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We present a current and charge conserving theory for the low-frequency admittance of a two-dimensional
electron gas connected to ideal metallic contacts and subject to a quantizing magnetic field. In the framework
of the edge-channel picture, we calculate the admittance up to first order with respect to frequency. The
transport coefficients in first order with respect to frequency, which are calledemittances, determine the charge
emitted into a contact of the sample or a gate in response to an oscillating voltage applied to a contact of the
sample or a nearby gate. The emittances depend on the potential distribution inside the sample, which is
established in response to the oscillation of the potential at a contact. We show that the emittances can be
related to the elements of an electrochemical capacitance matrix, which describes a~fictitious! geometry in
which each edge channel is coupled to its own reservoir. The particular relation of the emittance matrix to this
electrochemical capacitance matrix depends strongly on the topology of the edge channels: We show that edge
channels that connect different reservoirs contribute with a negative capacitance to the emittance. For example,
while the emittance of a two-terminal Corbino disk is a capacitance, the emittance of a two-terminal quantum
Hall bar is a negative capacitance. The geometry of the edge-channel arrangement in a many-terminal setup is
reflected by symmetry properties of the emittance matrix. We investigate the effect of voltage probes and
calculate the longitudinal and the Hall resistances of an ideal four-terminal Hall bar for low frequencies.

I. INTRODUCTION

The quantized Hall effect1 provides particularly interest-
ing tests of our understanding of electrical transport. Appli-
cation of a resistance formula that treats all contacts to a
two-dimensional electron gas on equal footing2 has consid-
erably revised the traditional picture of the quantized Hall
effect and has led to the successful explanation of many
novel experiments.3 It is the purpose of this work to ap-
proach the low-frequency electrical transport in two-
dimensional electron systems~2DES’s! subject to strong
magnetic fields from a similar point of view. In contrast to
the dc-transport properties, which have become increasingly
well understood, the ac-transport properties have found
much less attention. However, a charge and current conserv-
ing theory for the low-frequency admittanceGab(v) of a
general arrangement of mesoscopic conductors has recently
been worked out.4,5 We apply this theory to Hall systems in
the integer quantum Hall regime at a plateau. A charge and
current conserving theory requires knowledge of the non-
equilibrium potential distribution inside the conductor. In the
quantum Hall regime the determination of this potential be-
comes simple due to the formation of edge channels.6 As
discussed in detail by Chklovskii, Shklovskii, and Glazman7

and closely related works,8–14 there occurs a decomposition
of a 2DES in metal-like edge channels and dielectriclike re-
gions. Consequently, the nonequilibrium potential is also de-
termined by the properties of the edge channels. If the edge
channels behave like perfect metals they screen any excess
charge. The resulting nonequilibrium potential is determined
by the geometry of the edge-channel arrangement alone. On
the other hand, if the charge in the edge channels is not
perfectly screened the nonequilibrium potential depends on
the density of states of the edge channels. The resulting po-
tential distribution is not of geometrical nature alone but con-

tains quantum corrections due to the finite density of states
of the edge channels. It is of particular interest to investigate
to what extent such quantum corrections affect the dynamic
transport properties of a 2DES.

The admittanceGab(v) gives the linear current response
dI aexp(2ivt) at a contacta of a sample, if at contactb a
voltage oscillationdVbexp(2ivt) is applied:

dI a~v!5(
b

Gab~v!dVb~v!. ~1!

The voltage variationdVb is related to the variation of the
electrochemical potential dmb in reservoir b by
dmb5edVb , wheree is the electron charge. The theory4,5

deals with the dc conductanceGab
(0) and the first-order term

with respect to frequency,Eab[ i (dGab /dv)v50 , which is
called theemittancematrix. The low-frequency admittance
can then approximately be written in the form

Gab~v!5 Gab
~0!2 iv Eab . ~2!

For an array of macroscopic conductors of which each is
connected to a single contact, the emittance is just a geo-
metrical capacitance, i.e.,Eab5Cab . However, this is not
true formesoscopicconductors and conductors that connect
different reservoirs.5 First, it is not the geometrical capaci-
tance but rather theelectrochemical capacitancethat relates
charges at mesoscopic conductors with voltage variations in
the reservoirs. Second, conductors that connect different res-
ervoirs allow a transmission of charge that leads to inductan-
celike contributions to the emittance.

We shall show that the emittanceEab of a quantized Hall
sample is the sum over elements of the electrochemical ca-
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pacitance matrix,cm,kl , for edge channelsl into which
charge is injected at contactb and for edge channelsk from
which charge is emitted into contacta. The electrochemical
capacitance matrixcm,kl is determined by considering each
edge channel as a metal strip connected to a single contact.
Our expression for the emittance is simple enough in order to
discuss arbitrarily complicated edge-channel arrangements
without much technical effort, once the electrochemical ca-
pacitance matrix of the edge-channel arrangement is known.
We emphasize here that our theory satisfies charge and cur-
rent conservation, which are due to a perfect screening of
electric fields in the reservoirs and in the gates used to form
the conductor. Current and charge conservation implies that
the admittance satisfies(bGab5(aGab50.

