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Compact formula for the density of states in a quantum well
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In this paper we derive a formula for the density of states in the presence of inelastic scattering in the
guantum well of a double-barrier structure as a function of a characteristic time of the motion of electrons
(namely, the round-trip time in the wglhnd of transmission probabilities for the whole structure and for each
barrier. In the model we use, the scattering processes due to phonons, impurities, and interface roughness are
taken into account by a unique phenomenological parameter, the mean-free path, which plays the role of a
relaxation length. We also show that, for lower rates of incoherent processes, the derived formula reduces to the
one obtained by means of the Breit-Wigner formalism.

I. INTRODUCTION tion of wave vectork attenuates exponentially as it propa-
gates along th& axis, with a characteristic length equallto
The density of states is one of the most important quantit is a situation very similar to an electromagnetic wave
ties for the study of equilibrium and transport properties ofpropagating in a dissipative medium. The difference is that
quantum effect devices. A recently derived fornfubstab-  the number of electrons has to be conserved; therefore, elec-
lishes a simple general relation between the density of statdgons which seem to have disappeared have actually made a
in a mesoscopic system and the dwell times for each incontransition to a different state, with a phase completely uncor-
ing channel connecting the system to the external world. related, so that there is no quantum interference between
In this paper we apply that result to the quantum well of athese electrons and those that have not undergone an inco-
double-barrier resonant tunneling diode. Moreover, in ordeherent process. In this model, all collision processes are ef-
to get closer to real systems and experimental results, wiective in randomizing phase and energy, and we do not
consider the effects of inelastic processes taking place in theake any difference between the effects of elastic scattering
well, which are not accounted for in the general relation of(due to impurities and interface roughneasd inelastic scat-
Ref. 1. tering (with phonons, for instange A more sophisticated
We obtain a very compact formula connecting the densitynodel should take into account these differences, and, as a
of states in the well to a characteristic time of electron mo-ninor improvement, phase randomization and energy relax-
tion in double-barrier structures, i.e., the time an electrortion could be split using a different characteristic length for
takes to complete a round trip of the well, and to the transeach process.
mission probabilities for the whole structure and for each Buittiker* proposed a model for the inclusion of incoherent
barrier. processes which is similar to the one we use. There is an
In the literature the density of states in the well is usuallyinelastic scatterer in the well modeled by an extra branch
obtained using Breit-Wigner formul&s? which lead to very leading away from the conductor to an extra reservoir, which
simple and compact expressions. Dissipation can be easiljoes not draw net current, but permits phase randomizing
accounted for by introducing a partial resonance width for allevents. Anyway, such a model is valid for very small differ-
the inelastic processés® However, for Breit-Wigner formu-  ences between electrode chemical potentials and/or when en-
las to hold true, it is necessary that all the partial resonancergy relaxation is not accounted forin the model by
widths be much smaller than the separation between thinabchen® the inelastic scattering probabiligyfor an elec-
