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Low-frequency admittance of quantized Hall conductors
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We present a current and charge conserving theory for the low-frequency admittance of a two-dimensional
electron gas connected to ideal metallic contacts and subject to a quantizing magnetic field. In the framework
of the edge-channel picture, we calculate the admittance up to first order with respect to frequency. The
transport coefficients in first order with respect to frequency, which are cafiéiiancesdetermine the charge
emitted into a contact of the sample or a gate in response to an oscillating voltage applied to a contact of the
sample or a nearby gate. The emittances depend on the potential distribution inside the sample, which is
established in response to the oscillation of the potential at a contact. We show that the emittances can be
related to the elements of an electrochemical capacitance matrix, which desc(iie#icus) geometry in
which each edge channel is coupled to its own reservoir. The particular relation of the emittance matrix to this
electrochemical capacitance matrix depends strongly on the topology of the edge channels: We show that edge
channels that connect different reservoirs contribute with a negative capacitance to the emittance. For example,
while the emittance of a two-terminal Corbino disk is a capacitance, the emittance of a two-terminal quantum
Hall bar is a negative capacitance. The geometry of the edge-channel arrangement in a many-terminal setup is
reflected by symmetry properties of the emittance matrix. We investigate the effect of voltage probes and
calculate the longitudinal and the Hall resistances of an ideal four-terminal Hall bar for low frequencies.

[. INTRODUCTION tains quantum corrections due to the finite density of states
of the edge channels. It is of particular interest to investigate
The quantized Hall effettprovides particularly interest- to what extent such quantum corrections affect the dynamic
ing tests of our understanding of electrical transport. Appli-transport properties of a 2DES.
cation of a resistance formula that treats all contacts to a The admittancés,z(w) gives the linear current response
two-dimensional electron gas on equal foofifs consid- 1 .exp(—iet) at a contacr of a sample, if at contags a
erably revised the traditional picture of the quantized Hallvoltage oscillationsV gexp(—iwt) is applied:
effect and has led to the successful explanation of many
novel experiments.It is the purpose of this work to ap-
proach the low-frequency electrical transport in two- Sl a(w)=2 G p(w)dVg(w). (D)
dimensional electron system@DES'’9 subject to strong B
magnetic fields from a similar point of view. In contrast to
the dc-transport properties, which have become increasinglyhe voltage variationsV is related to the variation of the
well understood, the ac-transport properties have founelectrochemical potential Suz in  reservoir g by
much less attention. However, a charge and current conserduz=eéV;, wheree is the electron charge. The thebry
ing theory for the low-frequency admittan€®,(w) of a  deals with the dc conductan@(aog and the first-order term
general arrangement of mesoscopic conductors has recenthyith respect to frequencf ,;=i(dG,z/dw),_o, Which is
been worked out> We apply this theory to Hall systems in called theemittancematrix. The low-frequency admittance
the integer quantum Hall regime at a plateau. A charge andan then approximately be written in the form
current conserving theory requires knowledge of the non-
equilibrium potential distribution inside the conductor. In the -
quantum Hall regime the determination of this potential be- Gaplw)= Gop—iw Eqp. 2
comes simple due to the formation of edge chanhdls.
discussed in detail by Chklovskii, Shklovskii, and Glazfhan For an array of macroscopic conductors of which each is
and closely related works;* there occurs a decomposition connected to a single contact, the emittance is just a geo-
of a 2DES in metal-like edge channels and dielectriclike re-metrical capacitance, i.eE,z=C,z. However, this is not
gions. Consequently, the nonequilibrium potential is also detrue for mesoscopiconductors and conductors that connect
termined by the properties of the edge channels. If the edgdifferent reservoirs. First, it is not the geometrical capaci-
channels behave like perfect metals they screen any excetmce but rather thelectrochemical capacitandhat relates
charge. The resulting nonequilibrium potential is determinedcharges at mesoscopic conductors with voltage variations in
by the geometry of the edge-channel arrangement alone. Ghe reservoirs. Second, conductors that connect different res-
the other hand, if the charge in the edge channels is narvoirs allow a transmission of charge that leads to inductan-
perfectly screened the nonequilibrium potential depends onelike contributions to the emittance.
the density of states of the edge channels. The resulting po- We shall show that the emittanég, ; of a quantized Hall
tential distribution is not of geometrical nature alone but con-sample is the sum over elements of the electrochemical ca-
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FIG. 1. (a) Quantum Hall bar with a single pair of edge channels —§68U1 CSU%'

(thin directed lines and connected to two reservoirs at electro-
chemical potentialg.; ,. (b) Corbino disk with contacts at the inner Z )
and the outer edges.

acitance matrix.c for edge channeld into which FIG. 2. (a) Single-particle potential for a transverse cross sec-
P "kl 9 tion of the Hall bar in Fig. {a). Empty, partially filled, and filled

charge is injected at contagtand for edge channelsfrom  ircjes correspond to empty, partially filled, and filled states, respec-
which charge is emitted into contaet The electrochemical {jyely. Edge channels are the partially filled and extended states at
capacitance matrix,  is determined by considering each the Fermi energf: close to the sample edge, where the potential is
edge channel as a metal strip connected to a single contagleminated by the confinement potentiéh) Nonequilibrium ver-
Our expression for the emittance is simple enough in order t@ion of (a). The electrochemical voltage variatiofV, induces
discuss arbitrarily complicated edge-channel arrangementsharges 5q,, and nonequilibrium electrostatic potential shifts
without much technical effort, once the electrochemical ca-dU, in the edge channels.

pacitance matrix of the edge-channel arrangement is known.