Two simple geometries can be used to illustrate the dif-
ferent behavior of the emittance, namely, the Hall bar geom-
etry @Fig. 1~a!#, and the Corbino geometry@Fig. 1~b!#. We
will show that in a Hall bar kinetic charge motion of elec-
trons along the edge channels dominates the Coulomb inter-
action between the reservoirs. The emittance is a negative
electrochemical capacitance, i.e.,E52Cm , with Cm.0. On
the other hand, in the Corbino geometry contacts are located
at the inner and the outer perimeter of an annular film.15,16

Hence, edge channels do not connect different reservoirs and
will thus not contribute to a dc current. Moreover, in contrast
to the bar geometry in the Corbino disk capacitive effects
dominate and the emittance is a capacitance, i.e.,E5Cm .

The transverse potential profile in a cross section of these
conductors is qualitatively shown in Fig. 2, which is to be
discussed below. Here we only mention that the similarity of
this potential for the two different setups applies only to the
bulk of the sample. We will assume in this work that the
capacitances and emittances are dominated by the bulk and
that contact capacitances can be neglected.

The paper is organized as follows. In Sec. II we briefly
recall the edge-channel picture of a 2DES at equilibrium. In
Sec. III, we discuss the dc-nonequilibrium electric potential
in terms of an electrochemical capacitance matrix, and the
expression for the dc conductanceGab

(0) is derived. In Sec. IV
we outline the theory of emittances and derive an expression
for the emittance matrixEab for quantized Hall samples. The
result is applied to various specific examples in Sec. V. In

Sec. VI we investigate the effect of a voltage probe. As an
application, we calculate in Sec. VII the longitudinal resis-
tance and the Hall resistance of a four-probe quantum Hall
bar for low frequencies.

II. QUANTIZED HALL SAMPLES AT EQUILIBRIUM

We begin with a brief discussion of important equilibrium
properties of a 2DES at an~integer! Hall plateau. Consider
the two-terminal quantum Hall bar in Fig. 1~a!. The bar is
connected on either side via ideal contacts to particle reser-
voirs a51,2 at electrochemical potentialsma5EF,a
1eUa . Here, EF,a and Ua denote the chemical and the
electric potential of reservoira, respectively. The strong
magnetic field is assumed to be perpendicular to the plane of
the 2DES. Translational invariance of the potentialeU(x) in
the y direction allows one to restrict the considerations to a
transverse cross section of the sample. The single-particle
potential as a function ofx is sketched in Fig. 2~a! for the
equilibrium case where the reservoirs are kept at equal elec-
trochemical potential, saym5EF whereUa[0. For the mo-
ment, we assume that the Fermi level lies in the region be-
tween the extended bulk states of the first and the second
~spin-split! Landau levels. Hence, in the bulk the states of a
single Landau level are completely filled@black dots in Fig.
2~a!#. At the sample boundary, however, the confinement po-
tential strongly bends up the single-particle potential which,
therefore, intersects the Fermi energy. This leads to the ex-
istence of extended states at the Fermi level~edge channels!
along the sample boundary. For noninteracting electrons6 the
intersection of the single-particle energy with the Fermi en-
ergy is sharp. The transverse size of an edge channel is of the
order of a magnetic length,l m5A\/ueBu. The mean drift ve-

FIG. 1. ~a! Quantum Hall bar with a single pair of edge channels
~thin directed lines! and connected to two reservoirs at electro-
chemical potentialsm1,2. ~b! Corbino disk with contacts at the inner
and the outer edges.

FIG. 2. ~a! Single-particle potential for a transverse cross sec-
tion of the Hall bar in Fig. 1~a!. Empty, partially filled, and filled
circles correspond to empty, partially filled, and filled states, respec-
tively. Edge channels are the partially filled and extended states at
the Fermi energyEF close to the sample edge, where the potential is
dominated by the confinement potential.~b! Nonequilibrium ver-
sion of ~a!. The electrochemical voltage variationdV1 induces
charges dq1,2 and nonequilibrium electrostatic potential shifts
dU1,2 in the edge channels.
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locity of a carrier with coordinatex points in they direction
and is given by17 v(x)5(dU/dx)/B. This is just the Lorentz
drift of the center of a cyclotron orbit in an electric field.

In a quantized Hall sample a current density exists that is
a pure equilibrium phenomenon and cannot lead to a current
between reservoirs. For a filled Landau level, the diamag-
netic current density can be written in the form17

j52
e2

h

dU

dx
. ~3!

The total current through a contact is obtained by a trans-
verse spatial integral ofj (x). It vanishes at equilibrium since
at both boundaries of integration,m5EF1eUk holds, where
k51,2 labels the edge channels. Of course, this statement is
valid independent of the geometrical arrangement of the
edge channels as long as the cross section is constructed such
that all edge channels of a contact are included. In particular,
it is independent of the specific space dependence of the
equilibrium potential, which can be very complicated.

