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Tunneling conductance of connected carbon nanotubes
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A three-dimensional structure of two carbon nanotuf@hl) joined by a connecting region containing a
pentagon and heptagon pair is given by the use of a projection method. The connecting joint is uniquely
determined for the given two chiral vectors of CN by a vector which defines a three-dimensional dihedral
angle. The tunneling conductance is calculated for a metal-metal CN junction and a metal-semiconducting CN
junction. The calculated results clearly show that these junctions work as the smallest semiconductor devices.

I. INTRODUCTION different diameters and chiralities. Such connections have
been directly observed by lijima and others in transmission
Carbon nanotubeéCN’s) have been investigated inten- electron microscopgTEM) experiments. Comparing the
sively as a different form of a one-dimensional matetial. measured angle in the TEM experiments at the kink in the
Carbon nanotubes consist of a rolled-up graphene sheet, tiigbe joint with a model of carbon nanotubes in which a pen-
geometry, e.g., the diameter and chirality, of which can bdagon and heptagon pair changes the tube dianister, for
changed without introducing any impurity or deformation, example, Fig. 2 the junction shape can be fit to the TEM
except for the curvature of the tub&hus, the physical prop- experiments. Endo and many other groups have reported
erties of carbon nanotubes can be understood as those of a
two-dimensional graphene sheet, with periodic boundary
conditions in the circumferential direction of the tube. The
electronic structure of a carbon nanotube can be either me-
tallic or semiconducting, depending on diameter and
chirality>~’ which can be uniquely determined by the chiral
vector,Cy,,

Cp=na; +ma,=(n,m), (1)

where a; and a, are unit vectors of a two-dimensional
graphene shedfsee Fig. 1 and n, m are integers. If we
neglect the small gafpn the order of 10 meV for the small-
est diameter metallic CiRefs. 4 and g, due to the effect of
the tube curvature, metallic or semiconducting tubes are ob-
tained depending on whether or noim is a multiple of 3,
respectively. The energy gap for a semiconducting tube is
inversely proportional to the tube diamei@ndependent of
the chirality and is on the order of 1 eV for the smallest
diameter (7 A) nanotubé

An interesting system for studying the coexistence of me- FIG. 1. (a) Projection map for the joint between two tubes. The
tallic and semiconducting nanotubes concerns the design of@jral vectors for two tubes are shown BB andCD. The three-
metal-semiconducting device by connecting metal and semiimensional structure is obtained by connectkif to BU, AC to
conducting tubes to each other with a junction region conBp, andCR to DS through cylindrical surfaces. A pentagon exists
taining only carbon pentagons, hexagons, and heptagonst the siteC (or D) and a heptagon exists at (or B). The joint
Hereafter, for simplicity, we denote a pentagonal or heptagoregion is uniquely expressed by a vec©#, which is given by Eq.
nal carbon ring as a pentagon or a heptagon, respectively). (n) The cone oOALB and(c) its projection are shown in order
Though it seems difficult to connect two honeycomb net-to understand that the lin@MB is a line of minimum length for
works of different diameters and chiralities, a pentagon an@oing around the surface of the col@M_.1 AMB satisfies bott{b)
heptagon pair makes it possible to connect two nanotubes ahd (c).
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dihedral angle. Since we obtain a simple but geometrically
strict rule for connecting two tubes, the definition is very
useful not only for understanding the chirality of two joined
tubes, as observed in TEM experiments, but also for design-
ing possible, future mesoscopic devices. In Sec. lll, we
present calculated results of tunneling conductance for a
metal-metal CN junction and a metal-semiconductor CN
junction. We show the absence of conductance in the energy
gap region for the metal-semiconductor CN junction.

Vs

(b)

II. PROJECTION METHOD FOR THE JOINT

FIG. 2. (8 (12,090 and (b) (12,0-8.0) zigzag tubes are It has been qseful to use a'prOJchon mapping on the
shown in which the carbon atoms of the pentagon and the heptagd?\oneycomb lattice for describing the_ th_ree-dlmenSI_onaI
are indicated by filled circles. Though we show only eight unit cellsStructure of the fullerene cagd.The projection from this
for each carbon nanotube, the calculation is performed for 16 unifap to the three-dimensional tubule surface is conformal in
cells. The total numbers of carbon atoms &@e735 and(b) 720, the sense that all bond angles for a hexagonal ring are fixed
respectively. at 7/3 (radiang. Of course, there is distortion around the

pentagon and heptagon causing changes in the bond length

h for the iunction betw CN’s in TEM .and bond angle. However, we assume that such distortions
many shapes for the junction between sin EXpert-y, very local around the pentagon and heptagon. Further-

ments, in which the tube diameter increases or decreases asibre the general idea presented here does not depend on the

two conical surfaces are shared with a common bouon?jetailed bond angle and bond length, but only on $|FJ§

