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Dielectric response of an inhomogeneous quasi-two-dimensional electron gas
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The solution of the integral equation required to invert the dielectric function of a confined quasi-two-
dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The
dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking
into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy.
Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the
consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies
of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may
play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great
variety of behaviors: the sign of the potential may change and its magnitude may be either reddiceay
screening or enhancedantiscreening

I. INTRODUCTION well, a modulation doped heterojunction, or @&doped
system—and those of the continuum of free states above the
A standard self-consistent type of argument leads to &arriers. For practical purposes, we can embed the system in
relationship of the form a sufficiently large quantization box, in ttzedirection with
infinite potential barriers at the extremes. The whole spec-
trum of electronic states then formally consists of discrete
Ve(r):f dr’e(r,r")V(r"), ) quantized states in the direction. The formal argument
could be equally carried out with a continuous part in the
spectrum, but it is simpler this way. Thus, df=(#,n) de-

where V, is thg external bare potential is Fhe total notes the set of quantum numbers, the electronic wave func-
screened potential, and the dependence @t w) is under-  tions will be written

stood everywhere when not explicitly indicated. The problem
is to knowV given V., which amounts to solving the inte- Ya(1)=S "2 explik-p) oy(2), 2
gral equation(1) for V. , , whereS is a normalization area. Consistent with this, we use
In a homogeneous three-dimensioii@D) electron gas, the 2D Fourier transform convention,
the problem is trivially solved in full Fourier transform, from
e(r—r';t—t’) to e(K,w) and the inverse is simply &K ,w). B .
In this case, the theoretical effort has been mostly concen- f(”)‘g flr)exdiQ-p),
trated on trying to improve(K,w) beyond the random phase 3)
approximation(RPA).! A different situation arises in a num- f _f $2of r
ber of systems of considerable physical interest, fidoped Q)= g (pexp(—iQ-p).
semiconductors or modulation doped heterojunctions or , i
quantum wells, where is of the forme(p—p’,z,2":t,t'), p With (0,Q) dependence understood, our integral equation
is the in plane 2D position vector, aadhe coordinate in the €2ds
perpendicular direction. In this case, one has to deal with an
integral equation in the variable, which cannot be solved by Ve(2)= f dz'e(z,z2')V(Z'). (4)
simple Fourier transform.
The usual approach is to take matrix elements of the inThe purpose of this paper is to find the solution
tegral equation between one electron wave function and then
find the matrix elements of the screened potential by making V(z)= J dz e X(z,2')V(Z') (5)
often drastic approximations. This paper presents a different
approach in which the integral equation itself is explicitly under general conditions, as will be presently explained.
solved without these approximations. Whether for screening or for energy loss calculations, the
The free particle in plane motion will be described in problem of findinge * for a quantum well has been treated
terms of plane waves with a 2D wave vecwer while the  in various approximations. This is an easy problem if the
quantized motion in the direction is described by some confined electron gas is described as strictlyZThe main
wave functionse,(2). In fact, there are the wave functions point of such an approximation is not only that the electronic
of the discrete bound states under study—e.g., a quantumsave functions are treated as strictly 2D, but also—and more
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important, as will be seen later—that the spectrum of states [l. THE RPA DIELECTRIC FUNCTION
describing the quantized motion in tkelirection is reduced FOR A QUASI-TWO-DIMENSIONAL
to just one single band. The finite spread of the electronic INHOMOGENEOUS ELECTRON GAS

wave functions in the direction has been taken into account v <, mmarize here the standard self-consistent analysis
in several calculations of !, often based on the assumption which allows us to writee(r,r’) in a suitable form in real '
that all carriers are confined to the lowest subband and igspace Lety,(r) denote quité generally the electronic wave

. a

noring the rest of the spectrum, that is the empty subbands gfinctions, not necessarily those @. An external potential
electronic states. Two OCCUpIed subbands have been Stud|Qﬁ(’9 produces an induced partic'e denswnd and induced

in some cases, though often with some limitations like thebotentialvmd, with
restriction to static screeniig@nd also ignoring the empty

subbands. One of the most articulate attempts so far appears,, _ fofo ok
to be a treatment of a metallic fiftincluding up to two Nind(r) E E,~E,—fw" (alVIa") () a(r),
occupied subbands and some of the empty ones. ’ (6)