The inclusion of Coulomb interaction, even within a
mean-field approximation, drastically affects the results of
the single-particle approach. Coulomb interactions lead to an
electrostatic restructuring of the edge.7–12The 2DES is com-
posed of alternating strips of compressible and incompress-
ible electron liquids with finite widths. Incompressible re-
gions where the filling factor has discrete values behave like
dielectrics. Quantitative analytical predictions of the widths
of the compressible and incompressible strips have been
made by Chklovskii, Shklovskii, and Glazman.7 These pre-
dictions are in good agreement with numerical work by Lier
and Gerhardts.9 Edge channels correspond to the compress-
ible regions where single-particle states are partially filled
and the electric potential is pinned to the Fermi level@flat
parts in Fig. 2~a!#. Edge channels have screening properties
similar to metallic strips. The many-particle effects become
important if the strengthdU/dx of the ~unscreened!
confinement field is weaker than the characteristic
electric field of electron-electron interaction, i.e., if
a[udU/dxu4pe0e r l m

2 /e!1, where e0e r is the dielectric
constant. The strength of the confinement field depends on
the specific fabrication of the boundaries of the 2DES under
consideration~etching, gates, etc.!. It has been argued that
compressible and incompressible strips can even become
comparable in size.7 Interaction-dominated edge channels are
useful in the theory of the fractional quantum Hall
effect.11,12,18,19 However, the structure of fractional edge
channels is much more complicated, and we shall restrict our
considerations to the integer quantum Hall regime.

In the following considerations, three quantities that char-
acterize the equilibrium state of a sample are important in
order to discuss low-frequency transport close to equilib-
rium. First, the density of statesdNk /dE of the edge channel
k at the Fermi level gives the change in the number of states
if the electrochemical potential is varied for fixed electro-
static potential~i.e., fixed band bottom!. For noninteracting
electrons this density of states is determined by the~equilib-
rium! velocity of carriersv(s)5@dUeq(s)/dx#/B along the
path s of the edge channel, wherex is now the transverse
coordinate. It is given bydNk /dE5*ds/hv, where the in-
tegral overs is along the entire path of the edge channel

from one sample contact to the other. For the interacting
model this density of states diverges atkT50 since the
single-particle potential is flat. The charge injected into such
a compressible region is completely screened, except at the
edges where the transition to the impressible region occurs.
Thus the relevant densities of states are determined by the
spatial dependence of the potential at the boundaries of the
compressible region.

Secondly, one can attribute to the arrangement of metal-
like edge channels a geometrical capacitance matrixcjk . For
a given geometry, this matrix can, in principle, be derived
with the help of Poisson’s equation. For metallic screening
this capacitance matrix is determined by the width and loca-
tion of the edge channels. It is, therefore, also a function of
the magnetic field and the electrochemical potentials applied
to the contacts and the gates.20

We finally take into account that each edge channel con-
nects reservoirs in a directed way, due to the unidirectional
velocity of the carriers. This connection is determined by the
transmission and reflection probability of the contact. In the
following, we shall always regard the just mentioned charac-
teristics of the equilibrium state to be given.

III. THE NONEQUILIBRIUM STEADY STATE

A. Electrochemical capacitance of edge channels

Consider the two-terminal bar of Fig. 1~a! under nonequi-
librium conditions. A cross section of the single-particle po-
tential in the nonequilibrium case is shown in Fig. 2~b!. A
small increase of the voltagedVb at contactb, sayb51,
implies an electrochemical voltage shiftdVk in channelk. If
the transmission probability from the contact into the edge
channel is 1, then the chemical potential shift of that edge
channel is the same as that of the reservoirdVk5dVb . As a
consequence, a charge is injected into the edge channel
which is proportional to the DOSdNk /dE of the edge chan-
nel k. This added charge creates in the whole sample an
electric nonequilibrium potential that shifts the band bottom.
This leads, in turn, to the injection of screening charge. The
total chargedqk in edge channelk is then given by

dqk5Dk~dVk2dUk!, ~4!

whereDk5e2dNk /dE is the quantum capacitance of edge
channelk. The nonequilibrium electric potentialdUk of edge
channelk can be calculated for a given charge distribution
by solving the electrostatic boundary-value problem associ-
ated with Poisson’s equation. This leads to the introduction
of the geometrical capacitance matrixck j of the edge-
channel configuration bydqk5( j ck jdUj . Note that theck j
are calculated for edge channels that aredisconnectedfrom
the contacts and where charge is not conserved. But the rel-
evant~gauge invariant! potentials are the electrochemical po-
tentials and not the electrostatic potentials of disconnected
edge channels. We define thus an electrochemical capaci-
tance matrixcm,k j by

4

dqk5(
j
cm,k jdVj ~5!
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Since charge is conserved, we have
(dqi50. One finds then from Eqs.~4! and ~5!
cm,115cm,2252cm,1252cm,21[cm , where the electro-
chemical capacitancecm of the two edge channels is given
by

cm
215c0

211D1
211D2

21 . ~6!

This describes the geometrical capacitance,21 c05(c11c22
2c12

2 )/(c1112c121c22), in series with the quantum capaci-
tancesDk .

As an example, we consider the noninteracting case
where the widthsjk of the edge channelsk51,2 of length
Ly are very small~i.e., jk' l m). For the sake of simplicity,
we assume them to be equal to each other,jk[j. The dis-
tance between the edge channels is denoted byLx , and the
charge is to be uniformly distributed in the edge channels.
For line charges, the geometrical capacitance becomes22

c05(Lype0e r)/@11 ln(Lx /j)#. The density of statesDk , on
the other hand, is given byDk5Lye/(2p l m

2 udUk /dxu),
where we assumed very steep confinement potentials
dUk /dx5(dU/dx)xk at the edge channels located atxk . The

electrochemical capacitancecm can then be written as

cm5
pe0e rLy

11 ln~Lx /j!1p~a11a2!/2
. ~7!

