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Role of phason defects on the conductance of a one-dimensional quasicrystal
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We have studied the influence of a particular kind of phason defect on the Landauer resistance of a Fibonacci
chain. Depending on parameters, we sometimes find the resistance to decrease upon introduction of defect or
temperature, a behavior that also appears in real quasicrystalline materials. We demonstrate essential differ-
ences between a standard tight-binding model and a full continuous model. In the continuous case, we study
the conductance in relation to the underlying chaotic map and its invariant. Close to conducting points, where
the invariant vanishes, and in the majority of cases studied, the resistance is found to decrease upon introduc-
tion of a defect. Subtle interference effects between a sudden phason change in the structure and the phase of
the wave function are also found, and these give rise to resistive behaviors that produce exceedingly simple and
regular patterns.

[. INTRODUCTION of integrability, as we will see belowBut in addition to this
irregular variation for a pure Fibonacci chain, we here also
According to recent experimentsjuasicrystals have cu- attempt a study of the variation of the Landauer resistance
rious (for metallic materials transport properties. For ex- for the system with a phason defect as well, both with respect
ample, anomalously high values of the low-temperature reto the length of the sample and also with respect to the po-
Sisti\/ity have been reported, and the resistivity goes dowﬁmon of the defect. The comparison of the resistances be-
with introduction of defects or with increase of temperature tWeen the pure system and the system with the defect shows
The anomalously high resistivity has been partly accounte§ome interesting regular patterns, provided that we are close
for by the existence of a pseudogap at the Fermi energy. FdP special points associated with the vanishing of the invari-
the temperature or defect dependence there is no clear codt | of the underlying dynamical mapon which points,
sensus yet. In numerical simulations of two-dimensionalPoth problems are integrabldn addition, in the majority of
(2D) systems, fluctuating behavior for the resistance of a/alues of the parameters, the pure system is found to be more
system with defect§with randomdisordey with respect to ~ resistive than the one with the defect. _
that of a pure System is Observed, nameiy the resistivity can It is also demonstrated that our use of a continuous model
either go up or dowA. is critical in obtaining our results. As we show, these results
Here we attempt to address these behaviors for a 1D Syg\zould have actually been missed had one first made a tight-
tem by focusing on the electronighase relationsin real ~ binding approximation(i.e., keeping only nearest-neighbor
space that actually determine the conductance. We study, f@verlaps. Our work is therefore a concrete example of the
example, the scattering of electrons on a quasiperidigic ~ dange? that the usual discretized approximations incorpo-
bonaccj arrangement of-function potentialga continuous ~rate, especially when systems with quasiperiodicity are con-
model with the full phase coherence includleéifter deter- sidered, where subtle interference effects between the phase
mining the Landauer conductance of a finite part of such #f the wave functions and the “phase” in hyperspace can be
system, then we introduce a particular type of defect of a stefxpected.
form in hyperspace(called “phason defect” from now on
and we study how this defeafluences those phase rela- [l. ATIGHT-BINDING MODEL
tions This is therefore a study of the effect of an abrupt i . o )
“phase” change in the structuréwith “phase” defined in _Let us first use atlght-blndmg model, in order to compare
hyperspaceon the phase coherence of the electronic wavavith the fuller treatment that is given later in Sec. III.. We
function in real spacgwith phase defined in the usual analyze the standgrd scattering problem by connecting an
quantum-mechanical way[The role of the initial “phase” outside conductotsimulated by a simple periodic chaito

of pure chaingwithout defects on the resistance has been the left and to the right of our finite system. We then study
studied by other authofd. the scattering of an electron coming from the left with a

The quasicrystalline structure can induce exdtiziti- ~ Wave Vectok, and we determine the Landauer resistdrufe
cal”) stated that are intermediate between localized and ex2Ur finite system(ratio of the reflection to the transmission
tended states. Especially in the case of a chain wioten- coefflmen). The method used for this is the standard transfer
tials with positions or strengths arranged in a pure FibonacdMatrix metho_d7. _ _ _ .
sequence, all states are critical independent of values of 1he Hamiltonian for a generaimixed tight-binding
parameter§.One consequence that we observe, fdinite ~ Model is

part of the Fibonacci chain, is a rather unpredictably fluctu-

ating variation of the Landauer resistance with the length of H=2, eln){n|+t,(|n}{n+1|+|n+1)(n|) (1)

the samplé (except when we are on special energy-regions . "
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with ty=tg=ty, andE — e, =2ty c0ka (the standard tight- €our— €2

binding band structure for the outside periodic chaivhere E—e P (T SinEN ¢

k is the incident wave vectos is the lattice constant of the (b) Sl —=——> : (3)
outside conductof“out” ), andE is the incidence energy. 2t 7 sin®ka sinffé