We emphasize here that our theory satisfies charge and cuec. VI we investigate the effect of a voltage probe. As an
rent conservation, which are due to a perfect screening adpplication, we calculate in Sec. VII the longitudinal resis-
electric fields in the reservoirs and in the gates used to fornlance and the Hall resistance of a four-probe quantum Hall
the conductor. Current and charge conservation implies thdiar for low frequencies.

the admittance satisfi€s;G,z=2,G,z=0.

Two simple geometries can be used to illustrate the dif- |, QUANTIZED HALL SAMPLES AT EQUILIBRIUM
ferent behavior of the emittance, namely, the Hall bar geom-
etry [Fig. 1(@)], and the Corbino geometiyig. 1(b)]. We We begin with a brief discussion of important equilibrium

will show that in a Hall bar kinetic charge motion of elec- properties of a 2DES at afintegey Hall plateau. Consider
trons along the edge channels dominates the Coulomb intethe two-terminal quantum Hall bar in Fig(a. The bar is
action between the reservoirs. The emittance is a negativeonnected on either side via ideal contacts to particle reser-
electrochemical capacitance, i.E=—C,, withC,>0.0n  voirs «=1,2 at electrochemical potentialg:,=Eg ,
the other hand, in the Corbino geometry contacts are locate¢teU,. Here, Er , and U, denote the chemical and the
at the inner and the outer perimeter of an annular fif?.  electric potential of reservoir, respectively. The strong
Hence, edge channels do not connect different reservoirs amdagnetic field is assumed to be perpendicular to the plane of
will thus not contribute to a dc current. Moreover, in contrastthe 2DES. Translational invariance of the potengibl(x) in
to the bar geometry in the Corbino disk capacitive effectghey direction allows one to restrict the considerations to a
dominate and the emittance is a capacitance,Ee.C,, . transverse cross section of the sample. The single-particle
The transverse potential profile in a cross section of thespotential as a function of is sketched in Fig. @) for the
conductors is qualitatively shown in Fig. 2, which is to be equilibrium case where the reservoirs are kept at equal elec-
discussed below. Here we only mention that the similarity oftrochemical potential, say = Er whereU ,=0. For the mo-
this potential for the two different setups applies only to thement, we assume that the Fermi level lies in the region be-
bulk of the sample. We will assume in this work that thetween the extended bulk states of the first and the second
capacitances and emittances are dominated by the bulk arispin-splid Landau levels. Hence, in the bulk the states of a
that contact capacitances can be neglected. single Landau level are completely fill¢dlack dots in Fig.
The paper is organized as follows. In Sec. Il we briefly2(a)]. At the sample boundary, however, the confinement po-
recall the edge-channel picture of a 2DES at equilibrium. Intential strongly bends up the single-particle potential which,
Sec. Ill, we discuss the dc-nonequilibrium electric potentialtherefore, intersects the Fermi energy. This leads to the ex-
in terms of an electrochemical capacitance matrix, and théstence of extended states at the Fermi Ideelge channels
expression for the dc conductar@éoﬁ) is derived. In Sec. IV along the sample boundary. For noninteracting electrtives
we outline the theory of emittances and derive an expressioiitersection of the single-particle energy with the Fermi en-
for the emittance matrig . ; for quantized Hall samples. The ergy is sharp. The transverse size of an edge channel is of the
result is applied to various specific examples in Sec. V. Inorder of a magnetic length,,= \7%/|eB|. The mean drift ve-
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locity of a carrier with coordinat& points in they direction  from one sample contact to the other. For the interacting
and is given by’ v(x)=(dU/dx)/B. This is just the Lorentz model this density of states diverges kif=0 since the
drift of the center of a cyclotron orbit in an electric field.  single-particle potential is flat. The charge injected into such
In a quantized Hall sample a current density exists that i@ compressible region is completely screened, except at the
a pure equilibrium phenomenon and cannot lead to a currertdges where the transition to the impressible region occurs.
between reservoirs. For a filled Landau level, the diamagThus the relevant densities of states are determined by the

netic current density can be written in the fdfm spatial dependence of the potential at the boundaries of the
compressible region.
_ e? du Secondly, one can attribute to the arrangement of metal-
=% ax (3)  like edge channels a geometrical capacitance mefgixFor

