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The solution of the integral equation required to invert the dielectric function of a confined quasi-two-
dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The
dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking
into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy.
Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the
consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies
of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may
play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great
variety of behaviors: the sign of the potential may change and its magnitude may be either reduced~ordinary
screening! or enhanced~antiscreening!.

I. INTRODUCTION

A standard self-consistent type of argument leads to a
relationship of the form

Ve~r !5E dr 8e~r ,r 8!V~r 8!, ~1!

where Ve is the external bare potential,V is the total
screened potential, and the dependence ont ~or v! is under-
stood everywhere when not explicitly indicated. The problem
is to knowV givenVe , which amounts to solving the inte-
gral equation~1! for V.

In a homogeneous three-dimensional~3D! electron gas,
the problem is trivially solved in full Fourier transform, from
e~r2r 8;t2t8! to e~K ,v! and the inverse is simply 1/e~K ,v!.
In this case, the theoretical effort has been mostly concen-
trated on trying to improvee~K ,v! beyond the random phase
approximation~RPA!.1 A different situation arises in a num-
ber of systems of considerable physical interest, liked-doped
semiconductors or modulation doped heterojunctions or
quantum wells, wheree is of the forme~r2r8,z,z8;t,t8), r
is the in plane 2D position vector, andz the coordinate in the
perpendicular direction. In this case, one has to deal with an
integral equation in thez variable, which cannot be solved by
simple Fourier transform.

The usual approach is to take matrix elements of the in-
tegral equation between one electron wave function and then
find the matrix elements of the screened potential by making
often drastic approximations. This paper presents a different
approach in which the integral equation itself is explicitly
solved without these approximations.

The free particle in plane motion will be described in
terms of plane waves with a 2D wave vectork, while the
quantized motion in thez direction is described by some
wave functionswn(z). In fact, there are the wave functions
of the discrete bound states under study—e.g., a quantum

well, a modulation doped heterojunction, or ad-doped
system—and those of the continuum of free states above the
barriers. For practical purposes, we can embed the system in
a sufficiently large quantization box, in thez direction with
infinite potential barriers at the extremes. The whole spec-
trum of electronic states then formally consists of discrete
quantized states in thez direction. The formal argument
could be equally carried out with a continuous part in the
spectrum, but it is simpler this way. Thus, ifa5~k,n) de-
notes the set of quantum numbers, the electronic wave func-
tions will be written

ca~r !5S21/2 exp~ ik–r!wn~z!, ~2!

whereS is a normalization area. Consistent with this, we use
the 2D Fourier transform convention,

f ~r!5(
k

f ~k!exp~ iQ–r!,

~3!

f ~Q!5E
S
d2rf ~r!exp~2 iQ–r!.

With ~v,Q! dependence understood, our integral equation
reads

Ve~z!5E dz8e~z,z8!V~z8!. ~4!

The purpose of this paper is to find the solution

V~z!5E dz8e21~z,z8!Ve~z8! ~5!

under general conditions, as will be presently explained.
Whether for screening or for energy loss calculations, the

problem of findinge21 for a quantum well has been treated
in various approximations. This is an easy problem if the
confined electron gas is described as strictly 2D.2 The main
point of such an approximation is not only that the electronic
wave functions are treated as strictly 2D, but also—and more
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important, as will be seen later—that the spectrum of states
describing the quantized motion in thez direction is reduced
to just one single band. The finite spread of the electronic
wave functions in thez direction has been taken into account
in several calculations ofe21, often based on the assumption
that all carriers are confined to the lowest subband and ig-
noring the rest of the spectrum, that is the empty subbands of
electronic states. Two occupied subbands have been studied
in some cases, though often with some limitations like the
restriction to static screening3 and also ignoring the empty
subbands. One of the most articulate attempts so far appears
to be a treatment of a metallic film4 including up to two
occupied subbands and some of the empty ones.

We stress three features common to the usual treatment of
the inversion ofe for a confined quasi-two-dimensional sys-
tem, namely:~i! The problem is formulated in terms of ma-
trix elements of the different potentials between electronic
wave functions, so that one seeks to obtain the matrix ele-
ments of the screened potential in terms of those of the bare
potential. ~ii ! It is usually assumed that only one or two
subbands are occupied and, with exceptions like the one
noted above,4 the empty subbands are usually ignored.~iii !
Even when the effect of some empty subbands is included,
the problem is treated by means of a finite truncation of the
spectrum, for which no formal justification is given.