We stress three features common to the usual treatment Qf,arav=v_+V. 4 o =1lim__(w+izy) and the summa-
e Ina? 7—

the inversion _ofe for a confingd quasi—two-d_imensional SYS- tions are just symbols that may or may not involve integra-
tem, namely<i) The problem is formulated in terms of ma- s N,,q andV,4 are related by the Poisson equation,
trix elements of the different potentials between electronic

wave functions, so that one seeks to obtain the matrix ele-
ments of the screened potential in terms of those of the bare
potential. (ii) It is usually assumed that only one or two
subbands are occupied and, with exceptions like the on

EOted aﬁové,ﬁhe f(_afmptyfsubbands are usbuslly dlgr_10r_(auli) d he interest of this analysis for the study of heterostructures,

ven when the effect of some empty subbands Is includeds, e remarks will be made later on the treatment of dielec-

the problem is treated by means of a finite truncation of theyc giscontinuities. The purpose, for the moment, is to focus

spectrum, for which no formal justification is given. on the essential problem—the inversion esf-without pay-
The last question is far from trivial. The problems j,q attention to inessential details.

amounts to solving an integral equation and this ultimately “| et G(r r’) be the electrostatic response Green function

amounts to inverting a matrix—which depends on the basigjefined by

one chooses. The point is that this matis infinite and, 5

while one may expect a finite truncation of the basis to yield, VarG(r,r')=—4ms(r—r’), ®

in practice, a reasonable approximation, a formal mathematixith the same boundary conditions @. Then

cal analysis is, in principle, mandatory when infinities are

involved. Such an analysis has been recently given by the , _ 3,1 NN (1

authors and, based on this, the inversion ofs formulated V'”d(r)_f AT G, Ning(r)- ©

here in a way which provides an explicit formula for \riting down explicitly the matrix element&|V|a') as in-

€ (z,z'), which can be used, in practice, for any spectrumtegrals and expressing, as V— V4, from (6)—(9), one
of electronic wave functiong,(z) and any number of occu- finds Eq.(1) with

pied or empty subbands. )
The self-consistent field expression fdr,z’) is summa- e(rr)=8(r—r')— e D fo—fo

rized in Sec. Il and a suitable set of basis functions is intro- ' y E,—Ey—fiw™"

duced in Sec. Ill, where the formula fer(z,z’) is given in

2

) 4re
VVina(r) = —

X

Nina(r), (7)

gith appropriate boundary conditions. Here, we assume sim-
ply a background dielectric constasnt. However, in view of

X a,a

a way that displays the consequences of symmetry for sym- « f 3.n " n Lk (en
metric structures. The main concern here is with a sound dr G, ") (") Y, (1)
method for the inversion o&(z,z'), but the analysis also , ,
\z2) y LA () ()], (10

provides an interesting viewpoint on the collective modes of
the confined inhomogeneous electron gas. Plasmons are iFer a 3D homogeneous electron gas, this yields the dielectric
cidentally discussed in Sec. IV, which is mainly devoted tofunction in real space agr—r’) and its 3D Fourier trans-
the discussion of the screened potential for a simple moddbrm yields the well known RPA formula fa(K,w). For the
used to demonstrate the practical use of the method. Sontpasi-two-dimensional system with the wave functions of
final comments are made in Sec. V. (2), this yields

eZ

€S

fk,n_fk’,n’
E E

_ _ +
P KN EK/,FI' fiw

n,n’

e(p—p';2,2')=8(p—p')6(z—2") -

XU dZ'en(2")¢}.(2") f d*p'G(p—p"iz,2')e )

X[en(Z)e (2)e ! e, (11)
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whence the 2D Fourier transform, fropr-p’ to Q:

e(z,Z’)=5(z—2’)—E/ “ dZ'G(z,2' ) en(Z") ey (Z")

XXnnlen(2)en(2)], 12

where

G(z,2')= f d%(p—p")G(p—p";2,2' )PP, (13)

andX, v is the 2D polarizability element,

2

Xn,n’(va) = _S

fien

fK+Q,n’_
—Epntho™’

14

2 g

K Kk+Q,n’

Our problem is to find the inverse (z,z') satisfying the
condition

f dZ'e(z,2") e Y(2",2')=8(z—2'), (19

from which we obtain the solutiofb) for the screened po-
tential.

