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Coherent dynamics of radiatively coupled quantum-well excitons
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The optical response of radiatively coupled semiconductor multiple-quantum-well structures is investigated
theoretically. It is shown that the transverse optical field leads to a coupling of exciton states within each well
which causes a radiative decay and a mixing of excitonic resonances. Simultaneously, the field-induced long-
ranged coupling between different wells leads to collective effects that are very sensitive to the detailed
geometry of the structure. For a quantum-well spacing equal to an integer multiple of half the optical
wavelength inside the medium, it is predicted that the collective effects cause a stimulated decay of electronic
excitations that should be observable in either transmission or reflection geometry. On the other hand, in a
quarter wavelength structure, the light-induced coupling causes an interwell energy transport and a splitting of
the excitonic resonances, that should be observable as quantum beats in the time-resolved transmitted or
reflected signal.

[. INTRODUCTION dent, but are coupled by the light field and collective effects
can occur.

During the last few years, the dynamics of excitons and In this paper we present a semiclassical theory of radia-
excitonic wave packets in semiconductor multiple-quantumiively coupled QW'’s based on the semiconductor Maxwell-
well structures (MQW'’s) has been studied extensivély. Bloch equations(SMBE'’s). We derive the SMBE’s for a
However, in most theoretical investigations propagation efclassical optical field interacting with regularly spaced
fects, i.e., the interaction between excitonic resonances m&W's. The individual wells are assumed to be sufficiently
diated by reemitted photons have been ignored, implicitlythin in order to allow us to deal with the electronic problem
assuming that in each well the dynamics of the excitonidn the two-dimensional limit. To demonstrate the basic ef-
excitations in the absence of electronic coupling between diffects of the light-induced intrawell and interwell coupling we
ferent wells is independent of the number of guantum We||§valuate the theory in the linear regime. Within the coherent
(QW’S) or of the barrier thickness. However' in recent pump_time domain, we find a sensitive dependence of the results on
probe experiments on samples containing one, two, and fivle detailed geometry of the structure.

QW’s an initial population decay time increasing with the
number of QW'’s could be observédihdicating the existence
of Conective phenomena in MQW'S. II. THE SEMICONDUCTOR MAXWELL-BLOCH

From bulk semiconductors, it is known that propagation EQUATIONS
effects in opti(?allysthick samples lead to pulse breakup and |, this section, we derive the SMBE'’s governing the in-
polariton beating;™® but can be neglected in optically thin teraction between a classical propagating light pulse and the
samples. For such situations and for monochromatic excitanterband polarization in a MQW. The SMBE'’s combine the
tion under quasistationary conditions the optical absorptionyave equation for the optical field and the semiconductor
i.e., the ratio of the transmitted and the input intensity, isBloch equationgSBE’s) which determine the microscopic
directly related to the imaginary part of the optical susceptiinterband polarization. The interband polarization is given by
bility, as is the density of photogenerated electron-holehe expectation value of the field-induced optical transitions,
pairs? thus coupling the classical field to the quantum-mechanical

Contrary to the homogeneous case, where the conserveynamics of the system. Generally, the SMBE’s constitute a
tion of energy and crystal momentum leads to stationary porather complicated set of coupled differential equations.
lariton states, electronic excitations in a quantum well carHowever, we demonstrate that under certain conditions, the
decay radiatively, i.e., by emitting phototfs:* Due to en-  classical and quantum-mechanical part can formally be sepa-
ergy and in-p|ane momentum conservation, reemitted phd.a.ted, allowing for a formal solution of the wave equation in
tons can propagate in either the forward or backward directerms of the microscopic interband polarization.
tion, giving rise to partial reflection®6As a consequence, ~ We use excitonic unit# =m,=e?/ e;=1 throughout the
the ratio of transmitted and input intensity is no longer apaper, wheren, is the reduced mass of the electron-hole pair
measure for the absorbed intensity® Since, in turn, the and ¢, is the background dielectric constant. The speed of
emitted photons interact with all excitonic transitions in eachlight in the crystal is related to the dielectric constant by
guantum well, the QW's can no longer be treated as indepers= Cvac/\/f—o= \/e—ola, wherec is the fine-structure constant.
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A. Maxwell equations for a classical optical field interacting

with semiconductor quantum wells "1+ EnJr EN+1+
In this section we concentrate on the wave equation, de- -
scribing the propagation of a classical optical field interact: - ES Eyiy
ing with a MQW. Experimentally, the solution of Maxwell's 7 7, 75 Z,. Zn
equation, "
1 92 52 19 FIG. 1. Schematic illustration of the various counterpropagating
(Vz_ =z P) E(r’t):47TEZ (?_tzp(r’t)+4775 Ej(r’t) wave packets in a MWQ.