Hereak5udUk /dxu4pe0e r l m
2 /e is the ratio between the con-

finement field and the interaction field at the edge channelk.
To be consistent with the noninteracting case, one must have
ak@1. Note thatcm depends on the magnetic field viaak
}1/B, and via theB dependence of the geometry of the
edge-channel arrangement.

Charge conservation in the sample is reflected by the sum
rule

(
k
cm,kl5(

l
cm,kl50 , ~8!

which is a well-known property of a set of capacitors where
ground is included. One concludes that two-terminal systems
are particularly simple since 232 matrices satisfying Eq.~8!
are characterized by a single quantity and have thus purely
scalar properties. We will see later on that equations analo-
gous to Eq.~8! hold also for the dc conductance and the
emittance.5,23 Below it will be important that the electro-
chemical capacitance matrix is symmetric and an even func-
tion of the magnetic field, i.e.,cm,kl(B)5cm,lk(B) and
cm,kl(B)5cm,kl(2B), respectively. These properties are evi-
dent from our definition ofcm,kl .

B. dc conductance for a two-terminal Hall bar

To find the dc conductance in the transmission approach
the current can be evaluated in response to a small variation
of the chemical potential of the contacts keeping the electro-
static potential fixed at its equilibrium value. The transmis-
sion probabilities are a functional of the equilibrium electro-
static potential only. Here we briefly discuss the derivation of
the dc conductance using the actual nonequilibrium current.
For a detailed discussion of the various possible definitions
of currents and their physical interpretation we refer the

reader to Komiyama and Hirai.24 In order to find the dc
conductanceGab

(0) of the bar in Fig. 1~a!, we remark that the
total nonequilibrium current through a contact consists of
two contributions.25,26At contact 1, for example, a first part
dI 1

(u)[(e2/h)(dU12dU2) originates from the action of the
nonequilibrium electric field on the occupied equilibrium
states in the Landau level. This part is obtained from a spatial
integration of the current density~3! in the region
between the edge channels. A second part
dI 1

(q)[(dq1v11dq2v2)/Ly is caused by the motion of the
added charge densitydqk /Ly with an equilibrium velocity
vk in edge channelk. In the present notation, the relation
between the velocity and the DOS for quasi-one-dimensional
conductors readsvk56Lye

2/hDk where the sign is different
for opposite edge channels. Using this and Eq.~4! gives
dI 1

(q)5(e2/h)(dV12dU1)2(e2/h)(dV22dU2). It follows
immediately that the total currentdI 15dI 1

(u)1dI 1
(q) depends

only on the electrochemical potentials of the contacts and is
given by dI 15(e2/h)(dV12dV2) with a zero-frequency
conductance G(0)[G11

(0)5G22
(0)52G12

(0)52G21
(0)5e2/h.

This universal result reflects the integer quantum Hall
effect.1 Using dq15c0(dU12dU2) and dq15cm(dV1
2dV2) with cm given by Eq.~6! we find for the ratio of the
two currentsdI (q)/dI (u)5(D1

211D2
21)c0 . This ratio is large

for small DOSDk of the edge channels, i.e., for a sufficiently
steep slope of the confinement potential, when the chemical
contribution to the current predominates. On the other hand,
if the edge channels aremacroscopicmetallic conductors
with complete screening (dUa→dVa and vk→0), the
chemical contribution vanishes and the electrostatic contri-
bution predominates.

C. dc conductance for anM -terminal sample
with N edge channels

Consider now a more general quantum Hall sample with
M contacts andN edge channels. We assume that the density
of states,Dk , and the electrochemical capacitance matrix,
cm,k j (k, j51, . . . ,N), are known. An expression forcm,k j in
terms of the geometrical capacitance,ck j , and the DOS of
the edge channels,Dk , is derived in the Appendix. Equations
~4! and ~5! are still valid in the present case. Each edge
channelk is connected to reservoirsa andb, wherea5b is
permitted. Reservoirb injects carriers into edge channelk
from which carriers are emitted into reservoira. For sim-
plicity and to be definite, we assume that the contact resis-
tances of this sample are quantized.27,28 The transmission
probability of a carrier in contactb to enter edge channelk is
denoted byDkb(B) and for quantized contact resistances is
given by

Dkb~B!5H 1 if contactb injects into channelk

0 otherwise.
~9!

Similarly, we introduce the probability of a carrier that ap-
proaches contactb on an edge channelk to enter the contact

Da l~B!5H 1 if channel l emits into contacta

0 otherwise.
~10!
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From the microreversibility properties of the transmission
probabilities we haveDbk(B)5Dkb(2B). The transmission
probability of the contact plays the role of a topological fac-
tor determined by the connectivity of the edge channel to the
contacts of the sample. With the help of the contact transmis-
sion probability~9!, the variationdVk of the electrochemical
voltage of edge channelk can be expressed in terms of the
voltagesdVb in the reservoirs:

dVk5 (
b51

M

DkbdVb . ~11!

The chargedqk in edge channelk is then related to voltage
variations in the contacts by

dqk5 (
b51

M

(
l51

N

cm,klD lbdVb . ~12!