The last question is far from trivial. The problems
amounts to solving an integral equation and this ultimately
amounts to inverting a matrix—which depends on the basis
one chooses. The point is that this matrixis infinite and,
while one may expect a finite truncation of the basis to yield,
in practice, a reasonable approximation, a formal mathemati-
cal analysis is, in principle, mandatory when infinities are
involved. Such an analysis has been recently given by the
authors5 and, based on this, the inversion ofe is formulated
here in a way which provides an explicit formula for
e21~z,z8!, which can be used, in practice, for any spectrum
of electronic wave functionswn(z) and any number of occu-
pied or empty subbands.

The self-consistent field expression fore~z,z8! is summa-
rized in Sec. II and a suitable set of basis functions is intro-
duced in Sec. III, where the formula fore21~z,z8! is given in
a way that displays the consequences of symmetry for sym-
metric structures. The main concern here is with a sound
method for the inversion ofe~z,z8!, but the analysis also
provides an interesting viewpoint on the collective modes of
the confined inhomogeneous electron gas. Plasmons are in-
cidentally discussed in Sec. IV, which is mainly devoted to
the discussion of the screened potential for a simple model
used to demonstrate the practical use of the method. Some
final comments are made in Sec. V.

II. THE RPA DIELECTRIC FUNCTION
FOR A QUASI-TWO-DIMENSIONAL
INHOMOGENEOUS ELECTRON GAS

We summarize here the standard self-consistent analysis,
which allows us to writee~r ,r 8! in a suitable form in real
space. Letca~r ! denote quite generally the electronic wave
functions, not necessarily those of~2!. An external potential
Ve produces an induced particle densityNind and induced
potentialVind , with

Nind~r !5 (
a,a8

f a2 f a8
Ea2Ea82\v1 ^auVua8&ca8

* ~r !ca~r !,

~6!

whereV5Ve1Vind , v15 limh→0~v1ih) and the summa-
tions are just symbols that may or may not involve integra-
tions.Nind andVind are related by the Poisson equation,

¹2Vind~r !52
4pe2

ex
Nind~r !, ~7!

with appropriate boundary conditions. Here, we assume sim-
ply a background dielectric constantex . However, in view of
the interest of this analysis for the study of heterostructures,
some remarks will be made later on the treatment of dielec-
tric discontinuities. The purpose, for the moment, is to focus
on the essential problem—the inversion ofe—without pay-
ing attention to inessential details.

Let G~r ,r 8! be the electrostatic response Green function
defined by

¹2rG~r ,r 8!524pd~r2r 8!, ~8!

with the same boundary conditions as~7!. Then

Vind~r !5E d3r 8G~r ,r 8!Nind~r 8!. ~9!

Writing down explicitly the matrix elementŝauVua8& as in-
tegrals and expressingVe as V2Vind , from ~6!–~9!, one
finds Eq.~1! with

e~r ,r 8!5d~r2r 8!2
e2

ex
(
a,a8

f a2 f a8
Ea2Ea82\v1

3F E d3r 9G~r ,r 9!ca~r 9!ca8
* ~r 9!G

3@ca* ~r 8!ca8~r 8!#. ~10!

For a 3D homogeneous electron gas, this yields the dielectric
function in real space ase~r2r 8! and its 3D Fourier trans-
form yields the well known RPA formula fore~K ,v!. For the
quasi-two-dimensional system with the wave functions of
~2!, this yields

e~r2r8;z,z8!5d~r2r8!d~z2z8!2
e2

exS
(
k,k8
n,n8

f k,n2 f k’ ,n8
Ek,n2Ek8,n82\v1

3F E dz9wn~z9!wn8
* ~z9!E d2r9G~r2r9;z,z9!ei ~k2k8!•r9G

3@wn* ~z8!w
n8

~z8!e2 i ~k2k8!•r8#, ~11!
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whence the 2D Fourier transform, fromr2r8 to Q:

e~z,z8!5d~z2z8!2 (
n,n8

F E dz9G~z,z8!wn~z9!wn8
* ~z9!G

3Xn,n8@wn* ~z8!wn8~z8!#, ~12!

where

G~z,z8!5E d2~r2r9!G~r2r9;z,z8!eiQ–~r2r9!, ~13!

andXn,n8 is the 2D polarizability element,

Xn,n8~Q,v!5
e2

exS
(

k

f k1Q,n82 f k,n

Ek1Q,n82Ek,n1\v1 . ~14!