The Schrdinger equation then reads in matrix language with ¢ defined by coslp=(E— €)/2t.
Case(a) gives oscillatory behavior of the resistance with

¥ ¥ E—ént1 _ t, size, while caséb) gives exponential increase for large size.
(\P””) =M ( \;H) with M,=[ thez ter | In the intermediate casé&( €)/2t—1 we have
+1
" " 1 0 €Eout— € 2
@ 7z "2t ,
The Landauer resistancor spin4 fermions is then, in 7 " sirPka N",

o 2
atomic unis(ri/e%) i.e., the resistance grows as the square of length. In the limit

N—o case(a) corresponds to allowed energiébands,
= |-|-12|2 while case(b) to forbidden oneggaps.
=4 One can also trivially solve a periodic system with more
with the matrixTy=0"1.S 1. P,-S, whereP is the total complex unit celli.e., quasicrystalline approximaitsn this

transfer matrix, namel,, =M M .--Mn. and® and  €a@se the phas¢ depends on the internal structure of the unit
S are defined k;y NTTN-1ITIN=2 o cell and is a more complicated function of various param-

eters, but straightforward to determine for a given unit cell.
e-ikNa g Finally, the introduction of even a single defect leads to
( ikNa) interference effects that can easily be studied through this
0 € method. It is found’ that the behavior in the presence of a
and defect seems to be correlated with whether we are in @se
or (b) above.

%
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e—ika eika
s:( 1 1 ) . B. Fibonacci and a system with phason defect
Take for simplicity an off-diagonal moddle,= ¢€,,=0)

and setE=0 (center of the outside bahcdHopping elements

A. Example: Periodic system t's are forced to take two values,,t, arranged in(1) a
In this caset;="--=ty_,;=ty=t andg=€,="-==e. Fibonacci way(2) with a phason defedtorresponding to a
ThenPy=M", and two cases appear naturally “phase” change of 2#in hyperspace, with=(y/5+1)/2 the
golden mea)) but in both cases in such a way as to comply
€oui— €2 with boundary conditionsy=t,=t,=t,. This imposes re-
E—e R 2t siPN¢ strictions on the possible values Wf
(a) ’ 5 | <12 7= eitka Sitd N=5,13,18,26,34,39,47,52,60,...(Their difference is
’ seen to be a Fibonacci arrangement of the numbers 8 and 5.
with ¢ defined by cosp=(E—€)/2t For example, foN=39 we have
Pure(b)abaababaabaababaababaabaababaabaabalbaa
2/7—shifted(b)aababaabaababaababaabaababaabaababa@dba
Defected(b)abaababaabaablsbabaabaababaabaababaaba,
|
where in the last line we show only one of the possible B YTl yTst 2
places where the defeéte., an abrupt “phase” change of (F) =(f) (4)
2/7 in the structure; see Fig) tan be introduced. defect

We now give an analytic solution for the Landauer resis-with y=t,/t,, ands an integer powetof both sign$ that is

tances of the two systenggure and the one with the defect an irregularly fluctuating function of the lengtd (around
For a givenN we find that the values=0 corresponding to complete transparency

We conclude (for y>1) that for s>0—(%.7)getect
<(#/7)pure- We see that the appearance of such cases
(ﬁ) (,ys_ ,y—s)Z (which we will call “favorable”) depends on the value of
pure ,

5 s(N), namely on the behavior of the pure chain with length
(this behavior fluctuates in an irregular fashion

N
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0 Kos(n+1)= cosk(xnﬂ—xn)JrW? SINK(Xp 41— Xp)-
j g Y
0 -7
> /< AL
° (d +7 A. Comparison with Sec. I
—~~ 7 Let us pause for a moment to see how a tight-binding
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approximation is usually derived. To change to a localized
description one typically writes the wave functidn(x) in