a given geometry, this matrix can, in principle, be derived

The total current through a contact is obtained by a transwith the help of Poisson’s equation. For metallic screening
verse spatial integral G(x). It vanishes at equilibrium since this capacitance matrix is determined by the width and loca-
at both boundaries of integratiop.= E¢+ e U, holds, where tion of the (_adg_e channels. It is, therefo_re, also a functlon_of
k=1,2 labels the edge channels. Of course, this statement the magnetic field and the electrochemical potentials applied
valid independent of the geometrical arrangement of thd® the contacts and the gatés.
edge channels as long as the cross section is constructed suchVVe finally take into account that each edge channel con-
that all edge channels of a contact are included. In particulaf!€Cts reservoirs in a directed way, due to the unidirectional
it is independent of the specific space dependence of th\éelocn)_/ of the carriers. Thls connection is determined by the
equilibrium potential, which can be very complicated. transmission and reflection probablllty of the contact. In the
The inclusion of Coulomb interaction, even within a following, we shall always regard the just mentioned charac-
mean-field approximation, drastically affects the results of€ristics of the equilibrium state to be given.
the single-particle approach. Coulomb interactions lead to an
electrostatic restructuring of the edffé¢? The 2DES is com-
posed of alternating strips of compressible and incompress-
ible electron liquids with finite widths. Incompressible re- A. Electrochemical capacitance of edge channels

gions where the filling factor has discrete values behave like - qngiger the two-terminal bar of Fig(a under nonequi-
dielectrics. Quantitative anglytlcal pred'|ct|ons.of the widths|iprium conditions. A cross section of the single-particle po-
of the compreSS|b_I¢ and mcc_).mpressmle strips have beefyniial in the nonequilibrium case is shown in FigbR A
made by Chklovskii, Shklovskii, and Glazmarthese pre-  a) jncrease of the voltagéV, at contactB, say =1,
dictions are in good agreement with numerical work by L|erimplies an electrochemical voltage sh#¥/, in channek. If

and GerhardtS.Edge channels correspond to the COMPreSSiha transmission probability from the contact into the edge

ible regions vv_here sm_gle-.parycle states are pa_rtlally f'"e‘jchannel is 1, then the chemical potential shift of that edge
and the electric potential is pinned to the Fermi leMét

S . . channel is the same as that of the reserddlf=6V;. As a
parts in Fig. 2a)]. Edge channels have screening pr‘)pert'esconsequence, a charge is injected into the edge channel

similar to metallic strips. The many-particle effects becomeWhich is proportional to the DOSN, /dE of the edge chan-

|mp]9rtant 'I tfheld strengthdlli/dxtr?f thfh (unshcreerle)q " nel k. This added charge creates in the whole sample an
c?n ;?iemﬁnld |ef IIS trWr?a Iertr nanint re ticnara}c e”sif'celectric nonequilibrium potential that shifts the band bottom.
electric field ol electron-electro eraction, 1.€., This leads, in turn, to the injection of screening charge. The

a=|dU/dx|4meyel3/e<1, where ey, is the dielectric total charaesa. in edae channek is then given b
constant. The strength of the confinement field depends on g0tk g g Y

the specific fabrication of the boundaries of the 2DES under
consideration(etching, gates, etc.It has been argued that 0qx=D(6Vi—6Uy), (4)
compressible and incompressible strips can even become
comparable in sizéInteraction-dominated edge channels arewhere D,=e?dN,/dE is the quantum capacitance of edge
useful in the theory of the fractional quantum Hall channek. The nonequilibrium electric potentiall, of edge
effect’ 2% However, the structure of fractional edge channelk can be calculated for a given charge distribution
channels is much more complicated, and we shall restrict ousy solving the electrostatic boundary-value problem associ-
considerations to the integer quantum Hall regime. ated with Poisson’s equation. This leads to the introduction
In the following considerations, three quantities that charof the geometrical capacitance matroy; of the edge-
acterize the equilibrium state of a sample are important irthannel configuration byig,==cy;0U; . Note that thecy;
order to discuss low-frequency transport close to equilibgre calculated for edge channels that disconnectedrom
rium. First, the density of stateN, /dE of the edge channel the contacts and where charge is not conserved. But the rel-
k at the Fermi level gives the change in the number of stategvant(gauge invariantpotentials are the electrochemical po-
if the electrochemical potential is varied for fixed electro-tentials and not the electrostatic potentials of disconnected

static potentiali.e., fixed band bottom For noninteracting edge channels. We define thus an electrochemical capaci-
electrons this density of states is determined by(#wiilib-  tance Matrixc,, ; by*

rium) velocity of carriersv(s)=[dUg{s)/dx]/B along the

path s of the edge channel, whereis now the transverse

coordinate. It is given byIN,/dE= fds/hv, where the in- 5Q|<:2 C, (idVi (5)
tegral overs is along the entire path of the edge channel e

Ill. THE NONEQUILIBRIUM STEADY STATE
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Since charge is conserved, we havereader to Komiyama and Hiréf. In order to find the dc
2&i=0. One finds then from Egs.(4) and (5 conductances'?) of the bar in Fig. 1a), we remark that the
C,11=Cu20=—C,10= —C,21=C,, Where the electro- total nonequilibrium current through a contact consists of
chemical capacitance, of the two edge channels is given two contribution€>2° At contact 1, for example, a first part
by 81{W=(e?/h)(8U,— 8U,) originates from the action of the
11 a1 et nonequilibrium electric field on the occupied equilibrium
€, =Co +Dy +Dy. (6) states in the Landau level. This part is obtained from a spatial

This describes the geometrical capacitafice,= (C11Cas integration of the current density3) in the region

—c2)/(Cqyy+ 2C15+ Cpp), in series with the quantum capaci- be(tv;/een the —edge channels. A second part
tancesD, . S W=(8qv,+ dq,v,)/Ly is caused by the motion of the