resonant energy levels, and between each level and the topn traversing the well introduced by Biker is simply sub-
and bottom of the potential well. This condition establishesstituted by exptw/l), wherew is the well width and the
an upper limit on the rate of incoherent processes for thenean-free path.
applicability of the Breit-Wigner formulas. In our model scattering is spread over the whole region,
On the contrary, our model is valid even when coherencand not concentrated in a single point, and any potential
is completely destroyed. Scattering with phonons, impuritiesprofile can be considered. No additional condition is required
and interface roughness is accounted for by a unique phéde obtain formula(22) for the density of states. The hypoth-
nomenological parametdr the mean-free path, a concept esis of smooth potential in the well is imposed in order to
which is well established in solid state physfcs. obtain the compact formulé8). The importance of the en-
We assume that an electron traversing an infinitesimaérgy relaxation mechanism will be shown elsewh@re.
length dx of the one-dimensional device structure experi- As we shall show in Sec. Ill, we use in our formula a
ences a collision with probabilitgx/l, and that electrons characteristic time of electron motion in the well defined on
emerge from collisions with an equilibrium distribution func- the basis of Larmor times for transmission and
tion in a state with completely random phase. This meangeflection!!~'8The tunneling time problem is the subject of a
for instance, that the square amplitude of a plane wave fundeng-standing controversy: while the dwell tiflés widely
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electrode, with wave vectdk; =k(a). The corresponding
coefficientst{” and r{? for a particle coming from the
V() right with wave vector k;,=k(0) are t{"=t{ky, Ik,
and r{?=—r*tOntd* - Moreover, if T;=|t{"|%ky, /ky,
=t{7|%k, /ky, is the transmission probability, and
: R.=|r{"|2=|r{"|2 is the reflection probability, we have
! ! ! R;+T;=1, i.e., the continuity equation for the probability
a 0 w b X density current holds true. The same considerations apply to
the second barrier and its transfer mats, provided that
FIG. 1. The one-dimensional potentisl(x) defines the two we definek,=k(w), ko,=k(b) and change all the sub-
barriers[ (a,0) and (v,b)] and the well (Ow). scripts 1 into 2.
In the well region, dissipative processes are accounted for
accepted in the scientific community, there is no consensusy means of the mean-free pdththat is, the intensity of a
on the actual time spent in a region by transmitted and replane wave of wave vectd’ has a decay length equal ito
flected particles®!%?°due to the fact that there is no opera- As a consequence, the probability density current for a given
tor for time in quantum mechani¢therefore we cannot per- wave function is not conserved. The effectldf taken into
form a direct measurement of tionand that electrons do not account by using a complex wave vectgr=k’+i/2l: a
follow actual trajectories in the Copenhagen interpretatfon. plane wave of wave vectde along thex axis has the form
The Larmor times are obtained as the result of an indireckypk'x)=exp(k’x)exp(~x/21); therefore its square modulus
measurement: a weak perturbation is applied to the region Qfecays as exp(x/l).
interest(i.e., a magnetic field, a real potential, or an imagi-  The multistep potential approximatigncan be used to
nary potential and some variation in the properties of trans-5piain the transfer matriM,, of the well, provided that the
mitted and _reflected pa_rtlcles is me_asu(epm prece_ssslg?, complex wave vectok; (x) =k(x) +i/2l is used at any point
phase rotation, or particle absorption, respectivEly™® x in the well. If we make the hypothesis that the potential