>{/ 1 ,\ - terms of localized stateg, , namely¥ (x) =2,,C, ¢, (X—X,,)
4 Pls with én(X—X,) = VA ,e "=l and then neglects the over-
v e lap between distanté,’s; assuming that only nearest-
|-~ LT neighbor overlaps are significant one obtains a tight-binding

model with site and hopping elemetfts

1

FIG. 1. Hyperspace construction of the standard Fibonacci chain €= " 5 ?\ﬁ
(top) and a 2f shifted chain(bottom) (2/7is the “initial phase”. 6,
(in units where the width of the window i) &nd it is equal to the B SN M
displacement of the physical line in the perpendicular diregtion thne1™ = VApRpe € Tnetinstfnl ®)

The resultir)g chains, as well as the way that the defe(.:'F is.intro]t is important to note then that in the special case of a
duced, are |I|t_Jstrated on the top left, through a step modification OEontinuous model with identical strengthsand quasiperi-
the physical line. odic arrangement§Ax’s taking two values in a Fibonacci
sequencg which we later analyze in detaitee Sec. Il B,
For large values o we get 50% of this favorable be- we would just obtain a simple off-diagonal tight-binding ap-
havior. (We have also carried out cases of sequeliaeith proximation(since in this case all the, are identicgl. This
many defects, where we also find irregularly fluctuating be-demonstrates a deficiency of the tight-binding approxima-

havior, but with thescaleof fluctuations being much highgr.  tion, on which we now elaborate.
In the case of Fibonacci arrangemefiat us say of both

€s andt’s and forN=F, (a Fibonacci numbgmwe have in
the tight-binding approximation[with definitions P,
=Mg ---My, with M’s given in(2)] the well-known recur-

In this continuous case, which has the advantage of notlVe schemé,,,=P,_,-P,, with starting matrices
suffering from truncation approximations, the matrix form of

Ill. CONTINUOUS SCHRO DINGER EQUATION MODELS

the Schrdinger equation results from matching wave func- E-ea _ 1
tions and derivatives at scattering points. This yields a gen- P,= ta ,
eralized Poincare mapof the following form 1 0
and
Ve =M, Vi (5) E-ea tp E-e ta
\Pn ‘I’n—l - e
P2= ta ta ty ty
1 0 1 0
with )
and hence the usual trace Mag . ;= 2X,Xp_ 1 — X, [With
the definitionx,=3tr(P,)]. This map has the well-known
Ko(ht1)  Ki(n+1) :cnvariagt I :|><ﬁ+.1+ >;ﬁ+ ;}(ﬁ,lb— 2Xn+1Xan;hj— 1. Straight-
Ki1(n+1)+Kys(n — orward evaluation for the above case yields
M,= 1l )+ Kza) Ky2(n) K1a(n) y
1 0 1 (E—eb E—e, (ta tb)z
l==|(ea—€)|———————|+|——=| |. (9
(6) 4| (€a e t2 t2 tp ta

In our case of a simple off-diagonal modek., €,= €,) [but
In the special case of a scattering potential of the formalso for the case of diagonal moddise., t,=t,)] | is E
V(X)=3 A, 8(x—X,) and withk=2mE/%? one obtain&® independent as seen froff), always positive, and it never
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vanishes. This is a deficiency of the approximation, as dis- C. Schradinger equation with & potentials in Fibonacci
cussed below(Note that even in the case of a mixed model, and in phason-defect sequence

wherel vanishes only for a single value Bf the elementary In the pure case a recursive procedure of the form
matricesM do not commute at this value, which is a major P,.,=P, ,-P, can also be established for this cagéth

differenc_e with the full continuous model, as will be dis- starting matrices depending on the descriptiéior example,
cussed in Sec. Il B n the case of equally space¢d) & potentials with

. L o
We will see below that, because of implicit truncation An={N\4,\,} in Fibonacci arrangement, a natural description

errors, the tight-binding models miss interesting patterns asg he one given in the previous sectiéin terms of matrices
sociated with thezerosof the invariantl of the underlying M,) (with Pn:MFn“'Ml)- Then the invariant is

dynamical map, where the basic matrices commute. These
are actually relevant to conduction and are treated fiext 2i

. . c . Na— \p)2sirf(ka
Sec. lll B) in the continuous Schdinger formulation. | = (A Z)kz (ka)

i.e., 1 =0. [Its zeros constitute a periodic pattekg=n/a,
(n#0).]

