
Role of phason defects on the conductance of a one-dimensional quasicrystal

K. Moulopoulos and S. Roche
Laboratoire d’ Etudes des Proprie´tés Electroniques des Solides, CNRS, 38042 Grenoble, France

~Received 9 May 1995!

We have studied the influence of a particular kind of phason defect on the Landauer resistance of a Fibonacci
chain. Depending on parameters, we sometimes find the resistance to decrease upon introduction of defect or
temperature, a behavior that also appears in real quasicrystalline materials. We demonstrate essential differ-
ences between a standard tight-binding model and a full continuous model. In the continuous case, we study
the conductance in relation to the underlying chaotic map and its invariant. Close to conducting points, where
the invariant vanishes, and in the majority of cases studied, the resistance is found to decrease upon introduc-
tion of a defect. Subtle interference effects between a sudden phason change in the structure and the phase of
the wave function are also found, and these give rise to resistive behaviors that produce exceedingly simple and
regular patterns.

I. INTRODUCTION

According to recent experiments,1 quasicrystals have cu-
rious ~for metallic materials! transport properties. For ex-
ample, anomalously high values of the low-temperature re-
sistivity have been reported, and the resistivity goes down
with introduction of defects or with increase of temperature.
The anomalously high resistivity has been partly accounted
for by the existence of a pseudogap at the Fermi energy. For
the temperature or defect dependence there is no clear con-
sensus yet. In numerical simulations of two-dimensional
~2D! systems, fluctuating behavior for the resistance of a
system with defects~with randomdisorder! with respect to
that of a pure system is observed, namely the resistivity can
either go up or down.2

Here we attempt to address these behaviors for a 1D sys-
tem by focusing on the electronicphase relationsin real
space that actually determine the conductance. We study, for
example, the scattering of electrons on a quasiperiodic~Fi-
bonacci! arrangement ofd-function potentials~a continuous
model with the full phase coherence included!. After deter-
mining the Landauer conductance of a finite part of such a
system, then we introduce a particular type of defect of a step
form in hyperspace3 ~called ‘‘phason defect’’ from now on!
and we study how this defectinfluences those phase rela-
tions. This is therefore a study of the effect of an abrupt
‘‘phase’’ change in the structure~with ‘‘phase’’ defined in
hyperspace! on the phase coherence of the electronic wave
function in real space~with phase defined in the usual
quantum-mechanical way!. @The role of the initial ‘‘phase’’
of pure chains~without defects! on the resistance has been
studied by other authors.4#

The quasicrystalline structure can induce exotic~‘‘criti-
cal’’ ! states5 that are intermediate between localized and ex-
tended states. Especially in the case of a chain withd poten-
tials with positions or strengths arranged in a pure Fibonacci
sequence, all states are critical independent of values of
parameters.6 One consequence that we observe, for afinite
part of the Fibonacci chain, is a rather unpredictably fluctu-
ating variation of the Landauer resistance with the length of
the sample7 ~except when we are on special energy-regions

of integrability, as we will see below!. But in addition to this
irregular variation for a pure Fibonacci chain, we here also
attempt a study of the variation of the Landauer resistance
for the system with a phason defect as well, both with respect
to the length of the sample and also with respect to the po-
sition of the defect. The comparison of the resistances be-
tween the pure system and the system with the defect shows
some interesting regular patterns, provided that we are close
to special points associated with the vanishing of the invari-
ant I of the underlying dynamical map5 ~on which points,
both problems are integrable!. In addition, in the majority of
values of the parameters, the pure system is found to be more
resistive than the one with the defect.

It is also demonstrated that our use of a continuous model
is critical in obtaining our results. As we show, these results
would have actually been missed had one first made a tight-
binding approximation~i.e., keeping only nearest-neighbor
overlaps!. Our work is therefore a concrete example of the
danger8 that the usual discretized approximations incorpo-
rate, especially when systems with quasiperiodicity are con-
sidered, where subtle interference effects between the phase
of the wave functions and the ‘‘phase’’ in hyperspace can be
expected.