Our problem is to find the inversee21~z,z8) satisfying the
condition

E dz9e~z,z9!e21~z9,z8!5d~z2z8!, ~15!

from which we obtain the solution~5! for the screened po-
tential.

III. THE INVERSE DIELECTRIC FUNCTION

We define the functions

Sn,n8~z!5wn* ~z!wn8~z!;

Ln,n8~z!5E dz8G~z,z8!Sn,n8~z8!. ~16!

Then,

e~z,z8!5d~z2z8!2 (
n,n8

Ln,n8
* ~z!Xn,n8Sn,n8~z8!. ~17!

It will be presently shown thate21 is of the form

e21~z,z8!5d~z2z8!1 (
n,n8

Ln,n8
* ~z!Mn,n8Sn,n8~z8!.

~18!

The ~v,Q! dependence is inMnn,8. Thus, given an external
potentialVe(z8!, the induced potential atz is

Vind~z!5 (
n,n8

Ln,n8
* ~z!Mn,n8E dz8Sn,n8~z8!Ve~z8!.

~19!

In a typical quantum well problem,Ve(z8)—e.g., the poten-
tial of a confined optical mode—is characteristically con-
fined within the bounded domain of the quantum well, which
is also where the amplitudeswn(z) of the lower part of the
spectrum are mostly confined, while due to the long range
nature of the Coulomb interaction,Vind(z) may reach out to
longer distances, which is the feature distinguishingLn,n8(z)
from Sn,n8(z8). We shall denote these as long (L) and short
(S) range functions, respectively. To simplify the presenta-
tion, we shall assume that thewn are real, although there is
no difficulty in dealing with complex eigenfunctions. Then
Ln,n85Ln8,n and Sn,n85Sn8,n are also real and the sum in
~17! takes the form

(
n>n8

Ln,n8~z!Pn,n8Sn,n8~z!, ~20!

where we have defined

Xn,n[Pn,n ; Xn,n81Xn8,n5Pn,n8 ~nÞn8!. ~21!

We also assume degenerate statistics. This is not a require-
ment of the formal basis of the analysis, but the presentation
is again simpler and, in fact, the confined quasi-two-
dimensional electron gases that one encounters, in practice,
are often degenerate to a good approximation. Then the
Pn,n8 vanish when both subbands~n andn8! are empty and
the matrix of nonvanishing elementsPn,n8 (n>n8), with k
subbands occupied, is

~1,1!

~2,1! ~2,2!

~3,1! ~3,2! ~3,3!

••• ••• ••• •••

••• ••• ••• ••• •••

~k,1! ~k,2! ~k,3! ••• ~k,k!

~k11,1! ~k11,2! ~k11,3! ••• ~k11,k! 0

~k12,1! ~k12,2! ~k12,3! ••• ~k12,k! 0 0

~k13,1! ~k13,2! ~k13,3! ••• ~k13,k! 0 0 0

••• ••• ••• ••• ••• ••• ••• •••

••• ••• ••• ••• ••• ••• ••• ••• . ~22!
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Now start with the main diagonal and define a relabeling
according to the assignment

~n,n8! ~1,1! ~2,2! ~3,3! ••• ~k,k!

m 1 2 3 ••• k.

Then take the second diagonal (n11,n) and assign

~n,n8! ~2,1! ~3,2! ~4,3! ••• ~k11,k!

m k11 k12 k13 ••• 2k.

The following diagonal (n12,n) would have the assignment

~n,n8! ~3,1! ~4,2! ••• ••• ~k12,k!

m 2k11 2k12 ••• ••• 3k,

and so on. From each diagonal, we havek terms and each
diagonal is characterized by an increasing value of (n2n8).
We then case~18! as

e~z,z8!5d~z2z8!1(
m

Lm~z!PmSm~z8!. ~23!

Now, given~23! we seek the inverse,

e21~z,z8!5d~z2z8!1(
m,n

Lm~z!Mm,nSn~z8!. ~24!

