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The optical response of radiatively coupled semiconductor multiple-quantum-well structures is investigated
theoretically. It is shown that the transverse optical field leads to a coupling of exciton states within each well
which causes a radiative decay and a mixing of excitonic resonances. Simultaneously, the field-induced long-
ranged coupling between different wells leads to collective effects that are very sensitive to the detailed
geometry of the structure. For a quantum-well spacing equal to an integer multiple of half the optical
wavelength inside the medium, it is predicted that the collective effects cause a stimulated decay of electronic
excitations that should be observable in either transmission or reflection geometry. On the other hand, in a
quarter wavelength structure, the light-induced coupling causes an interwell energy transport and a splitting of
the excitonic resonances, that should be observable as quantum beats in the time-resolved transmitted or
reflected signal.

I. INTRODUCTION

During the last few years, the dynamics of excitons and
excitonic wave packets in semiconductor multiple-quantum-
well structures ~MQW’s! has been studied extensively.1

However, in most theoretical investigations propagation ef-
fects, i.e., the interaction between excitonic resonances me-
diated by reemitted photons have been ignored, implicitly
assuming that in each well the dynamics of the excitonic
excitations in the absence of electronic coupling between dif-
ferent wells is independent of the number of quantum wells
~QW’s! or of the barrier thickness. However, in recent pump-
probe experiments on samples containing one, two, and five
QW’s an initial population decay time increasing with the
number of QW’s could be observed,2 indicating the existence
of collective phenomena in MQW’s.

From bulk semiconductors, it is known that propagation
effects in optically thick samples lead to pulse breakup and
polariton beating,3–8 but can be neglected in optically thin
samples. For such situations and for monochromatic excita-
tion under quasistationary conditions the optical absorption,
i.e., the ratio of the transmitted and the input intensity, is
directly related to the imaginary part of the optical suscepti-
bility, as is the density of photogenerated electron-hole
pairs.9

Contrary to the homogeneous case, where the conserva-
tion of energy and crystal momentum leads to stationary po-
lariton states, electronic excitations in a quantum well can
decay radiatively, i.e., by emitting photons.10,11 Due to en-
ergy and in-plane momentum conservation, reemitted pho-
tons can propagate in either the forward or backward direc-
tion, giving rise to partial reflections.12–16As a consequence,
the ratio of transmitted and input intensity is no longer a
measure for the absorbed intensity.14–16 Since, in turn, the
emitted photons interact with all excitonic transitions in each
quantum well, the QW’s can no longer be treated as indepen-

dent, but are coupled by the light field and collective effects
can occur.

In this paper we present a semiclassical theory of radia-
tively coupled QW’s based on the semiconductor Maxwell-
Bloch equations~SMBE’s!. We derive the SMBE’s for a
classical optical field interacting with regularly spaced
QW’s. The individual wells are assumed to be sufficiently
thin in order to allow us to deal with the electronic problem
in the two-dimensional limit. To demonstrate the basic ef-
fects of the light-induced intrawell and interwell coupling we
evaluate the theory in the linear regime. Within the coherent
time domain, we find a sensitive dependence of the results on
the detailed geometry of the structure.

II. THE SEMICONDUCTOR MAXWELL-BLOCH
EQUATIONS

In this section, we derive the SMBE’s governing the in-
teraction between a classical propagating light pulse and the
interband polarization in a MQW. The SMBE’s combine the
wave equation for the optical field and the semiconductor
Bloch equations~SBE’s! which determine the microscopic
interband polarization. The interband polarization is given by
the expectation value of the field-induced optical transitions,
thus coupling the classical field to the quantum-mechanical
dynamics of the system. Generally, the SMBE’s constitute a
rather complicated set of coupled differential equations.
However, we demonstrate that under certain conditions, the
classical and quantum-mechanical part can formally be sepa-
rated, allowing for a formal solution of the wave equation in
terms of the microscopic interband polarization.