Ill. THE INVERSE DIELECTRIC FUNCTION

We define the functions

Snn(2)= ¢} (2) en(2);

L= [ 4762208020 as

Then,

€(2,2')=8(z=2)= 2 L} 1 (DXnwSon(Z). (A7)

(1,3

(2,1) (2,2)

(3,1) (3,2 (3,3
(k,1) (k,2) (k,3)
(k+1,1) (k+1,2 (k+1,3
(k+2,1) (k+2,2 (k+2,3
(k+3,1) (k+3,2 (k+3,3
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It will be presently shown tha¢ ! is of the form

e Nz,2)=8(z=2')+ 2 L} (DM Sy n(2).
n,n (]_8)

The (0,Q) dependence is iM,,-. Thus, given an external
potentialV.(z'), the induced potential a is

Vad 2= 3 U (@M [ 428,02 Vel2).
" (19)

In a typical quantum well probleny/,(z')—e.g., the poten-
tial of a confined optical mode—is characteristically con-
fined within the bounded domain of the quantum well, which
is also where the amplitudes,(z) of the lower part of the
spectrum are mostly confined, while due to the long range
nature of the Coulomb interactiol;,q(z) may reach out to
longer distances, which is the feature distinguisHing, (z)
from S, ,/(z"). We shall denote these as lonig)(and short
(S) range functions, respectively. To simplify the presenta-
tion, we shall assume that thg, are real, although there is
no difficulty in dealing with complex eigenfunctions. Then

Lon=Ln nand$§, =S, , are also real and the sum in
(17) takes the form

> Lo (2)PonSn(2), (20
n=n’
where we have defined
Xn’nEPn’n; Xn,n’+xn’,n:Pn,n’ (n?ﬁn,). (21)

We also assume degenerate statistics. This is not a require-
ment of the formal basis of the analysis, but the presentation
is again simpler and, in fact, the confined quasi-two-
dimensional electron gases that one encounters, in practice,
are often degenerate to a good approximation. Then the
P, s vanish when both subbands andn’) are empty and

the matrix of nonvanishing elemeni, ,, (n=n’"), with k
subbands occupied, is

(k,k)

(k+1k) 0
(k+2k) 0 0O
(k+3k) 0 0 O

(22)
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Now start with the main diagonal and define a relabelingwhereP is the diagonal matrix of elemeng, s,,,, L is the
according to the assignment vector of componentt ,, and S the vector of components
, S, . Allthe L , andS, are linearly independent, and thus they
(n,n) (L) (22 33 - (kk) form a dual basis in a space of infinite dimensions. We rep-
P 1 2 3 K. resent the problem in this basis, which is obviously intrinsi-
cally more adequate to describe the short range and long
Then take the second diagonal1,n) and assign range aspects of the physical problem under study than the

basis of the electronic wave functiogs . Then the problem
is to solve the matrix equation,

(1-P-B)-M=P. (27)

Formally, the solution is simply

(n,n") (2, (3,2 (43 --- (k+t1k)
i k+1 k+2 k+3 - 2k.
The following diagonal ¢+ 2,n) would have the assignment
(n,n")y (3) (42 - - (k+2k)
w 2k+1 2k+2 e e 3k,

M=(1-P-B) 1P, (29)