As an example, we consider the noninteracting cas@dded charge densityq, /L, with an equilibrium velocity

where the widthst, of the edge channels=1,2 of length Uk in edge chann_ek. In the present notati_on, the_ relati_on
L, are very smalli.e., &~l,). For the sake of simplicity, between the velocity and the DOS for quasi-one-dimensional

we assume them to be equal to each otfgs £. The dis- conductors reads,= tLyezlh D, where the sign is different
tance between the edge channels is denotet,pyand the for(q?ppozsne edge Channelsé Using this and E4). gives
charge is to be uniformly distributed in the edge channelsd!1” = (€7/h)(8V,—38U,) —(e7h)(6V,— dU,). It follows

For line charges, the geometrical capacitance becBmesimmediately that the total curredl ;= 51§+ 51{% depends
co=(Lymeoe)/[1+In(Ly/&)]. The density of stateB,, on  only on the electrochemical potentials of the contacts and is
the other hand, is given b, =L,e/(2mi2]dU,/dx|), ~given by &l1=(e%h)(8V1—6V,) with a zero-frequency
where we assumed very steep confinement potentialgonductance GO=GP=6P=-6P=-cP=e%h.
dU,/dx=(d U/dX)xk at the edge channels locatedkat The  This universal result reflects the integer quantum Hall

1 H — —
electrochemical capacitancg can then be written as effect” Using q;=co(dU;—6Uy) and 8q;=c,(8V,
— 6V,) with ¢, given by Eq.(6) we find for the ratio of the
mege Ly two currentssl 9/ 51 (W= (D; *+ D, *)c,. This ratio is large
Cu=17 IN(L/ &)+ m(aq+ ap)/2’ (7)  for small DOSD, of the edge channels, i.e., for a sufficiently

steep slope of the confinement potential, when the chemical
Herea,=|dU,/dx|4meqe, /e is the ratio between the con- contribution to the current predominates. On the other hand,
finement field and the interaction field at the edge chahknel if the edge channels amnacroscopicmetallic conductors
To be consistent with the noninteracting case, one must hawgith complete screening 8U,— 6V, and v,—0), the
a,>1. Note thatc, depends on the magnetic field vig, ~ chemical contribution vanishes and the electrostatic contri-
«1/B, and via theB dependence of the geometry of the bution predominates.
edge-channel arrangement.

Charge conservation in the sample is reflected by the sum C. dc conductance for anM -terminal sample

rule with N edge channels

Consider now a more general qguantum Hall sample with
> Cui=2 Cuw=0, (80 M contacts andN edge channels. We assume that the density
K ! of states,D,, and the electrochemical capacitance matrix,

which is a well-known property of a set of capacitors whereC,kj (K,j=1,...N), are known. An expression far, y; in
ground is included. One concludes that two-terminal systemterms of the geometrical capacitaneg;, and the DOS of
are particularly simple since>22 matrices satisfying Eq8)  the edge channelB,, is derived in the Appendix. Equations
are characterized by a single quantity and have thus puref#) and (5) are still valid in the present case. Each edge
scalar properties. We will see later on that equations analo=hannek is connected to reservoigsand 8, wherea= g is
gous to Eq.(8) hold also for the dc conductance and thepermitted. Reservoig injects carriers into edge channlel
emittance’?® Below it will be important that the electro- from which carriers are emitted into reserveir For sim-
chemical capacitance matrix is symmetric and an even funddlicity and to be definite, we assume that the contact resis-
tion of the magnetic field, ie.c, . (B)=c, (B) and tances of this sample are quantiZéd® The transmission
C..x(B)=c, «(—B), respectively. These properties are evi- probability of a carrier in contag® to enter edge chgnnblls _
dent from our definition ot denoted byA,;(B) and for quantized contact resistances is
given by

okl

B. dc conductance for a two-terminal Hall bar 1 if contactB injects into channek

To find the dc conductance in the transmission approach ~ Akg(B)= )
the current can be evaluated in response to a small variation
of the chemical potential of the contacts keeping the electroSimilarly, we introduce the probability of a carrier that ap-
static potential fixed at its equilibrium value. The transmis-proaches contagt on an edge channé&lto enter the contact
sion probabilities are a functional of the equilibrium electro-
static potential only. Here we briefly discuss the derivation of . o
the dc conductance using the actual nonequilibrium current. _{1 if channel[ emits into contacte
F ) : ' ) . S Ay(B)= . (10

or a detailed discussion of the various possible definitions 0 otherwise.

of currents and their physical interpretation we refer the

0 otherwise.
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From the microreversibility properties of the transmissionfor such a discrete potential model is the subject of Ref. 29.
probabilities we haveh 5 (B) = Ays(—B). The transmission It is well known that the transmission approach to current
probability of the contact plays the role of a topological fac-transport relates conductances to scattering matrices of the
tor determined by the connectivity of the edge channel to theonductors. A scattering matrix relates incoming and outgo-
contacts of the sample. With the help of the contact transmising current amplitudes of the contacts=1,... M of a
sion probability(9), the variationsV, of the electrochemical sample for each conduction chaniket 1,... N. The DOS
voltage of edge channdéd can be expressed in terms of the dN,/dE of channelk expressed in terms of the scattering
voltageséV in the reservoirs: matrix can then be written as a sum pdrtial densities of
states, dNyz/dE. The quantitydN,,z/dE is the DOS of
channelk associated with carriers that are scattered from

