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A three-dimensional structure of two carbon nanotubes~CN! joined by a connecting region containing a
pentagon and heptagon pair is given by the use of a projection method. The connecting joint is uniquely
determined for the given two chiral vectors of CN by a vector which defines a three-dimensional dihedral
angle. The tunneling conductance is calculated for a metal-metal CN junction and a metal-semiconducting CN
junction. The calculated results clearly show that these junctions work as the smallest semiconductor devices.

I. INTRODUCTION

Carbon nanotubes~CN’s! have been investigated inten-
sively as a different form of a one-dimensional material.1

Carbon nanotubes consist of a rolled-up graphene sheet, the
geometry, e.g., the diameter and chirality, of which can be
changed without introducing any impurity or deformation,
except for the curvature of the tube.2 Thus, the physical prop-
erties of carbon nanotubes can be understood as those of a
two-dimensional graphene sheet, with periodic boundary
conditions in the circumferential direction of the tube. The
electronic structure of a carbon nanotube can be either me-
tallic or semiconducting, depending on diameter and
chirality3–7 which can be uniquely determined by the chiral
vector,Ch ,

Ch5naW 11maW 2[~n,m!, ~1!

where aW 1 and aW 2 are unit vectors of a two-dimensional
graphene sheet~see Fig. 1! and n, m are integers. If we
neglect the small gap@on the order of 10 meV for the small-
est diameter metallic CN~Refs. 4 and 6!#, due to the effect of
the tube curvature, metallic or semiconducting tubes are ob-
tained depending on whether or notn-m is a multiple of 3,
respectively.5 The energy gap for a semiconducting tube is
inversely proportional to the tube diameter~independent of
the chirality! and is on the order of 1 eV for the smallest
diameter (;7 Å! nanotube.8

An interesting system for studying the coexistence of me-
tallic and semiconducting nanotubes concerns the design of a
metal-semiconducting device by connecting metal and semi-
conducting tubes to each other with a junction region con-
taining only carbon pentagons, hexagons, and heptagons.
Hereafter, for simplicity, we denote a pentagonal or heptago-
nal carbon ring as a pentagon or a heptagon, respectively.
Though it seems difficult to connect two honeycomb net-
works of different diameters and chiralities, a pentagon and
heptagon pair makes it possible to connect two nanotubes of

different diameters and chiralities. Such connections have
been directly observed by Iijima and others in transmission
electron microscope~TEM! experiments.9 Comparing the
measured angle in the TEM experiments at the kink in the
tube joint with a model of carbon nanotubes in which a pen-
tagon and heptagon pair changes the tube diameter~see, for
example, Fig. 2!, the junction shape can be fit to the TEM
experiments. Endo and many other groups have reported

FIG. 1. ~a! Projection map for the joint between two tubes. The

chiral vectors for two tubes are shown byABW andCDW . The three-
dimensional structure is obtained by connectingAT to BU, AC to
BD, andCR to DS through cylindrical surfaces. A pentagon exists
at the siteC ~or D! and a heptagon exists atA ~or B!. The joint

region is uniquely expressed by a vector,CAW , which is given by Eq.
~5!. ~b! The cone ofOALB and~c! its projection are shown in order
to understand that the lineAMB is a line of minimum length for
going around the surface of the cone.OM'AMB satisfies both~b!
and ~c!.
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many shapes for the junction between CN’s in TEM experi-
ments, in which the tube diameter increases or decreases as if
two conical surfaces are shared with a common bottom
surface.10

Recently coil-shaped nanotubes have been reported by
several groups,11–13 though the diameter of these multilay-
ered tubes is large (; 100 Å!. The structure of the joint has
been considered theoretically by introducing pentagons and
heptagons at the inner and outer spiral tubule surfaces,
respectively.14 When the pitch of this spiral tube is zero, the
tube will have a closed toroidal shape, which is considered to
be stable theoretically.14–18However, no general discussions
have been given for the structure for such a coil-shaped tube
with a given distribution of pentagons and heptagons, as is
clearly defined by a chiral vector in the case of a single-wall
nanotube.19 In the case of spiral nanotubes, a pentagon and
heptagon pair is essential for understanding the joint between
two carbon nanotubes.