Let us first discuss a problem where the scattering poten- Our systemThe system, however, we will analyze in de-
tial is an array of equally-spacddith lengtha) & functions  tail corresponds te potentials with equal strengtha) but
of equal strengthg\). Then, again two cases appear natu-quasiperiodic arrangement§(x,—x,_;)}={a,b} in Fi-
rally (we take 2n/i’=1, or, equivalently, replace every- bonacci arrangemert; 8 as already mentioned earlier. In
wherek by k*#%/2m in what follows): this case, an alternative descriptiin terms of the coeffi-
cients A, and B, of the two linearly independent plane
waves in the region between twbpotential$ is more natu-

B. Example: Periodic system

)\ .
(@) For |coka+ 2K sinka| <1 ral. One obtain
A A
Z\ [ N\ siPN (B“”) =A(n)-(B") (10)
= —|=| — _— n+1 n
7] \2k] sirf¢ _
with
with ¢ defined by cosb'zcoska+()\/2k)sin ka [whiqh. is 1 & oKk 1) B & oKk 1%
seen to be the same as in the usual treatment of theidcro 2k 2k
Penney modé? for the case of allowed bandfor N—x)].  A(n)= in N
We note again the oscillatory behavior of the resistance with >k e kK(Xnr17Xn) (1+ oK e k(Xnr17Xn)

length.
It is easy to show that the naturally appearing phase D
determines the crystal momentugnthrough ¢=qga (with  for & potentials(once again we have sen#%?=1). In this
such an identification, the resulting wave functions indeeddescription the Landauer resistance is given again by
satisfy the Bloch theorem, as can be easily check&# can . 72/7=|P;,> with P the product of A’s, namely
also see that the zeros ©f2/.7) determine the allowed val- P,=A(F,)---A(1). In this case the invariarit of the un-
ues ofq (from band theoryfor theinfinite periodic system. derlying dynamical map turns out to ¥e
This is an important point, because it motivates our late =\?sir? k(a—b)/4k?, i.e., alsol =0. Its zeros now consti-
treatment of a Fibonacci problem, where we will enforce thetute a periodic patterks=nm/(a—b) and will be the focus
vanishing of the resistance in order to simulate the thermoef our work in what follows.
dynamic limit: These special pointkg are missed in the corresponding
tight-binding model, as we showed earlier. In the present
continuous model they turn out to correspond to commuting

A consecutive matrices, i.eP[.1,P,] =0 [which is consistent
(b) For |cosa+ 7 sinka >1 with the known relatioh4l +2=tr(P,,-P,.,-P,1-P 1],
) 5 but even stronger, they lead to commuting elementary matri-
(f) _(i) sinf’N ¢ ces(11). Indeed, it turns out that their commutator is
7] \2k| sintt¢ _
elk(a—b) _
[A(Ax=a), A(Ax=b)]=\ —7 (1—e?kb~a))
with ¢ defined by coslp=coka+(\/2k)sinka. This corre-
sponds to the case of gaps in the liflt—cc. Indeed the A A —2ik
resistance grows exponentially Bls—. In this case, wave Xl yZoik = (12
functions decrease with a characteristic lengta2aN/[In(1
+.219)]. which vanishes for all special poinks={k}.

Once again the study of complex unit cells is of course One can therefore say that, from a conduction point of
possible. Also the introduction of a single defect results inview, the problem looks formally similar to a periodic prob-
interference effects that can be easily studied through thikem. This is more concretely described through the following
method. properties of the special poink,}:
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zp
0.0
-0.3 -0.2 . . FIG. 3. Comparison between resistances of a pure small chain
(N=34) and all possible chains with a defect of the same length, for
a fixedk close to a special poink=Kks+e€). Numbers from 0 to 7
correspond to the eight possible chains with the def@ctorre-
1.6 —r—rmr sponding to the defect being closer to the left end, and 7 to the
. defect being closer to the right end of the chalWe note a simple
14 (b) behavior with the defect positiorxg) and a resistance that is al-
1.2 g ways lower than that of the pure chdlmorizontal ling. This simple
' r (but discrete and asymmetyibehavior becomes smooth and sym-
1.0 metric for long chaingsee Fig. 4 wherexp becomes quasicontinu-
|- _4 . . _
R 08 [ ous. We have choses=10“ (in unitsb=1).
T o6l Motivated by our earlier discussion on a finite piece of a
0.4 E periodic systenfwhere we saw that the valueslothat made
Cr the oscillating resistanceanish correspond to the allowed
0.2 states of thanfinite system), we nowenforcea conducting
0.0 behavior(resonance For any fixedN, we choosex in such