The total charge in all those channels into which contacta
injects is(kdqkDka . If there is no transmission~i.e., if all
edge channels are connected to a single contact!, one has
Dka5Dak . A capacitance measurement then yields a capaci-
tance matrix

Cm,ab5 (
k,l51

N

Dkacm,klD lb . ~13!

Below, we shall see that the assumption of the absence of
transmission between different contacts is crucial in order to
find a magnetocapacitance according to Eq.~13!.

The dc conductancedI a /dVb can be calculated following
the same lines as above for the two-terminal case with a
single Landau level. The currentdI a through contacta is
obtained from a sum over all incoming and outgoing chan-
nels k with a contributiondI k

(q) and over all Landau levels
with a contributiondI k

(u) . The well-known result2 reads in
our notation

Gab
~0!5

e2

h SKbdab2(
k

DakDkbD . ~14!

For the derivation of Eq. ~14! we used that
(kDkbDka5Kbdab whereKb is the number of edge chan-
nels into which contactb injects. The diagonal element,
Gbb
(0) , is e2/h times the number of channels that leave contact

b and that do not return to this contact, and2Gab
(0) (a

Þb) is e2/h times the number of directed channels going
from contactb to contacta. Note that both the current con-
servation property(aGab

(0)5(bGab
(0)50 and the Onsager-

Casimir reciprocity relations,Gab
(0)(2B)5Gba

(0)(B), are sat-
isfied.

IV. THE EMITTANCE MATRIX

A. Emittance matrix for general mesoscopic conductors

First, we recall the theory of the emittance for a general
arrangement of mesoscopic conductors by closely following
Ref. 5. Once the electrostatic geometrical capacitance matrix
is known, we can formulate our discussion in terms of a
discrete set of potentials, which we take to be constants
along each edge channel. A general formulation of the theory

for such a discrete potential model is the subject of Ref. 29.
It is well known that the transmission approach to current
transport relates conductances to scattering matrices of the
conductors. A scattering matrix relates incoming and outgo-
ing current amplitudes of the contactsa51, . . . ,M of a
sample for each conduction channelk51, . . . ,N. The DOS
dNk /dE of channelk expressed in terms of the scattering
matrix can then be written as a sum ofpartial densities of
states, dNakb /dE. The quantitydNakb /dE is the DOS of
channelk associated with carriers that are scattered from
contactb to contacta. A slight variationdVb of the voltage
in contact b causes the injection of a total chargedQa
through contacta. Thus, a slowly oscillating voltage implies
an additional current2 ivdQaexp(2ivt) at this contact.
Now, it follows from the definition in Eq.~2! that the emit-
tanceEab can be identified withdQa /dVb . Note that there
are two contributions todQa . A first part, which neglects
screening, is given by a kinetic contribution

dQa
~k!5e2(

k51

N

(
b51

M
dNakb

dE
dVb . ~15!

This part gives the charge that is scattered from the contacts
b to contacta due to the shift of the electrochemical poten-
tials dVb at fixed electrostatic potentialsdUk . However, the
nonequilibrium electrostatic potential, which is due to the
nonequilibrium charge-distribution in the edge channels, is
still neglected in Eq.~15!. In order to take it into account, we
recall that thedUk are shifts of the band bottoms of the edge
channels, which cause an induction of additional screening
charges. Hence, there is a second contributiondQa

(s) given
by the part of the screening charge that is eventually scat-
tered to contacta. It can be expressed in the form

dQa
~s!52e2(

k51

N S (
b51

M
dNakb

dE D dUk . ~16!

The quantity in the large bracket, dNak /dE
[(b51

M dNakb /dE, is a partial DOS associated with carriers
in channelk emitted into contacta irrespective of the inject-
ing contactb. The change of the electric potentialdUk at
channelk is determined by the variations of the electro-
chemical potentials of the conductors. Within linear response
theory we write

dUk5 (
b51

M

ukbdVb , ~17!

where thecharacteristic potentials ukb ~Ref. 5! give the
change of the electrostatic potential of conductork if the
voltage is changed in contactb by unity. The sum of the two
parts given by Eqs.~15! and ~16! leads finally to the emit-
tance matrixdQa /dVb :

Eab5e2(
k51

N S dNakb

dE
2
dNak

dE
ukbD . ~18!

The occurrence of the characteristic potentialsukb indicates
the necessity of the knowledge of the nonequilibrium state in
order get the emittance. Since the characteristic potentials are
sample specific, one cannot expect to obtain a universal re-
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sult for the ac admittance. Furthermore, since the kinetic part
and the screening part contribute with opposite signs, the
emittance elements can have positive or negative sign de-
pending on which part is dominant.5

B. Emittance matrix for quantized Hall samples

To apply the result~18! to quantized Hall samples, one
uses the fact that the partial DOS can be expressed in terms
of the transmission probabilitiesDa l , Dkb , and the density
of statesDk of edge channelk:

e2
dNakb

dE
5DakDkDkb , e2

dNak

dE
5DakDk . ~19!

This follows directly from the suppression of backscattering
in an edge channel. The characteristic potentialsukb follow
from Eqs.~4!, ~5!, and~11!:

ukb5(
l51

N

~dkl2Dk
21cm,kl!D lb . ~20!

By inserting Eqs.~19! and ~20! in Eq. ~18! one obtains

Eab5 (
k,l51

N

Dakcm,klD lb . ~21!