Dunlap has discussed the joining of carbon nanotubes in
the case that the pentagon and the heptagon in the pentagon-
heptagon pair are on opposite sides of the tube.20 In this case,
the two-tubule axes bend by 30° with respect to each other in
their projection map. Further, Dunlap introduced twists in the
pentagon positions for the two nearest pentagon-heptagon
pairs,21 for understanding the coil-shaped tube.21 We, how-
ever, found that the position of the pentagon and the hepta-
gon in the pair discussed by Dunlap is a special case, though
his geometry is one of the stable geometries. Here, we show
the general case for a pentagon-heptagon pair and we further
present a general rule, which is shown to satisfy the case
discussed by Dunlap.

Very recently Akagi showed that the electronic structure
of a spiral tube gives both metallic and semiconducting
behavior,22 though the general rule governing such behavior
is still not well established. In this paper, we present a gen-
eral formula for connecting two CN’s and then we show
calculated results of the tunneling conductance at the junc-
tion of two CN’s.

In Sec. II, we present a three-dimensional structure for the
joint between two carbon nanotubes by introducing a penta-
gon and heptagon pair, in which we introduce a wire-frame
model for the axis of CN’s defining the bond angles and the

dihedral angle. Since we obtain a simple but geometrically
strict rule for connecting two tubes, the definition is very
useful not only for understanding the chirality of two joined
tubes, as observed in TEM experiments, but also for design-
ing possible, future mesoscopic devices. In Sec. III, we
present calculated results of tunneling conductance for a
metal-metal CN junction and a metal-semiconductor CN
junction. We show the absence of conductance in the energy
gap region for the metal-semiconductor CN junction.

II. PROJECTION METHOD FOR THE JOINT

It has been useful to use a projection mapping on the
honeycomb lattice for describing the three-dimensional
structure of the fullerene cage.23 The projection from this
map to the three-dimensional tubule surface is conformal in
the sense that all bond angles for a hexagonal ring are fixed
at p/3 ~radians!. Of course, there is distortion around the
pentagon and heptagon causing changes in the bond length
and bond angle. However, we assume that such distortions
are very local around the pentagon and heptagon. Further-
more, the general idea presented here does not depend on the
detailed bond angle and bond length, but only on thesp2

connection of carbon atoms.
In Fig. 1, we show a projection map of two carbon nano-

tubes, which are given by rectanglesTABU andRCDS. The
tubes,TABU andRCDS, are uniquely determined by the
chiral vectors, ABW and CDW , respectively. The three-
dimensional structure is obtained by connectingAT to BU,
AC to BD, and CR to DS through cylindrical surfaces.
When we roll up the projection map to make a tube, the
chiral vectors correspond to the circumferential direction of
the tubes and the translational vectorsATW andCRW , which are
perpendicular toABW andCDW , respectively, correspond to the
directions of the tubule axes in three dimensions.

A polygon,ACBD, in the projection map denotes a joint,
which connects two tubes, and the shape of the joint will be
a part of a cone. Since the diameter of the tubeTABU is
smaller than that ofRCDS, we consider that a pentagon
exists at the siteC ~or D! and a heptagon exists atA ~or B!.
Since the solid angles of a pentagon and a heptagon in the
fullerene are 2p2p/3 and 2p1p/3, respectively, the sum
of the angles around the pentagon and the heptagon on the
projection map should correspond to these angles. This fact
gives /ACR1/BDS55p/3 and /CAT1/DBU
57p/3. Further, when we use the fact,/ACD1/BDC

52p/3 and AC5BD, then BDW is given by rotating
ACW aroundC by p/3. This condition gives the rule for con-
necting two tubes as discussed below.

First, we will give a formula for rotating a vector

vW n,m5naW 11maW 2[(n,m) by p/3 on a honeycomb lattice.
Denoting ap/3 rotation byR, we get

RaW 15aW 12aW 2 ,RaW 25aW 1 . ~2!