+4nV[p(r,t)-V-P(r,t)], (1) P(z,t)=2>, P"(t)e2(2)el(2)

for the classical radiation field is detected after propagating

through the interaction region. From the measured absorp- ~> P(1)8(z—z,). 3)
tion, transmission, or reflection the optical response of the n

semiconductor, i.e., the field-induced macroscopic charge,

current, and interband polarization densjiyj, andP, must = gjnce Eq(3) is used in the Maxwell equatiof®), where the

be deduced. In an inhomogeneous structure like a MQW, theparacteristic length scales are governed by the wavelength
induced macroscopic charge and current density, as well gs light, we have approximated the product of the confine-
the divergence of the interband polarization, are in generghent wave functions by functions in Eq.(3). Denoting by
nonvanishing quantities, coupling the different polarizationkl_ the wave vector of the light field, by the width of the
components of the optical field. However, if the semiconduc-QW’ and assuming perfect confinement of the electron and
tor is initially in its ground state, for excitation with an ul- hoje wave functions within the individual wells, the correc-
trashort optical pulse with central frequeney and spectral  ions to our equations due to the finite width of the QW are
width Aw, we can choose the conditions such that the pulsey the order k,_L)2, and can be neglected for appropriately
resonantly excites only the lowest heavy-hole exciton transizpgsen structures.

tion. For this situation, the contribution from the light holes Formally, Eq.(2) can be solved without a detailed knowl-

to the interaction Hamiltonian can be neglected. Further-edge of the polarization by putting

more, if the laser pulse propagates in the growth direction of

a MQW, the interband polarization is homogeneous with re-

spect to the in-plane coordinates and the macroscopic charge .
and current density vanish. Note that for perpendicular inci- E(z,t)= ErT(t— -z
dence, no center-of-mass motion of the electron-hole pair c
can be excited. Since the dipole matrix element for the

heavy-hole transition has ro component, the wave equa- in the nth barrier ¢,_;<z<z,) as illustrated in Fig. 1 and
tions for the different polarization components are decouple@pplying the appropriate boundary conditions at the inter-
by momentum conservation within the QW plane. For eaclfaces. Since the tangential components of the electric field
o~ polarization component the wave equation therefore simare continuous at the interfaces, the first set of boundary
plifies to conditions simply is

_ Z)
+En t+E (4)

Zn

(az 1 (92) 1 42
t+ —
C

P—?W E(Z,t)=4’77? WP(Z,U. (2)

Zn — Zn — Zn
E;(t—E)JrEn =E:+1<t—€)+En+l(t+€).
Within the envelope function approximatidhthe z depen- ®)
dence of the macroscopic interband polarization is deter-
mined by the electron and hole confinement wave function8y integrating Eq.(2) from z,— € to z,+ € and taking the

located at the positions, of the nth QW, limit e—0 we obtain as a second set of boundary conditions,
E. (t e E+(t Z) E, | t+
- +1| TS +1 ~ N -
dz| " c " c n c n ST -
. zZ, - z, . |z, 15
:_EE Eniq t—z —E i1 t+€ —-E, t—z +E, t+€ :4W?WP (t). (6)
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Combining Egs(5) and (6) yields where the QW spacing is an integer multiple of a half wave-
. length. Otherwise, the retardation effects lead to interfer-
N z N z 19 " -7, ences that cause an asymmetry between the transmitted and
Enlt-¢g]=Eilt—¢ _27721 b\t ) reflected pulses.
(79 From Eqgs.(7) we can compute the following observable
guantities for a structure containimg quantum wells:
E-lt+ 2] =g (t+Z Ef(w) |2
= - o
") TNV e a(w)=— |n‘+°— , (109
N N Enta(o)
27> =2 pm t+z_z”‘) (7b)
— T - y _
m=n C dt 1 |Eg (@)]*~[Exy 1 (@)~ |E; (0)]?
Y CHOk
where E{ (t—z/c) and E,,(t+2/c) are the external ap- ol® (10D

plied laser fields propagating in the positive and negative
directions, respectively.