II. A TIGHT-BINDING MODEL

Let us first use a tight-binding model, in order to compare
with the fuller treatment that is given later in Sec. III. We
analyze the standard scattering problem by connecting an
outside conductor~simulated by a simple periodic chain! to
the left and to the right of our finite system. We then study
the scattering of an electron coming from the left with a
wave vectork, and we determine the Landauer resistance9 of
our finite system~ratio of the reflection to the transmission
coefficient!. The method used for this is the standard transfer
matrix method.7

The Hamiltonian for a general~mixed! tight-binding
model is

H5(
n

enun&^nu1tn~ un&^n11u1un11&^nu! ~1!
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with tN5t05tout andE2eout52toutcoska ~the standard tight-
binding band structure for the outside periodic chain!, where
k is the incident wave vector,a is the lattice constant of the
outside conductor~‘‘out’’ !, andE is the incidence energy.

The Schro¨dinger equation then reads in matrix language

S Cn12

Cn11
D5MnS Cn11

Cn
D with Mn5S E2en11

tn11
2

tn
tn11

1 0
D .
~2!

The Landauer resistance~for spin-12 fermions! is then, in
atomic unis~p\/e2!

R

T
5uTN

12u2

with the matrixTN5Q21
•S21

•PN•S, whereP is the total
transfer matrix, namelyPN5MN21MN22•••M0 , andQ and
S are defined by

Q5S e2 ikNa 0

0 eikNaD
and

S5S e2 ika eika

1 1 D .
A. Example: Periodic system

In this caset15•••5tN215tN[t ande15e25•••5eN[e.
ThenPN5MN, and two cases appear naturally

~a! UE2e

2t U,1⇒R

T
5

S eout2e

2t D 2
sin2ka

sin2Nf

sin2f

with f defined by cosf5(E2e)/2t

~b! UE2e

2t U.1⇒R

T
5

S eout2e

2t D 2
sin 2 ka

sinh2Nf

sinh2f
~3!

with f defined by coshf5(E2e)/2t.
Case~a! gives oscillatory behavior of the resistance with

size, while case~b! gives exponential increase for large size.
In the intermediate case (E2e)/2t→1 we have

R

T
5

S eout2e

2t D 2
sin2ka

N2,

i.e., the resistance grows as the square of length. In the limit
N→` case ~a! corresponds to allowed energies~bands!,
while case~b! to forbidden ones~gaps!.

One can also trivially solve a periodic system with more
complex unit cell~i.e., quasicrystalline approximants!. In this
case the phasef depends on the internal structure of the unit
cell and is a more complicated function of various param-
eters, but straightforward to determine for a given unit cell.

Finally, the introduction of even a single defect leads to
interference effects that can easily be studied through this
method. It is found10 that the behavior in the presence of a
defect seems to be correlated with whether we are in case~a!
or ~b! above.

B. Fibonacci and a system with phason defect

Take for simplicity an off-diagonal model~en5eout50!
and setE50 ~center of the outside band!. Hopping elements
t ’s are forced to take two valuesta ,tb arranged in~1! a
Fibonacci way,~2! with a phason defect~corresponding to a
‘‘phase’’ change of 2/t in hyperspace, witht5(A511)/2 the
golden mean!, but in both cases in such a way as to comply
with boundary conditionstN5t05tout5tb . This imposes re-
strictions on the possible values ofN.

N55,13,18,26,34,39,47,52,60,... .~Their difference is
seen to be a Fibonacci arrangement of the numbers 8 and 5.!
For example, forN539 we have

Pure:~b!abaababaabaababaababaabaababaabaababaa~b!,

2/t2shifted:~b!aababaabaababaababaabaababaabaababaaba~b!,

Defected:~b!abaababaabaababbabaabaababaabaababaaba~b!,

where in the last line we show only one of the possible
places where the defect~i.e., an abrupt ‘‘phase’’ change of
2/t in the structure; see Fig. 1! can be introduced.

We now give an analytic solution for the Landauer resis-
tances of the two systems~pure and the one with the defect!.

For a givenN we find that

SR
T

D
pure

5S gs2g2s

2 D 2,

SR
T

D
defect

5S gs212g2s11

2 D 2 ~4!

with g5ta/tb ands an integer power~of both signs! that is
an irregularly fluctuating function of the lengthN ~around
the values50 corresponding to complete transparency!.