ThusRvW n,m is given by

RvW n,m5n~aW 12aW 2!1maW 15vW n1m,2n . ~3!

The formula of Eq.~3! for RvW n,m will be used frequently in
the following discussion.

FIG. 2. ~a! ~12,0!-~9,0! and ~b! ~12,0!-~8,0! zigzag tubes are
shown in which the carbon atoms of the pentagon and the heptagon
are indicated by filled circles. Though we show only eight unit cells
for each carbon nanotube, the calculation is performed for 16 unit
cells. The total numbers of carbon atoms are~a! 735 and~b! 720,
respectively.
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Hereafter, we denote CDW , ABW , and CAW as
CDW 5CW 55(n5 ,m5), ABW5CW 75(n7 ,m7), and CAW5 jW
5( j 1 , j 2), respectively, wheren5 , m5 , n7 , m7 , j 1 , and j 2
are integers. Then the condition forj 1 and j 2 for givenCW 5

andCW 7 vectors is

DCW 1CAW1ABW52CW 51 jW1CW 75R jW5DBW . ~4!

Using Eq.~3!, we obtain

~ j 1 , j 2!5~n51m52n72m7 ,n72n5!. ~5!

Thus the joint vector,jW, is uniquely determined, once the two
chiral vectors,CW 5 andCW 7 are given. Figure 1 is drawn for
CW 55(5,5), andCW 75(1,3), which gives jW5(6,24), and
R jW5(2,26).

Next we consider the axis of the cone determined by
ACDB. ACDB is a part of a cone, the vertex of which is
denoted byO in Fig. 1. In Figs. 1~b! and~c!, we show a cone
and its projection, respectively. For the cone,OALB, the line
AMB is a line of minimum length for going around the
surface of the cone, in whichOM'AMB satisfies both Figs.
1~b! and~c!. We assume here that the linesAMB andCHD
in Fig. 1~a! correspond to the minimum lines of the cone
surface. This idea is valid, too, for the two tubes,TABU and
RCDS, where the linesAMB andCHD are minimum in
length for going around the tubule surface. Thus this assump-
tion seems to be reasonable. It should be mentioned here that
the pathAMB is an oval on the cone surface in three dimen-
sions, while the pathAMB is a circle on the tubule surface.
Thus, we always expect some distortion arising from the
oval shape from the cone section relative to the circle shape
from the tubule surface. However, this fact does not affect
the angle on the tube or cone surface, since the distortion is
perpendicular to the surface.

Within this assumption, the vertex of the cone,O, is de-
fined as the crossing of the two linesOM andOH, such that
OM andOH are perpendicular bisectors ofAB and CD,
respectively. SinceOA5OB, OC5OD, andAC5BD, the
two triangles,nOAC[nOBD, are identical to each other.
Thus, /ACO5/BDO, which gives /ACD1/BDC
5/OCD1/ODC52p/3. Thus, we conclude that
nOCD is a regular triangle. Similarly, since
/AOC5/BOD, we have/AOB5/COD5p/3. Thus,
nOAB is a regular triangle, too. The position ofO is given
by rotatingCDW or ABW by p/3,

COW 5RCDW 5~n51m5 ,2n5!,

AOW 5RABW5~n71m7 ,2n7!. ~6!

We can easily check from Eqs.~5! and ~6! that
COW 2AOW 5 jW.

When we define the angle of the vertex of the cone in
three dimensions as 2u, as is shown in Fig. 1~b!, u is given
by

u5sin21
1

6
;9.594°. ~7!

The angleu is the angle between the axis of the tube and that
of the cone in three dimensions. If the points,O, B, andD in
Fig. 1 lie on a line, the angle between the two axes of the
tubes becomes zero, but when the pentagon and the heptagon
are on opposite sides of the cone surface, then the angle
between the two axes of the tubes becomes 2u519.19°.