08 0.6 . . a way as to have a vanishing resistarteractly atk=k),
namely (%21.7) |- kszo (for boththe pure Fibonacci and the

system with the defegt(This gives the representative behav-
ior in the thermodynamic limit where this vanishing is actu-
FIG. 2. (a) Typical local behavior of the Landauer resistance of a|ly expected fork=kg and for any\; see below As a

the chain with a defectdashed ling compared to a pure chain conseguence we géﬂ_l) different appropriate values of
(solid line), around a special pointHorizontal axis ik space, with (both positive and negatiyaiven by
k=ks+e¢). In the case of the defect, it rises from zévwer than the

pure system(b) The same behavior but in a more extended region 2k<(CoSh— CoOKb)
of k space, showing various crossovers, corresponding to chaotic = S °s s
behavior shown in Fig. @). sinksb

(14)

: . with the internal phaseps defined by ¢ ,=mmu/N with
1) They are the conducting pointéextended statgs N BT
sur(vi{/ingw}i/n the limit N—soo. g pointée ¢ m=1,...N—1 that correspond to vanlshlng%{/,7)|k:ks.

(2) The Landauer resistance can be writtexactlyin  1he(N—1) values of the phase, are symmetrically placed
closed form fork={kg}, and the expression looks like that of arounds/2 and asN increases they cover densely the entire
a periodic systentsee below: upper half of the trigonometric circle. Consequently, the van-

(3) The set of pointk is robust against disordefessen- ishing of (#2/.7)[x=«, is representative of the behavior in the
tially because of the above mentioned commutatiomsfact ~ thermodynamic limit forany arbitrary value of\, and that is
it exists either for a periodic or for a random systéshtwo  the reason we enforce it even for a finite system. By doing
letters. so, we then study the behaviaroundthe conduction points

In what follows, we focus on these poirks=n=/(a—Db) ks=nm/(m—1). Below we summarize our results on the be-
with a=7=(1+ \/5)/2, b=1 (Fibonacci chain Exactly on havior of the resistance, of both the pure and the system with
those points we get the Landauer resistance in closed forifie defect, a& varies in the local neighborhood of the con-

(for the Fibonacci or any disordered system{afb}): duction pointsks.
2 ( A )2 SiPN¢ 1. Smallest system (consistent with boundary conditions)=5l
2 o) 2R 13 o
e\ 2Ks sif¢ a3 The results are given in Fig. 2, where we show the local
S

regions around the lowest conducting point=1) for one
with ¢ defined by |cosp|=|coka+(N2kg)sinksa] value of ¢s, showing that the resistance of the system with
=|cosksb +(\/2kg)sinksb| (for 2m/A?=1). the defectalways rises lowethan the one of the pure system



53 ROLE OF PHASON DEFECTS ON THE CONDUCTANCE OF A ... 217

T
1

0-20698 T T T T T T 1 T T TC/2

|
@ |
|

(a) O - | (Qualitatively similar results) ;TC
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| @
1

(N-4P)r/|

1 1 1 1 1 1 L L FIG. 5. Global view of the resistive behavior ¢} line. See text

100 150 200 250 300 350 400 450 for details(end of Sec. Il). Shaded areas show regions of values of
zp ¢s (and correspondingly of the potential strength paramafer

where the resistive behavior is very simple. The following three

loops show the places where one recovers simple resistive patterns

and transitions in the resistive behavior.

Jﬁ‘ =30 7864 k il
(b) 4 defect ' -1

This is the typical behavior forall points examined
(1=n<5, allm’s) i.e., the Landauer resistance of the system
with the phason defect around the conducting pdigtises
(from zerg always lowerthan the corresponding one for the
pure system.

ik

0.20682

3.3095
2

=R

3 . 3065 1 1 ] 1 i 1 1 1 1
0 50 100 150 200 250 300 350 400 450
zp

2. N=13

Extensive numerical results have been obtained in this
case, where we have three possible systems with this type of
defect, for Z=n=5 and for all 12 phaseg,. Out of those 12
cases, in eight of themall three systems with defect have
Landauer resistancdswer than that of the pure system. In
only two cases one sequence with defect rises slightly higher
and also in two other cases another sequence also rises
slightly higher than the pure system. We call these few cases
(where the system with the defect is more resigtiwanfa-
vorable cases.”