To appreciate the direct consequences of Egk. it is
instructive to discuss the single QW casezat 0 with the
boundary conditionsE; (t)=E(t) and E, (t)=0. In this
case, the transmitted fiell, (t—z/c) equals the incident

field Eqo(t—2/c) modified by the retarded time derivative of |, hareas the true absorption(w) is defined as that part of
the polarization inside the QW. Simultaneously, the initial e intensity which remains inside the sample, i.e., is neither
intensity is partly emitted in the backwards direction, i.e.,iransmitted nor reflected. For a single QW, it can be shown
reflected. The reflected field is identical to the modificationy,4¢ = — 2 ReR*T), whereR is the reflection and’ the

of the transmitted field. transmission coefficient, thus showing that absorption, trans-

These considerations clearly show the importance of SOIanission, and reflection always occur simultaneotily.

ing the full wave equation in an inh_omogeneous structure. Equations(7) and (10) are still quite general, since no
Thg oft.en-used fedlﬂced wave equation, where seco_nd—ordsfher assumptions besides the dipole selection rules and the
derivatives of the field envelopes are neglected, gives n@anar ocalization of the microscopic polarization have been
back-propagating solutions. However, by dropping the backiage pue to the QW coupling by the light field, both the
propagating solutions of the full wave equation, the only.,nsmission and the absorption spectrum in general depend

consistent solution does not allow for any interaction at all,y, the number of QW's as well as on the sample geometry
since in that case the transmitted field has to equal the incisg \vill be investigated in the next section. ’

dent field.

Apart from the external inputs the expressions for the to-
tal transmitted and reflected fieldg,,, and E; , for a
MQW appear to be very symmetric. Nevertheless, the tem-
poral shape oEy,, and E; can differ considerably as a For explicit model calculations of MQW'’s using the equa-
consequence of the retarded time arguments. If we make th®ns derived in the previous section, we compute the elec-

Here, we denote byr(w) the logarithm of the ratio of
transmitted and input intensity, which in homogeneous media
yields the absorption spectrum which is proportional to the
imaginary part of the optical susceptibiltyn order to avoid
confusion we refer to this quantity #&mnsmission spectrum

B. The semiconductor Bloch equations for radiatively coupled
guantum wells

slowly varying envelope approximatiggSVEA) in time, tronic polarizationP"(t) from the SBE’s. These equations
. have been shown to provide a good approximation to the
Eﬁ(t):e“‘”ttEﬁ(t), (89 optical response of pulse excited semiconductofae co-
herent part of the electronic dynamics results from a Hartree-
pn(t):e*iwuf:n(t), (8b) Fock approximation in the equations of motion derived from

a two-band Hamiltonian and can be written as
Egs.(7) can be simplified to

0 ~ ~ -

n—-1 n H n H n n
~ - - — P, =—i - P, —i(2n, —1)Qg,, (11
E;(t):EI(t)—}—Zﬂ'”(LE eiikLZum(t), (96) at kH (wkH C!)L) kH ( k” ) R,kH ( @

m=1

0 . -

) N N TNk =~ 200k PE). (11b
E, (t)=Ep,,(t)+2mik, >, e*ZmP™(t).  (9b)

m=n

Here P'k“ is the polarization for a one-particle momentum
In order to arrive at these expressions the retardation anétate in thenth quantum well anahE” is the carrier distribu-

the time derivative of the slowly varying envelope has been. -
neglected. If# is the thickness of the entire sample, thisn[Ion function for the electrons a
approximation corresponds to a coarse graining in time o
the order of2/c~1-10 fs for typical semiconductor param-
eters. From Eq99) it can be seen that apart from the exter-
nal fields, the transmitted and reflected pulses are equal only ﬁn(t):E dayﬁﬂk‘ (1), (12
if exp(ik,z,)=exp(—ik z,) for all m, i.e., in a structure I |

nd holes. The total macro-
copic polarization entering Egdl), (2), and(7) is obtained
y summing over all different momentum states,
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whered,, is the magnitude of the dipole matrix element. Thethat of finding the solution of the SBE's with a self-

renormalized single-particle energy and the local Rabi consistently determined radiation field,
frequencyQR . are given b _
q YR, K| g y R,k”: Cy(elkLz”EI'f‘e lkLGEN+l)