When the pentagon and heptagon are neither along the
same line nor on opposite sides of the cones, the two-tubule
axes do not intersect with each other. In this case, we can
define a dihedral angle,w, between two planes as shown in
Fig. 3. The two planes are defined by~1! the cone axisOF
and an axis of the tube at the pentagon sideFE, and~2! the
cone axisOF and an axis of the tube at the heptagon side
GK. The dihedral angle,w, is defined by the rotation angle
around the cone axis betweennOFD and nOFN, as
shown in Figs. 3~a! and~b!. The dihedral anglew is relevant
to the angle/BOD5F shown in the projection map of Fig.
1 as follows:

w52p3
F

p/3
56F, ~8!

whereF is given by

cosF5
uCW 5u21uCW 7u22u jWu2

2uCW 5u•uCW 7u
. ~9!

Using Eq.~5!, we can write the angles,F andw, as a func-
tion of n5 , m5 , n7 , andm7 .

A general coiled-shape tube can be considered to connect
many joints each with a pentagon-heptagon pair. The dihe-
dral angle is a useful definition for understanding the three-
dimensional structure of the two-tube axes and the single
cone axis joining the carbon nanotubes. The definition of the

FIG. 3. ~a! The dihedral angle,/NFD5w is defined between
the two planesnOFD andnOFN. Here, the axis of the cone,
OF, is on both planes.FE andGK are the axes of the two nano-
tubes. It is noted that pointsO, F, D, andE are in a plane and that
G, F, K, andN are in another single plane. The thick lineEFGK
corresponds to a wire frame model for reproducing the axes for the
tubes and the cone.D andB are the positions of the pentagon and
the heptagon, respectively, in the joint region~see Fig. 1!. The light
shaded circle is the bottom surface of the cone and two dark shaded
ovals are the cross sections between the cone and each tube. The
crossing points of the cone axis with the tube axes,F andG are not
located on these ovals. The bond angles,/GFE and/FGK, are
p2u. ~b! Another view of the dihedral angle,w, shown on the
cone. Here,DH'OH andOM'MB. P andQ are both centers of
ovals.
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dihedral angle is a good analogy to the chemistry, since the
dihedral angle of a three-dimensional molecule is defined by
three chemical bonds. The thick lineEFGK is a wire-frame
model for representing the axes for the tubes and the cone.

When the dihedral anglew is p, the positions of the pen-
tagon and the heptagon (D andB in Fig. 3, respectively! are
opposite to each other. In this case, the bending angle of the
tubule axes in the projection map, which corresponds toF in
Eq. ~8!, becomesp/6 ~30°!, which corresponds to the case
discussed by Dunlap.20,21 Here, we derive the condition for
(n5 ,m5) and (n7 ,m7) in this special case and show that the
condition satisfies the results of Dunlap~hereafter, denoted
as D94!.20 In Fig. 1, OH is opposite the position of the
pentagon (C or D!, when we roll the projection map by
connectingC to D, andR to S. Thus, the heptagon position
A ~or B! should be on the lineOH. UsingOAW'CDW and Eq.
~6!, we can obtain the following equation:

n5n712n5m72m5n71m5m750 ~when w5p!.
~10!

When we setn7512 andm750, we getn55m5 . This result
corresponds to the results of Fig. 4 ofD94. When we set
n7512 andm7523, we get n5 :m555:2, which corre-
sponds to the results of Fig. 5 ofD94. It is noted here that
~9,3! in the Fig. 5 ofD94 corresponds to (12,23) using our
definition. This comes about because of a difference in the
definition of (n,m) for negative integers between our work
andD94. For non-negative integers of (n,m), the definitions
are the same. Thus, we show that the result ofD94 is a
special case of the present general case.

The pointsP andQ are both centers of the dark shaded
ovals in Fig. 3~b! and P andQ are on the tube axes. The
ovals are defined by rolling upAMB andCHD in Fig. 1 and
thusDH'OH andOM'MB in Figs. 1 and 3. It is clearly
seen from Fig. 3~b! that theP andQ are not crossing points
of the tube axes with the cone axis,F and G. Thus, the
tubule axis length on the pentagon side becomes shorter by

PF in the wire frame model and the tubule axis length on the
heptagon side becomes longer byGQ, wherePF andGQ
are given by

PF5uCW 5usin2u, GQ5uCW 7usin2u. ~11!