but this is just what requires the inversion of an infinite ma-
and so on. From each diagonal, we h&véerms and each trix.
diagonal is characterized by an increasing valuenof ). Let us define successive truncationg2®), and hence of
We then casgl18) as the sum in(24), by means of @ut index odefined as follows:
For k occupied subbands, the first cut corresponds =tk
N S(o_ ot , and includes the firdt diagonals 0f22), the next cut has cut
€(zz)=dz"z HE,} Lu(2)PuSu(2"). @39 indexc=k+1 and includes the fir&+ 1 diagonals, and so
on. Thenc determines the maximum valdé= c X k attained
by w or v and the matrices if27) and (28) are of orderN.
The problem igi) to prove the existence of the inverse of the
e Yz,2)=8(z—2")+, L.(2)M, ,S,(Z'). (24  infinite matrix and(ii) to prove that the successive solutions
v for successive values ™ converge to the exact answer as
The point is thatx and » run from 1 to infinity and finding N—. This can be proved by applying the mathematical
the (infinite) matrix of elements ,, amounts to inverting an  analysis of Ref. 5. _ _ _
infinite matrix, and this should not be treated lightly. One What matters is the asymptotic behavior of the terms in
may hope that only a limited number of spectral terms willthe series24) for large values ofu. Irrespective of the de-
yield, in practice, a reasonable approximation, but this is notails of the confined system under study, the electronic wave
a mathematically valid argument. The usual procedurefunctions ¢, for large energies tend asymptotically to the
which consists in truncating the spectrum of electronic subSine functions of the confining box and then it is easily seen
bands up to a finitéand usually rather smalfinite number, ~ that for largen andn” the X, when they do not vanish—
may or may not work reasonably in practice, but the presSee (22—decrease for largen,n’ as the inverse of
ence of infinities requires, in principle, first a formal proof of (N+ n’)z(n— n’) and then the correspondirig, ,» decrease
the existence of the inverse and then the establishment of dife 1/n°. Now, in this asymptotic range, bothandn’ are
algorithm, which generates a sequence of solutions converi’mpOrtlonall tou, and so are, therefore(n+n’) and
ing to the exact answer. Physically speaking, the presence 6 —n'). Thus, for largey, the terms in the serie@4) de-
intersubband excitations in the polarizability elements meansrease like 14 and the series is absolutely and uniformly
that the empty part of the spectrum plays a role and th&onvergent. Under these_cwcumstances, the_condltlons estab-
assumption, implicit in the usual calculations, that higherlished in Ref. 5 hold, which among other things guarantees
order terms will be negligible on account of increasing en-that the terms in the series can be rearranged to suit conve-
ergy denominators may or may not be very accurate, dependi€nce, as we have done. by choosing the relabeling assign-
ing on the numerics of the situation, &s may be of the Ment 0,n")—u, as explained aftef22). o
order of SOMEE s ., g— Ep, .. Only a proper calculation can More_over, a very useful algorithm was descrlbed in R_ef. 5
tell and the point is that it is the establishment of a suffi-by starting from the well known fact that any given mataix
ciently powerful method of calculation that really requires acan be factorized as the product
formal analysis. Here we shall outline the main points of

Now, given(23) we seek the inverse,

such an analysisapplied to the specific case of the dielectric a=p-t (29)

function. _ of a unitary matrixp and a triangular matrix. Direct, non-
We define the matriyg of elements recursiveformulas were given to obtain the elementspof
andt from the given elements od. Thus, the problem of
Buv:f dzS,(2)L,(2). (25)  invertinga, sincep ! is simply p, is reduced to the much

simpler problem of inverting the triangular matrix where

Then, from the conditioi15) we have, in compact notation, 2ll the elements below the main diagonal vanish. The proce-
dure is very efficient on account of the nonrecursive charac-

—L(z)-P-S(z')+L(z)-M-S(z')-L(z)-P-B-M-S(zZ") ter of the formulas yielding directlp andt.
Having obtained the matrid to the desired degree of
=0, (26) accuracy, we can obtain explicitly the screened potential,
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spirit to the present analysis was given in Ref. 6 for an ide-
V(2)=Ve(2)+ 2 LM(Z)MMJ dz'S,(z")Ve(Z'). alized model of a superlattice involving only two bands from
K (30) the start. This was later applied to another idealized model of
a quantum well, again with only two subbands. Functions
This formula is quite general, but many systems of physicakquivalent to ousS, are introduced and others equivalent to
interest, like symmetric modulation doped quantum wells orgur L = can be recognized in some integrands. The present
&-doped systems, have mirror image symmetry. Then all thenalysis differs in some important respects, namélythe
¢, have definite parity and hence also all 8gandL,, so  explicit identification of theL, and S, as long range and
by suitable rearrangement these functions can be arranged éhort range basis functionéj) the consequent formulation
symmetric §) and antisymmetricA) sets, which are mutu- in a way which explicitly displays the role of symmettiij )
ally orthogonal and the scalar products(26) vanish for all  the study of the successive truncations of the spectrum of
u, vwhenS, andL, have different parity. The space of the electronic states and the convergenceNer «, and(iv) the
problem is then factorized in mutually orthogor&land A establishment of a practical algorithm with which various
subspaces and is factorized in blocks in the form situations and approximations can be readily studied. The
relevance of these remarks will be demonstrated by the ex-
‘ /f)s ;; _ 31) amples studied in the following section.
A

