurations, and relaxed the structures following a
accurate representation of the ground states for each clustsimplex algorithm(preserving the icosahedral symmetry

In order to establish the accuracy of the ETB and AITB Two of these structures where spheri@gnoted “sphl” and
Hamiltonians and of the ordeé-algorithm used in this work, “sph2”), and three of them where facetéffacl,” “fac2,”
we analyze first the results for the spherical fullereng.C and “fac4”). These relaxations yielded two different struc-
Table 1l shows the lengths of single and double bonds ofures: an almost spherical structur&y,,” with lower en-
spherical G obtained in our calculations, compared to otherergy, and a polyhedral structurdy,,” higher in energy by
calculations and with experimental data. Our results fronD.07 eV/atom. The parameters defining the initial and final
ETB and AITB are in excellent agreement with those ofstructures and their energies as calculated by érél. are
LDA calculationg? and NMR measuremeft.In particular, summarized in Table Ill. The main result of their calculation
the results of the ETB Hamiltonian are exactly the same ags that the spherical clusters always have lower energy than
those obtained by Xet al,'® using the same Hamiltonian, polyhedral clusters, in contrast with the results of others. In
but no ordemM approximation. Therefore, our ordBr- order to shed some light in this issue, we have used our
method provides excellent accuracy for structural propertiesAITB model with the ordeN formulation to relax the G,

The next spherical cluster that we have studied jgC cluster. We start with the coordinates from a relaxation of the
This cluster has been considered by several authors, whidiructure with SW potentials, and follow a dynamical
concluded that the structure is polyhedrally faceted, with ajuenching algorithm described above. From this calcula-
significant deviation from sphericity. Yoshida and Os&wa tions, we obtain the structure that is shown in Fig. 4. The
and Dunlapet al?* reported structures, derived from two dif- parameters defining the structure are shown in the last row of
ferent empirical potentials, which were practically identical, Table Ill. We see that the optimized structure for the,£
with a standard deviation from a sphere of 0.17 A. Ad@ms cluster is significantly faceted, with a standard deviation
also found a faceted structure using the same AITB model asom sphericity of 0.153 A. This seems to confirm the results
the one used in this work. Recently, however, York, Lu, andof empirical potentials calculations, and is in disagreement
Yang'® reported results of a lower energy almost sphericaith the findings of Yorket al. In order to check that our
structure for G4o. The calculations are based on a modelstructural minimization was indeed converged to the most

TABLE lll. Geometric parameterén A) and energies per atofin eV, referred to that of a graphite sheér different forms of the
spherical G4, obtained with the AITB method. For the energies of the clusters, we show the results of the AITB Hamiltonian obtained both
with exact diagonalizatiofunderE.,,.) and with our ordeN formulation (underEqy)). For comparison, we show the orderresults of
York et al. (underEygy) -

Morphology Bonds b, ,b,,b3,b,,bs)? Radii (r;,r,,rz)? r(o)® Eomy Eexact Evork
sph1® (1.44,1.43,1.44,1.43,1.44 (7.12,7.12,7.1p 7.120(0.000 0.185 0.169 0.128
sph2° (1.43,1.44,1.43,1.43,1.44 (7.12,7.12,7.1p 7.120(0.000 0.194 0.176 0.128
fac1® (1.48,1.44,1.48,1.44,1.48 (7.03,7.42,6.97 7.098(0.188 0.502 0.488 0.248
fac2° (1.47,1.43,1.47,1.43,1.47 (7.63,7.21,6.7p 7.085(0.367 0.241 0.232 0.278
fac4® (1.45,1.40,1.47,1.45,1.46 (7.49,7.19,7.0p 7.195(0.180 0.141 0.131 0.208
Syork ¢ (1.43,1.43,1.45,1.42,1. 34 (7.01,7.13,7.1% 7.106(0.056 0.210 0.195 0.108
Pyork © (1.43,1.42,1.51,1.47,1.46 (7.66,7.19,7.07 7.247(0.249 0.212 0.200 0.178
yod (1.43,1.38,1.45,1.42,1.43 (7.36,7.06,6.92 7.065(0.180 0.122 0.111
This work (1.42,1.38,1.45,1.42,1.43 (7.32,7.06,6.9% 7.065(0.153 0.120 0.108