0
surface! ] connection of carbon atoms.
Recently coH:fShaped nanotupes have been repor.ted bY | Fig. 1, we show a projection map of two carbon nano-
several group%l, though the diameter of these multilay- tubes, which are given by rectanglBABU andRCDS The

ered tubes is large~ 100 A). The structure of the joint has tubes, TABU and RCDS are uniquely determined by the
been considered theoretically by introducing pentagons anéJ '

heptagons at the inner and outer spiral tubule surfaceéc;hiraI yecttl)rs, AB and (éD_, réasbpectively. m;]l'he Itgh&ee—
respectively:* When the pitch of this spiral tube is zero, the |g1enS|E?Ba str(ljjccttge IS Ssta'r?e g colrjn:(_: Fto oot
tube will have a closed toroidal shape, which is considered t to , an to through cylindrical surfaces.

be stable theoreticalf{ -1 However, no general discussions hen we roll up the projection map to make a tube, the

have been given for the structure for such a coil-shaped tupghiral vectors correspond to the circumferential direction of

with a given distribution of pentagons and heptagons, as i€ tubes and the translational vectérs andCR, which are

clearly defined by a chiral vector in the case of a single-wallperpendicular t®AB andCD, respectively, correspond to the

nanotubé? In the case of spiral nanotubes, a pentagon andlirections of the tubule axes in three dimensions.

heptagon pair is essential for understanding the joint between A polygon,ACBD, in the projection map denotes a joint,

two carbon nanotubes. which connects two tubes, and the shape of the joint will be
Dunlap has discussed the joining of carbon nanotubes ia part of a cone. Since the diameter of the tdeBU is

the case that the pentagon and the heptagon in the pentagamaller than that oRCDS we consider that a pentagon

heptagon pair are on opposite sides of the filde.this case, exists at the sit€ (or D) and a heptagon exists At(or B).

the two-tubule axes bend by 30° with respect to each other iBince the solid angles of a pentagon and a heptagon in the

their projection map. Further, Dunlap introduced twists in thefullerene are Zr— /3 and 27+ 7/3, respectively, the sum

pentagon positions for the two nearest pentagon-heptagasf the angles around the pentagon and the heptagon on the

pairs?! for understanding the coil-shaped tié\e, how-  projection map should correspond to these angles. This fact

ever, found that the position of the pentagon and the heptagives ~ACR+/BDS=5#/3 and ZCAT++DBU

gon in the pair discussed by Dunlap is a special case, though7x/3. Further, when we use the fact, ACD+ 2BDC

his geometry is one of the stable geometries. Here, we show.27/3 and AC=BD, then BD is given by rotating

the general case for a pentagon-heptagon pair and we furth

present a general rule, which is shown to satisfy the c

discussed by Dunlap.

RC aroundC by 7/3. This condition gives the rule for con-
asﬁecting two tubes as discussed below.

Very recently Akagi showed that the electronic structure - Flrst,ﬁwe \i\"” give a formula for rotating a vet-:tor
of a spiral tube gives both metallic and semiconducting’nm=na+Ma=(n,m) by «/3 on a honeycomb lattice.
behavior? though the general rule governing such behavior2€noting ar/3 rotation by.72, we get
is still not well established. In this paper, we present a gen-
eral formula for connecting two CN’'s and then we show
qalculated results of the tunneling conductance at the jU”CThus.%’Jn _is given by
tion of two CN’s. ’
~ InSec. II, we present a three-dimensional structure for the 0 m=N(81—8) + My =0 m - 3
joint between two carbon nanotubes by introducing a penta- ’ R ’
gon and heptagon pair, in which we introduce a wire-frameThe formula of Eq(3) for Zv, ,, will be used frequently in
model for the axis of CN’s defining the bond angles and thehe following discussion.