We conclude ~for g.1! that for s.0→~R/T !defect
,(R/T !pure. We see that the appearance of such cases
~which we will call ‘‘favorable’’! depends on the value of
s(N), namely on the behavior of the pure chain with length
~this behavior fluctuates in an irregular fashion!.
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For large values ofN we get 50% of this favorable be-
havior. ~We have also carried out cases of sequences11 with
many defects, where we also find irregularly fluctuating be-
havior, but with thescaleof fluctuations being much higher.!

III. CONTINUOUS SCHRÖ DINGER EQUATION MODELS

In this continuous case, which has the advantage of not
suffering from truncation approximations, the matrix form of
the Schro¨dinger equation results from matching wave func-
tions and derivatives at scattering points. This yields a gen-
eralized Poincare map12 of the following form

S Cn11

Cn
D5MnS Cn

Cn21
D ~5!

with

Mn5S K11~n11!1K22~n!
K12~n11!

K12~n!
2
K12~n11!

K12~n!

1 0
D .
~6!

In the special case of a scattering potential of the form
V(x)5(nlnd(x2xn) and withk5A2mE/\2 one obtains13

K11~n11!5cosk~xn112xn!1
ln

2k

2m

\2 sink~xn112xn!,

K12~n11!5
sink~xn112xn!

k
,

K22~n11!5 cosk~xn112xn!1
ln11

2k

2m

\2 sink~xn112xn!.

~7!

A. Comparison with Sec. II

Let us pause for a moment to see how a tight-binding
approximation is usually derived. To change to a localized
description one typically writes the wave functionC(x) in
terms of localized statesfn , namelyC(x)5(nCnfn(x2xn!
with fn(x2xn)5Alne

2lnux2xnu and then neglects the over-
lap between distantfn’s; assuming that only nearest-
neighbor overlaps are significant one obtains a tight-binding
model with site and hopping elements14

en52
1

2
ln
2

tn,n6152Aln
3ln61e

2ln61uxn612xnu. ~8!

It is important to note then that in the special case of a
continuous model with identical strengthsl and quasiperi-
odic arrangements~Dx’s taking two values in a Fibonacci
sequence!, which we later analyze in detail~see Sec. III B!,
we would just obtain a simple off-diagonal tight-binding ap-
proximation~since in this case all theen are identical!. This
demonstrates a deficiency of the tight-binding approxima-
tion, on which we now elaborate.

In the case of Fibonacci arrangements~let us say of both
e’s and t ’s and forN5Fn ~a Fibonacci number! we have in
the tight-binding approximation @with definitions Pn
[MFn

•••M1, with M ’s given in ~2!# the well-known5 recur-
sive schemePn115Pn21•Pn , with starting matrices

P15S E2ea
ta

21

1 0
D ,

and

P25S E2ea
ta

2
tb
ta

1 0
D S E2eb

tb
2
ta
tb

1 0
D

and hence the usual trace map5 xn1152xnxn212xn22 @with
the definitionxn5

1
2tr(Pn)#. This map has the well-known

invariant I5x n11
2 1x n

21x n21
2 22xn11xnxn2121. Straight-

forward evaluation for the above case yields

I5
1

4 F ~ea2eb!SE2eb
tb
2 2

E2ea
ta
2 D 1S tatb2 tb

ta
D 2G . ~9!

In our case of a simple off-diagonal model~i.e., ea5eb! @but
also for the case of diagonal models~i.e., ta5tb!# I is E
independent as seen from~9!, always positive, and it never

FIG. 1. Hyperspace construction of the standard Fibonacci chain
~top! and a 2/t shifted chain~bottom! ~2/t is the ‘‘initial phase’’!. u0
~in units where the width of the window is 1! and it is equal to the
displacement of the physical line in the perpendicular direction!.
The resulting chains, as well as the way that the defect is intro-
duced, are illustrated on the top left, through a step modification of
the physical line.
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vanishes. This is a deficiency of the approximation, as dis-
cussed below.~Note that even in the case of a mixed model,
whereI vanishes only for a single value ofE, the elementary
matricesM do not commute at this value, which is a major
difference with the full continuous model, as will be dis-
cussed in Sec. III B!.

We will see below that, because of implicit truncation
errors, the tight-binding models miss interesting patterns as-
sociated with thezerosof the invariantI of the underlying
dynamical map, where the basic matrices commute. These
are actually relevant to conduction and are treated next~in
Sec. III B! in the continuous Schro¨dinger formulation.