8nequivalent bonds and radii. See Ref. 10 for the definition.
PAverage radius and standard deviatigm parentheseés
‘Optimized structures obtained by Yoet al. (Ref. 10.
doptimized structure obtained by Yoshida and OséRef. 8.
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TABLE IV. Average () and standard deviationo) of radii and planarity¢=360°—(68;+ 6,+ 63)
around pentagons in the spherical clusters. SW, ETB, and AITB indicate results obtained using Stillinger-
Weber potentials, the empirical tight-binding method, andahbenitio tight-binding method, respectively.

r(o,olr) ¢
SW ETB AITB SW ETB AITB
Coso 7.86(0.29, 0.037 7.06(0.17, 0.02% 7.06(0.15, 0.02} 13.16 8.92 7.88
Css0 11.75(0.46, 0.040  10.53(0.36, 0.034  10.53(0.35, 0.033  13.13 9.92 9.19
Coeo 15.64(0.64, 0.04]1  14.02(0.53, 0.0383  14.01(0.52, 0.037  13.11 9.95 9.28
Coie0 21.65(1.18, 0.054  20.95(0.82,0.039  20.95(0.82, 0.03%  13.10 10.05 9.31
Cagq0  29.13(1.68, 0.058  27.95(1.08, 0.039 13.07 10.05

stable structure for the £, cluster, we have also calculated Cag49. We see that, although the clusters are polyhedral, with
the energy of all the structures considered by Yetlal. The  flat facets between the protruding pentagons, the edges join-
results are also shown in Table Ill. We see that our optimizedng the pentagonal sites are not sharp, but rounded, in order
structure is significantly lower in energy than the rest of theto minimize the bending energy. Our calculations confirm the
structures considered, including the minima found by Yorkresults obtained with empirical potentials by Mai al.’

et al. Only the polyhedral structure proposed by Yoshida andvho predicted polyhedral shapes for the large fullerenes.
Osawa® which is very similar to our optimized structure, is Also Witten and LI predicted shapes similar to those ob-
energetically comparable to it. It is interesting to see thatained by us, based on elasticity arguments. They, in fact,
even the ordering of energies is very different for our resultgredicted that the elastic energy would be concentrated in the
and those of Yorlet al. In order to check that our ordé&-  round edges regions, whereas the flat faces would be similar
results are genuine, and not an artifact of the oidesp- to graphite. These results emerge from an analysis of the
proximation, we have computed the exact endmgighin the  balance between the energy cost of bending at the edges, and
AITB Hamiltonian), using diagonalization for all the struc- the elastic energy that represents any deviation from the flat
tures. We see in Table Il that the energy ordering is the samgraphite structure: bond stretching energy is stored in the
as the one obtained in the orderealculation(in particular, planes for any deviation from the perfect polyhedral shape;
our optimized structure is still the minimum energy struc-the balance between this energy and the energy cost of bend-
ture). The difference between the exact and the oidee- ing at the edges determines the shape of the clusters. Witten
sults seems to be a shift of about 0.01-0.02 eV. Most of thisnd Lu predicted that the clusters would have flat fadets
error comes from the fact that the accuracy of the oller- minimize the elastic energybut soft, round edgedo mini-
method for graphite is slightly different than for the,fg  mize the bending energlyOur results agree with these pre-
fullerenes. We conclude, therefore, that our ofderesults  dictions.

are accurate, and describe properly the energetics of the Recently, Lu and Yang performed a study of large
C,4 Cluster, within the AITB model utilized. The results fullerene balls, similar to the one reported here. They used
obtained using the ETB model are essentially the same, dbe same method as the one used by Yarkl. for the study
discussed in the next paragraph, which indicates that thef C,,,, and obtained qualitatively similar results for the
preference towards a polyhedral shape is a robust resulgrger clusters: large, isolated clusters were predicted to be
since it does not depend on the particular Hamiltonian utispherical, in contrast with our findings. Based on their re-
lized. The source of discrepancy between our results andults, Lu and Yang explained the experimental observation of
those of Yorket al. is unknown at this point. Since these
authors use a Hamiltonian model, which is rather similar to
the AITB model used by us, one would expect the same
qualitative results.