We use excitonic units\5mr5e2/e051 throughout the
paper, wheremr is the reduced mass of the electron-hole pair
and e0 is the background dielectric constant. The speed of
light in the crystal is related to the dielectric constant by
c5cvac/Ae05Ae0/a, wherea is the fine-structure constant.
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A. Maxwell equations for a classical optical field interacting
with semiconductor quantum wells

In this section we concentrate on the wave equation, de-
scribing the propagation of a classical optical field interact-
ing with a MQW. Experimentally, the solution of Maxwell’s
equation,
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for the classical radiation field is detected after propagating
through the interaction region. From the measured absorp-
tion, transmission, or reflection the optical response of the
semiconductor, i.e., the field-induced macroscopic charge,
current, and interband polarization density,r, j , andP, must
be deduced. In an inhomogeneous structure like a MQW, the
induced macroscopic charge and current density, as well as
the divergence of the interband polarization, are in general
nonvanishing quantities, coupling the different polarization
components of the optical field. However, if the semiconduc-
tor is initially in its ground state, for excitation with an ul-
trashort optical pulse with central frequencyvL and spectral
width Dv, we can choose the conditions such that the pulse
resonantly excites only the lowest heavy-hole exciton transi-
tion. For this situation, the contribution from the light holes
to the interaction Hamiltonian can be neglected. Further-
more, if the laser pulse propagates in the growth direction of
a MQW, the interband polarization is homogeneous with re-
spect to the in-plane coordinates and the macroscopic charge
and current density vanish. Note that for perpendicular inci-
dence, no center-of-mass motion of the electron-hole pair
can be excited. Since the dipole matrix element for the
heavy-hole transition has noz component, the wave equa-
tions for the different polarization components are decoupled
by momentum conservation within the QW plane. For each
s6 polarization component the wave equation therefore sim-
plifies to
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Within the envelope function approximation,17 the z depen-
dence of the macroscopic interband polarization is deter-
mined by the electron and hole confinement wave functions
located at the positionszn of thenth QW,
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Since Eq.~3! is used in the Maxwell equation~2!, where the
characteristic length scales are governed by the wavelength
of light, we have approximated the product of the confine-
ment wave functions byd functions in Eq.~3!. Denoting by
kL the wave vector of the light field, byL the width of the
QW, and assuming perfect confinement of the electron and
hole wave functions within the individual wells, the correc-
tions to our equations due to the finite width of the QW are
of the order (kLL)

2, and can be neglected for appropriately
chosen structures.

Formally, Eq.~2! can be solved without a detailed knowl-
edge of the polarization by putting
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in the nth barrier (zn21,z,zn) as illustrated in Fig. 1 and
applying the appropriate boundary conditions at the inter-
faces. Since the tangential components of the electric field
are continuous at the interfaces, the first set of boundary
conditions simply is
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By integrating Eq.~2! from zn2e to zn1e and taking the
limit e→0 we obtain as a second set of boundary conditions,
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FIG. 1. Schematic illustration of the various counterpropagating
wave packets in a MWQ.
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Combining Eqs.~5! and ~6! yields
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whereE1
1(t2z/c) and EN11

2 (t1z/c) are the external ap-
plied laser fields propagating in the positive and negativez
directions, respectively.

To appreciate the direct consequences of Eqs.~7!, it is
instructive to discuss the single QW case atz150 with the
boundary conditionsE1

1(t)5E0(t) and E2
2(t)50. In this

case, the transmitted fieldE2
1(t2z/c) equals the incident

field E0(t2z/c) modified by the retarded time derivative of
the polarization inside the QW. Simultaneously, the initial
intensity is partly emitted in the backwards direction, i.e.,
reflected. The reflected field is identical to the modification
of the transmitted field.

These considerations clearly show the importance of solv-
ing the full wave equation in an inhomogeneous structure.
The often-used reduced wave equation, where second-order
derivatives of the field envelopes are neglected, gives no
back-propagating solutions. However, by dropping the back-
propagating solutions of the full wave equation, the only
consistent solution does not allow for any interaction at all,
since in that case the transmitted field has to equal the inci-
dent field.

Apart from the external inputs the expressions for the to-
tal transmitted and reflected fields,EN11

1 and E1
2 , for a

MQW appear to be very symmetric. Nevertheless, the tem-
poral shape ofEN11

1 and E1
2 can differ considerably as a

consequence of the retarded time arguments. If we make the
slowly varying envelope approximation~SVEA! in time,
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Eqs.~7! can be simplified to

Ẽn
1~ t !5Ẽ1
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In order to arrive at these expressions the retardation and
the time derivative of the slowly varying envelope has been
neglected. IfL is the thickness of the entire sample, this
approximation corresponds to a coarse graining in time of
the order ofL/c'1–10 fs for typical semiconductor param-
eters. From Eqs.~9! it can be seen that apart from the exter-
nal fields, the transmitted and reflected pulses are equal only
if exp(ikLzm)5exp(2 ikLzm) for all m, i.e., in a structure

where the QW spacing is an integer multiple of a half wave-
length. Otherwise, the retardation effects lead to interfer-
ences that cause an asymmetry between the transmitted and
reflected pulses.