What is controversial about Larmor times is the interpretay aries smoothly enough that a semiclassical approximation is
tion of such results of an indirect measurement as the “acygjid. we obtaif4~2°

tual” times spent in the considered region. However, this

point is not relevant to the aim of the present work, where we

are just interested in deriving a relation between the Larmor My~
times and the density of states in a quantum well.

Our paper is organized as follows: in Sec. Il we calculatewhere
the transmission and reflection probabilities by using the
transfer matrix technique; in Sec. Ill we derive a formula for - exp{ i fwki(x)dx]. @
0

barrier 1 well barrier 2

: @

the density of states in the case of completely coherent trans-

port. A completely analogous formula which takes into ac- _ _

count the effects of dissipation is obtained in Sec. IV, and is The transfer matr|>2<(l3\/ldb for the whole double-barrier
shown to reduce to the Breit-Wigner formulas for lower ratesstructure Is given b5

of incoherent processes in Sec. V. A summary ends the paper. |
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II. TRANSMISSION AND REFLECTION PROBABILITIES } @

FOR DOUBLE BARRIERS L. . .
wheret{) andr{) are the transmission and reflection coeffi-

Let us refer to the case sketched in Fig. 1: the onecients, respectively, for an electron coming from the left, and
dimensional potential energy profil(x) defines the first t{) andr) are the corresponding coefficients for an electron

barrier @,0), the well region (Qy), and the second barrier coming from the right electrode. Straightforward calculation
(w,b). Let wus also introduce the wave vector yields?®

k(x)=[2m(E—V(x))]¥%# for all x whereV(x)<E, where
m is the electron effective mass in the material of the well, M
and# is the reduced Planck’s constant. tap= 1—c ®
We can calculate the total transmission and reflection co-
efficients by using the transfer matrix technidde?® In the ~ and
assumption of coherent transmission through each single bar-
rier, the transfer matrid ; for the first barrier satisfies all the Q -
properties listed in Ref. 23 and has the form 1-c

where

(6)

VRN S CL Tk
M=l ™ | @ c=r{"ry’y%. W
The expressions fai) andr{) can be easily obtained from

wheret{) andr{" are the transmission and reflection coeffi- (5) and (6) by substituting the subscriptswith r, 1 with
cients, respectively, for a plane wave coming from the left2, and vice versa. An electron coming from the left has a
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probability T{)=|t{J|?k,, /k;, of being transmitted and a wherer{), 7, andr, are the transmission times for bar-
probability RD=|r1|2 of being reflected; there is also a fiers 1 and 2, and the well, respectively, defined8sin (9)
fraction S =1—(TV+RY) of electrons which have been replacingt§y) with t{, t§), andy, respectively;s) is the
absorbed(i.e., have undergone incoherent processksa reflection time for barrier 1, defined a§ in (10) with r{’ in
completely analogous way we can define the correspondinghe place of{{). We call  round trip time it is defined as
probabilitiesT{), R\, andS{}) for an electron coming from _

the right. We also obtain thatj)=T{)—hence we will often = Re{ i oc ] (r

— D) (1.
- o — — | =Tr{+ 27yt TRS; (12
write simply Tgs— while, in generalR{)# R, . con| RITSIWTIR

the last equality derives froni7) and explains the name

[l. DENSITY OF STATES IN THE CASE OF COHERENT given tor,: itis actually the sum of the times corresponding

TRANSPORT to the steps needed for a round trip of the well: reflection
{rom barrier 1, traversal of the well, reflection from barrier 2,
and again traversal of the well. We can easily obtzh by
repeating all the passages fro@) to (11) commuting the
subscriptd with r, and 1 with 2. If we substitutél1) and
the corresponding result fot(D’) into (8) we obtain

In this section we will address the case of no incoheren
process in the well, i.e., the mean-free pathoo. In this
case we haveR{)=R{)=Ry,=1-Ty, and the results of
Ref. 1 can be straightforwardly applied.

We showed that the density of states in a given system is
equal to the sum of dwell times corresponding to each in- 1
coming channel divided by Planck’s constant. In our case thep,(E)= —| (71 Tgo+ 7 Rap) + (719 Tgpt+ 793Rgp) + (74
region () of interest is @,b), and there are two incoming mh

channels, the left and the right ones, so that the density of cl2
statesp(E) in Q, including both spin contributions, can be + 27+ ) Taut T”|1——c|2(T1+T2) : (13
written as

po(E) includes all the states in the regioa<{x<b). We

are actually interested in the states in the well region and in
the tail states penetrating both barriers on the well side, i.e.,
the states in the “effective” well region; therefore we drop
where 7§ and 7 are the dwell times for an electron of from p,, the terms which take into account the states on the
energyE coming from the left and the right electrodes, re- left side of barrier 1 and on the right side of barriefi2.,
spectively. the first and the second terms @f3), respectively. More-

In order to obtairn-g) to substitute in8), we can use the over, the third term is easily shown to be much smdiler-
additivity of transmission and reflection time§’ and i)  der the conditiorT;,T,<1) than the fourth one; therefore,
obtained by using the Larmor clock and other well-knownthe density of statep,, in the effective well region can be
approache$!~8|f we consider an electron coming from the written as
left electrode, apply a uniform perturbative potenkiadn the )
double barrier §<x<h), and recalculate the total transmis- (E)= ir |c| (Ty+T5) (14)
sion and reflection coefficients as a functionaf we can Pw mh 1-c|?t 't 2
write