We have performed similar calculations for larger spheri-
cal fullerenes, using both the ETB and the AITB models. We
have considered the clusters{g, Csag, Cgeo: C2160, @nd
Cag4o- For all the casegexcept for Ggsg, Which was com-
puted only with the ETB modgiminimum energy structures
were obtained using both Hamiltonians. The general result is
that, for all sizes and with both models, the clusters are
markedly polyhedral, with a larger deviation from sphericity
for the larger clusters. We show in Table IV the average
radius and the standard deviation from sphericity for all the
clusters, computed for the optimum geometries obtained
with SW potentials and with the ETB and AITB models. The
agreement between ETB and AITB is remarkable, and con-
firms that the ETB model of Xt al. is an excellent Hamil- FIG. 5. Nonperspective view of the optimized structures of large
tonian for these systems. Figure 5 shows a scheme of thfellerene balls, obtained with the ETB model, and viewed from a
structures optimized with the ETB model, from,fg to  twofold symmetry axis.
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spherical, multishell fullerenesas a consequence of the sta- 05
bility of spherical single-shell fullerenes. Our results contra-
dict these arguments, and suggest that there must be a differ-
ent mechanisnilike intershell interactionsto explain the
stability of spherical multishell fullerenes.

The results of Table IV indicate that, as a general result,
the optimum structures of large fullerene balls are polyhe-
dral, with a larger deviation from sphericity for larger sizes.
The ratio of deviation to the average radius of the cluster
saturates, however, for about 2160 atoms. This seems to in-
dicate that these clusters have reached the asymptotic large
size regime, and increasing the size roughly preserves the
shape of the cluster, with rescaled dimensions. Another mea-
sure of the nonsphericity is provided by the amount of non-

AE (eV/atom)

planarity of the surface at the pentagonal sites. In the poly- 0.0 L L : - —0
hedral structures, the pentagons are protruding, and, ] 1000 2000 3000 4000
therefore, there is a large deviation from planarity at those Number of atoms

sites. Following Yorket al,'° we define the planarity at an

atom by the angleb=360°—(6,+ 6,+ 63), whered,, 0,,
and 65 are the angles formed by the threebonds between
the atom and its three nearest neighbors. Therefbpre0®

for a planar site. We show, in Table IV, the results of the
planarity angle¢ for atoms in the pentagons, for all the

clusters from G,ot0 Csgqp- We see that, as observed in the . :
deviation from sphericity, the planarity at pentagonal SiteJullerenes, obtained both with the ETB and AITB models. It

approaches a constant value for the larger clusters, aga|ﬁ worth mentioning that there is remarkable agreement be-
E\/een these two models for all the cases studied, which con-

indicating that the asymptotic region has been reached. It i . .
indicating ymprolic regi I rms that the simple ETB model produces a very reliable

interesting to observe that the quantum-mechanical resultd inti  this kind of carb terials. Table V sh
both with the ETB and the AITB models, predict a behavior, escription of this kind of carbon materiais. 1able V Shows
the values for the relaxed spherical fullerenes, with both

which is qualitatively different from the results of Stillinger- o :

Weber potentials. Whereas the increase in the rafio is Har:nll_tonlla? "models. The results ?f bllzlg.ﬂ? Sh%\:\' tr;at t'zel

observed in all cases, the SW potentials predict a decrease encal fulierenes are more stable than thé toroida
ullerenes of the same size. The toroida),&is still less

the nonplanarity at pentagonal sites with the cluster size, : .
whereas the ETB and AITB models predict an increase foF.table than icosahedrakg; although larger toroidal clusters

larger sizes. This indicates that, although empirical model&r€ More stable th‘f’m6§ These r'esglts agree With previous
galculatlons done in the tight-binding approximaftomnd

with ab initio self-consistent field calculatior8.

FIG. 6. Total energy per atom for sphericeircles and toroidal
(squarep carbon cage clusters against the total number of carbon
atoms. The open symbols correspond to the results of the ETB
model, and the black symbols to the AITB model.

clusters, the details are far from accurately described.