The point is thatm andn run from 1 to infinity and finding
the~infinite! matrix of elementsMmn amounts to inverting an
infinite matrix, and this should not be treated lightly. One
may hope that only a limited number of spectral terms will
yield, in practice, a reasonable approximation, but this is not
a mathematically valid argument. The usual procedure,
which consists in truncating the spectrum of electronic sub-
bands up to a finite~and usually rather small! finite number,
may or may not work reasonably in practice, but the pres-
ence of infinities requires, in principle, first a formal proof of
the existence of the inverse and then the establishment of an
algorithm, which generates a sequence of solutions converg-
ing to the exact answer. Physically speaking, the presence of
intersubband excitations in the polarizability elements means
that the empty part of the spectrum plays a role and the
assumption, implicit in the usual calculations, that higher
order terms will be negligible on account of increasing en-
ergy denominators may or may not be very accurate, depend-
ing on the numerics of the situation, as\v may be of the
order of someEn8,k1Q2En,k . Only a proper calculation can
tell and the point is that it is the establishment of a suffi-
ciently powerful method of calculation that really requires a
formal analysis. Here we shall outline the main points of
such an analysis5 applied to the specific case of the dielectric
function.

We define the matrixb of elements

bmn5E dzSm~z!Ln~z!. ~25!

Then, from the condition~15! we have, in compact notation,

2L ~z!•P–S~z8!1L ~z!•M–S~z8!2L ~z!•P•b•M•S~z8!

50, ~26!

whereP is the diagonal matrix of elementsPmdmn , L is the
vector of componentsLm , andS the vector of components
Sn . All the Lm andSn are linearly independent, and thus they
form a dual basis in a space of infinite dimensions. We rep-
resent the problem in this basis, which is obviously intrinsi-
cally more adequate to describe the short range and long
range aspects of the physical problem under study than the
basis of the electronic wave functionswn . Then the problem
is to solve the matrix equation,

~ I2P–b!•M5P. ~27!

Formally, the solution is simply

M5~ I2P–b!21
•P, ~28!

but this is just what requires the inversion of an infinite ma-
trix.

Let us define successive truncations of~22!, and hence of
the sum in~24!, by means of acut index cdefined as follows:
For k occupied subbands, the first cut corresponds toc5k
and includes the firstk diagonals of~22!, the next cut has cut
index c5k11 and includes the firstk11 diagonals, and so
on. Thenc determines the maximum valueN5c3k attained
by m or n and the matrices in~27! and ~28! are of orderN.
The problem is~i! to prove the existence of the inverse of the
infinite matrix and~ii ! to prove that the successive solutions
for successive values ofN converge to the exact answer as
N→`. This can be proved by applying the mathematical
analysis of Ref. 5.

What matters is the asymptotic behavior of the terms in
the series~24! for large values ofm. Irrespective of the de-
tails of the confined system under study, the electronic wave
functions wn for large energies tend asymptotically to the
sine functions of the confining box and then it is easily seen
that for largen andn8 theXn,n8 , when they do not vanish—
see ~22!—decrease for largen,n8 as the inverse of
(n1n8)(n2n8) and then the correspondingLn,n8 decrease
like 1/n2. Now, in this asymptotic range, bothn andn8 are
proportional to m, and so are, therefore,~n1n8! and
(n2n8!. Thus, for largem, the terms in the series~24! de-
crease like 1/m4 and the series is absolutely and uniformly
convergent. Under these circumstances, the conditions estab-
lished in Ref. 5 hold, which among other things guarantees
that the terms in the series can be rearranged to suit conve-
nience, as we have done by choosing the relabeling assign-
ment (n,n8)→m, as explained after~22!.

Moreover, a very useful algorithm was described in Ref. 5
by starting from the well known fact that any given matrixa
can be factorized as the product

a5p–t ~29!

of a unitary matrixp and a triangular matrixt. Direct, non-
recursiveformulas were given to obtain the elements ofp
and t from the given elements ofa. Thus, the problem of
inverting a, sincep21 is simply p†, is reduced to the much
simpler problem of inverting the triangular matrixt, where
all the elements below the main diagonal vanish. The proce-
dure is very efficient on account of the nonrecursive charac-
ter of the formulas yielding directlyp and t.

Having obtained the matrixM to the desired degree of
accuracy, we can obtain explicitly the screened potential,

53 2037DIELECTRIC RESPONSE OF AN INHOMOGENEOUS QUASI- . . .



V~z!5Ve~z!1(
m

Lm~z!MmnE dz8Sn~z8!Ve~z8!.

~30!

This formula is quite general, but many systems of physical
interest, like symmetric modulation doped quantum wells or
d-doped systems, have mirror image symmetry. Then all the
wn have definite parity and hence also all theSm andLm , so
by suitable rearrangement these functions can be arranged in
symmetric (S) and antisymmetric (A) sets, which are mutu-
ally orthogonal and the scalar products of~25! vanish for all
m, n whenSm andLn have different parity. The space of the
problem is then factorized in mutually orthogonalS andA
subspaces andb is factorized in blocks in the form

b5 Ibs 0

0 bA
I . ~31!