@k~

—2 > VRN (139 + 2k, d? e'deman+ yon . pn
2mr aj7K| "H g L mE_:l%H“ q%:k“ o=k ap

17

whered,, is the distance between timh and themth QW.
- From this equation, one recognizes that the different QW'’s
+ E EHH—kH SH- (13b are coupled by a dynamical dipole-dipole interaction medi-
U=k ated by the exchange of transverse photons. Due to this

Here,Eg is the band-gap energy including the confinementldipme,'dipc’le interaction, the dynamics of the electronic po-
energy and/”m is the two-dimensional Coulomb interaction arization not only depends on the total QW number, but via

the phase factoe'*L9mn also on the spacing between the
acting between theth andmth quantum wells. In the case of

a vanishing two-particle interaction the SBE’s reduce to the The SMBE's can be simplified somewhat if we define
two-level Bloch equations.

In the two-dimensional2D) approximation the bare Cou-

Oh ik zne=+ —ik Zn=—
R’k”—dcv(e' LnE +e MLAE ),

lomb interaction is given by P =e*ikizmpn, (183
L — Q" = et kunn, (18b
9 A q” ’

corresponding to plane waves propagating in the positive or
whereA is the total area of the QW. Although this 2D limit negativez direction. Note that without the SVEA these quan-
is justified when dealing with light propagation effects wheretities correspond toP"(t*z,/c). Using the transformed
the relevant length scale is the wavelength of the excitingjuantities(18), the transmitted and reflected fields can be
optical field[see Eq(3)], the relevant length scale for treat- expressed as

ing the Coulomb interaction as two-dimensional is the exci-

tonic Bohr radius. Since the width of a realistic QW is often B B N
of the same order of magnitude as the excitonic Bohr radius, Exi () =E; (t)+2mik, >, P (1), (19a
we include the corrections due to the finite well width as n=1
Vnm VanDgnm(q L), (14) . . N
9 | EL()=Ey, () +2mik, S P (1), (199
n=1

with
respectively; see Eq$9). Thus, the transmittedreflected
4 (L2 field depends on the polarization wave propagating in the
{™M(quL)= _Zf dzd?Z c052— co§—e ajlz—2' forward (backward direction only.
LoJ- The SBE’s can also be expressed in terms of either the
(159  forward or backward propagating waves, e.g.,

2

2 qL 1
"M(quL)= —snh—— for n#m, =— -
(16)
where we have assumed infinitely high potential barriers. pr nk”— —23(OR} K E”ﬂ), (20b)

Inserting the solution of Maxwell's equatiorig) in the
generalized Rabi frequency E@.3b) reduces the problem to with