Ja,=a,—ay, Fa,=a. )
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Hereafter, we denoteCD, AB, and CA as
C?B:é5:(n5,m5), A_)B:é7:(n7,m7), and CT)AZF

=(j1,]2), respectively, wher@g, ms, n;, m;, j1, andj,
are integers. Then the condition fpy and j, for given 55
andC, vectors is

DC+CA+AB=—Cg+j+C,=.%2]=DB. (4)
Using Eq.(3), we obtain

(J1,J2)=(ns+ms—n;—myz,n;—ng). 5

R. SAITO, G. DRESSELHAUS, AND M. S. DRESSELHAUS 53

FIG. 3. (a) The dihedral angleZ NFD= ¢ is defined between

Th_us the joint \ieCtorl' LS unlqugly dete_rmmed,_once the two the two planesAOFD and AOFN. Here, the axis of the cone,
chiral vectors,Cs and C; are given. Figure 1 is drawn for OF, is on both planestE andGK are the axes of the two nano-

Cs=(5,5), andC,=(1,3), which givesj=(6,—4), and
#]=(2,-6).

Next we consider the axis of the cone determined byC
ACDB. ACDB is a part of a cone, the vertex of which is
denoted byO in Fig. 1. In Figs. 1b) and(c), we show a cone

and its projection, respectively. For the co@eA LB, the line

AMB is a line of minimum length for going around the
surface of the cone, in which ML AM B satisfies both Figs.

1(b) and(c). We assume here that the lina81B andCHD

tubes. It is noted that poin®, F, D, andE are in a plane and that

G, F, K, andN are in another single plane. The thick liB&GK
orresponds to a wire frame model for reproducing the axes for the
tubes and the con® andB are the positions of the pentagon and
the heptagon, respectively, in the joint regisee Fig. 1 The light
shaded circle is the bottom surface of the cone and two dark shaded
ovals are the cross sections between the cone and each tube. The
crossing points of the cone axis with the tube a¥eandG are not
located on these ovals. The bond angle& FE and £ FGK, are

7— 6. (b) Another view of the dihedral anglep, shown on the

in Fig. 1(@) correspond to the minimum lines of the cone cone. HerepH.L OH andOMLMB. P andQ are both centers of

surface. This idea is valid, too, for the two tub&®BU and
RCDS where the linesAMB and CHD are minimum in

ovals.

length for going around the tubule surface. Thus this assumpFhe angled is the angle between the axis of the tube and that

tion seems to be reasonable. It should be mentioned here thgtthe cone in three dimensions. If the poirs, B, andD in

the pathAMB is an oval on the cone surface in three dimen-Fig. 1 lie on a line, the angle between the two axes of the
sions, while the patIA\M B is a circle on the tubule surface. tubes becomes zero, but when the pentagon and the heptagon
Thus, we always expect some distortion arising from theare on opposite sides of the cone surface, then the angle
oval shape from the cone section relative to the circle shapgetween the two axes of the tubes becomés 29.19°.

from the tubule surface. However, this fact does not affect When the pentagon and heptagon are neither a|ong the

the angle on the tube or cone surface, since the distortion isame line nor on opposite sides of the cones, the two-tubule

perpendicular to the surface.

Within this assumption, the vertex of the com, is de-
fined as the crossing of the two lin€8M andOH, such that
OM and OH are perpendicular bisectors #fB and CD,
respectively. Sinc©® A=0B, OC=0D, andAC=BD, the

two triangles,AOAC=AO0OBD, are identical to each other.

Thus, £ACO=,BDO, which gives ZACD+/BDC
=/,0CD+420DC=2#/3. Thus, we conclude
AOCD is a regular triangle. Similarly,

£/ AOC=/BOD, we have£ AOB=~2COD= /3. Thus,
AOAB is a regular triangle, too. The position ©f is given

by rotatingCD or AB by /3,

e —

CO:%)CD:(nS‘I' m5,_n5),

ITOZ%AT)B:(n7+m7,_n7). (6)

We can easily check from Egs(5) and (6) that
CO-AO=j.

that
since

axes do not intersect with each other. In this case, we can
define a dihedral angle, between two planes as shown in
Fig. 3. The two planes are defined k) the cone axiOF

and an axis of the tube at the pentagon dtde and(2) the
cone axisOF and an axis of the tube at the heptagon side
GK. The dihedral anglep, is defined by the rotation angle
around the cone axis betweehOFD and AOFN, as
shown in Figs. 8) and(b). The dihedral angle is relevant

to the anglez BOD=® shown in the projection map of Fig.