Since P is diagonal, all matrices involved—including
M—are likewise factorized at all successive stages of ap-  Although the main purpose of this paper is to discuss the
proximation corresponding to successive truncation@af.  jnversion ofe, it is also interesting to see briefly how can one
For instance, for two occupied subbands the successive labgley the plasmons of the confined quasi-two-dimensional
assignments for th& andA blocks are electron gas in the light of the present analysis. For this
purpose, it is convenient to writ@8) in the alternative form,

IV. PLASMONS AND SCREENED POTENTIAL

S A
c=2 nn" u® nn uph M=d-(d-P)"*.P (d=87Y), (34)
11 1 2,1 1 so the matrixa to be inverted isi—P and the plasmons are
22 2 32 2, the roots of
c=3 1,1 1 21 1 defd—P|=0. (35)
2,2 2 32 2 It is easily seen that in the limN—o, the matrixd repre-
3,1 3 sents the § function &z—2z') in the dual basis
42 4 (32 {L.(2).S,(2')}, but even therd is not diagonal, although
' there is onedg and oned, for the case of symmetry just
c=4 11 1 2.1 1 discussed. Since the matnixof (29) is unitary, its determi-
’ ' nant cannot vanish an@5) is equivalent to
2,2 2 32 2
31 3 41 3 deft|=11,t,,=0. (36)
4.2 4 5,2 4. So the plasmons are in the zeros of thge—or in the poles
o . . of thet 1. This statement requires interpretation.
Each approximation includes intersubband excitations up to o

. ) ; p ; It was proved in Ref. 5 thai) thet,, are real and non-
a maximum intersubband difference-{ n’) for all occupied o 4ative numbers angi) the necessary and sufficient con-
subbands and this determines the corresponding maices yiion for the vanishing of , , is that theuth column ofa is

and S8, , which may or may not be of the same order. Both, jinear combination of the preceding—1 columns. Sup-

the formal mathematical analysis and the practical algorithnbOse for instance, a symmetric system with one occupied

hold separately in th_s and A subspaces. This allows us to subband k= 1). We start by considering the vanishingtgf.
cast the formuld30) in a very transparent way as From the formulas derived in Ref. 5 we obtain

12
V(@) =Ve(2)+ 2 Ls,(D 2 Ms,, J d7'Ss,(2')Ve(Z') t=1 [ Paf2+ S [d 2 37
® v u>1 ,

S LS M VJ' dz'S, (2')V(z'), (33  Which agrees withi). Clearly this cannot vanishnless we
2,; Aul )EV: A a(ZOVe(Z), (39 make the lowest approximatigout c= 1) in which the spec-
trum is drastically truncated to just one subband. Then,

which displays the obvious fact thatSaA external potential t,,=0 is equivalent to

is only screened by th&/A part of e 1, the integrals of the

other pf'irity being identically _niI. _ _ dy;— P,=0, (39)
The importance of the choice of basis was stressed in Ref.

4 from a practical point of view, although the calculationswhich is the standard result in the customary “electric quan-

appear to have been carried out in terms of matrix elementwm limit” for the intraband plasmon. The next approxima-

of the potentials between the,. The study ofe * closestin  tion (c=2) leaves theS part as it is and introduces the first
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FIG. 1. One occupied subband. In this and all subsequent figures, exteithihe) and screenefdotted ling potentials are plotted in
arbitrary units against position in A relative to the center of the wellQer0 andw=290 cni L. Here,L,,=336 A; k=1; Er=15.8 meV
(corresponding to an average particle densi8.9x 10 cm™3); c= 2 for (a) symmetric ), (b) antisymmetric A) andc=3 for (c) S, (d)
A.

term of the A part, for which u=1 corresponds to Assume, for instancek=2 and consider the successive ap-
n=2, n'=1. The same argument holds leading(8) and  proximations described i82). Forc=2, the two intraband
(38), only thatd,; andP, now have a different meaning and modes are the roots of a2 determinant, formally liké39),