Since P is diagonal, all matrices involved—including
M—are likewise factorized at all successive stages of ap-
proximation corresponding to successive truncations of~22!.
For instance, for two occupied subbands the successive label
assignments for theS andA blocks are

S A

c52 n,n8 ms n,n mA

1,1 1 2,1 1

2,2 2 3,2 2,

c53 1,1 1 2,1 1

2,2 2 3,2 2

3,1 3

4.2 4 ~32!

c54 1,1 1 2,1 1

2,2 2 3,2 2

3,1 3 4,1 3

4.2 4 5,2 4.

Each approximation includes intersubband excitations up to
a maximum intersubband difference (n2n8! for all occupied
subbands and this determines the corresponding matricesbs
andbA , which may or may not be of the same order. Both
the formal mathematical analysis and the practical algorithm
hold separately in theS andA subspaces. This allows us to
cast the formula~30! in a very transparent way as

V~z!5Ve~z!1(
m

LS,m~z!(
n

MS,mnE dz8SS,n~z8!Ve~z8!

1(
m

LA,m~z!(
n

MA,mnE dz8SA,n~z8!Ve~z8!, ~33!

which displays the obvious fact that aS/A external potential
is only screened by theS/A part of e21, the integrals of the
other parity being identically nil.

The importance of the choice of basis was stressed in Ref.
4 from a practical point of view, although the calculations
appear to have been carried out in terms of matrix elements
of the potentials between thewn . The study ofe

21 closest in

spirit to the present analysis was given in Ref. 6 for an ide-
alized model of a superlattice involving only two bands from
the start. This was later applied to another idealized model of
a quantum well,7 again with only two subbands. Functions
equivalent to ourSm are introduced and others equivalent to
our Lm can be recognized in some integrands. The present
analysis differs in some important respects, namely:~i! the
explicit identification of theLm and Sm as long range and
short range basis functions,~ii ! the consequent formulation
in a way which explicitly displays the role of symmetry,~iii !
the study of the successive truncations of the spectrum of
electronic states and the convergence forN→`, and~iv! the
establishment of a practical algorithm with which various
situations and approximations can be readily studied. The
relevance of these remarks will be demonstrated by the ex-
amples studied in the following section.

IV. PLASMONS AND SCREENED POTENTIAL

Although the main purpose of this paper is to discuss the
inversion ofe, it is also interesting to see briefly how can one
view the plasmons of the confined quasi-two-dimensional
electron gas in the light of the present analysis. For this
purpose, it is convenient to write~28! in the alternative form,

M5d•~d2P!21
•P ~d[b21!, ~34!

so the matrixa to be inverted isd2P and the plasmons are
the roots of

detud2Pu50. ~35!

It is easily seen that in the limitN→`, the matrixd repre-
sents the d function d~z2z8) in the dual basis
$Lm(z),Sn(z8)%, but even thend is not diagonal, although
there is oneds and onedA for the case of symmetry just
discussed. Since the matrixp of ~29! is unitary, its determi-
nant cannot vanish and~35! is equivalent to

detutu5Pmtmm50. ~36!

So the plasmons are in the zeros of thetmm—or in the poles
of the t mm

21. This statement requires interpretation.
It was proved in Ref. 5 that~i! the tmm are real and non-

negative numbers and~ii ! the necessary and sufficient con-
dition for the vanishing oftmm is that themth column ofa is
a linear combination of the precedingm21 columns. Sup-
pose, for instance, a symmetric system with one occupied
subband (k51!. We start by considering the vanishing oft11.
From the formulas derived in Ref. 5 we obtain

t115H ud112P1u21 (
m.1

udm1u2J 1/2, ~37!

which agrees with~i!. Clearly this cannot vanishunless we
make the lowest approximation~cut c51! in which the spec-
trum is drastically truncated to just one subband. Then,
t1150 is equivalent to

d112P150, ~38!

which is the standard result in the customary ‘‘electric quan-
tum limit’’ for the intraband plasmon. The next approxima-
tion (c52) leaves theS part as it is and introduces the first
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term of the A part, for which m51 corresponds to
n52, n851. The same argument holds leading to~37! and
~38!, only thatd11 andP1 now have a different meaning and
~38! yields the first interbandA plasmon. In the next approxi-
mation ~c53!, the A part remains unchanged, while theS
part is increased so thatm52 corresponds ton53, n851.
Then, t2250 implies that the second column of the matrix
d2P is proportional to the first one, corresponding to

Ud112P1 d12

d21 d222P2
U50. ~39!