The length of the cone axisFG is given by

FG5OF2OG5~ uCW 5u2uCW 7u!cosu. ~12!

Here, we use the fact thatOG'GB.
Finally, we discuss the shape of the dark shaded ovals

shown in Fig. 3~b!. The bond angles,/GFE and/FGK,
arep2u, and these ovals have the same shape, but in dif-
ferent sizes. When we denote the longer and the shorter axis
of the ovals asa and b, the ratio ofb to a is given as a
function of u. After some calculation,b/a is given by

b

a
5S 11

4

3
sin2u2

2A3
3

tanu D 1/2;0.918, ~13!

where we use Eq.~7!. Thus, there is an 8.2% distortion at the
cross section between the tubes and the cone. Using all for-
mulas given here, the skeleton of the wire frame in three
dimensions is well defined by only the four integers of two
chiral vectors,n5 , m5 , n7 , andm7 . It is important to point
out that there is no ambiguity in the structure of the junction
if we specify the two chiral vectors of the tubes. Thus, the
geometrically optimized structure or electronic structure of
the connected tubes is uniquely described by the chiral vec-
tors of the two nanotubes. In the next section, we consider
some particular cases and their electronic structure.

III. TUNNELING CONDUCTANCE OF A JUNCTION

Here, we consider the tunneling conductance of a junction
connecting two carbon nanotubes. As is discussed in the pre-
vious section, the structure of the junction is uniquely de-
fined by two chiral vectors (n5 ,m5) and (n7 ,m7). Here, we

FIG. 4. Density of states of junctions for~a! ~12,0!-~9,0! and~b!
~12,0!-~8,0! zigzag tubes plotted in units per single carbon atom per
energyt. All E50 states correspond to edge states, the wave func-
tions of which are localized not in the junction region, but at either
end of the tubes.

FIG. 5. Calculated conductanceI /V for ~a! ~12,0!-~9,0! and ~b!
~12,0!-~8,0! zigzag CN, as a function of voltageV in units of t,
using two different Gaussian broadening values,DE/t50.33 ~solid
line! andDE/t50.50 ~dotted line!. The estimated energy gap for
the (8,0) semiconductor tube is 0.55t.
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consider a large size cluster, which has a (n5 ,m5) tube, a
(n7 ,m7) tube, and the junction region. Since we consider
carbon nanotubes of finite length, all electronic states are
given by discrete electronic levels. Here, we consider some
Gaussian broadening for calculating the density of states and
for calculating the conductance.

The structure of the junctions that we calculate here are
the junctions between two zigzag tubes.4 A zigzag tube de-
fined by (n,0) (n, integers! has one of the smallest unit cells
among CN’s and their electronic structure is either metallic
or semiconducting depending on whether or notn is a mul-
tiple of 3, respectively. An armchair tube, (n,n), has an even
smaller unit cell, but all armchair tubes are known to be
metallic. Thus, zigzag tubes are suitable for considering a
metal-semiconductor junction. In Fig. 2 we show a top view
of ~a! ~12,0!-~9,0! and ~b! ~12,0!-~8,0! zigzag tubes, which
are taken in the present paper as examples a metal-metal
junction and a metal-semiconductor junction, respectively.
Carbon atoms for the pentagon and the heptagon are indi-
cated by filled circles. The corresponding junction vectors,
( j 1 , j 2), are given by (3,23) and (4,24), respectively. The
dihedral anglew is always zero in the case of a zigzag-zigzag
CN junction. The three-dimensional lattice structure is given
by formulas given in the previous section. The length of each
carbon nanotube at both ends is taken as 16 unit cells in the
calculation, while we show only eight unit cells in Fig. 2 for
simplicity. Here, the unit vector of a zigzag tube isa2W if a1W is
selected in the circumferential direction and the unit cells of
each carbon nanotube start from the carbon atoms of the
pentagon or the heptagon connected to each tube. The total
numbers of carbon atoms are 735 and 720 for the~12,0!-
~9,0! and ~12,0!-~8,0! zigzag tubes, respectively.