(38) yields the first interbané plasmon. In the next approxi- but with a different meaning of the labels now in corre-
mation (c=3), the A part remains unchanged, while t8  spondence with(32). This reveals that the main coupling
part is increased so that=2 corresponds tm=3, n"=1.  petween thg1,1) and (2,2 intraband modes isot dynami-
Then, t5,=0 implies that the second column of the matrix c5| as no interband excitations are involved, but rather a
d—P is proportional to the first one, corresponding to consequence of the spectrum of electronic states and is sim-
ply due to the fact thad,, andd,,, which only depend o®

but not onw, do not vanish. Of course, dynamical correc-
tions are to be expected, but in higher approximations. In-
deed, forc=3, the S part leads to a A4 secular determi-

diy—P;  dp
dy  dp— P

This yields (a). The intraband plasmon with the first inter-

band corrections coming from interband excitations betwee ant, Wh'Ch yieldsi) the.two |n'traband modgs vyi(B,l) and
n=1 andn=23—of the same parity—an¢b) the first inter- 4,2) interband corrections, involving excitations between

bandS plasmon, and so on. In practice, it is useful to work SUbbands of the same symmetry afigl the two symmetric
from thet ,, . Since one is in any case interested in obtainingnterband modes, all four being coupled, while thepart
these objects for the inversion ef one has incidentally a leads to a X2 determinant yielding the two antisymmetric
neat way of obtaining the plasmons of the system in a waynterband modes2,1) and(3,2). The analysis can be easily
that displays the role of the symmetry. carried out for higher values &fand provides an insight into
Moreover, this also provides an insight into the situationthe meaning of the terms involved in the successive approxi-
when more than one subband is occupied. Modulation dopethations.
quantum wells may easily have tfvor thre€ populated sub- Now, our main purpose is to study the screened potential
bands ands-doped systems may easily have a few miSre. in real space as a consequence of the role played by the
Sometimes their individual populations are experimentallyarious terms entering the dynamical dielectric response of
determined from Shubnikov—de Haas measuremi@ifs. the confined electron gas. In order to demonstrate these ef-
The lowest plasmon branch—with—0 as Q—0—then fects, it suffices to consider an electron gas confined by an
splits ink branches ik is the number of occupied subbarfds. infinite square well. Width and Fermi energy were initially

0. (39
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FIG. 2. One occupied subbarnid, =476 A;k=1; Er=4.9 meV (1=1.4x10cm™3); c=2 for (a) S, (b) A andc=3 for (c) S, (d) A.