5Vk:;1 ApdVp. (12) contactg to contacte. A slight variationsV; of the voltage

in contact 8 causes the injection of a total char@®,

The chargedqy in edge channek is then related to voltage through contactr. Thus, a slowly oscillating voltage implies

M

variations in the contacts by an additional current—iw5Q, exp(—iwt) at this contact.
MN Now, it follows from the definition in Eq(2) that the emit-
tanceE ; can be identified with5Q_,/ 6V ;. Note that there
- ap alOVp
o0 le 21 CukiBipdVp 12 are two contributions t@’Q,,. A first part, which neglects

) ) ) screening, is given by a kinetic contribution
The total charge in all those channels into which contact

injects isX,6q, Ay, - If there is no transmissiofi.e., if all N MOON »”
edge channels are connected to a single coptace has Ql=e2> > dE V. (15)
A=A . Acapacitance measurement then yields a capaci- k=1p=1
tance matrix This part gives the charge that is scattered from the contacts
N B to contacta due to the shift of the electrochemical poten-
tials 6V 4 at fixed electrostatic potential$lJ, . However, the
C = AvolCulig. 13 B . . ke 1T ’
w.ap k,|2:1 ket KIZA (13 nonequilibrium electrostatic potential, which is due to the

onequilibrium charge-distribution in the edge channels, is
ill neglected in Eq(15). In order to take it into account, we

ecall that theSU are shifts of the band bottoms of the edge

channels, which cause an induction of additional screening

charges. Hence, there is a second contribuﬁ@f) given

the same lines as above for the wo-terminal case w ith %y the part of the screening charge that is eventually scat-
single Landau level. The curred , through contactx is tered to contactr. It can be expressed in the form

obtained from a sum over all incoming and outgoing chan-

Below, we shall see that the assumption of the absence
transmission between different contacts is crucial in order tQ
find a magnetocapacitance according to &d).

The dc conductancél ,/ 6V can be calculated following

nelsk with a contributions!{? and over all Landau levels N MOgN
with a contributionsl .. The well-known resuftreads in 5Q¥=-e?> ( > d—aEkB SU,. (16)
our notation k=11p=1
o2 The quantity in the large bracket, dN, /dE
—_sM ; ; ; ; ;
G<aoﬁ>:F K g8ap— Ek AuAig ). (14) =2 ;_1dNz/dE, is a partial DOS associated with carriers

in channek emitted into contact irrespective of the inject-
ing contactB. The change of the electric potentidlU, at
channelk is determined by the variations of the electro-
chemical potentials of the conductors. Within linear response
{heory we write

For the derivation of Eqg. (14 we used that
2k sA k=K g, WhereK g is the number of edge chan-
nels into which contaciB injects. The diagonal element,
G(ﬁoﬁ), is €2/h times the number of channels that leave contac

B and that do not return to this contact, ardG'}) (« M
# ) is e’/h times the number of directed channels going SUy = > UkgdVyg, (17
from contactg to contacte. Note that both the current con- B=1

: 0)_ 0)_
servation p.roper'tyEaGglﬁ)—Eﬁ((OB)gg—O an(ocl))the Onsager- where thecharacteristic potentials i (Ref. 5 give the
Casimir reciprocity relationsG, ;(—B)=Gp,(B), are sat- change of the electrostatic potential of condudtoif the

isfied. voltage is changed in contagtby unity. The sum of the two
parts given by Eqs(15) and (16) leads finally to the emit-
IV. THE EMITTANCE MATRIX tance matrix&Qalévﬁ:
A. Emitt trix f I i duct N
mittance matrix ror general mesoscopic conductors B 22 dNakB dNak o
First, we recall the theory of the emittance for a general Eap=e “ |\ "dE ~ dE Ukg |- (18)

arrangement of mesoscopic conductors by closely following

Ref. 5. Once the electrostatic geometrical capacitance matrikhe occurrence of the characteristic potentialg indicates

is known, we can formulate our discussion in terms of athe necessity of the knowledge of the nonequilibrium state in
discrete set of potentials, which we take to be constantsrder get the emittance. Since the characteristic potentials are
along each edge channel. A general formulation of the theorgample specific, one cannot expect to obtain a universal re-
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FIG. 3. An emittance elemeri,; is the sum over all electro- 3 ~<—
chemical capacitance elements, of the edge channels andl, / I - 7
which correspond to the elementary process shown in this figure. -J—‘

\ 4

sult for the ac admittance. Furthermore, since the kinetic part

and the screening part contribute with opposite signs, the FIG. 4. (a) Two-terminal bar with constriction. Only one pair of

emittance elements can have positive or negative sign dedge channels connects different reservoirs, whereas another pair

pending on which part is dominant. returns to the original reservoitb) Three-terminal Hall bar with
gate(3). Theasymmetric geometry leads to an asymmetric magne-

B. Emittance matrix for quantized Hall samples tocapacitance as a function of the magnetic field.
if

To apply the resul(18) to quantized Hall samples, one emittance is dsymmetrig capacitance, i.eE,3=C, 4, i
uses the fact that the partial DOS can be expressed in ternegich edge channklis connected to a single reservoir, i.e., if
of the transmission probabilities,,;, Az, and the density A, (B)=A_.(B) holds.
of statesD, of edge channek:

V. EXAMPLES

szakB 2dNak . . . .
g~ QaDidig, g =AaDk. (19 In this section we apply the previous results to various

examples of Hall devices. The electrochemical capacitance
This follows directly from the suppression of backscatteringmMatrix c,, y; is always assumed to be known.
in an edge channel. The characteristic potentigjsfollow
from Egs.(4), (5), and(11): A. Two-terminal devices

N The two-terminal devices in Figs. 1 an(i(%)gfcan be char-
_ ~-1 acterized by the scalar admittand@=G"“—-iwE=Gq;
”kﬂ_; (= Dy Cura)Bip- (20 =G,=—G,= — G,y. While G(O=e?/h for the Hall bar in
Fig. 1(a), the dc conductance vanishes identically for the
By inserting Eqs(19) and (20) in Eq. (18) one obtains Corbino disk in Fig. 1b) since there is no dc current flowing
through the contacts. From E@®1) one finds the emittances
E=—-c, andE=c, for the bar and the disk, respectively.
Eap= klztl AakCpukiBig- (21) Here,c, denotes the relative electrochemical capacitance be-
’ tween the edge channels. While the emittance of a Corbino
This is the key result of our work. The emittance is the sumdisk is an electrochemical capacitance, the emittance of a
of all those charges that agmittedat contacte due to the —quantum Hall bar turns out to bereegativeelectrochemical
injection of charge at contagt mediated by Coulomb inter- capacitance. The interchange of the sign can be understood
action between edge channels. The elementary process tHatuitively by remarking that the kinetic padQ® and the
contributes to the emittance is illustrated by the diagram irpart 5Q associated with screening are interchanged for the

N

Fig. 3. two different topologies. Indeed, for a voltage oscillation at
The emittance has the following properties. Fromcontact 1 of the bar, transmitted charge goes to reservoir 2
> . Av,=1 and Eq.(8) one concludes that and induced charge comes back via edge channel 2. In the

Corbino geometry, on the other hand, transmitted charge
comes back to contact 1 and screening charge goes to reser-
> Eqp=2 Eop=0, (22 voir 2.
p “ In order to obtain an intuition for the signs of emittances,
which is a consequence of charge conservatidince consider Fig. 4a) where a two-terminal quantum Hall bar
A, (—B)=A,(B), the Onsager-Casimir reciprocity With two pairs of edge channels is shown. A constriction is
relationg assumed to bend back the second g&iand 4, which will
thus not contribute to the dc conductance. The dc conduc-
Eap(B)=Ega(—B), (23) tance ise?/h as for the case of the bar in Figial However,
the second pair gives a capacitive contribution to a time-
based on microreversibility are satisfied too. In contrast talependent current. From E¢1) and using Eq.(8), one
c,.k(B), the emittance matri€ ,5(B) is in generahotsym-  finds immediately{e=c,, ;,—C, 34. Hence, the emittance is a
metric. A comparison of Eq€13) and(21) implies that the capacitancéi.e., E>0) if the Coulomb interaction between
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edge channels 3 and 4 is stronger than the Coulomb interac- a) U,
tion between edge channels 1 and 2. The transmitting edge

channels contribute thus with a negative capacitance. It is \ Zu
very remarkable that only two elements of the full capaci- W v, 3 LLs
tance matrixc,, i detqrmme the emittance. Thls is a conse- 1L \
guence of the quantized contact transmission probabilities
and of the symmetry and current-conservation properties of Ly
the capacitance matrix. The direct way in which our ap-

proach permits us to derive this result demonstrates its use- b) H,
fulness.

B. Three-terminal device: A bar with additional gate

The three-terminal device in Fig(l®) consists of a quan-
tum Hall bar with a gate on top of the 2DES and close to one
sample edge. The gate is connected to a further contact and
couples only capacitively to the edge channels. This setup
has been investigated in Ref. 23. Clearly, all tAg; and
Ggp vanish. The dc conductance for the contacts 1 and 2 is FiG, 5. (a) Ideal four-terminal Hall bar. The geometry of edge
equal to Gaog) for the quantum Hall bar in Fig.(&). The  channels is determined by the sample bounddmyFour-terminal
presence of the gate breaks the symmetry of the quantumall bar with complicated edge-channel arrangement.

Hall bar under simultaneous magnetic field reversal and in-
terchange of reservoirs 1 and 2. One expects thus that thipns (14) and (21) yield Ggr?lg:g(éab’_ 84-1p) for the dc

emittance matrixE is an asymmetric function of the mag- conductance, anEaB:C,u’a_lg for the emittance, respec-
/

netic field. Equatior(21) yields tively. Here, we defined=p(e®/h), and the indices 0 and 4
have to be identified with each other.
Cu2n Cup22 Cpupos On the other hand, for the specific nonideal Hall bar plot-
E(B)=| Cu11 Cu1z Cuisl. (24) ted in Fig: 8b) thg connection.between contacts via edge
channels is not simply determined by the topology of the
Cust Cuz2 Cuas sample boundary. In the particular case of Fifh)5the dc