This yields ~a!. The intraband plasmon with the first inter-
band corrections coming from interband excitations between
n51 andn53—of the same parity—and~b! the first inter-
bandS plasmon, and so on. In practice, it is useful to work
from thetmm . Since one is in any case interested in obtaining
these objects for the inversion ofe, one has incidentally a
neat way of obtaining the plasmons of the system in a way
that displays the role of the symmetry.

Moreover, this also provides an insight into the situation
when more than one subband is occupied. Modulation doped
quantum wells may easily have two8 or three9 populated sub-
bands andd-doped systems may easily have a few more.10

Sometimes their individual populations are experimentally
determined from Shubnikov–de Haas measurements.10,11

The lowest plasmon branch—withv→0 as Q→0—then
splits ink branches ifk is the number of occupied subbands.9

Assume, for instance,k52 and consider the successive ap-
proximations described in~32!. For c52, the two intraband
modes are the roots of a 232 determinant, formally like~39!,
but with a different meaning of them labels now in corre-
spondence with~32!. This reveals that the main coupling
between the~1,1! and ~2,2! intraband modes isnot dynami-
cal, as no interband excitations are involved, but rather a
consequence of the spectrum of electronic states and is sim-
ply due to the fact thatd12 andd21, which only depend onQ
but not onv, do not vanish. Of course, dynamical correc-
tions are to be expected, but in higher approximations. In-
deed, forc53, theS part leads to a 434 secular determi-
nant, which yields~i! the two intraband modes with~3,1! and
~4,2! interband corrections, involving excitations between
subbands of the same symmetry and~ii ! the two symmetric
interband modes, all four being coupled, while theA part
leads to a 232 determinant yielding the two antisymmetric
interband modes,~2,1! and ~3,2!. The analysis can be easily
carried out for higher values ofk and provides an insight into
the meaning of the terms involved in the successive approxi-
mations.

Now, our main purpose is to study the screened potential
in real space as a consequence of the role played by the
various terms entering the dynamical dielectric response of
the confined electron gas. In order to demonstrate these ef-
fects, it suffices to consider an electron gas confined by an
infinite square well. Width and Fermi energy were initially

FIG. 1. One occupied subband. In this and all subsequent figures, external~full line! and screened~dotted line! potentials are plotted in
arbitrary units against position in Å relative to the center of the well forQ50 andv5290 cm21. Here,Lw5336 Å; k51; EF515.8 meV
~corresponding to an average particle densityn̄58.931016 cm23!; c52 for ~a! symmetric (S), ~b! antisymmetric (A) andc53 for ~c! S, ~d!
A.
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chosen so that areal particle densities and energy levels in the
lower part of the spectrum are representative of typical ex-
perimental GaAs quantum wells. The bare potential to be
screened was chosen to imitate, both in frequency and space-
dependent amplitude, the first two optical phonon modes at
Q50 of the same type of quantum well structures. A detailed
study of the screened potential in real space shows that this
exhibits a remarkable degree of variety.

In Fig. 1~a!, with one occupied subband andc52, which
amounts to the usual electric quantum limitfor the S sub-
space, a symmetricVe is not screened at all, because the only
intervening polarization term in this approximation isP1 ,
corresponding toX1,1 and it is easily seen that in the limit
Q→0, the Xn,n8 depend onn2n8 and vanish forn5n8.
Thus, this approximation is totally inadequate to describe the
dynamicscreening of symmetric potentials at lowQ, which
happens to be typically the range of~long! wavelengths of
predominant experimental interest. The antisymmetric poten-
tial is screened, because forc52 the polarizabilityP2 , cor-
responding ton52, n851 intervenes in theA part and this
does not vanish. It is curious that the screening not only
reduces the magnitude ofVe , but also changes its sign. This
means that an electron driven by the screened potential of an
A mode would, under these circumstances, oscillate com-
pletely out of phase with respect to the phonon wave. In
order to obtain any screening at all for theS part, we must
take at least the next approximationc53 @Fig. 1~b!# in
which the S part includesm52, corresponding ton53,
n851, for whichPmÞ0. TheA part does not change, since it
includes no new terms, but the changes from the usual elec-
tric quantum limit approximation (c51! to the next two ap-