We have also initiated a study of the shapes and energies As shown in Fig. 6, the _energies of the fu_llerenes ap-
of toroidal carbon clusters. Itoh and co-workdr&® pro- proach the energy of graphite, as expected since the local

posed several possibilities of toroidal clusters, using molecut-’Ondlng in the fullerenes is very close to that in graphite, and

lar dynamics with SW potentid® determined for graphite increasing the size of the cluster should make the energy

by Abraham and Batr¥ The negative curvature is obtained @PProach the value of a graphite plane. Moreover, as we have
by a combination of pentagoriim the outer face of the toruis seen, in the large fullerenes the clusters are faceted, and large

and heptagongin the inner fack Very similar structures portions of the surface are flat, so that the resemblance to

have been found experimentaffyalthough multilayed and graphlte IS ever more pronounced. However, the 'detlalled
larger than the theoretically proposed structures. We hav¥ay 1N .Wh'(?h the energy approaches that of graphlte Is-an
relaxed the structure of toroidalGy, Cago, and Cogo, bOth interesting issue, _Whlch has attracted_ some interest in th_e
with the ETB and AITB models. The tendency of the surfacePast Several StUd'e.S were made to de_nve expressions for_thls
curvature for the toroidal clusters is very similar to that fordependence, reaching different functional forms depending
the spherical clusters. Only the regions around the pentagons

are protrusive and the planarity around the pentagons TABLE V. Total energies relative to the graphite monolayier
reaches the same value as that of spherical clusters. An efV/aton).

tensive study of the shapes of these and larger toroidal clus=

ters is underway, and will be published elsewh®re. ETB AITB
60 0.3674 0.3279
V. ENERGIES OF FULLERENES 240 0.1253 0.1204
540 0.0693 0.0726
We have investigated the total energy of the relaxed 960 0.0430 0.0511
fullerenes, as a function of their size. Figure 6 shows the 2160 0.0166 0.0221
total energy per atom relative to that of monolayer graphite. 3840 0.0084

We show the results for the spherical and the toroidal
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TABLE VI. Fits of calculated energies to functional fornig—E,. E(n) refers to the number of data
points usedn=3 refers to a fit only to Ggp, Cs169, @and Ggag; N=6 refers to these plus &g, Cs4g, and
Cs40. The resulting fits are in units of eV/atom.

E(3) E1(6) E2(3) E2(6) Es(3) E3(6) E4(3) E4(6)
A 30.71 34.81 86.83  —3.06 12.20 11.28 138.6 9.06
B 10254  -766.8  —6.62 6.13 1.18 0.783

x> 1.1x1077 1.6X10°% 4.6x10°° 52x10°° 4.1x10°° 23x10* 2.4x10°° 7.9x10°°

on which assumptions were made about the shape and abdatms offer an acceptable fit to the data of Table V. The best
the most important contributions to the energy. We are awareverall fit for N,=6 is from the Tersoff formE,, though it

of three theories for the evolution of fullerene energy as ashould be emphasized that the other functional forms are also
function of n.®"13 The assumption of spherical symme- quite reasonable. What is perhaps of greater interest is the
try and consideration of fullerene topology, leads to ancase of fits to the three largest fullerenes. The best fit is for a

asymptotic functional form? simple power-law withN~ 117 scaling. This result provides
5 some evidence that a simple power-law decay is the appro-
Ei(n)=A/n+B/n%, () priate asymptotic form, but with only three points, this view

for some coefficient®\ and B. Such a form should be ex- Must be held with caution. Certainly the Tersoff and Adams
pected to be most successful for perfectly sphericaforms cannot be discarded. Each of these forms has two free
fullerenes, since there is no assumption of faceting in th@arameters adjusted to minimizé. The form of Witten and
model. Adamset al*® usedab initio local basis methods to Li has only one parameter, and also fits reasonably well. In
obtain energies for many fullerenes, with up to 240 atomsFig. 7, we plot our computed energies, and a pair of illustra-
and found Eq(s) to provide a Satisfactory fit to their ener- tive fits. As the plot IS doubly |Ogar|thm|C, its n-ear ||near|ty
gies, even for nonicosahedral balls. A second model is due tguggests that a power law is reasonable, particularly for the
Tersoff® who has used elasticity theory to compute asympJast three points, as we have seen.

totic estimates of the energies_ H|S functional form iS Unfortunately |t iS d|ff|Cu|t to indicate a Strong preference
for one of these models over the others. For one thing, the
E»(n)=A/n+BIn(n)/n. (4)  values of the fitting parameters arery sensitive to the num-