From Eqs.~7! we can compute the following observable
quantities for a structure containingN quantum wells:
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Here, we denote bya(v) the logarithm of the ratio of
transmitted and input intensity, which in homogeneous media
yields the absorption spectrum which is proportional to the
imaginary part of the optical susceptibility.9 In order to avoid
confusion we refer to this quantity astransmission spectrum,
whereas the true absorptionw(v) is defined as that part of
the intensity which remains inside the sample, i.e., is neither
transmitted nor reflected. For a single QW, it can be shown
that w522 Re(R*T), whereR is the reflection andT the
transmission coefficient, thus showing that absorption, trans-
mission, and reflection always occur simultaneously.14

Equations~7! and ~10! are still quite general, since no
other assumptions besides the dipole selection rules and the
planar localization of the microscopic polarization have been
made. Due to the QW coupling by the light field, both the
transmission and the absorption spectrum in general depend
on the number of QW’s as well as on the sample geometry,
as will be investigated in the next section.

B. The semiconductor Bloch equations for radiatively coupled
quantum wells

For explicit model calculations of MQW’s using the equa-
tions derived in the previous section, we compute the elec-
tronic polarizationPn(t) from the SBE’s. These equations
have been shown to provide a good approximation to the
optical response of pulse excited semiconductors.9 The co-
herent part of the electronic dynamics results from a Hartree-
Fock approximation in the equations of motion derived from
a two-band Hamiltonian and can be written as
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Here P̃ki

n is the polarization for a one-particle momentum

state in thenth quantum well andnki

n is the carrier distribu-

tion function for the electrons and holes. The total macro-
scopic polarization entering Eqs.~1!, ~2!, and~7! is obtained
by summing over all different momentum states,

P̃n~ t !5(
ki

dcnP̃ki

n ~ t !, ~12!
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wheredcn is the magnitude of the dipole matrix element. The
renormalized single-particle energyvki

and the local Rabi

frequencyṼR,ki

n are given by
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Here, Ēg is the band-gap energy including the confinement
energy andVqi

nm is the two-dimensional Coulomb interaction

acting between thenth andmth quantum wells. In the case of
a vanishing two-particle interaction the SBE’s reduce to the
two-level Bloch equations.

In the two-dimensional~2D! approximation the bare Cou-
lomb interaction is given by
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whereA is the total area of the QW. Although this 2D limit
is justified when dealing with light propagation effects where
the relevant length scale is the wavelength of the exciting
optical field@see Eq.~3!#, the relevant length scale for treat-
ing the Coulomb interaction as two-dimensional is the exci-
tonic Bohr radius. Since the width of a realistic QW is often
of the same order of magnitude as the excitonic Bohr radius,
we include the corrections due to the finite well width as
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where we have assumed infinitely high potential barriers.
Inserting the solution of Maxwell’s equations~7! in the

generalized Rabi frequency Eq.~13b! reduces the problem to

that of finding the solution of the SBE’s with a self-
consistently determined radiation field,
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wherednm is the distance between thenth and themth QW.
From this equation, one recognizes that the different QW’s
are coupled by a dynamical dipole-dipole interaction medi-
ated by the exchange of transverse photons. Due to this
dipole-dipole interaction, the dynamics of the electronic po-
larization not only depends on the total QW number, but via
the phase factoreikLdmn also on the spacing between the
QW’s.

The SMBE’s can be simplified somewhat if we define

P̃n65e6 ikLznP̃n, ~18a!
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corresponding to plane waves propagating in the positive or
negativez direction. Note that without the SVEA these quan-
tities correspond toPn(t6zn /c). Using the transformed
quantities~18!, the transmitted and reflected fields can be
expressed as
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Ẽ1
2~ t !5ẼN11
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respectively; see Eqs.~9!. Thus, the transmitted~reflected!
field depends on the polarization wave propagating in the
forward ~backward! direction only.