3.725

=R

3.695

zp 3. Long chains

We have carried out numerical calculations on chains up

FIG. 4. Corresponding results for long chaifas for N=2000 to.mc.)re than 30.00 .sites, tqking as a numerical convergence
the simplest possible pattern appears f#y=/N, and it is a  Cfiterium the unitarity condition of our total transfer matri-
smooth and symmetric analog of Fig. 3. This is always the patten¢©S. Because of the full phase coherence, the transmission
appearing for anw (andm: 1) It a|so turns out that a" the Chains behaVIDr Of the ChaInS W|th a defeCt depends on the dISCI’ete
with a defect are always less resistive than the pure(baezontal ~ Positionxp of the defect in interesting ways. In long chains
line). We have takere=10"°. (b) Corresponding result fom=5.  the variablexp becomes quasicontinuous, and the discrete
Again, a simple oscillatory pattern appedsith the number of and asymmetric patterns found for small chdisse, for ex-
bumps equal tan), which is generally valid for smalin’s. These ample, Figs. 3 and(d)], now appear smooth and symmetric
simple patterns are quasicontinuous analogs of asymmetric and digFigs. 4a) and 4b)]. Moreover, their actual form depends on
crete patterns that are found for small chains, as showe) which  the value of¢,, which can be considered as a discrete label
corresponds tN=200. parametrizing the family of potential strengthshat enforce
o _ vanishing of resistance on specials points. The results show
(this is also true for anyb,). We also show the complicated jnteresting patterns summarized below and shown pictorially
behavior of the Landauer resistance in more extended rep Fig. 5.

gions around a special point and for one particubar We observe a symmetry in the qualitative behavior around
Of course the problem is analytically solvable. By way of ihe yajueg, = m/2 (although the values of corresponding to

an example we give the analytical solution for=1  gymmetric values ofp, are always differentas seen from

[ks=7/(7—1)], m=1 (¢s=/5) which is Eq. (14). Up to this symmetry, we also observe a type of

2
4.

78 T

- =45.3087 k— —

T —1
pure

recurrent simplicity in the resistive behavior of the system
with the defect, which we loosely call “cyclictwith period
P). For small to medium values ap,, in more detail, for
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0.01419

R 0.01418
7

0.01417
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modes(Fig. 6). The above mentioned “cycles” in the recur-
rence of the simplest behavior, occur whenewver ap-
proachesP (again up to the symmetry arourl=7/2). As

we cross the cycles we also observe abrupt changes of order-
ing in the resistance of the chain with the defect with respect
to that of the pure chaifFig. 7). Finally, close to the sym-
metry point ¢;=7/2 we observe largely fluctuating and
modulated patterns that look self-simil@Figs. §a) and
8(b)]. These resistive patterns become cha¢kig. 8(c)]
when we move sufficiently far from the special integrability

0 50 100 150 200 250 300 350 400 450 points. [The above numerical observations are stable upon
xp approaching the special poifite., decreasing) up to the
lowest value ofe where our convergence criterion is satis-

FIG. 6. Modulated resistive behaviors far betweenN—4P fied ]
and P. The system with a defect is, in the majority of cases, less

resistive than the pure orfborizontal ling.

m<N—4P, with m defined by,=m(w/N) and withP ~ 3x107" |

(a)

being the number of possible defect-poifimte that for a R
given chain-lengtiN there is a uniqud® always satisfying —
the inequalityN<5P for anyN>5), we observexceedingly T
simple oscillatory patterngexamples are shown in Fig).4

Furthermore, we observe that in these cases the system with

the defect isalwaysless resistive than the pure one. A quali- L
: . - . . . 2x1077 k&

tatively similar behavior is observed in the mirror symmetric 0

region(see the two shaded regions in Fig. B is interesting

to point out that the above “favorable” behavior is valid for

sufficiently strong absolute values ®f namely|\|=\, with

200

300

400 500 600 700
zp

S<4P7T)
COo§ —
N 71 1x10°% i

ZEs

2

)\0:7'—1

1

7-'

WES ®)

with the lower sign corresponding to the first and the upper
sign to the second quadrant of the upper half of the trigono-
metric circle. Asm increases toward® we observe addi-

i

tional fluctuations resulting in a rather regular modulated 7 x 1077 &

pattern, containing a finite and small number of harmonic 0 100 200 300 z‘}‘fo 500 600 700