chosen so that areal particle densities and energy levels in thoximations are drastic: firstcE2) an A potential is
lower part of the spectrum are representative of typical exscreened—and may even have its sign changed, as demon-
perimental GaAs quantum wells. The bare potential to bestrated in this example and theo= 3) an S potential is also
screened was chosen to imitate, both in frequency and spacgereened, in this case quite strongly, even displaying a small
dependent amplitude, the first two optical phonon modes afepression in the middle region, where the external potential
Q=0 of the same type of quantum well structures. A detailechas its maximum. We note the energies involvéd:=>5
study of the screened potential in real space shows that thimeV, Ec=15.8 meV,E,=20 meV,E;=45 meV, andiw=40
exhibits a remarkable degree of variety. meV. Some small numerical changes can be appreciated for
In Fig. 1(a), with one occupied subband ane-2, which  higher approximations, up to=8, though no new feature
amounts to the usual electric quantum lirffor the S sub- appears, and front=8 to c=12 there is no appreciable
space a symmetridV/, is not screened at all, because the onlychange. The algorithm employed in the calculation, with the
intervening polarization term in this approximation B,  choice of basis functions and the arrangement of successive
corresponding toX; ; and it is easily seen that in the limit terms as explained above, converges very fast. In this ex-
Q—0, the X, ,» depend onn—n’ and vanish forn=n’. ample,c=3 constitutes already a quite good approximation
Thus, this approximation is totally inadequate to describe théor the screening.
dynamicscreening of symmetric potentials at la@y which Similar considerations apply to the example of Fig. 2,
happens to be typically the range @6ng) wavelengths of corresponding to a wider well and also with one occupied
predominant experimental interest. The antisymmetric potensubband. Forc=2, only the A potential is screened, for
tial is screened, because fo+=2 the polarizabilityP,, cor-  c¢=3, theS potential is also screened and this is a fairly good
responding tam=2, n’ =1 intervenes in thé\ part and this approximation altogether, with small numerical changes
does not vanish. It is curious that the screening not onlffrom c=3 to c=8 and no appreciable change from then on.
reduces the magnitude bf,, but also changes its sign. This However, the striking feature is that the external potential is
means that an electron driven by the screened potential of amot actually screened bantiscreenedthat is|V|>|V|.
A mode would, under these circumstances, oscillate com- Antiscreening and change of sign may combine and result
pletely out of phase with respect to the phonon wave. Inin a remarkable variety of behaviors of the screened poten-
order to obtain any screening at all for tBepart, we must tial, depending on the parameters of each case. For the well
take at least the next approximatian=3 [Fig. 1(b)] in described in Fig. @) with two occupied subbands, the ap-
which the S part includesu=2, corresponding t;m=3, proximation c=4 which, as seen if32), includes up to
n'=1, for whichP,#0. TheA part does not change, since it n=5, is not yet very accurate. The screer@potential then
includes no new terms, but the changes from the usual eleonly displays a small depression in the middle. Appreciable
tric quantum limit approximationq= 1) to the next two ap- changes take place froo=4 toc=8, involving up ton=9,
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FIG. 3. Two occupied subbands,, =476 A; k=2; c=12. (3 S and(b) A: Er=21.5 meV fi=1.1x10" cm3); (c) S and (d) A:
Er=11 meV (1=5.0x10' cm™3).

when theS potential is strongly screened, the depression in A study of various different cases indicated that the ten-
the middle is then significant and a tendency to a change alency to antiscreening appears las increases ofEg de-

sign is beginning to emerge near the middle. The results arereases, that is, when the average electron densito-
appreciably the same from then on. The figure shows thgether decreases. In all cases, antiscreening appears for
actual results foc=12. TheA potential is also reduced in below 5<10' cm™3. In fact, although this does not appear to
magnitude, while its sign is changed. Now, these results arbe mentioned in the literature on confined quasi-two-
for an electron population corresponding to an average cordimensional systems, dynamical antiscreening of optical po-
centration of 1.X10' cm™3. If the Fermi level is lowered so lar mode potentials was found in bulk semiconductors for
the average concentration decreases *d®® cm 3 [Fig.  low electron concentrationé What we find here is the same
3(b)] then theA potential displays both, change of sign and phenomenon together with further features characteristic of
substantial decrease in magnitude, while $heotential dis- confined quasi-two-dimensional systems. The resulting pat-
plays change of sign and the beginning of an increase itern of behavior is remarkably diverse with a variety that
magnitude in the middle region. Thus, something whichonly explicit real space calculations can reveal.

emerges in the variety of behaviors which one can encounter

is that the tendency to an'tiscreening—mean'ing .by this t'he V. FINAL CONSIDERATIONS
enhancement of the magnitude of the potential, irrespective
of the sign—is different foiS or A external potentials. We have presented an algorithm for the inversiore af

Substantial changes may also occur for very smalreal space for confined quasi-two-dimensional systems,
changes of the parameters. Figure 4 shows the results witlwhich (i) is based on a rigorous mathematical analysis of the
c=10, when convergence has been more than amplgolution of the integral equation and) converges to the
achieved, for the same well with one occupied subband andxact answer. The dual basis of long range and short range
two values ofEg. In Fig. 4@), with an average electron functions is consistent with the physics of the dielectric re-
concentration oh=3.8x10'® cm ™3, the S potential behaves sponse and yields a representation, which displays in a trans-
qualitatively as in Fig. @) but maintains|V|<|V,|, while  parent way the role of symmetry and of the empty states,
the A potential exhibits very strong antiscreening combinedboth for the study of the plasmons of the inhomogeneous
with change of sign. On lowering only to 3.1x10** cm™3  quasi-two-dimensional electron gas and of the screened po-
[Fig. 4(b)] the screened potential for tfecase changes only tential. Real space calculations of the screened potential can
a little, but the screenefl potential changes drastically: now then be readily carried out. From model calculations at fre-
it has the same sign a4, and shows still fairly strong anti- quencies of typical confined polar optical modes in GaAs
screening, though not nearly as much as in Fig).4 wells, we find that the dynamical screening shows a great
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variety of behaviors: The sign of the screened potenfial of how accurate the calculation may be. The striking features
may be equal or opposite to that of the external potemjal demonstrated by the above examples are characteristic of
symmetric or antisymmetric potentials may be screened difdynamical screening and, among other factors, this may de-
ferently, and the magnitude &f, may be reducedscreen- pend quite significantly on the actual valueswf