The electronic structure is calculated by a simple tight-
binding method in which only the nearest neighbor transfer
energy, t, for p orbitals is considered. All the calculated
energies are in units oft, whose value is known to be be-
tween 2.5 eV and 3.13 eV.4 In the tight-binding calculation,
we neglect for simplicity the other terms in the tight-binding
expression and the hybridization, due to the curvature of the
tube or junction. As explained in Sec. I, the effect of the
curvature on the energy gap at the Fermi level is sufficiently
small even for the smallest tubule diameter.4 At the ends of
the CN, we have dangling covalentp bonds, which give rise
to edge states. Calculations show that the eigenfunctions of
these edge states are localized only in the region about 6a

(a5uaW 1u) from the tube end and their eigenvalues are always
E50. Since we use only the amplitude of the wave function
in the junction, the effect of these edge states is automati-
cally excluded in the conductance calculation.

The calculated results show that the eigenfunctions of the
energy levels consist of contributions from~1! the delocal-
ized wave function for the whole system,~2! the delocalized
wave functions for each of the CN’s and~3! edge states
localized at the both ends. Since translational symmetry is
broken at the junction, the Bloch wave functions of each CN
are scattered by the pentagon, the heptagon, and the junction
region of the tubes. If the energies of the wave functions in
the two CN’s are equal to each other, a delocalized wave
function for the whole system is formed. Otherwise, a delo-
calized wave function in each tube region is formed. This

situation is easily explained by the fact that the plane wave
of an electron in reflected or transmitted at a positive square
potential, which gives rise to a tunneling probability as a
function of the electron energy. It is important to note that
there are no localized states in the junction region, because
the junction does not correspond to an attractive potential.

In Fig. 4, the density of states for~a! ~12,0!-~9,0! and~b!
~12,0!-~8,0! zigzag tubes is plotted in units per single carbon
atom per energyt, as a function of energy in units oft. The
energies of all eigenstates are withinuE/tu<3, which is con-
sistent with three carbon bonds associated with each carbon
atom. It is important to note again that allE50 states~see
Fig. 4! correspond to edge states, the wave functions of
which are localized not in the junction region, but at both
ends of the tubes. Thus, these states do not contribute to the
conductance, though their energy is at the Fermi energy
E50. The density of states of these two-tube systems can be
understood as the sum of the density of states of two CN’s.
We can see in the density of states~Fig. 4!, not only the
two-dimensional van Hove singularities of graphite at
E/t561, but also many one-dimensional 1/AE singularities,
due to the one-dimensional energy bands, which are quan-
tized in the circumferential direction.4 Even when we remove
the contribution of the localized states to the density of
states, the resulting density of states is finite near the Fermi
energyE/t50, which indicates that one-dimensional metal-
lic energy bands exist for both the~12,0! and ~9,0! tubes.

In the case of the metal-semiconductor~12,0!-~8,0! zigzag
nanotubes, the density of states near the Fermi energy is
smaller than that of the~12,0!-~9,0! system, because of the
absence of a finite density of states for the~8,0! CN near the
Fermi energy. By calculating the energy levels of a~8,0! tube
with the same length, we get an energy gap ofEg /t50.62.
Since we introduce Gaussian broadening,DE/t50.033, we
see that the energy gap is reduced toEg /t50.55. In this
case, the wave functions are only delocalized in the~12,0!
tube region near the Fermi energy, and not in the~8,0! tube.

Using the eigenfunctions, we can calculate the conduc-
tance by calculating the current density. When a voltageV is
applied to this system, the tunneling electric current,I , is
given by24

I52pe\E dE$ f ~E!2 f ~E1eV!%

3 (
i i 8 j j 8

Gi 8 i~E!Ji jGj j 8~E1eV!Ji 8 j 8. ~14!