This is the key result of our work. The emittance is the sum
of all those charges that areemittedat contacta due to the
injection of charge at contactb mediated by Coulomb inter-
action between edge channels. The elementary process that
contributes to the emittance is illustrated by the diagram in
Fig. 3.

The emittance has the following properties. From
(aDka51 and Eq.~8! one concludes that

(
b

Eab5(
a

Eab[0, ~22!

which is a consequence of charge conservation.5 Since
Dak(2B)5Dka(B), the Onsager-Casimir reciprocity
relations5

Eab~B!5Eba~2B!, ~23!

based on microreversibility are satisfied too. In contrast to
cm,kl(B), the emittance matrixEab(B) is in generalnotsym-
metric. A comparison of Eqs.~13! and ~21! implies that the

emittance is a~symmetric! capacitance, i.e.,Eab[Cm,ab , if
each edge channelk is connected to a single reservoir, i.e., if
Dka(B)[Dak(B) holds.

V. EXAMPLES

In this section we apply the previous results to various
examples of Hall devices. The electrochemical capacitance
matrix cm,k j is always assumed to be known.

A. Two-terminal devices

The two-terminal devices in Figs. 1 and 4~a! can be char-
acterized by the scalar admittanceG5G(0)2 ivE[G11

5G2252G1252G21. WhileG(0)5e2/h for the Hall bar in
Fig. 1~a!, the dc conductance vanishes identically for the
Corbino disk in Fig. 1~b! since there is no dc current flowing
through the contacts. From Eq.~21! one finds the emittances
E52cm andE5cm for the bar and the disk, respectively.
Here,cm denotes the relative electrochemical capacitance be-
tween the edge channels. While the emittance of a Corbino
disk is an electrochemical capacitance, the emittance of a
quantum Hall bar turns out to be anegativeelectrochemical
capacitance. The interchange of the sign can be understood
intuitively by remarking that the kinetic partdQ(k) and the
partdQ(s) associated with screening are interchanged for the
two different topologies. Indeed, for a voltage oscillation at
contact 1 of the bar, transmitted charge goes to reservoir 2
and induced charge comes back via edge channel 2. In the
Corbino geometry, on the other hand, transmitted charge
comes back to contact 1 and screening charge goes to reser-
voir 2.

In order to obtain an intuition for the signs of emittances,
consider Fig. 4~a! where a two-terminal quantum Hall bar
with two pairs of edge channels is shown. A constriction is
assumed to bend back the second pair~3 and 4!, which will
thus not contribute to the dc conductance. The dc conduc-
tance ise2/h as for the case of the bar in Fig. 1~a!. However,
the second pair gives a capacitive contribution to a time-
dependent current. From Eq.~21! and using Eq.~8!, one
finds immediatelyE5cm,122cm,34. Hence, the emittance is a
capacitance~i.e., E.0! if the Coulomb interaction between

FIG. 3. An emittance elementEab is the sum over all electro-
chemical capacitance elementscm,kl of the edge channelsk and l ,
which correspond to the elementary process shown in this figure.

FIG. 4. ~a! Two-terminal bar with constriction. Only one pair of
edge channels connects different reservoirs, whereas another pair
returns to the original reservoir.~b! Three-terminal Hall bar with
gate(3). Theasymmetric geometry leads to an asymmetric magne-
tocapacitance as a function of the magnetic field.
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edge channels 3 and 4 is stronger than the Coulomb interac-
tion between edge channels 1 and 2. The transmitting edge
channels contribute thus with a negative capacitance. It is
very remarkable that only two elements of the full capaci-
tance matrixcm,kl determine the emittance. This is a conse-
quence of the quantized contact transmission probabilities
and of the symmetry and current-conservation properties of
the capacitance matrix. The direct way in which our ap-
proach permits us to derive this result demonstrates its use-
fulness.

B. Three-terminal device: A bar with additional gate

The three-terminal device in Fig. 4~b! consists of a quan-
tum Hall bar with a gate on top of the 2DES and close to one
sample edge. The gate is connected to a further contact and
couples only capacitively to the edge channels. This setup
has been investigated in Ref. 23. Clearly, all theGa3 and
G3b vanish. The dc conductance for the contacts 1 and 2 is
equal toGab

(0) for the quantum Hall bar in Fig. 1~a!. The
presence of the gate breaks the symmetry of the quantum
Hall bar under simultaneous magnetic field reversal and in-
terchange of reservoirs 1 and 2. One expects thus that the
emittance matrixE is an asymmetric function of the mag-
netic field. Equation~21! yields

E~B!5S cm,21 cm,22 cm,23

cm,11 cm,12 cm,13

cm,31 cm,32 cm,33

D . ~24!

For instance, by measuring the current at contact 1 for a
voltage oscillation at the gate, one findsE13(B)5cm,23 for
one polarity of the fieldB, butE13(2B)5cm,31 for the other
field polarity. This follows directly from the reciprocity rela-
tions ~23!. Because the capacitancecm,13 between channels 1
and 3 is different from the capacitancecm,23 between chan-
nels 2 and 3, one observes a completely asymmetric emit-
tance coefficientE13(B) as a function of the magnetic field.
This prediction is in agreement with the experimental results
reported in Ref. 23. The symmetry of the emittance matrix
strongly reflects the geometry of the edge-channel arrange-
ment.