ing) or enhancedantiscreening The antiscreening effect The model calculations are presented here to demonstrate
appears at low average electron concentrations, as in eartiiat the practical use of the method can equally be carried
work on bulk polar semiconductors, and appears to have resut with more realistic wave functiong,(z) corresponding
mained unnoticed so far for confined systems. The consde real systems. Only the screening has been studied here,
quent enhancement of the strength of the electron-phonobut an efficient method to obtai }(z,z') opens the way to
interaction is bound to have significant phenomenologicalealistic studies of interesting physical properties like power
implications. loss or quasiparticle properties, as indicated in Ref. 6.

The role of the empty states appears to be also significant Some comments are in order concerning the limitations of
and deserves some comment. We have seen in the examplee present work. First, the background dielectric constant
of Fig. 3, with two occupied subbands, that for an accuratdhas been assumed to be the same everywhere, but if desired,
answer we must include up =9. Then the energy level the effects of dielectric discontinuities can be included by
Eq is about 200 meV above the bottom of the well. Now, in simply redefining the differential equatid8) in an appropri-

Si &doped systems in a GaAs matrix, the bottom of theate manner. The electrostatic response Green function can
conduction band may be typically about 120-140 meVthen be easily obtained by standard matcHighis would
above the lowest bound state and in GaAs quantum wellenly remove the factoe, from the denominator if10) and

with Al,Ga; ) As barriers the conduction band well depth change the result of evaluating the long range functigns

may range from about 70 me\or x=0.1) to about 230 of (16), while the problem of the integral equation to be
meV (for x=0.3). Thus, in a calculation for a realistic sys- solved is again the same. This is a very simple matter. A
tem, it would not be surprising to find that empty levels, substantially more serious question concerns the limitation of
which still have a significant influence, are invading thethe analysis to the random phase approximation. Due to the
range of extended states above the well barriers, where trembined effects of inhomogeneity and nonlocality, together
density of states is large. These are only plausible suggesvith the multiband structure of the spectrum, to extend the
tions, which in any case would have to be borne out by aheory beyond the RPA is by no means trivial. In fact, there
proper calculation. We also note that, in general, one woulds still a substantial amount of literature dealing with this
not expect anything special for static screening, irrespectivéype of problems in the RPA. The latest study of normal



53 DIELECTRIC RESPONSE OF AN INHOMOGENEOUS QUASI. . 2043

modes in a thin metal film is based on this approximdtion subband excitations. Finally, the case of confinement in one
and so is the latest study of a semiconductor superldttice. dimension has been discussed here, but the mathematical
Work on the extension of the theory beyond the RPA is inanalysis on which the method is ba3epplies equally to
progress in our laboratory and the preliminary indicationsany inhomogeneous system and the same approach can be

suggest that improved formulas will differ essentially in sub-ysed to study superlattices, quantum wires, or quantum dots.
stantial modifications of the guasi-two-dimensional polariz-

ability elements, while the mathematical structure of the di-
electric function to be inverted remains the same. Thus, the
corresponding integral equation can be solved by using the
method presented here. The real purpose of this paper is not The authors are grateful to H. Roguez-Coppola for

to analyze a concrete physical system, which might require atimulating discussions on the normal modes and power loss
more advanced formulation, but to present a method whiclof the confined gquasi-two-dimensional electron gas. This
has a firm mathematical foundation and can be useful tevork was partly supported by the Spanish Diréocieeneral
invert the dielectric function in real space in a way in which de Investigacin Cientfica y Tecnica under Grant No. PB93-
one can easily see the effects of symmetry and of the intert251.
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