The SBE’s can also be expressed in terms of either the
forward or backward propagating waves, e.g.,
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From this set of equations, one recognizes that the observ-
able quantities only depend on the phase shift accumulated
while traveling backwardand forward @exp(2ikLdmn)#
rather than on the phase shift@exp(ikLdmn)# obtained by just
traveling one way to thenth quantum well.

At this point, it should be noted that in the case of a finite
in-plane photon momentum of the initial pulse, the polariza-
tion not only depends on the relative momentum but also on
the total center-of-mass momentumkicom of the electron-
hole pair. Due to the in-plane momentum conservation, the
center-of-mass momentum can only be an integer multiple of
the in-plane photon momentumkiL . Neglecting charge sepa-
ration due to the dispersive motion of the polarization and
the carrier distribution functions, the long-ranged part of the
interwell Coulomb interaction gives rise to an additional
term in the generalized Rabi frequency~compare Ref. 18!,
that is obtained from the second term on the right-hand side
of Eq. ~17! by replacingkL by ik icom in the exponent and by
ik icom/2 in the prefactor. The finite rangedness of this static
dipole-dipole or Fo¨rster interaction, which is mediated by the
exchange of longitudinal photons, is a direct consequence of
the instantaneous character of the Coulomb interaction and
results in a quite different geometry dependence than the
dynamical, retarded dipole-dipole interaction derived in this
paper. Moreover, due to the prefactorkicom, the Förster in-
teraction vanishes exactly for perpendicularly incident light,
and is usually small compared to propagation effects even if
the initial pulse has a finite angle to the normal of the QW
plane.

III. RESULTS AND DISCUSSION

To illustrate the basic features of our approach in this
section, we evaluate the coupled equations assuming weak
optical excitation. For this purpose, we expand the polariza-
tion in terms of the two-dimensional excitonic stateswl

(l5$n,m% for bound states,l5$k,m% for continuum
states!,

P̃n~ t !5(
l

glP̃l
n~ t !, ~22!

which are the solutions of the Wannier equation.9 The expan-
sion coefficients are determined by
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Herevl5Ēg1el is the effective band gap for the exciton
statel and gl5dcnwl(0) and Gll852pkLglgl8 are the
radiative coupling strengths of the statesl. Within each QW,
the nondiagonal part of the interaction with the induced field
couples different excitonic states, whereas the diagonal part
causes a radiative damping with a damping constant propor-
tional to the oscillator strength of the corresponding state.
These effects are comparable with the effects of a weak dis-
order due to interface roughness14,16and clearly demonstrate

the fact that each excitonic transition interacts with photons
emitted from all other transitions. Furthermore, through the
phase factors exp(ikLdmn), propagation effects couple the
different QW’s depending on the geometry of the structure.

In the frequency domain, Eq.~23! can be solved by matrix
inversion, yielding

P̃n~v!5dcnẼ1
1~v!(

m
xnm~v!eikLzm

1dcnẼN11
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It is interesting to investigate the pole structure of the so-
defined linear susceptibility, since the poles correspond to
resonances of the coupled exciton radiation system. These
resonances can be interpreted as quasiparticles in analogy to
exciton polaritons in bulk semiconductors. The poles are ob-
tained by solving

u~v2vl1vL1 iGl!dll8
nm

1 iGll8e
ikLdnm~12dll8

nm
!u50.

While in a bulk material the pole structure of the linear sus-
ceptibility yields the polariton dispersion relation, the MQW
susceptibility hasN discrete~eventually degenerate! poles
that are in general complex since the matrix is non-Hermitian.
The real parts of the solutions correspond to the energy of
the quasiparticles, whereas the imaginary parts correspond to
a radiative broadening of the resonances. Note that due to the
summation over the QW indices in Eqs.~7! and ~24! not all
resonances necessarily contribute to the transmitted or re-
flected signal. Some resonances may correspond to ‘‘dark’’
solutions that are not observable in far-field optical spectros-
copy.