1 as follows:

e=2mX 6D, (8

w3~
where® is given by
G+ 1G]
2|Cql-|C]

9

Using Eq.(5), we can write the angles? and ¢, as a func-

When we define the angle of the vertex of the cone injon of ng, ms, ny, andm,.

three dimensions asé? as is shown in Fig. (b), € is given
by

1
0= sin*16~9.594°. (7)

A general coiled-shape tube can be considered to connect
many joints each with a pentagon-heptagon pair. The dihe-
dral angle is a useful definition for understanding the three-
dimensional structure of the two-tube axes and the single
cone axis joining the carbon nanotubes. The definition of the
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FIG. 4. Density of states of junctions f¢a) (12,0-(9,0 and(b) FIG. 5. Calculated conductant¢gV for (a) (12,0-(9,0) and(b)
(12,0-(8,0) zigzag tubes plotted in units per single carbon atom per12,0-(8,0) zigzag CN, as a function of voltagé in units of t,
energyt. All E=0 states correspond to edge states, the wave funaasing two different Gaussian broadening valukg/t=0.33 (solid
tions of which are localized not in the junction region, but at eitherline) and AE/t=0.50 (dotted ling. The estimated energy gap for
end of the tubes. the (8,0) semiconductor tube is 0t55

dihedral angle is a good analogy to the chemistry, since th@F in the wire frame model and the tubule axis length on the
dihedral angle of a three-dimensional molecule is defined byeptagon side becomes longer 6YQ, wherePF and GQ
three chemical bonds. The thick like-GK is a wire-frame  are given by
model for representing the axes for the tubes and the cone. ) )

When the dihedral angle is 7, the positions of the pen- PF=|Cg|sir?, GQ=|C,|sir’e. (12)
tagon and the heptago®(andB in Fig. 3, respectivelyare L
opposite to each other. In this case, the bending angle of thE"€ 1ength of the cone axisG is given by
tubule axes in the projection map, which corresponds ia _ i -
Eq. (8), becomesm/6 (30%, which corresponds to the case FG=0F-0G=(|Cs|~|Cq|)coss. (12
discussed by Dunlaff:** Here, we derive the condition for Here we use the fact th@ Gl GB.

(ns,ms) and (n7,my) in this special case and show that the  Finally, we discuss the shape of the dark shaded ovals
condition satisfies the results of Dunldpereafter, denoted gshown in Fig. 8b). The bond angles/ GFE and 2 FGK,

as D94)%° In Fig. 1, OH is opposite the position of the are— 4, and these ovals have the same shape, but in dif-
pentagon C or D), when we roll the projection map by ferent sizes. When we denote the longer and the shorter axis
connectingC to D, andR to S. Thus, the heptagon position of the ovals asa and b, the ratio ofb to a is given as a

A (or B) should be on the lin®H. UsingOALCD and Eq. function of 8. After some calculationh/a is given by

(6), we can obtain the following equation: "
b

4 - 23
Nsn;+2nsm;—mgn;+ mgm;=0  (when ¢=). 2|1t gsimé———tand| ~0.918, (13

10

(19 where we use Ed7). Thus, there is an 8.2% distortion at the
When we seh;=12 andm; =0, we getns=ms. This result  cross section between the tubes and the cone. Using all for-
corresponds to the results of Fig. 4 DP4. When we set mulas given here, the skeleton of the wire frame in three
n;=12 and m;=—-3, we getns:ms=5:2, which corre- dimensions is well defined by only the four integers of two
sponds to the results of Fig. 5 8f94. It is noted here that chiral vectorsng, ms, Ny, andm,. It is important to point
(9,3 in the Fig. 5 0fD94 corresponds to (12,3) using our  out that there is no ambiguity in the structure of the junction
definition. This comes about because of a difference in thef we specify the two chiral vectors of the tubes. Thus, the
definition of (n,m) for negative integers between our work geometrically optimized structure or electronic structure of
andD94. For non-negative integers af,(n), the definitions  the connected tubes is uniquely described by the chiral vec-
are the same. Thus, we show that the resulD& is a tors of the two nanotubes. In the next section, we consider

special case of the present general case. some particular cases and their electronic structure.
The pointsP andQ are both centers of the dark shaded
ovals in Fig. 3b) and P and Q are on the tube axes. The IIl. TUNNELING CONDUCTANCE OF A JUNCTION
ovals are defined by rolling uAMB andCHD in Fig. 1 and
thusDH1L OH andOM1 MB in Figs. 1 and 3. It is clearly Here, we consider the tunneling conductance of a junction