1 (1 (r)
p(l(E):E[TD(E)—’—TD (BE)], (8)

From (7) and from the fact thatT,,T,<1 we have
lc|3(T1—T,)~1—|c|?, so we get

: 9

A=0

9
= Re{m—a)\ Int{j) .
Pw= 7TfL TnF(C), (15)

, (100  where we have defined
A=0

J
W= Re{lﬁﬁlnr&'g
. 4 1-|c|?

and, finally, obtaiff*~8 70 = 7T, + 70Ry,. In the Intro- F(e)=r—p- (16)
duction we mentioned the controversy on the tunneling time |1=c]
problem, and we are aware of the fact that there is no widerhe density of states in the effective well region is therefore
consensus in the scientific community on the “actual” sig- shown to be proportional to the round trip time times a factor
nificance of7{ and7{{ . Anyway, reassuring the reader that F(c), which will be shown in the next section to depend
we do not want to forget about the long debate in this fieldonly upon transmission and reflection probabilities for the
for convenience reasons we will refer t0) and (10) as  whole structure and for each barrier.
transmission and reflection times.

Substitution of(5) and (6) in (9) and (10), after straight- IV. DENSITY OF STATES IN THE PRESENCE
forward but cumbersome calculations, yields OF INCOHERENT PROCESSES
lc|? A. Local density of states in the well

O T 4+ R+ LTy _ T _
o = TrTant TRiRabT TwTabT 72T T”T1|1—c|7’ In this section incoherent processes are taken into ac-

(11 count; therefore the formul@) for the density of states is no
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B. Density of tail states penetrating both barriers

barrier 1 well barrier 2 on the well sides

Vi(x) i For obtaining the density of tail states penetrating both
L n(x’) barriers on the well sides we just have to (@), provided
""""""""" T that the sum is only over the states incident on the well side
' : of the barriers. Let us consider the first barrier: the density of
. : ! tail statesp{” is
a 0 X X
1
E r[(lx’) : 2 f g| wn(XvE)|2dX

------------ p{(E)= %nzl 3 (19

-—)]--4L

: ] We can find forp(l” a more compact expression: in the Ap-
xw b x pendix we derived the currend§) (x,E) andJ};,(x,E) in-
cident onV|(x), associated to the statég and ¢, respec-
FIG. 2. The double-barrier structure is split into two regions attively. Therefore, if we remember that the dwell time is
x=x": r(x') is the reflection coefficient for a plane wave of en- defined as the ratio of the integral of the probability density
ergy E incident onV,(x) from the left andr|(x’) is the reflection  over the considered region to the incident current, f(é&®)
coefficient for a plane wave of ener@yincident onV,(x) from the and (A4) we can write

right.
(r) E)= i ‘]g.rIz]C(OrE) n ‘](Zril)'IC(O'E) (r)
longer applicable. The total density of staggsin the effec- p1 (B)= ah| Ji(E) J,(E) D1
tive well region is obtained as the sum of the density of tail L
statesp{”)(E) and p!’(E) penetrating both barriers on the OO0 20
well sides(Sec. IV B and the integral of the local density of ah Pl Lr(On(0)], (20

statesp(x,E) in the well.

In this section, in particular, we obtain a formula for
p(X,E) which does not require the hypothesis of smooth
potential in the well. We consider a poirt inside the well
[x" e (0w)]. Let us split thex axis into two regions, and let 1
us consider the potential/|(x)=V(x) for x<x’' and PONE)=—7ULF[r (W)r (w)]. (21
V(x') otherwise, and/,(x)=V(x) for x>x" andV(x") oth- mh
erwise, as sketched in Fig. 2. Let us aa(lx’) the reflection
coefficient for a plane wave of enerdy incident onV,(x) C. Density of states in the effective well region
from the right, andr (x') the reflection coefficient for a
plane wave of energf impinging onV,(x) from the left.
Tge local density of states at a poiit can easily be written
a

where the functiorr has been already defined (h6).
For the second barrier, following the same procedure, we
have