proximations are drastic: first (c52) an A potential is
screened—and may even have its sign changed, as demon-
strated in this example and then (c53! anS potential is also
screened, in this case quite strongly, even displaying a small
depression in the middle region, where the external potential
has its maximum. We note the energies involved:E155
meV,EF515.8 meV,E2520 meV,E3545 meV, and\v540
meV. Some small numerical changes can be appreciated for
higher approximations, up toc58, though no new feature
appears, and fromc58 to c512 there is no appreciable
change. The algorithm employed in the calculation, with the
choice of basis functions and the arrangement of successive
terms as explained above, converges very fast. In this ex-
ample,c53 constitutes already a quite good approximation
for the screening.

Similar considerations apply to the example of Fig. 2,
corresponding to a wider well and also with one occupied
subband. Forc52, only the A potential is screened, for
c53, theS potential is also screened and this is a fairly good
approximation altogether, with small numerical changes
from c53 to c58 and no appreciable change from then on.
However, the striking feature is that the external potential is
not actually screened butantiscreened,that is uVu.uVeu.

Antiscreening and change of sign may combine and result
in a remarkable variety of behaviors of the screened poten-
tial, depending on the parameters of each case. For the well
described in Fig. 3~a! with two occupied subbands, the ap-
proximation c54 which, as seen in~32!, includes up to
n55, is not yet very accurate. The screenedS potential then
only displays a small depression in the middle. Appreciable
changes take place fromc54 to c58, involving up ton59,

FIG. 2. One occupied subband.Lw5476 Å; k51; EF54.9 meV (n̄51.431016 cm23!; c52 for ~a! S, ~b! A andc53 for ~c! S, ~d! A.
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when theS potential is strongly screened, the depression in
the middle is then significant and a tendency to a change of
sign is beginning to emerge near the middle. The results are
appreciably the same from then on. The figure shows the
actual results forc512. TheA potential is also reduced in
magnitude, while its sign is changed. Now, these results are
for an electron population corresponding to an average con-
centration of 1.131017 cm23. If the Fermi level is lowered so
the average concentration decreases to 531016 cm23 @Fig.
3~b!# then theA potential displays both, change of sign and
substantial decrease in magnitude, while theS potential dis-
plays change of sign and the beginning of an increase in
magnitude in the middle region. Thus, something which
emerges in the variety of behaviors which one can encounter
is that the tendency to antiscreening—meaning by this the
enhancement of the magnitude of the potential, irrespective
of the sign—is different forS or A external potentials.

Substantial changes may also occur for very small
changes of the parameters. Figure 4 shows the results with
c510, when convergence has been more than amply
achieved, for the same well with one occupied subband and
two values ofEF . In Fig. 4~a!, with an average electron
concentration ofn̄53.831016 cm23, theS potential behaves
qualitatively as in Fig. 3~b! but maintainsuVu,uVeu, while
theA potential exhibits very strong antiscreening combined
with change of sign. On loweringn̄ only to 3.131016 cm23

@Fig. 4~b!# the screened potential for theS case changes only
a little, but the screenedA potential changes drastically: now
it has the same sign asVe and shows still fairly strong anti-
screening, though not nearly as much as in Fig. 4~a!.

A study of various different cases indicated that the ten-
dency to antiscreening appears asLw increases orEF de-
creases, that is, when the average electron densityn̄ alto-
gether decreases. In all cases, antiscreening appears forn̄
below 531016 cm23. In fact, although this does not appear to
be mentioned in the literature on confined quasi-two-
dimensional systems, dynamical antiscreening of optical po-
lar mode potentials was found in bulk semiconductors for
low electron concentrations.12What we find here is the same
phenomenon together with further features characteristic of
confined quasi-two-dimensional systems. The resulting pat-
tern of behavior is remarkably diverse with a variety that
only explicit real space calculations can reveal.