Here,G is the imaginary part of the resolvent given by

Gi 8 i~E!5(
m

Ci 8m
* Cimd~E2Em!, ~15!

whereEm andCim are themth eigenvalue andi th component
of themth eigenfunction, respectively, which is obtained by
solving the tight-binding Hamiltonian.Ji j is the current op-
erator for atomic orbitals ati and j sites given by

Ji j5
\

2mES0dS$w i¹w j*2w i*¹w i%, ~16!
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wherew i is thei th atomic orbital, and the integration is taken
at the same surface as for calculating the current density.
Changing from a surface integral to a volume integral,24 the
Ji j is nonvanishing only fori and j at nearest neighbor sites,
and in the region where the voltage changes betweeni and j
sites. Here, we assume that it is only in the junction region
that we expect a voltage drop. Since this tube junction sys-
tem is so small, we consider the carbon network to be in the
mesoscopic regime, in which electrons are not scattered in
the periodic region, but only in the junction region. The tun-
neling current appears when the energy of the wave function
to the left of the junction coincides with the energy plus eV
of that to the right. This formulation may be valid even for
delocalized wave functions over the whole region. When the
voltage matches the tunneling condition for connecting delo-
calized wave functions over the whole region, the wave func-
tion that is then obtained should be approximated by a delo-
calized wave function atV50.

In Fig. 5, we show the calculated conductanceI /V for ~a!
~12,0!-~9,0! and~b! ~12,0!-~8,0! zigzag CN’s, as a function of
applied voltage20.5,V/t,0.5. Here, we use the two dif-
ferent Gaussian broadening values,DE/t50.33 ~solid line!
andDE/t50.50~dotted line! for calculatingGii 8, etc. In the
case of~a! metallic-metallic tubes, the conductance increases
with increasing applied voltage. The oscillations in the con-
ductance show the resonances in the tunneling probability
between the two tubes, and these oscillations are closely re-
lated to the universal conductance fluctuations25 recently re-
ported in carbon nanotubes.26 The increase of the conduc-
tance comes from the fact that~1! the resonance tunneling
probability is proportional toV, if the density of states is
constant near the Fermi energy and that~2! the current op-
erator,Ji j is proportional toV. Again it is noted that there is
no contribution from the edge states, which can be automati-
cally excluded, because there is no amplitude of the wave
function in the junction region.

In the case of~b! metal-semiconductor tubes, on the other
hand, there is no conductance in the energy gap region for
the semiconducting~8,0! tube though there is a finite density
of states near the Fermi level. The results clearly show that a
delocalized wave function is present near the Fermi level

only in the metallic~12,0! tube region. Thus it is concluded
that a semiconductor-metal junction is well established even
in a nanoscale, mesoscopic structure.

When the length of the nanotube increases, there are more
levels near the Fermi level. Thus, the amplitude of the oscil-
lations will decrease relative to the absolute value of the
tunneling conductance and the average level spacings will
decrease in forming energy bands. The calculated results
with larger energy broadeningDE ~dotted line in Fig. 5! are
closer to this case compared to the case of smallerDE. How-
ever, if there is a defect in the tube, weak localization will
make it possible to have a finite level spacing near the junc-
tion region, which gives rise to conductance fluctuations.
This might be a possible reason for the observation of uni-
versal conductance fluctuations in carbon nanotube systems
in which the region of the voltage drop corresponds to a
disordered region.25

In conclusion, we present a general formula for connect-
ing two CN’s specified by the chiral vectors of the two tubes.
The structure of the joint region is unique, given the chiral
vectors of the two constituent CN’s. The calculation of the
conductance of metal-metal and metal-semiconductor tubes
also shows resonant tunneling conductance effects. Espe-
cially for the metal-semiconductor CN system, we show the
absence of conductance in the energy gap region of the semi-
conductor tube. This is evidence that two connected CN’s
can function as a nanometer size semiconductor junction de-
vice.
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