. ber of points usednot surprising with such a small number
Tersoff also found good agreement with data generated frorgf poinr')[s). In addition thF()a bagic nature of the functional

his empirical potential for carbof?. Witten and LT have cor- forms is so similar, especially with two free parameters, that

rectly predicted polyhedral structures and performed calculaé simple judgment does not seem to be possible. In the pres-

fcion_s, which suggest tha_t the deviation of energy from graph.'ence of more data, and a detailed understanding of the nature
lte 1s mostly due o strain at face'g fages' Slnce.the €NETAY 18t errors in the calculations, the methods of Bayesian model
predicted to scal_e like the ball radigs”®, the relative energy selectiod’ would be appropriate to assign probabilities to
should behave like each model. This would enable a quantitative measure of the
E4(n)=A/n5s. (5) trade-off between the highey? of Witten and L{ and the
smaller number of parameters being fit, for example.
For completeness, we will also considered the general single

power-law decay:

E4(n)=A/nB, (6)

To attempt to gauge the suitability of these predictions, we
have performed least squaresitsf our energies to each of
E,—E,. Since the energies obtained with the ETB and AITB
models are quite similafsee Table V¥, we used those from
the ETB model to perform the fits. We did two sets of fits,
one including the energies of &Bix) fullerenes, and another
with just the largest thre€Cggg, Cs169, and GCsgag. The
latter calculations were performed to obtain better estimates
of the asymptotic behavior of the energy. We also report the
squared deviation of the fits:

4.0 5.0 6.0 7.0 8.0 9.0
Np In (N)
X2:21 (E'—E))?, (7)
=
. ] FIG. 7. Log-log plot of cluster sizeN) versus relative energy.
vyhere E'Is our calculated energy; is .the value of the  Dpiamonds are the result of the present calculation, and the line is a
fitting function (one of E;—E,), andN,, is the number of guide to the eye. Two fits to the energies are shown. Squares depict
points (3 or 6 used in the fitting. The result of these fits is a power law[E,(6)], and triangles depict the Tersoff form
summarized in Table VI. It is clear that all the proposed[E,(6)].
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VI. CONCLUSION in single-shell clusters as the cause of the observed sphericity
We have used molecular-dynamics techniques to study thof multishell fullerenes. We have also shown that the spheri-

) . : Sl cage clusters have lower energy than toroidal cage clus-
energetics and shapes of giant fullerenes. The atomic forcefgrs of the same size. However, the toroidakgand larger
and total energies were computed from the electronic struc- ' '

: ; PP hy clusters have larger cohesive energies than the fullergpe C
ture, using tvx'/o.(_d|fferent tight pmdmg modefsne gmplrlcal, and they are energetically stable. We also have studied the
the otherab initio). The solution of the electronic problem

was obtained using a recently developed oidemethod, detailed way in which the energy of the spherical fullerenes

which produces the solution with an effort that scales ”n_approaches that of monolayer graphite when the size of the

early with the size of the system, therefore allowing the Cal_cluster is increased and used our computed energies to test

culation of systems with thousands of atoms. We have deveﬁeveral functional forms proposed in the literature.

oped efficient techniques to apply these ordemethods to

the specific .problem of large fullerenes, by usin_g two di_ffer- ACKNOWLEDGMENTS

ent cutoff distances for the- and = wave functions. This

reduces the computational time, while maintaining an excel- One of us(S.l.) acknowledges funding from Hitachi, Ltd.
lent accuracy. The results of our simulations show that, foand would like to thank Dr. Sugie and Dr. Ihara for their
large spherical clusters, the polyhedrally faceted shape igncouragement. This work was partially supported by the
preferred, both for the empirical and for the initio calcu- NSF under Contracts Nos. DMR-89-20538 and DMR-93-
lations. These results contradict recent cldfi&that iso- 22412, and by DOE Grant No. DEFG 02-91ER45439. Some
lated clusters may have rather spherical shapes, and rule oot the computations were performed in the Convex C-3880
the possibility of an intrinsic stability of the spherical shapeat the NCSA.

*Present address: Departamento deiday, Universidad de Oviedo M. Ho, Phys. Rev. B46, 9761(1992.