n
Ol =de (Ef +e  2KaEy, ) +2mik d2, > > P +2mik d2, Z > e2”<Ldman+ > ven, Pt
(22)
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From this set of equations, one recognizes that the obserthe fact that each excitonic transition interacts with photons
able quantities only depend on the phase shift accumulatesimitted from all other transitions. Furthermore, through the
while traveling backwardand forward [exp(2k, dm.] phase factors exiK,d.,, propagation effects couple the
rather than on the phase sHiéxp(k, d,,) ] obtained by just different QW’s depending on the geometry of the structure.
traveling one way to thath quantum well. In the frequency domain, E€R3) can be solved by matrix
At this point, it should be noted that in the case of a finiteinversion, yielding
in-plane photon momentum of the initial pulse, the polariza-
tion not only depends on the relative momentum but also on
the total center-of-mass momentukiy.o, of the electron-
hole pair. Due to the in-plane momentum conservation, the
center-of-mass momentum can only be an integer multiple of ~_ nm —ik z
the in-plane photon momentuky, . Neglecting charge sepa- +chEN+1(w)§m: x"(w)e” Mmoo (24)
ration due to the dispersive motion of the polarization and
the carrier distribution functions, the long-ranged part of thevhere
interwell Coulomb interaction gives rise to an additional
term in the generalized Rabi frequen@ompare Ref. 18 nme ) = nm ..
that is obtained from the second term on the right-hand side x ) g M (@) N (29
.Of Eq.(1_7) by replacingk, by 'k.”C.Om'n the exponent af‘d by . It is interesting to investigate the pole structure of the so-
'Kjconf2 in the prefactor. The finite rangedness of this Statlcdefined linear susceptibility, since the poles correspond to
dipole-dipole or Fester interaction, which is mediated by the T L
exchange of longitudinal photons, is a direct consequence gfsonances of the (_:oupled exciton rad_latlo_n system. These
the instantaneous character of tﬁe Coulomb interaction ang-o-ances can b? mterpreteq as quasiparticles in analogy to
; : . xciton polaritons in bulk semiconductors. The poles are ob-
results in a quite different geometry dependence than thFained by solving
dynamical, retarded dipole-dipole interaction derived in this
paper. Moreover, due to the prefactat,,, the Faster in- _ - m o, ik d _osmyy
teraction vanishes exactly for perpeﬂdicularly incident light, (0= @yt o +IT3) 85 +1T ), (1= 5)] =0.
and is usually small compared to propagation effects even §vhile in a bulk material the pole structure of the linear sus-
the initial pulse has a finite angle to the normal of the QWeceptibility yields the polariton dispersion relation, the MQW
plane. susceptibility hasN discrete(eventually degenerategoles
that are in general complex since the matrix is non-Hermitian.
Ill. RESULTS AND DISCUSSION The real parts of the solutions correspond to the energy of
. . ) . the quasiparticles, whereas the imaginary parts correspond to
To illustrate the basic features of our approach in this raqiative broadening of the resonances. Note that due to the
sec_tlon, we eyaluate thg coupled equations assuming We%'ﬁmmation over the QW indices in Eq3) and (24) not all
optical excitation. For this purpose, we expand the polarizazegonances necessarily contribute to the transmitted or re-
tion in terms of the two-dimensional excitonic state§  flected signal. Some resonances may correspond to “dark”
(A={n,m} for bound states,\={k,m} for continuum  gqytions that are not observable in far-field optical spectros-

ﬁ”(w)=dwéf<w)§ X"(w)eL7m

states, copy.
An interesting situation arises if the QW spacing is an
ﬁn(t)zz hﬁg(t), (22) integer multiple 0f)§/2.. Both in transm.issi(.)n and. reflection
A geometry,= . (—1)"P" is observed, which is an eigenvector

with eigenvalue N of the matrix Z,,,=exp(ik _dmn
=(—1)"*M that determines the geometrical part of the in-
verse susceptibility. Hence, the radiative coupling strengths
and linewidths of the excitonic states that contribute to the

which are the solutions of the Wannier equatidfhe expan-
sion coefficients are determined by

0 ~ ~ . ~
EPQ(UI —i(wy—w)P}(t) +iy [ ET (1) observablédields increase linearly with the QW number. All
other eigenvectors have the eigenvalue 0, thus having a van-
+e*ikLZnI~E,g+l(t)] ishing radiative coupling and linewidth. Exactly for this rea-

son, these resonanceannot be optically excited at alnak-

ing them invisible not only for detection by far-field optical
spectroscopy but also in optical near-field microscopy that
_ allows us in principle to analyze contributions from the in-
Here w,=Eg4+ ¢, is the effective band gap for the exciton dividual QW. This type of coupling leads to a so-called su-
state\ and y,=d.,¢,(0) andTI',,,=27k_ vy, v,  are the perradiant state with a fast stimulated decay of electronic
radiative coupling strengths of the stateswithin each QW, excitations, as shown in Fig(& for the case of two QW's.
the nondiagonal part of the interaction with the induced fieldAs the QW's are excited simultaneously with an intensity
couples different excitonic states, whereas the diagonal pamhaximum of the laser pulse, the excited exciton density will
causes a radiative damping with a damping constant propobe more or less equally distributed among the structure
tional to the oscillator strength of the corresponding state(small deviations can arise from the asymmetry in the initial
These effects are comparable with the effects of a weak dissonditions in a single pulse configuratjo/ photon emitted
order due to interface roughné$&®and clearly demonstrate in a spontaneous recombination process of the electron-hole