For instance, by measuring the current at contact 1 for gonductance becomes

voltage oscillation at the gate, one finlig(B)=c,, 3 for
one polarity of the field, butE,3(—B)=c, 3; for the other

field polarity. This follows directly from the reciprocity rela- © el -1 1 0
tions (23). Because the capacitancg 13 between channels 1 G “"hl -1 -1 2 BB (25
and 3 is different from the capacitancg ,; between chan-
nels 2 and 3, one observes a completely asymmetric emit-

tan_ce cogfﬂqen.El.g(B) asa funct!on of the mggneUc field. For the emittance coefficients one finds expressions of the
This prediction is in agreement with the experimental result%rm Eyi=C, 14+ C, 17+C, st C, o7 €tC., Where thec,
'8 M My M . M

reported in Ref. 23. The symmetry of the emittance malrixyon e the electrochemical capacitances between edge chan-
strongly reflects the geometry of the edge-channel arranggsas labeled as shown in Fig(t5. Below, we will use this
ment. example in order to discuss the effect of voltage probes.
Furthermore, we will derive the frequency-dependent longi-

C. Four-terminal Hall bars tudinal and Hall resistances for the ideal Hall sample in Fig.

2 0o -1 -1

0 o -1 1

In Fig. 5, four-terminal samples are shown that are used iﬁ’(a)'
order to investigate the quantum Hall effécn such de-
vices, two contacts serve as current source and sink, whereas VI. EFFECT OF VOLTAGE PROBES
the two remaining contacts are used as voltage probes. In . . .
Fig. 5(a) an ideal bar is shown where edge channels connect In this section we study the crossover fronMaterminal

subsequent contacts along the sample edge. In the samplesﬁ‘mple to a1 —1-terminal sample by using one contact, say
Fig. 5(b), on the other hand, there are certain edge channef%ontaCtQ' as a voltfage p.mbe- F_or the dc conductance, this
leaving one and the same contact but connecting differe roble.m has been investigated in Ref. 30. We assume that
contacts. ere is at least one edge channel that connects coﬂtact'
Let us assume for the ideal four-terminal bar in Figa)® with a d]ﬁgrent contact. For an ideal voltage probe, there is
filing factor between the integerp and p+1 such that no possibility for charge to pass through cont@csuch that

p-edge channels exist along each sample edge that conne‘gtﬂgo' By eliminatingV, in Eq. (1), one obtains from
contactk with contactk+ 1. It is possible to define electro-

. . 1 Glo
chemical capacitances, ; between these sets of edge chan- 5, _—_ _~ GO il En.— -8 SV
nels that leave contadt and of those that leave contaict e e ﬁ;ﬂ ap~ 1@\ FesT G0 =00 A

For each of those sets we plotted a single directed line. Equa- (26)
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a new admittance,, 5(w) = G{)—iwE, 4 for the remaining ~ contact3 to contacte, bypassing(), and obtain a “self-

M —1 contacts, where emittance” contributiorEq, ; (2) where carriers induced via
o) (0 the emittanceeq ; are transmitted from conta€l to contact
SO GO GL&G(QE 27 a; and (3) where carriers that are transmitted from contact
af™ ZaB G§% ' B to contact() interact via the emittancg,, with contact
.
. G&O&G& @ G((% _As an example, we con_sider the four-terminal sample of
Eup=Eqpt (G2 Eqo— GO Eap— EaQG(—O). Fig. 5(_b) where contact 3 is to serve as the voltage probe.
(019) Q0 QQ Equationg27) and(28) yield the following three-terminal dc
(28) conductance for the contacts 1, 2, and 4:
A brief calculation confirms that Eq$22) and (23) remain
valid for Egs.(27) and(28). The additional terms appearing 32 —-1/2 -1

in Egs.(27) and(28) describe scattering between edge chan- = (0) e?

nels at contacf) (incoherent terms*® Now, the probability Gl=nl ~ 1 1 0. (29)

of a carrier to go from contag8 to contacta is no longer -1/2 —-12 1

restricted to the values zero and unity. The additional terms

have the following simple interpretations. Firstly, the second=or example, carriers from edge channel 2 will be scattered
term on the right-hand side of E7) describes the equi- at contact 3 with probability one-half to channel 3 and one-
partition of the current that comes from contgto Q) be-  half to channel 7, which implie€ (Y= G{9= — e?/2h. Simi-
tween the channels that go from cont&ctto «. Secondly, lar interpretations can be found for the other elements of the
the three correction terms on the right-hand side of (26) dc-conductance matrif29).

can be associated with proces$tswhere carriers go from From Eg.(28) one obtains the emittance matrix