The density of states in the effective well region is, there-
fore, from (18), (20), and(21),

puE)=p )+ E)+ [ “pxBrx (@22

2 ’ 2
, 1 o [¥n(x',E) _ _ _ _ _
p(X",E)=— 2 T IE) (17) We can writep(x,E) in a different way, in order to derive
" : a more compact formula fas,,(E). Let the density matrix
9(E) in the well be the incoherent superposition of states
where both spin contributions have been considered, thg, and y, with probabilitiesp, andp,, i.e.,
wave functions are not normalized, adg(E) is the total
current associated to statg entering the whole system. The (X|Q(E)|X)=p1| 1 (X)|?+ pa| (%) |?. (23
sum is over all degenerate states corresponding to the same R
energyE, i.e., in our case, the ones associated to a particléssociated tog(E) there is the probability density current
coming from the left electroden(=1) and a particle coming J(E), whose expression is given byAl) and the
from the right electroder(=2). The quantities to be put in corresponding quantity fow, that can be split into a
(17) are derived in the Appendix. Substitution @%1) and  left-going component;(x,E) = p;J{)(x,E) + p23Sh(x,E)
(A2) and the corresponding quantities fés in (17) yields and a right-going componentJ,(x,E)= le(lri%C(x,E)
+ pZJ(Z%C(x,E). Now, we can make the hypothesis that both
J; andJ, are much greater than the net currdstJ,—J, .
. (18  ByimposingJ,~J; we can obtaid, , J;, and({x|g(E)|x) as
1=r(X)r(x") a function ofp, /p,. This result, substituted ifl8), yields

0 Ey= - AN+ 10)

An identical result has been obtained through different pro- ., =\ _ 1 (X|9(E)|x) , ,
cedures and in simplified conditions by other autiiofs. pXB)= 15 Ji(x",E)+J,(x',E) FLIneOr(1. (24
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A great simplification 0f22) can be obtained if we again and
make the semiclassical approximation in the well. In fact, in

this case we have just to notic_e thrafx')r (x’)=c for all LR y(Tp+T)) -
x e (0,w). Therefore we can write —Rygp™~ (E—En2+ (122" (32
1 : _
pw(E)= _ﬁTlrtF(C)! (25 where T'=ATy(Eg)/my(Er), T,=hT,(Er)/y(ER),
™ Ti=h2w/[ 7(ER)I], andl'=T1+T,+T;.
where we have defined Equations (31) and (32) are the Breit-Wigner
formulas?*?°andT;, T',, andT; are the partial resonance
0. ) w(x'[g(BE)|x") | widths for each process allowing escape from the resonant
™= T|31+Toz+zfO —J|(X’)+Jr(X')dX ; (26) state, in particular, tunneling through barriers 1 and 2, and

incoherent processes, respectively. Partial resonant widths
7\, can be interpreted as the round trip time of the well in theare characteristic quantities of the Breit-Wigner formalism,
presence of inelastic processes. We wish to point out thaand are given by the ratio betweénand the characteristic
(25) is formally analogous t@15) found in the case of co- time of the process we are considering. In the case of escape
herent transport. It is also easy to verify that whesee, i.e.,  through one of the barriers, the characteristic time is intu-
when the limit of coherent transport is approachegdtends  itively given by the ratio of the round trip time and the tun-

to the value ofr, defined in(12). neling probability of the barrier. In the case of inelastic scat-

The conditionT,,T,<1 allows us to write, with very tering the time isr, times the ratio between the mean-free
good approximation, the following expression féi(c), path| and the length corresponding to a round trip of the
whereTy,, R{Y, andR{) are obtained fron5) and (6): well (2w).