— > Ty ekedmp (1), (23

mr/
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E—Egap (meV)
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TIME (ps)

-16.39

. FIG. 2. Time-resolved excitat.ion energy in the first Quélid FIG. 3. Normalized transmission spectra for ofelid line),
line) and the second QWdashed lingof a double QW located at a two (dashed ling and ten(dotted ling MOW's in aA/2 (a) and a

distance of half a wavelengtfa) and a quarter wavelength). M4 (b) structure. The spectra have been normalized to the total

pair in any given QW can either give rise to a stimulated™UMPer of quantum wellsl.

decay or can be reabsorbed. However, reabsorption is

a . . .
second-order process and of minor importance at low optic&he transmission decrease. The lack of fine structure is a

excitation, so that the stimulated decay processes dominat§onsequence of the fact that only one mode is optically ac-
Another interesting case is realized if edp(d, ) is cessible, having a radiative linewidthtimes enhanced com-

purely imaginary for alm+ n. This situation can be realized P2réd to the case of a single QW. On the other hand, the level
in a double QW structure wita, — z,= (2n+ 1)\/4, where splitting in aA/4 structure is clearly observable in its true

\ is the wavelength of the laser pulse. Then the interwelPSOrPtion spectrum, having two maxima for the double QW
coupling leads to a pure splitting of resonances. In/d sample and a substantial number of less pronounced maxima

structure, the coupling leads to an oscillatory energy transfe” @ MQW. By inserting the linear interband polarization on

from one quantum well to the other; see Fi¢h)2At a given the ri_ght hand side _Of Eq11b one finds that the true a_b-

time the light intensity has a maximum at the position of theSorption is proporuonal to the total number of excited

first QW and the second QW is located in an intensity mini_electron-hole pairs

mum and vice versa at a different time. Hence, an emitted

photon interacts with a nonexcited neighboring QW, where N _E

the only possible interaction mechanism is reabsorption eh™ |

which is now a first-order process. Qualitatively, this behav-

ior equals the dynamics of two coupled harmonic oscillators,

where one of the oscillators is initially excited, whereas the

second initially is in its ground state. 0.2}
In Fig. 3, we plot the linear transmission spectréw)

calculated in the vicinity of thesthh excitonic resonanée

for a N\/2 and a\/4 structure containing one, two, and ten

QW's. One clearly recognizes the dependence on the total

number of wells as well as on the barrier thickness, even

though the barriers are optically inactive. Ttrrmalized

transmission in th&./2 structure decreases significantly with

the QW number, whereas the transmission spectrum of a

M4 structure is much less sensitive to the total number of

guantum wells. Note that although the transmission line

shapes are clearly non-Lorentzian, the level splitting occur- A

ring in the pole structure of the linear susceptibility can e

d ~
(2 | SPwIE (@) @9

(a)

(b)

0.1}

ABSORPTION (N-1)
(=

hardly be observed. This changes dramatically if one looks at
the true absorption, as defined in EfOb).

Figure 4 shows the absorption spectra for the same pa-
rameters used in Fig. 3. The true absorption exhibits a very
rich fine structure for a MQW structure, depending sensi-
tively on the structure periodicity. For the/2 structure, the

absorption decrease per QW is even more pronounced thab) structure.

0.0
-17.23

-17.02  -16.81

-16.60

E-Egap (meV)

-16.39

FIG. 4. Normalized absorption spectra for ofselid line), two
(dashed ling and ten(dotted ling MQW's in aA/2 (a) and a\/4
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FIG. 5. As in Fig. 3 but for a structure where the distance & 107

between the QW's is 2 nm less thari2 (a) or \/4 (b).
TIME (ps)
and should thus be observable, e.g., by time-integrated exci-

tation luminescense spectroscopy. o FIG. 7. Time-resolved transmission spectra for ¢said line),