Eayd+E 92+ Esf2 Esgfd+Ef2+Egf2 Egyf2
E-E+ Eoq/2 Ed2 o |. (30
Eafd+E g2+ Egyf2 Egfd+E 2+ Egyl2 Egyl2

where the % 3 matrix E is obtained from the matrig€ by vided the contacts 2 and 4 are voltage probes. With the help
deleting row 3 and column 3. The fact thas,= E,, holds ~ Of Ed. (1), R. and Ry can be expressed in terms of the
can be easily understood from E®8): there are neither Gag. After some linear algebra one firfds
edge channels that go from contact 4 to 3 nor from contact &= (G3:G41—~G31G42)/D and Ry = (G,1G 43— G41G23)/D,
to 2. Simple interpretations exist also for the other emittancavhere D is the determinant of the 83 matrix G,z re-
coefficients. For example, consider the additional termstricted to, saya,=1,...,3. By using the results of Sec.
E,y2 of E,,. A voltage oscillation in contact 2 induces a V C. one obtains a longitudinal resistanBe =iwE /g7,
current in edge channel 2, which leads to contact 3. Thigvhereg=pe?/h with p being the number of edge channels
current is divided intdwo parts(channels 3 and)7t contact ~ @long an edge. WitlE,;=c,, ;3 one obtains
3. Hence, a contributiof,5 with a factor one-half occurs.
Rinwc—S’ﬁ. (31)
VIl. LONGITUDINAL AND HALL RESISTANCES . . . . .
AT LOW FREQUENCIES The leading term of th_e longitudinal resistance is de_termmed
by the Coulomb coupling between the current circuit and the
The integer quantum Hall effect corresponds to the quanvoltage circuit, which are represented by edge channels 1 and
tization of the Hall resistance and the vanishing of the lon-3, respectively. On the other hand, the Hall resistance turns
gitudinal resistance of the ideal four-probe quantum Hall baiout to be
of Fig. 5a) at zero frequency.Two of the contacts serve as
voltage probes, whereas the two remaining contacts are used 1 Cu2Cuis
as source and sink for the current. The discussion of the RH:§+""T- (32
guantum Hall effect in terms of edge channels is provided by
Ref. 2. With the help of the theory presented in this paperThis result implies that, in contrast to the longitudinal resis-
the results of these references can now be extended to th@nce, for the Hall resistance the sign of the first-order term
low-frequency case. with respect to frequency depends on the specific locations
If the contacts 3 and 4 in Fig.(& are the voltage of the contacts. In principle, the capacitances,, and
probes, the longitudinal resistance is defined byc, 3 can be found independently by measuriRg for ap-
R.=Ryz3/(8V3—6V,)/51,. On the other hand, the Hall propriate choices of current and voltage probes. A further
resistance is defined Ry =Ry3,,~(6V,—6V,)/6l,, pro-  measurement oRy provides then a test for the validity of
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Egs. (31) and (32). Finally, a direct calculation shows that ACKNOWLEDGMENT
Egs. (31) and (32) satisfy the reciprocity relatioAs
Rjk.mn(—B) =Rmnjk(B); in particular, R (—B)=R.(B)
holds.
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VIIl. SUMMARY APPENDIX

In order to derive the electrochemical capacitance matrix
ki for a system with many edge channels, we assume that
he spatial variation of the electrostatic poteniiaide the
dge channels can be neglecteliscrete potential modgl
hen, Eq.(4) remains valid and the definition of a geometri-
cal capacitance, is meaningful. It is convenient to use
ector and matrix notation. Let us write thix N matrix for
the geometrical capacitance of ttiisconnectededge chan-

Is byc=cjy, and in a similar way for the electrochemical
pacitancee,=c, j, and the DOSD=D,;. We intro-
ceN-dimensional vectorgqg, éU, andéV for the charges,

e electrostatic and the electrochemical potentials of the
dge channels, respectively. The solution of the Poisson
quation for a given charge distribution yields an electric

We investigate the low-frequency admittance of quantized
Hall samples by using a simple discrete potential mode
based on the decomposition of the 2DESwell-separated
metallic and dielectric parts and by applying a general theor
of the low-frequency admittancea,g:G(aoﬁ)—inaﬁ for
mesoscopic conductors. The main result is an expression f
the emittance matrik 4z in terms of electrochemical capaci-
tance elements that depend on the geometrical configurati
and the density of states of the edge channels. We emphasiég
that the theory satisfies the important requirement of charggu
neutrality and current conservation. The emittance gives thﬁ1
charge emitted through contaetmediated by the Coulomb
interaction of edge channels for a voltage variation at contac
B. If there is no transmission of charge between different gtential U=c " Léq+ 5U©1, where1 is a vector with all
reservorrs, the emittance Is a capacitance, BUEIn thg presence,gmponents being unity. Note that a constant potential shift
of transmission the emittance can even be a negative capacg—u(o) in the whole sample is always a solution of the Pois-
tance. This has been exemplified by comparing Corbino and - cquation and is determined by charge conservation
bar geometries. The symmetry of the emittance matrix wit s 20 Hence. sUO =S c.. sU /é .. 9 which de- '
respect to the magnetic field depends significantly on thé k =0 1 ' {bk) KOk =] Kk .
geometry of the edge channels. The presence of a volta ges a ma_trle such th_atﬁU 1=AdU. The electrochemi-
probe and the resulting inter edge-channel scattering at thedl capacitance (rgatrlm/&/ follows from &g=D(éV
voltage probe is investigated. We finally derive expressions” @J) =C¢(8U— 8UT1) and can be expressed in the form
for the frequency-dependent longitudinal and Hall resis- a1 _ -19-1/] _
tances of an ideal four-probe bar. Due to the intuitive expres- Cu=[e T+ (=MD =A), (AL)
sion for the emittance, all results have simple interpretationsivherel denotes the identity matrix.
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