From (28) and(31) and(32), we straightforwardly have

27 1 r
PulB)= L E—Ep?+ (17

|
1-Ri  Te 1-RGp L Tob,

A A A

(33
therefore(25) can be written as

i.e.,, the result usually obtained from Breit-Wigner
formulas®* We wish to point out that this formula holds true
if the development ot to first order ofE—Eg and to first

. ) o o order inw/l is a good approximation. In other words, Breit-
i.e., as a function of the round trip time and transmission angyjgner formulas can be used if each partial width is much

reflection probabilities for the total structure and for eachgmaller than both the resonant enefgy and the difference

|
1-RY  Ta
—_ + [E——

T, T>

pw(E)~ wh Trt ’ (28)

barrier. between the height of the barriers aBd. In our case these
conditions are true fofF'; andI', and hold true fod", if |/w
V. COMPARISON WITH BREIT-WIGNER FORMULAS is high enough. Otherwise, the expression given (2§,

which has a wider range of applicability, has to be used.
In this section we want to show that for a rate of incoher-
ent processes low enoughe., a long enough mean-free
path, the formula for the density of states derived above
reduces to the one obtained by means of Breit-Wigner for- In this paper we have studied the density of states in a
mulas. double-barrier structure. We have proposed a simple model
Let us expandc given by (7) to first order around the which is able to account for inelastic processes occurring in
resonant energfg (which is the energy at which is real  the quantum well by means of a single phenomenological
and positive: parametet, the mean-free path.
_ We have obtained a very compact formula which relates
TW(ER) the density of states in the effective well region to the round
c(B)~c(Ep)| 1-1——(E~Er)|, (29 tip time of the quantum well and to the tunneling probabili-
ties for the single barriers and for the whole structure. The
where we have used the definitiGt?) of =, and the fact that formula is valid both in the case of completely coherent
ardifidinc/9E}~0. If w/l is small enough we can write transport and in the case when dissipative processes in the
well are predominant.

VI. SUMMARY

C(Er) =[Ry(ER)Ry(Eg) ]2 ™" This formula will be shown to be fundamental in unifying
1 1 w two widely known descriptions of transport in double-barrie_r
~1— =Ty(Ep)— =To(Ep) — —. (30)  Structures: that of resonant tunneling and that of sequential
2 2 | tunneling®®
) _ We believe that the role of the density of states—a char-
Substitution of(29) and (30) into (5) and(6) yields acteristic quantity of a system in equilibrium—in the steady
state transport and in the characteristic times of the motion of
Ty, Il 31) electrons in a mesoscopic system deserves a deeper investi-

T (E-ER)Z+ (/122 gation.
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dence ofJ; on x’ is due only to the fact thaty, is not
APPENDIX normalized. We can also associate/ftpandx’ a probability
current density which can be split into a left-going compo-
nentJ{) . [incident onV,(x)] and a right-going component
J) [incident onV,(x)],

Let us consider a poink=x" in the well and the state
i, of energyE corresponding to a particle coming from the
left of x’. We can describe, as a plane wave of amplitude
1 undergoing multiple reflections ov,(x) for x>x' and ,
V|(x) for x<x’ (see Figs. 1 and)2so that we have = (xy = [ (x ),| U(X,) . A3)

|1=r (X" )r(x")]

(X') =11, ) 1,0 (X') + ALy
X)=1+r.(X)+r (xX)r(x)+- = — .
" COTOan T RCOTICOR
(A1)
Now, [1—|r,(x")|?] is the probability that a particle imping- (x')
ing onV,(x) is not reflected backi.e., is either transmitted J(lrigw = v ’ — (A4)
or “absorbed” on the left of’). For time reversal symmetry, |1=r (X" )r (x")]|

it is also the probability that an electron coming from the left

of x’' appears ak=x’: if 1 is the amplitude ofy, before  The corresponding quantities for the stdig associated to a
taking into account multiple reflections, the total current en-particle coming from the right ok=x’, can be obtained by
tering the system has to be substitution of 1 with 2y with |, and vice versa.
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