B. Example: Periodic system

Let us first discuss a problem where the scattering poten-
tial is an array of equally-spaced~with lengtha! d functions
of equal strengths~l!. Then, again two cases appear natu-
rally ~we take 2m/\251, or, equivalently, replace every-
wherek by k*\2/2m in what follows!:

~a! For Ucoska1
l

2k
sinkaU,1

⇒SR
T

D5S l

2kD
2 sin2Nf

sin2f

with f defined by cosf5coska1~l/2k!sinka @which is
seen to be the same as in the usual treatment of the Kro¨nig-
Penney model15 for the case of allowed bands~for N→`!#.
We note again the oscillatory behavior of the resistance with
length.

It is easy to show that the naturally appearing phasef
determines the crystal momentumq throughf5qa ~with
such an identification, the resulting wave functions indeed
satisfy the Bloch theorem, as can be easily checked!. We can
also see that the zeros of~R/T ! determine the allowed val-
ues ofq ~from band theory! for the infinite periodic system.
This is an important point, because it motivates our later
treatment of a Fibonacci problem, where we will enforce the
vanishing of the resistance in order to simulate the thermo-
dynamic limit:

~b! For Ucoska1
l

2k
sinkaU.1

⇒SR
T

D5S l

2kD
2 sinh2Nf

sinh2f

with f defined by coshf5coska1~l/2k!sinka. This corre-
sponds to the case of gaps in the limitN→`. Indeed the
resistance grows exponentially asN→`. In this case, wave
functions decrease with a characteristic lengthL52aN/@ln~1
1R/T !#.

Once again the study of complex unit cells is of course
possible. Also the introduction of a single defect results in
interference effects that can be easily studied through this
method.

C. Schrödinger equation with d potentials in Fibonacci
and in phason-defect sequence

In the pure case a recursive procedure of the form
Pn115Pn21•Pn can also be established for this case~with
starting matrices depending on the description!. For example,
in the case of equally spaced~a! d potentials with
ln5$la ,lb% in Fibonacci arrangement, a natural description
is the one given in the previous section~in terms of matrices
Mn! ~with Pn5MFn

•••M1!. Then the invariant is

I5
~la2lb!

2sin2~ka!

4k2

i.e., I>0. @Its zeros constitute a periodic patternks5np/a,
~nÞ0!.#

Our system.The system, however, we will analyze in de-
tail corresponds tod potentials with equal strengths~l! but
quasiperiodic arrangements$(xn2xn21)%5$a,b% in Fi-
bonacci arrangement,16–18 as already mentioned earlier. In
this case, an alternative description~in terms of the coeffi-
cients An and Bn of the two linearly independent plane
waves in the region between twod potentials! is more natu-
ral. One obtains16

SAn11

Bn11
D5L~n!•SAn

Bn
D ~10!

with

L~n!5S S 12
il

2kDeik~xn112xn!

il

2k
e2 ik~xn112xn!

2
il

2k
eik~xn112xn!

S 11
il

2kDe2 ik~xn112xn!
D

~11!

for d potentials~once again we have set 2m/\251!. In this
description the Landauer resistance is given again by
R/T 5uP12u

2 with P the product of L’s, namely
Pn5L(Fn)•••L(1). In this case the invariantI of the un-
derlying dynamical map turns out to be19

I5l2 sin2 k(a2b)/4k2, i.e., alsoI>0. Its zeros now consti-
tute a periodic patternks5np/(a2b) and will be the focus
of our work in what follows.

These special pointsks are missed in the corresponding
tight-binding model, as we showed earlier. In the present
continuous model they turn out to correspond to commuting
consecutive matrices, i.e., [Pn11,Pn]50 @which is consistent
with the known relation8 4I125tr(Pn•Pn11•Pn

21
•Pn11

21 )#,
but even stronger, they lead to commuting elementary matri-
ces~11!. Indeed, it turns out that their commutator is

@L~Dx5a!,L~Dx5b!#5l
eik~a2b!

4k2
~12e2ik~b2a!!