seen from Fig. @) that theP andQ are not crossing points connecting two carbon nanotubes. As is discussed in the pre-
of the tube axes with the cone axis, and G. Thus, the vious section, the structure of the junction is uniquely de-
tubule axis length on the pentagon side becomes shorter Bined by two chiral vectorsr(s,ms) and (;,m;). Here, we
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consider a large size cluster, which hasrg,(s) tube, a situation is easily explained by the fact that the plane wave
(n;,m;) tube, and the junction region. Since we considerof an electron in reflected or transmitted at a positive square
carbon nanotubes of finite length, all electronic states argotential, which gives rise to a tunneling probability as a
given by discrete electronic levels. Here, we consider soméinction of the electron energy. It is important to note that
Gaussian broadening for calculating the density of states ari#ere are no localized states in the junction region, because
for calculating the conductance. the junction does not correspond to an attractive potential.
The structure of the junctions that we calculate here are !N Fig. 4, the density of states féa) (12,0-(9,0 and(b)
the junctions between two zigzag tufes.zigzag tube de- (12,0-(8,0) zigzag tubes is plotted in units per single carbon

fined by (1,0) (n, integers has one of the smallest unit cells 210M Per energy, as a function of energy in units of The

among CN's and their electronic structure is either metallicc€rgIes of all eigenstates are withEvt|<3, which is con-

or semiconducting depending on whether or nds a mul- sistent with three carbon bonds associated with each carbon

. ) . atom. It is important to note again that &0 states(see
tiple of 3, respectively. An armchair tubey,f), has an even _. :

. . Fig. 4 correspond to edge states, the wave functions of
smaller unit cell, but all armchair tubes are known to be

wllic. Th . b table f deri which are localized not in the junction region, but at both
metallic. Thus, zigzag tubes are suitable Tor Consitenng &,4s of the tubes. Thus, these states do not contribute to the

metal-semiconductor junction. In Fig. 2we ShOWatOp,VieWconductance, though their energy is at the Fermi energy
of (@ (12,0-(9,0 and (b) (12,0-(8,0) zigzag tubes, which £_q The density of states of these two-tube systems can be
are taken in the present paper as examples a metal-me{@hderstood as the sum of the density of states of two CN's.
junction and a metal-semiconductor junction, respectivelyswe can see in the density of staté&g. 4), not only the
Carbon atoms for the pentagon and the heptagon are indiyo-dimensional van Hove singularities of graphite at
cated by filled circles. The corresponding junction vectorsg/t=+1 byt also many one-dimensionalE singularities,
(j1.i2), are given by (37 3) and (4;-4), respectively. The due to the one-dimensional energy bands, which are quan-
dihedral anglep is always zero in the case of a zigzag-zigzagtized in the circumferential directichEven when we remove
CN junction. The three-dimensional lattice structure is giventhe contribution of the localized states to the density of
by formulas given in the previous section. The length of eaclstates, the resulting density of states is finite near the Fermi
carbon nanotube at both ends is taken as 16 unit cells in tr@]ergyE/t:o, which indicates that one-dimensional metal-
calculation, while we show only eight unit cells in Fig. 2 for |jc energy bands exist for both th@2,0 and(9,0) tubes.
simplicity. Here, the unit vector of a zigzag tubeaisif a; is In the case of the metal-semiconductb?,0-(8,0) zigzag
selected in the circumferential direction and the unit cells ofnanotubes, the density of states near the Fermi energy is
each carbon nanotube start from the carbon atoms of themaller than that of th€12,0-(9,0) system, because of the
pentagon or the heptagon connected to each tube. The totbsence of a finite density of states for {8e)) CN near the
numbers of carbon atoms are 735 and 720 for (t®&0- Fermi energy. By calculating the energy levels ¢8d) tube

(9,0 and(12,0-(8,0) zigzag tubes, respectively. with the same length, we get an energy gagEgft=0.62.