C. Four-terminal Hall bars

In Fig. 5, four-terminal samples are shown that are used in
order to investigate the quantum Hall effect.1 In such de-
vices, two contacts serve as current source and sink, whereas
the two remaining contacts are used as voltage probes. In
Fig. 5~a! an ideal bar is shown where edge channels connect
subsequent contacts along the sample edge. In the sample of
Fig. 5~b!, on the other hand, there are certain edge channels
leaving one and the same contact but connecting different
contacts.

Let us assume for the ideal four-terminal bar in Fig. 5~a! a
filling factor between the integersp and p11 such that
p-edge channels exist along each sample edge that connect
contactk with contactk11. It is possible to define electro-
chemical capacitancescm, jk between these sets of edge chan-
nels that leave contactk and of those that leave contactj .
For each of those sets we plotted a single directed line. Equa-

tions ~14! and ~21! yield Gab
(0)5g(dab2da21b) for the dc

conductance, andEab5cm,a21 b for the emittance, respec-
tively. Here, we definedg5p(e2/h), and the indices 0 and 4
have to be identified with each other.

On the other hand, for the specific nonideal Hall bar plot-
ted in Fig. 5~b! the connection between contacts via edge
channels is not simply determined by the topology of the
sample boundary. In the particular case of Fig. 5~b!, the dc
conductance becomes

G~0!5
e2

h S 2 0 21 21

21 1 0 0

21 21 2 0

0 0 21 1

D . ~25!

For the emittance coefficients one finds expressions of the
form E115cm,141cm,171cm,541cm,57 etc., where thecm,kl
denote the electrochemical capacitances between edge chan-
nels labeled as shown in Fig. 5~b!. Below, we will use this
example in order to discuss the effect of voltage probes.
Furthermore, we will derive the frequency-dependent longi-
tudinal and Hall resistances for the ideal Hall sample in Fig.
5~a!.

VI. EFFECT OF VOLTAGE PROBES

In this section we study the crossover from aM -terminal
sample to aM21-terminal sample by using one contact, say
contactV, as a voltage probe. For the dc conductance, this
problem has been investigated in Ref. 30. We assume that
there is at least one edge channel that connects contactV
with a different contact. For an ideal voltage probe, there is
no possibility for charge to pass through contactV such that
dIV[0. By eliminatingdVV in Eq. ~1!, one obtains from

dVV52
1

GVV
~0! (

bÞV
FGVb

~0! 2 ivS EVb2
GVb

~0!

GVV
~0! EVVD GdVb

~26!

FIG. 5. ~a! Ideal four-terminal Hall bar. The geometry of edge
channels is determined by the sample boundary.~b! Four-terminal
Hall bar with complicated edge-channel arrangement.
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a new admittanceG̃ab(v)5G̃ab
(0)2 ivẼab for the remaining

M21 contacts, where

G̃ab
~0!5Gab

~0!2
GaV

~0!GVb
~0!

GVV
~0! , ~27!

Ẽab5Eab1
GaV

~0!GVb
~0!

~GVV
~0! !2

EVV2
GaV

~0!

GVV
~0! EVb2EaV

GVb
~0!

GVV
~0! .

~28!

A brief calculation confirms that Eqs.~22! and ~23! remain
valid for Eqs.~27! and ~28!. The additional terms appearing
in Eqs.~27! and~28! describe scattering between edge chan-
nels at contactV ~incoherent terms!.30 Now, the probability
of a carrier to go from contactb to contacta is no longer
restricted to the values zero and unity. The additional terms
have the following simple interpretations. Firstly, the second
term on the right-hand side of Eq.~27! describes the equi-
partition of the current that comes from contactb to V be-
tween the channels that go from contactV to a. Secondly,
the three correction terms on the right-hand side of Eq.~28!
can be associated with processes~1! where carriers go from

contactb to contacta, bypassingV, and obtain a ‘‘self-
emittance’’ contributionEVV ; ~2! where carriers induced via
the emittanceEVb are transmitted from contactV to contact
a; and ~3! where carriers that are transmitted from contact
b to contactV interact via the emittanceEaV with contact
a.

As an example, we consider the four-terminal sample of
Fig. 5~b! where contact 3 is to serve as the voltage probe.
Equations~27! and~28! yield the following three-terminal dc
conductance for the contacts 1, 2, and 4:

G̃~0!5
e2

h S 3/2 21/2 21

21 1 0

21/2 21/2 1
D . ~29!

For example, carriers from edge channel 2 will be scattered
at contact 3 with probability one-half to channel 3 and one-
half to channel 7, which impliesG̃42

(0)5G̃12
(0)52e2/2h. Simi-

lar interpretations can be found for the other elements of the
dc-conductance matrix~29!.

From Eq.~28! one obtains the emittance matrix

Ẽ5Ê1S E33/41E13/21E31/2 E33/41E13/21E32/2 E34/2

E23/2 E23/2 0

E33/41E43/21E31/2 E33/41E43/21E32/2 E34/2
D . ~30!

where the 333 matrix Ê is obtained from the matrixE by
deleting row 3 and column 3. The fact thatẼ245E24 holds
can be easily understood from Eq.~28!: there are neither
edge channels that go from contact 4 to 3 nor from contact 3
to 2. Simple interpretations exist also for the other emittance
coefficients. For example, consider the additional term
E23/2 of Ẽ22. A voltage oscillation in contact 2 induces a
current in edge channel 2, which leads to contact 3. This
current is divided intotwoparts~channels 3 and 7! at contact
3. Hence, a contributionE23 with a factor one-half occurs.