(Spain. 190. F. Sankey and D. J. Niklewski, Phys. Rev4B 3979(1989
1H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. ?°F. H. Stillinger and T. A. Weber, Phys. Rev. B, 5262 (1985;
Smalley, Nature(London 318 162(1985; W. Kratschmer, L. 33, 1451E) (1986.
D. Lamb, K. Fostriropoulos, and D. R. Huffmaibjd. 347, 354 2lIn the case of the spherical,gsand Csga, the tolerance in the
(1990. maximum force was reduced to 0.02 eV/A. A uniform expansion
2See the collection of review articles published in MRS BXIX , or contraction of a large fullerene produces small atomic forces,
11 (19949. because the stress is distributed over the surface of the sphere,
3D. Ugarte, Nature(London 359, 707(1992; Europhys. Lett22, with a very small strain on each bond. Therefore, smaller toler-
45 (1993. ances in the forces are required for larger clusters.

4s. lijima and T. Ichihashi, NaturéLondon 363 603 (1993;  22Q. Zhang, J. -Y. Vi, and J. Bernholc, Phys. Rev. L&6, 2633
364, 737E) (1993; D. S. Bethune, C. H. Klang, M. S. de Vries, (1991).
G. Gorman, R. Savoy, J. Vazquez, and R. Beyibid, 363 605 23C. S. Yannoni, P. P. Bernier, D. S. Bethune, G. Meijer, and J. R.
(1993. Salem, J. Am. Chem. So&13 3190(1991J).

SA. M. Rao, P. Zhou, K.-A. Wang, G. T. Hanger, J. M. Holden, Y. 2*B. I. Dunlap, D. W. Brenner, J. W. Mintmire, R. C. Mowrey, and
Wang, W. -T. Lee, X. -X. Bi, P. C. Eklund, D. S. Cornett, M. A. C. T. White, J. Phys. Chen®5, 8737(199J.

Duncan, and I. J. Amster, Scienc259, 955 (1993. 25G. B. Adams(unpublishegl
6J. Tersoff, Phys. Rev. B6, 15 546(1992. 28W. Yang, Phys. Rev. Let66, 1438(1991).
"T. A. Witten and H. Li, Europhys. Let23, 51 (1993. 273, Itoh, S. Ihara, and J. Kitakami, Phys. Rev4B 1703(1993.
8M. Yoshida and E. Osawa, Fullerene Sci. Teth55 (1993. 283, |hara, S. Itoh, and J. Kitakami, Phys. RevB 12 908(1993.
9A. Maiti, C. J. Brabec, and J. Bernholc, Phys. Rev. L&f.3023  2°S. Itoh and S. lhara, Phys. Rev.4B, 8323(1993.
(1993. S0F, F. Abraham and I. P. Batra, Surf. S2D9, L125 (1989.
10D, York, J. P. Lu, and W. Yang, Phys. Rev.4®, 8526(1994. 315, lijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Le#,
3. P. Lu and W. Yang, Phys. Rev.4®, 11 421(1994. 3100(1992; M. Endo (private communication
12D, Ugarte, MRS BuUllXIX , 39 (1994). 323, Itoh and P. Ordéjo(unpublishesl
13G. B. Adams, O. F. Sankey, M. O’'Keefe, J. B. Page, and D. A.*3J. K. Johnson, B. N. Davidson, M. R. Pederson, and J. Q. Brough-
Drabold, Scienc®56, 1792(1992. ton, Phys. Rev. B50, 17 575(1994.
1p, Ordejm, D. A. Drabold, R. M. Martin, and M. P. Grumbach, 34J. C. Greer, S. Itoh, and S. lhara, Chem. Phys. 1220 621
Phys. Rev. B51, 1456(1995, and references therein. (1994.
15p, Ordejm, D. A. Drabold, M. P. Grumbach, and R. M. Martin, 3°J. Tersoff, Phys. Rev. B7, 6991 (1988.
Phys. Rev. B48, 14 646(1993. 38W.H. Presset al, Numerical Recipes, The Art of Scientific Com-
16 Mauri, G. Galli, and R. Car, Phys. Rev.H, 9973(1993. puting (Cambridge University Press, Cambridge, England,
"W, Kohn, Phys. Revi15 809 (1959. 1986.

8C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys. ¥’G. L. BretthorstBayesian Spectrum Analysis and Parameter Es-
Condens. Matted, 6047(1992; C. Z. Wang, C. T. Chan, and K. timation (Springer-Verlag, Berlin, 1988 Chap. 5.