3S l
2l22ik

l22ik
2l D ~12!

which vanishes for all special pointsk5$ks%.
One can therefore say that, from a conduction point of

view, the problem looks formally similar to a periodic prob-
lem. This is more concretely described through the following
properties of the special points$ks%:
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~1! They are the conducting points~extended states!
surviving16 in the limit N→`.

~2! The Landauer resistance can be writtenexactly in
closed form fork5$ks%, and the expression looks like that of
a periodic system~see below!.

~3! The set of pointsks is robust
8 against disorder~essen-

tially because of the above mentioned commutations!. In fact
it exists either for a periodic or for a random system~of two
letters!.

In what follows, we focus on these pointsks5np/(a2b)
with a5t5~11A5!/2, b51 ~Fibonacci chain!: Exactly on
those points we get the Landauer resistance in closed form
~for the Fibonacci or any disordered system of$a,b%!:

R

T
U
k5ks

5S l

2ks
D 2 sin2Nf

sin2f
~13!

with f defined by ucosfu5ucosksa1~l/2ks!sinksau
5ucosksb1~l/2ks!sinksbu ~for 2m/\251!.

Motivated by our earlier discussion on a finite piece of a
periodic system~where we saw that the values ofk that made
the oscillating resistancevanish correspond to the allowed
states of theinfinite system!, we nowenforcea conducting
behavior~resonance!: For any fixedN, we choosel in such
a way as to have a vanishing resistance~exactly atk5ks!,
namely (R/T )uk5ks

50 ~for both the pure Fibonacci and the
system with the defect!. ~This gives the representative behav-
ior in the thermodynamic limit where this vanishing is actu-
ally expected fork5ks and for anyl; see below!. As a
consequence we get~N21! different appropriate values ofl
~both positive and negative! given by

ls5
2ks~cosfs2cosksb!

sinksb
~14!

with the internal phasefs defined by fs5mp/N with
m51,...,N21 that correspond to vanishing (R/T )uk5ks

.
The ~N21! values of the phasefs are symmetrically placed
aroundp/2 and asN increases they cover densely the entire
upper half of the trigonometric circle. Consequently, the van-
ishing of (R/T )uk5ks

is representative of the behavior in the
thermodynamic limit foranyarbitrary value ofl, and that is
the reason we enforce it even for a finite system. By doing
so, we then study the behavioraroundthe conduction points
ks5np/~t21!. Below we summarize our results on the be-
havior of the resistance, of both the pure and the system with
the defect, ask varies in the local neighborhood of the con-
duction pointsks .

1. Smallest system (consistent with boundary conditions): N55

The results are given in Fig. 2, where we show the local
regions around the lowest conducting point~n51! for one
value offs , showing that the resistance of the system with
the defectalways rises lowerthan the one of the pure system

FIG. 2. ~a! Typical local behavior of the Landauer resistance of
the chain with a defect~dashed line! compared to a pure chain
~solid line!, around a special point.~Horizontal axis isk space, with
k5ks1e!. In the case of the defect, it rises from zerolower than the
pure system.~b! The same behavior but in a more extended region
of k space, showing various crossovers, corresponding to chaotic
behavior shown in Fig. 8~c!.

FIG. 3. Comparison between resistances of a pure small chain
~N534! and all possible chains with a defect of the same length, for
a fixedk close to a special point~k5ks1e!. Numbers from 0 to 7
correspond to the eight possible chains with the defect~0 corre-
sponding to the defect being closer to the left end, and 7 to the
defect being closer to the right end of the chain!. We note a simple
behavior with the defect position (xP) and a resistance that is al-
ways lower than that of the pure chain~horizontal line!. This simple
~but discrete and asymmetric! behavior becomes smooth and sym-
metric for long chains~see Fig. 4! wherexP becomes quasicontinu-
ous. We have chosene51024 ~in unitsb51!.
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~this is also true for anyfs!. We also show the complicated
behavior of the Landauer resistance in more extended re-
gions around a special point and for one particularfs .

Of course the problem is analytically solvable. By way of
an example we give the analytical solution forn51
@ks5p/~t21!#, m51 ~fs5p/5! which is

R

T
U
pure

545.3087S k2
p

t21D
2

1••• ,

R

T
U
defect

530.7868S k2
p

t21D
2

1••• .