VII. LONGITUDINAL AND HALL RESISTANCES
AT LOW FREQUENCIES

The integer quantum Hall effect corresponds to the quan-
tization of the Hall resistance and the vanishing of the lon-
gitudinal resistance of the ideal four-probe quantum Hall bar
of Fig. 5~a! at zero frequency.1 Two of the contacts serve as
voltage probes, whereas the two remaining contacts are used
as source and sink for the current. The discussion of the
quantum Hall effect in terms of edge channels is provided by
Ref. 2. With the help of the theory presented in this paper,
the results of these references can now be extended to the
low-frequency case.

If the contacts 3 and 4 in Fig. 5~a! are the voltage
probes, the longitudinal resistance is defined by
RL5R12,345(dV32dV4)/dI 1 . On the other hand, the Hall
resistance is defined byRH5R13,245(dV22dV4)/dI 1 , pro-

vided the contacts 2 and 4 are voltage probes. With the help
of Eq. ~1!, RL and RH can be expressed in terms of the
Gab . After some linear algebra one finds2

RL5(G32G412G31G42)/D andRH5(G21G432G41G23)/D,
where D is the determinant of the 333 matrix Gab re-
stricted to, say,a,b51, . . . ,3. By using the results of Sec.
V C, one obtains a longitudinal resistanceRL5 ivE41/g

2,
whereg5pe2/h with p being the number of edge channels
along an edge. WithE415cm,13 one obtains

RL5 iv
cm,13

g2
. ~31!

The leading term of the longitudinal resistance is determined
by the Coulomb coupling between the current circuit and the
voltage circuit, which are represented by edge channels 1 and
3, respectively. On the other hand, the Hall resistance turns
out to be

RH5
1

g
1 iv

cm,242cm,13

g2
. ~32!

This result implies that, in contrast to the longitudinal resis-
tance, for the Hall resistance the sign of the first-order term
with respect to frequency depends on the specific locations
of the contacts. In principle, the capacitancescm,24 and
cm,13 can be found independently by measuringRL for ap-
propriate choices of current and voltage probes. A further
measurement ofRH provides then a test for the validity of
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Eqs. ~31! and ~32!. Finally, a direct calculation shows that
Eqs. ~31! and ~32! satisfy the reciprocity relations2

Rjk,mn(2B)5Rmn, jk(B); in particular, RL(2B)5RL(B)
holds.

VIII. SUMMARY

We investigate the low-frequency admittance of quantized
Hall samples by using a simple discrete potential model
based on the decomposition of the 2DES in~well-separated!
metallic and dielectric parts and by applying a general theory
of the low-frequency admittanceGab5Gab

(0)2 ivEab for
mesoscopic conductors. The main result is an expression for
the emittance matrixEab in terms of electrochemical capaci-
tance elements that depend on the geometrical configuration
and the density of states of the edge channels. We emphasize
that the theory satisfies the important requirement of charge
neutrality and current conservation. The emittance gives the
charge emitted through contacta mediated by the Coulomb
interaction of edge channels for a voltage variation at contact
b. If there is no transmission of charge between different
reservoirs, the emittance is a capacitance, but in the presence
of transmission the emittance can even be a negative capaci-
tance. This has been exemplified by comparing Corbino and
bar geometries. The symmetry of the emittance matrix with
respect to the magnetic field depends significantly on the
geometry of the edge channels. The presence of a voltage
probe and the resulting inter edge-channel scattering at the
voltage probe is investigated. We finally derive expressions
for the frequency-dependent longitudinal and Hall resis-
tances of an ideal four-probe bar. Due to the intuitive expres-
sion for the emittance, all results have simple interpretations.
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APPENDIX

In order to derive the electrochemical capacitance matrix
cm,kl for a system with many edge channels, we assume that
the spatial variation of the electrostatic potentialinside the
edge channels can be neglected~discrete potential model!.
Then, Eq.~4! remains valid and the definition of a geometri-
cal capacitancecjk is meaningful. It is convenient to use
vector and matrix notation. Let us write theN3N matrix for
the geometrical capacitance of the~disconnected! edge chan-
nels byc[cjk , and in a similar way for the electrochemical
capacitancecm[cm, jk , and the DOSD[Dkd jk . We intro-
duceN-dimensional vectorsdq, dU, anddV for the charges,
the electrostatic and the electrochemical potentials of the
edge channels, respectively. The solution of the Poisson
equation for a given charge distribution yields an electric
potentialdU5c21dq1dU (0)1, where1 is a vector with all
components being unity. Note that a constant potential shift
dU (0) in the whole sample is always a solution of the Pois-
son equation and is determined by charge conservation,
(kdqk50. Hence,dU (0)5( j ,kcjkdUk /( j ,kcjk , which de-
fines a matrixL such thatdU (0)15LdU. The electrochemi-
cal capacitance matrixdq/dV follows from dq5D(dV
2dU)5c(dU2dU (0)1) and can be expressed in the form

cm5@c211~ I2L!D21#21~ I2L!, ~A1!

whereI denotes the identity matrix.
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