V. FINAL CONSIDERATIONS

We have presented an algorithm for the inversion ofe in
real space for confined quasi-two-dimensional systems,
which ~i! is based on a rigorous mathematical analysis of the
solution of the integral equation and~ii ! converges to the
exact answer. The dual basis of long range and short range
functions is consistent with the physics of the dielectric re-
sponse and yields a representation, which displays in a trans-
parent way the role of symmetry and of the empty states,
both for the study of the plasmons of the inhomogeneous
quasi-two-dimensional electron gas and of the screened po-
tential. Real space calculations of the screened potential can
then be readily carried out. From model calculations at fre-
quencies of typical confined polar optical modes in GaAs
wells, we find that the dynamical screening shows a great

FIG. 3. Two occupied subbands.Lw5476 Å; k52; c512. (a! S and ~b! A: EF521.5 meV (n̄51.131017 cm23!; ~c! S and ~d! A:
EF511 meV (n̄55.031016 cm23!.
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variety of behaviors: The sign of the screened potentialV
may be equal or opposite to that of the external potentialVe ,
symmetric or antisymmetric potentials may be screened dif-
ferently, and the magnitude ofVe may be reduced~screen-
ing! or enhanced~antiscreening!. The antiscreening effect
appears at low average electron concentrations, as in early
work on bulk polar semiconductors, and appears to have re-
mained unnoticed so far for confined systems. The conse-
quent enhancement of the strength of the electron-phonon
interaction is bound to have significant phenomenological
implications.

The role of the empty states appears to be also significant
and deserves some comment. We have seen in the example
of Fig. 3, with two occupied subbands, that for an accurate
answer we must include up ton59. Then the energy level
E9 is about 200 meV above the bottom of the well. Now, in
Si d-doped systems in a GaAs matrix, the bottom of the
conduction band may be typically about 120–140 meV
above the lowest bound state and in GaAs quantum wells
with Al xGa(12x)As barriers the conduction band well depth
may range from about 70 meV~for x50.1! to about 230
meV ~for x50.3!. Thus, in a calculation for a realistic sys-
tem, it would not be surprising to find that empty levels,
which still have a significant influence, are invading the
range of extended states above the well barriers, where the
density of states is large. These are only plausible sugges-
tions, which in any case would have to be borne out by a
proper calculation. We also note that, in general, one would
not expect anything special for static screening, irrespective

of how accurate the calculation may be. The striking features
demonstrated by the above examples are characteristic of
dynamical screening and, among other factors, this may de-
pend quite significantly on the actual values ofv.

The model calculations are presented here to demonstrate
that the practical use of the method can equally be carried
out with more realistic wave functionswn(z) corresponding
to real systems. Only the screening has been studied here,
but an efficient method to obtaine21(z,z8! opens the way to
realistic studies of interesting physical properties like power
loss or quasiparticle properties, as indicated in Ref. 6.

Some comments are in order concerning the limitations of
the present work. First, the background dielectric constant
has been assumed to be the same everywhere, but if desired,
the effects of dielectric discontinuities can be included by
simply redefining the differential equation~8! in an appropri-
ate manner. The electrostatic response Green function can
then be easily obtained by standard matching.13 This would
only remove the factorex from the denominator in~10! and
change the result of evaluating the long range functionsLn,n8
of ~16!, while the problem of the integral equation to be
solved is again the same. This is a very simple matter. A
substantially more serious question concerns the limitation of
the analysis to the random phase approximation. Due to the
combined effects of inhomogeneity and nonlocality, together
with the multiband structure of the spectrum, to extend the
theory beyond the RPA is by no means trivial. In fact, there
is still a substantial amount of literature dealing with this
type of problems in the RPA. The latest study of normal

FIG. 4. One occupied subband.Lw5400 Å; k51; c510. (a! S and ~b! A: EF59 meV (n̄53.831016 cm23!; ~c! S and ~d! A: EF58
meV (n̄53.131016 cm23!.
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modes in a thin metal film is based on this approximation4

and so is the latest study of a semiconductor superlattice.14

Work on the extension of the theory beyond the RPA is in
progress in our laboratory and the preliminary indications
suggest that improved formulas will differ essentially in sub-
stantial modifications of the quasi-two-dimensional polariz-
ability elements, while the mathematical structure of the di-
electric function to be inverted remains the same. Thus, the
corresponding integral equation can be solved by using the
method presented here. The real purpose of this paper is not
to analyze a concrete physical system, which might require a
more advanced formulation, but to present a method which
has a firm mathematical foundation and can be useful to
invert the dielectric function in real space in a way in which
one can easily see the effects of symmetry and of the inter-

subband excitations. Finally, the case of confinement in one
dimension has been discussed here, but the mathematical
analysis on which the method is based5 applies equally to
any inhomogeneous system and the same approach can be
used to study superlattices, quantum wires, or quantum dots.
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