The electronic structure is calculated by a simple tight-Since we introduce Gaussian broadenig;/t=0.033, we
binding method in which only the nearest neighbor transfesee that the energy gap is reducedBg/t=0.55. In this
energy,t, for 7 orbitals is considered. All the calculated case, the wave functions are only delocalized in (2,0
energies are in units df, whose value is known to be be- tube region near the Fermi energy, and not in @) tube.
tween 2.5 eV and 3.13 é\in the tight-binding calculation, Using the eigenfunctions, we can calculate the conduc-
we neglect for simplicity the other terms in the tight-binding tance by calculating the current density. When a voltdde
expression and the hybridization, due to the curvature of thapplied to this system, the tunneling electric currdntjs
tube or junction. As explained in Sec. |, the effect of thegiven by
curvature on the energy gap at the Fermi level is sufficiently
small even for the smallest tubule diamétéit the ends of
the CN, we have dangling covalentbonds, which give rise | :Zﬂeﬁf dE{f(E)-f(E+eV)}
to edge states. Calculations show that the eigenfunctions of
these edge states are localized only in the region abaut 6

(a=|ay|) from the tube end and their eigenvalues are always
E=0. Since we use only the amplitude of the wave function
in the junction, the effect of these edge states is automatiHere,G is the imaginary part of the resolvent given by
cally excluded in the conductance calculation.

The calculated results show that the eigenfunctions of the *
energy levels consist of contributions frofh) the delocal- Gii(E)=2> Ci.Cind(E-E,), (15
ized wave function for the whole systel2) the delocalized g

wave functions for each of the CN's an@) edge states \yhereE, andC;, are theuth eigenvalue anith component

broken at the junction, the Bloch wave functions of each CNsqying the tight-binding Hamiltoniand;; is the current op-

are scattered by the pentagon, the heptagon, and the juncti@ator for atomic orbitals &t andj sites given by
region of the tubes. If the energies of the wave functions in

the two CN's are equal to each other, a delocalized wave A
function for the whole system is formed. Otherwise, a delo- Ji :_f dS{QDiV@? — o}V, (16)
calized wave function in each tube region is formed. This 2mJs,

X 2 Giri(E)Jijijr(E+e\/)Jirjr. (14)
ijj’
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whereg; is theith atomic orbital, and the integration is taken only in the metallic(12,0 tube region. Thus it is concluded
at the same surface as for calculating the current densityhat a semiconductor-metal junction is well established even
Changing from a surface integral to a volume integfahe  in a nanoscale, mesoscopic structure.
Ji; is nonvanishing only for andj at nearest neighbor sites, ~ When the length of the nanotube increases, there are more
and in the region where the voltage changes betveard j levels near the Fermi level. Thus, the amplitude of the oscil-
sites. Here, we assume that it is only in the junction regiorations will decrease relative to the absolute value of the
that we expect a voltage drop. Since this tube junction systunneling conductance and the average level spacings will
tem is so small, we consider the carbon network to be in thelecrease in forming energy bands. The calculated results
mesoscopic regime, in which electrons are not scattered iwith larger energy broadeninyE (dotted line in Fig. b are
the periodic region, but only in the junction region. The tun-closer to this case compared to the case of smaAllerHow-
neling current appears when the energy of the wave functiorver, if there is a defect in the tube, weak localization will
to the left of the junction coincides with the energy plus eV make it possible to have a finite level spacing near the junc-
of that to the right. This formulation may be valid even for tion region, which gives rise to conductance fluctuations.
delocalized wave functions over the whole region. When théhis might be a possible reason for the observation of uni-
voltage matches the tunneling condition for connecting deloversal conductance fluctuations in carbon nanotube systems
calized wave functions over the whole region, the wave funcin which the region of the voltage drop corresponds to a
tion that is then obtained should be approximated by a delodisordered regiof®
calized wave function a¥=0. In conclusion, we present a general formula for connect-
In Fig. 5, we show the calculated conductahté for (a) ing two CN's specified by the chiral vectors of the two tubes.
(12,0-(9,0) and(b) (12,0-(8,0 zigzag CN’s, as a function of The structure of the joint region is unique, given the chiral
applied voltage—0.5<V/t<0.5. Here, we use the two dif- vectors of the two constituent CN's. The calculation of the
ferent Gaussian broadening valuas/t=0.33 (solid line) conductance of metal-metal and metal-semiconductor tubes
andAE/t=0.50(dotted ling for calculatingG;;/, etc. Inthe also shows resonant tunneling conductance effects. Espe-
case of(a) metallic-metallic tubes, the conductance increasegially for the metal-semiconductor CN system, we show the
with increasing applied voltage. The oscillations in the con-absence of conductance in the energy gap region of the semi-
ductance show the resonances in the tunneling probabilitponductor tube. This is evidence that two connected CN's
between the two tubes, and these oscillations are closely rean function as a nanometer size semiconductor junction de-
lated to the universal conductance fluctuatfmscently re-  vice.
ported in carbon nanotub&$The increase of the conduc-
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