This is the typical behavior forall points examined
~1<n<5, allm’s! i.e., the Landauer resistance of the system
with the phason defect around the conducting pointsks , rises
~from zero! always lowerthan the corresponding one for the
pure system.

2. N513

Extensive numerical results have been obtained in this
case, where we have three possible systems with this type of
defect, for 1<n<5 and for all 12 phasesfs . Out of those 12
cases, in eight of themall three systems with defect have
Landauer resistanceslower than that of the pure system. In
only two cases one sequence with defect rises slightly higher
and also in two other cases another sequence also rises
slightly higher than the pure system. We call these few cases
~where the system with the defect is more resistive! ‘‘unfa-
vorable cases.’’

3. Long chains

We have carried out numerical calculations on chains up
to more than 3000 sites, taking as a numerical convergence
criterium the unitarity condition of our total transfer matri-
ces. Because of the full phase coherence, the transmission
behavior of the chains with a defect depends on the discrete
positionxp of the defect in interesting ways. In long chains
the variablexp becomes quasicontinuous, and the discrete
and asymmetric patterns found for small chains@see, for ex-
ample, Figs. 3 and 4~c!#, now appear smooth and symmetric
@Figs. 4~a! and 4~b!#. Moreover, their actual form depends on
the value offs , which can be considered as a discrete label
parametrizing the family of potential strengthsl that enforce
vanishing of resistance on specials points. The results show
interesting patterns summarized below and shown pictorially
in Fig. 5.

We observe a symmetry in the qualitative behavior around
the valuefs5p/2 ~although the values ofl corresponding to
symmetric values offs are always different! as seen from
Eq. ~14!. Up to this symmetry, we also observe a type of
recurrent simplicity in the resistive behavior of the system
with the defect, which we loosely call ‘‘cyclic’’~with period
P!. For small to medium values offs , in more detail, for

FIG. 4. Corresponding results for long chains~a! for N52000
the simplest possible pattern appears forfs5p/N, and it is a
smooth and symmetric analog of Fig. 3. This is always the pattern
appearing for anyN ~andm51!. It also turns out that all the chains
with a defect are always less resistive than the pure one~horizontal
line!. We have takene51029. ~b! Corresponding result form55.
Again, a simple oscillatory pattern appears~with the number of
bumps equal tom!, which is generally valid for smallm’s. These
simple patterns are quasicontinuous analogs of asymmetric and dis-
crete patterns that are found for small chains, as shown in~c! which
corresponds toN.200.

FIG. 5. Global view of the resistive behavior infs line. See text
for details~end of Sec. III!. Shaded areas show regions of values of
fs ~and correspondingly of the potential strength parameterl!
where the resistive behavior is very simple. The following three
loops show the places where one recovers simple resistive patterns
and transitions in the resistive behavior.
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m,N24P, with m defined byfs5m(p/N) and with P
being the number of possible defect-points~note that for a
given chain-lengthN there is a uniqueP always satisfying
the inequalityN,5P for anyN.5!, we observeexceedingly
simple oscillatory patterns~examples are shown in Fig. 4!.
Furthermore, we observe that in these cases the system with
the defect isalwaysless resistive than the pure one. A quali-
tatively similar behavior is observed in the mirror symmetric
region~see the two shaded regions in Fig. 5!. It is interesting
to point out that the above ‘‘favorable’’ behavior is valid for
sufficiently strong absolute values ofl, namelyulu>l0 with

l05
2p

t21

UcosS 4Pp

N D U6cosS p

t21D
UsinS p

t21D U
,

with the lower sign corresponding to the first and the upper
sign to the second quadrant of the upper half of the trigono-
metric circle. Asm increases towardsP we observe addi-
tional fluctuations resulting in a rather regular modulated
pattern, containing a finite and small number of harmonic

modes~Fig. 6!. The above mentioned ‘‘cycles’’ in the recur-
rence of the simplest behavior, occur wheneverm ap-
proachesnP ~again up to the symmetry aroundfs5p/2!. As
we cross the cycles we also observe abrupt changes of order-
ing in the resistance of the chain with the defect with respect
to that of the pure chain~Fig. 7!. Finally, close to the sym-
metry point fs5p/2 we observe largely fluctuating and
modulated patterns that look self-similar@Figs. 8~a! and
8~b!#. These resistive patterns become chaotic@Fig. 8~c!#
when we move sufficiently far from the special integrability
points. @The above numerical observations are stable upon
approaching the special point~i.e., decreasinge! up to the
lowest value ofe where our convergence criterion is satis-
fied.#FIG. 6. Modulated resistive behaviors form betweenN24P

andP. The system with a defect is, in the majority of cases, less
resistive than the pure one~horizontal line!.