An interesting situation arises if the QW spacing is an
integer multiple ofl/2. Both in transmission and reflection
geometry,(n(21)nP̃n is observed, which is an eigenvector
with eigenvalue N of the matrix Dmn5exp(ikLdmn)
5(21)n1m that determines the geometrical part of the in-
verse susceptibility. Hence, the radiative coupling strengths
and linewidths of the excitonic states that contribute to the
observablefields increase linearly with the QW number. All
other eigenvectors have the eigenvalue 0, thus having a van-
ishing radiative coupling and linewidth. Exactly for this rea-
son, these resonancescannot be optically excited at all, mak-
ing them invisible not only for detection by far-field optical
spectroscopy but also in optical near-field microscopy that
allows us in principle to analyze contributions from the in-
dividual QW. This type of coupling leads to a so-called su-
perradiant state with a fast stimulated decay of electronic
excitations, as shown in Fig. 2~a! for the case of two QW’s.
As the QW’s are excited simultaneously with an intensity
maximum of the laser pulse, the excited exciton density will
be more or less equally distributed among the structure
~small deviations can arise from the asymmetry in the initial
conditions in a single pulse configuration!. A photon emitted
in a spontaneous recombination process of the electron-hole
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pair in any given QW can either give rise to a stimulated
decay or can be reabsorbed. However, reabsorption is a
second-order process and of minor importance at low optical
excitation, so that the stimulated decay processes dominate.

Another interesting case is realized if exp(ikLdnm) is
purely imaginary for allmÞn. This situation can be realized
in a double QW structure withz12z25(2n11)l/4, where
l is the wavelength of the laser pulse. Then the interwell
coupling leads to a pure splitting of resonances. In al/4
structure, the coupling leads to an oscillatory energy transfer
from one quantum well to the other; see Fig. 2~b!. At a given
time the light intensity has a maximum at the position of the
first QW and the second QW is located in an intensity mini-
mum and vice versa at a different time. Hence, an emitted
photon interacts with a nonexcited neighboring QW, where
the only possible interaction mechanism is reabsorption
which is now a first-order process. Qualitatively, this behav-
ior equals the dynamics of two coupled harmonic oscillators,
where one of the oscillators is initially excited, whereas the
second initially is in its ground state.

In Fig. 3, we plot the linear transmission spectraa(v)
calculated in the vicinity of the 1s-hh excitonic resonance19

for a l/2 and al/4 structure containing one, two, and ten
QW’s. One clearly recognizes the dependence on the total
number of wells as well as on the barrier thickness, even
though the barriers are optically inactive. The~normalized!
transmission in thel/2 structure decreases significantly with
the QW number, whereas the transmission spectrum of a
l/4 structure is much less sensitive to the total number of
quantum wells. Note that although the transmission line
shapes are clearly non-Lorentzian, the level splitting occur-
ring in the pole structure of the linear susceptibility can
hardly be observed. This changes dramatically if one looks at
the true absorption, as defined in Eq.~10b!.

Figure 4 shows the absorption spectra for the same pa-
rameters used in Fig. 3. The true absorption exhibits a very
rich fine structure for a MQW structure, depending sensi-
tively on the structure periodicity. For thel/2 structure, the
absorption decrease per QW is even more pronounced than

the transmission decrease. The lack of fine structure is a
consequence of the fact that only one mode is optically ac-
cessible, having a radiative linewidthN times enhanced com-
pared to the case of a single QW. On the other hand, the level
splitting in a l/4 structure is clearly observable in its true
absorption spectrum, having two maxima for the double QW
sample and a substantial number of less pronounced maxima
for a MQW. By inserting the linear interband polarization on
the right hand side of Eq.~11b! one finds that the true ab-
sorption is proportional to the total number of excited
electron-hole pairs

Ne/h5(
nki

nki

n ~ t→`!}E dv

2p
w~v!uẼ1

1~v!u2, ~26!

FIG. 2. Time-resolved excitation energy in the first QW~solid
line! and the second QW~dashed line! of a double QW located at a
distance of half a wavelength~a! and a quarter wavelength~b!.

FIG. 3. Normalized transmission spectra for one~solid line!,
two ~dashed line!, and ten~dotted line! MQW’s in a l/2 ~a! and a
l/4 ~b! structure. The spectra have been normalized to the total
number of quantum wellsN.

FIG. 4. Normalized absorption spectra for one~solid line!, two
~dashed line!, and ten~dotted line! MQW’s in a l/2 ~a! and al/4
~b! structure.
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and should thus be observable, e.g., by time-integrated exci-
tation luminescense spectroscopy.