To demonstrate the extraordinary sensitivity of the result§yg (dashed ling and ten(dotted liné MQW’s in a A/2 (@) and a
on the spacing between the quantum wells, we show in Figs./4 (b) structure.(c) and (d) show the reflected intensities.
5 and 6 the calculated transmission and absorption spectra
for a structure with one, two, and ten QW's with a period measurements on samples containing a large number of
slightly less than\/2 or N/4 (AD=—2nm). Comparing QW'’s positioned at approximately/2.
Figs. 3 and 4 with Figs. 5 and 6, we notice dramatic changes In Fig. 7 we show computed examples of the linear time-
of the spectra, especially substantial modifications of the abresolved transmission and reflection for perfef2 and/4
sorption for the small variation of the barrier thickness. Instructures. We assume resonastekciton excitation with a
particular, a small deviation from the/2 periodicity gives  100-fs pulse full width at half maximum. A comparison of
rise to a nonzero coupling to modes having a very smalFigs. 7a) and 7c) demonstrates that for the/2 structure
radiative linewidth that are optically forbidden if the spacing reflection and transmission are identical for times after the
is exactly \/2. Since these modes dominate the long-timeexciting pulse has decayed. Furthermore, the decay rate in-
behavior of electronic excitations, this observation is of cru-
cial importance for a correct interpretation of time-resolved

| (a)
Z
5
021 (a) = 3L
w
= 2l
Eo 1%}
Zz 0.1f i E I
Z = 0 —
S ol . ~ (b)
I (b)
> o 5 o004
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< 2 002
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1723 -17.02  -16.81 -16.60 -1639 E-Egp (meV)

E-Egap (meV)

FIG. 8. Normalized transmissiof@) and absorptiorib) spectra
FIG. 6. As in Fig. 4 but for a structure where the distancefor ten MQW's with a total length o (solid line), /2 (dashed
between the QW's is 2 nm less thar2 (a) or \/4 (b). line), and\/10 (dotted ling.
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creases linearly wititN (to be precise, T= y5+ Nvy,a4, tunneling, the light-induced coupling does not neccesarily
wherey, is the nonradiative homogeneous linewidtRor a  lead to a splitting of resonances, but can also result in a pure
N4 structure, the transmitted and reflected signals exhibibroadening of excitonic linewidths.
guantum beats, which is the time-domain signature of the The origin of these phenomena is the phase coherence of
splitting of the absorption peaks; see Fig. 4. Furthermore, théhe electronic excitations that is determined by the spacing
transmitted and reflected signals display pronounced differbetween the QW's. Comparing the QW excitons with a string
ences due to interference effects. of localized oscillators, the radiative coupling causes a
To study the length dependence of the optical responsestimulated emission of photons if the oscillators are all in
we plot in Fig. 8 the normalized transmission and absorptiorphase §/2 MQW), whereas an oscillatory energy transfer
spectra for a system of ten quantum wells with a total lengttcan occur if they are exactly out of phase/4 MQW). Our
of \, /2, and\/10. We notice a gradual decrease of trans-calculations indeed predict this behavior. For all geometries,
mission with decreasing sample length. Also the asymmetryhe radiative coupling induces a memory into the system,
of the absorption spectrum decreases somewhat, but thlgince the polarization in thath QW is coupled to the re-
overall features show clearly, that even for barrier thick-tarded time derivative of the polarization in all distinct
nesses much less than the optical wavelength, multiple reQW’s. For this reason, a more or less pronounced increase of

flections dominate the optical spectra. the decay time with increasing QW number can be observed.
We expect that the broadening and splitting of excitonic
IV. CONCLUSIONS resonances found in the linear spectra will also manifest

i . themselves in nonlinear experiments, such as four-wave mix-
In conclusion, we presented the semiconductor Maxwelling experiments.

Bloch equations for an optical pulse interacting with a semi-
conductor multiple-quantum-well structure. We have shown
that the propagation-induced dynamical dipole-dipole inter-
action leads to a coupling of electronic excitations in differ- This work has been supported by the Deutsche Fors-
ent quantum wells, resulting in a collective behavior of thechungsgemeinschaft, partially through the Sonderfors-
electronic dynamics. Contrary to electronic coupling such ashungsbereich 383.
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