FIG. 7. Recurrence of simple behaviors asm crossesP ~for
N52000, that yieldsP5472 possible defect positions!. Note a tran-
sition in the ordering of resistances between pure chains and ones
with a defect: solid curves correspond tom5P; dashed tom5P
11; dot-dashed tom5P12. ~Flat lines always give the values of
the corresponding chainswithoutdefect.!

FIG. 8. Modulated and self-similar resistive patterns~close to
special points! for chains with lengthN53207 ~which yields
P5757 possible defect positions!. ~a! Form51603, i.e., forfs in
the first quadrant and just beforep/2. ~b! Form51605, i.e., forfs

in the second quadrant and two units afterp/2. Both~a! and~b! are
given for e51024. ~c! As e increases~e50.5! we recover chaotic
behavior@the values of the parameters are the same as in case~b!#.
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We view the above results~summarized pictorially in Fig.
5! as interference effects between the abrupt ‘‘phase’’ change
in hyperspace~that occurs at some point in physical space!,
and the phase of the wave function at that point. The Land-
auer resistance viewed as a function of the discrete variable
xP ~that actually corresponds to a family of different physical
systems! is here seen to carry a ‘‘memory’’ of the hyperspace
by showing a type of ‘‘hypercoherence,’’ that depends on
physical parameters in rather subtle ways.

IV. COMMENT ON INTRODUCTION
OF FINITE TEMPERATURE T

The Landauer resistance at finite temperatures is given
by20

R

T
~T,m!5

* S 2
] f

]ED @12T~E!#dE

* S 2
] f

]EDT~E!dE

with

f ~E!5
1

11eb~E2m! , b5
1

kBT
.

For N@1 the transmission coefficientsT(E)’s are
dominant16 in the local regions around the special pointsks
~studied previously!. Because of the smearing of the Fermi
function at low temperatures, the behavior of the Landauer
resistance with temperature depends on the location of the
Fermi energym. If m is close to a special energy~i.e., if
m;\2k s

2/2m! then the decrease or increase ofR/T of the
system with a defect compared to the pure system, depends
on whether this particularks is a favorable or unfavorable
point in the sense discussed on the previous pages. We con-
clude therefore, from our results above, that, statistically
speaking, in the majority of cases the resistance will decrease
upon increase of temperature.

V. CONCLUSIONS

Motivated by the anomalous transport properties of qua-
sicrystals with defect and temperature, we have analyzed the
role of phason defects on the Landauer resistance of a finite
Fibonacci chain. In a tight-binding model with incident en-
ergy being fixed at the center of the band, the resistance is
modified in an irregular fashion and in accordance with the
behavior of the pure Fibonacci chain with the size of the
system, with both positive and negative effect appearing sta-
tistically in equal percentage. In a fuller treatment of the
continuous Schro¨dinger equation withd-function potentials,
the modification of the resistance depends on the location of
the Fermi level with respect to special energies correspond-
ing to extended states, and also on the position of the defect.
For finite chains, the majority of cases studied show a de-
crease of the Landauer resistance upon introduction of defect
and temperature.

By comparing the two models, we have noted that con-
tinuous models, being free from truncation errors, preserve
the phase coherence important for conductance and can re-
veal subtle additional effects. Such effects of interference
between this coherence and the hyperspace construction have
also been presented. It is interesting that most of the time,
these give rise to exceedingly simple behaviors.

Although we do not study the thermodynamic limit with
any rigor, the finiteN results arelocally representativebe-
cause of the self-similarity in the resistance vs length behav-
ior. Our focus on the local behaviors around the special con-
ducting pointsks is justified by the fact that these are the
only points relevant to conduction forN@1, so that our re-
sults on resistance patterns should be representative for large
systems. Some of these results could be tested experimen-
tally in real chains that can be manufactured rather easily
with recent advances in microfabrication techniques.21
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