To demonstrate the extraordinary sensitivity of the results
on the spacing between the quantum wells, we show in Figs.
5 and 6 the calculated transmission and absorption spectra
for a structure with one, two, and ten QW’s with a period
slightly less thanl/2 or l/4 (DD522nm). Comparing
Figs. 3 and 4 with Figs. 5 and 6, we notice dramatic changes
of the spectra, especially substantial modifications of the ab-
sorption for the small variation of the barrier thickness. In
particular, a small deviation from thel/2 periodicity gives
rise to a nonzero coupling to modes having a very small
radiative linewidth that are optically forbidden if the spacing
is exactly l/2. Since these modes dominate the long-time
behavior of electronic excitations, this observation is of cru-
cial importance for a correct interpretation of time-resolved

measurements on samples containing a large number of
QW’s positioned at approximatelyl/2.

In Fig. 7 we show computed examples of the linear time-
resolved transmission and reflection for perfectl/2 andl/4
structures. We assume resonant 1s exciton excitation with a
100-fs pulse full width at half maximum. A comparison of
Figs. 7~a! and 7~c! demonstrates that for thel/2 structure
reflection and transmission are identical for times after the
exciting pulse has decayed. Furthermore, the decay rate in-

FIG. 5. As in Fig. 3 but for a structure where the distance
between the QW’s is 2 nm less thanl/2 ~a! or l/4 ~b!.

FIG. 6. As in Fig. 4 but for a structure where the distance
between the QW’s is 2 nm less thanl/2 ~a! or l/4 ~b!.

FIG. 7. Time-resolved transmission spectra for one~solid line!,
two ~dashed line!, and ten~dotted line! MQW’s in a l/2 ~a! and a
l/4 ~b! structure.~c! and ~d! show the reflected intensities.

FIG. 8. Normalized transmission~a! and absorption~b! spectra
for ten MQW’s with a total length ofl ~solid line!, l/2 ~dashed
line!, andl/10 ~dotted line!.
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creases linearly withN ~to be precise, 1/T25g01Ng rad,
whereg0 is the nonradiative homogeneous linewidth!. For a
l/4 structure, the transmitted and reflected signals exhibit
quantum beats, which is the time-domain signature of the
splitting of the absorption peaks; see Fig. 4. Furthermore, the
transmitted and reflected signals display pronounced differ-
ences due to interference effects.

To study the length dependence of the optical response,
we plot in Fig. 8 the normalized transmission and absorption
spectra for a system of ten quantum wells with a total length
of l, l/2, andl/10. We notice a gradual decrease of trans-
mission with decreasing sample length. Also the asymmetry
of the absorption spectrum decreases somewhat, but the
overall features show clearly, that even for barrier thick-
nesses much less than the optical wavelength, multiple re-
flections dominate the optical spectra.

IV. CONCLUSIONS

In conclusion, we presented the semiconductor Maxwell-
Bloch equations for an optical pulse interacting with a semi-
conductor multiple-quantum-well structure. We have shown
that the propagation-induced dynamical dipole-dipole inter-
action leads to a coupling of electronic excitations in differ-
ent quantum wells, resulting in a collective behavior of the
electronic dynamics. Contrary to electronic coupling such as

tunneling, the light-induced coupling does not neccesarily
lead to a splitting of resonances, but can also result in a pure
broadening of excitonic linewidths.

The origin of these phenomena is the phase coherence of
the electronic excitations that is determined by the spacing
between the QW’s. Comparing the QW excitons with a string
of localized oscillators, the radiative coupling causes a
stimulated emission of photons if the oscillators are all in
phase (l/2 MQW!, whereas an oscillatory energy transfer
can occur if they are exactly out of phase (l/4 MQW!. Our
calculations indeed predict this behavior. For all geometries,
the radiative coupling induces a memory into the system,
since the polarization in thenth QW is coupled to the re-
tarded time derivative of the polarization in all distinct
QW’s. For this reason, a more or less pronounced increase of
the decay time with increasing QW number can be observed.
We expect that the broadening and splitting of excitonic
resonances found in the linear spectra will also manifest
themselves in nonlinear experiments, such as four-wave mix-
ing experiments.
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