25 F T T T T T T T
(c)
20 -
% E 1.5 F -
7 T 10 .
0.5 | TP i l
I ] | s ) L L 1n|.“ll“ldlhl
2.9 1 1 0 100 200 300 400 500 600 700
L L s ) L ) ) ) Tp

)
0 50 100 150 200 250 300 350 400 450
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FIG. 8. Modulated and self-similar resistive pattefokse to
FIG. 7. Recurrence of simple behaviors mscrossesP (for special points for chains with lengthN=3207 (which yields
N=2000, that yield$® =472 possible defect positiondNote a tran- P =757 possible defect positionga) For m=1603, i.e., foreg in
sition in the ordering of resistances between pure chains and onéke first quadrant and just beforg2. (b) For m=1605, i.e., foreg
with a defect: solid curves correspond o= P; dashed tan=P in the second quadrant and two units afté2. Both(a) and(b) are
+1; dot-dashed ton=P+2. (Flat lines always give the values of given for e=10"* (c) As e increaseqe=0.5 we recover chaotic

the corresponding chaingithout defect)

behavior{the values of the parameters are the same as in(bilse
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We view the above resul{summarized pictorially in Fig. V. CONCLUSIONS
5) as interference effects between the abrupt “phase” change

in hyperspacdthat occurs at some point in physical space Motivated by the anomalous transport properties of qua-

. . sicrystals with defect and temperature, we have analyzed the
and the phase of_the wave funct|o_n at that point. The Le.mdfoleyof phason defects on thepLandauer resistance o¥a finite
auer resistance viewed as a functlon.of the_dlscrete Var_'abllgibonacci chain. In a tight-binding model with incident en-
Xp (that actually corresponds to a family of different physical grgy heing fixed at the center of the band, the resistance is
systemgis here seen to carry a “memory” of the hyperspace mogified in an irregular fashion and in accordance with the
by showing a type of “hypercoherence,” that depends onpenavior of the pure Fibonacci chain with the size of the
physical parameters in rather subtle ways. system, with both positive and negative effect appearing sta-
tistically in equal percentage. In a fuller treatment of the
continuous Schidinger equation withs-function potentials,
IV. COMMENT ON INTRODUCTION the modification of the resistance depends on the location of
OF FINITE TEMPERATURE T the Fermi level with respect to special energies correspond-
ing to extended states, and also on the position of the defect.
For finite chains, the majority of cases studied show a de-
crease of the Landauer resistance upon introduction of defect
and temperature.

By comparing the two models, we have noted that con-
tinuous models, being free from truncation errors, preserve
7(1—'#): of the phase coherence important for conductance and can re-

f( _ﬁ_E) T(E)dE veal subtle additional effects. Such effects of interference
between this coherence and the hyperspace construction have
with also been presented. It is interesting that most of the time,

these give rise to exceedingly simple behaviors.
1 Although we do not study the thermodynamic limit with
1T FE M B= kB_T' any rigor, the f|n|te_N_re_suIt_s areloca!ly representativebe-
cause of the self-similarity in the resistance vs length behav-
For N>1 the transmission coefficientd(E)'s are ior. Qur foc_us on _thg Ioc;gl behaviors around the special con-
dominant® in the local regions around the special poikts ductlng.pomtskS is justified by .the fact that these are the
. only points relevant to conduction fd¢>1, so that our re-

(studied previously Because of the smearing of the Fermi _ )
function at low temperatures, the behavior of the Landaue?mts on resistance patterns should be representative for_ large
’ stems. Some of these results could be tested experimen-

resistance with temperature depends on the location of tht%yII : | chains that b tactured rath i
Fermi energyu. If w is close to a special energy.e., if ally In real chains that can bé manutactured ratner easily

u~#2%k2/2m) then the decrease or increase. 6.7 of the with recent advances in microfabrication technigtfes.

system with a defect compared to the pure system, depends
on whether this particulak is a favorable or unfavorable

point in the sense discussed on the previous pages. We con-
clude therefore, from our results above, that, statistically One of us(K.M.) acknowledges support from the Euro-
speaking, in the majority of cases the resistance will decreaggean Union through the Human Capital and Mobility Pro-

The Landauer resistance at finite temperatures is give

by?°

v

of
. f(—&—E)[l—T(E)]dE

f(E)=
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upon increase of temperature. gram.
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