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Central-force model with the next-nearest-neighbor interaction: A series approach

Jian Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
(Received 20 April 1996

A central-force model with the next-nearest-neighbor interaction is studied using a series-expansion tech-
nigue on a honeycomb lattice. The bulk modulus exponent is calculated and foundde B&96+ 0.01. This
value is very close to the bulk modulus exponent for the bond-bending nfigele3.96+ 0.04, calculated by
Zabolitzky and co-workers using a transfer-matrix technique on the same lattice. Our calculation suggests that
these two models are in the same universality class.

I. INTRODUCTION where

Recently much attentidn® has been directed towards 1
randomly diluted elastic networks. Various models have been Heerm 5 2 kal (U—Uj)-Ri 12, )
studied, such as the central-force motfé?, the bond- 2 1] '
bending modef;* the granular disk modél® etc. The bond-
bending model is perhaps the one we understand the bestnd
For this model the bulk modulu8 goes to percolation
threshold. The bulk modulus exponehyt can be defined by 1
B~|p—p./'e. Based on numerical result and scaling argu- Huw=5 X  kol(u—u)-Ri ;]2 (4)
ment it has been suggested fitat! for the bond-bending 2 NNNTI)) ’

model, one has the relation . _
Here k,; and k, are the elastic coupling constants of the

fg=t+2v, (1)  nearest-neighbor sites and the next-nearest-neighbor sites, re-

_ _ _ spectively,ﬁi is the displacement of the siteandf{i,j is the
where v is the correlation length exponent for percolation ynit vector along sites andj. The summation in Eq3) is
andt=(d—2)v+ {ge (Ref. 12 is the exponent for the con- over the nearest-neighbor sites, whereas in(Exjit is over
ductivity of the analogous randomly diluted resistor networkthe next-nearest-neighbor sites.
defined byX (p)~o|p—pc|', whereo is the conductance of  This model has been considered by Garboczi and
an occupied bon@which occurs with probability) and the  Thorpe!® but with two independent concentratiops and
vacant bonds occurring with probability-1p have zero con-  p,, for Egs.(3) and (4), respectively. Their study was re-
ductance. Heré g, is the conductivity crossover exponent stricted to the effective medium theory. In this paper, we
for the resistor network. In terms of this crossover exponentgonsider the following random dilution: bonds are present
we havefg=dv+{g. Zabolitzky et al'® have calculated with probabilityp, absent with probability & p. For a given
fg for the bond-bending model on a honeycomb lattice bycluster, Eq.(3) is present for every bond in the cluster, Eq.
computer simulation using a transfer-matrix method. They4) is present for sitesandj provided that they are the NNN
found that fg=3.96+0.04. Usingt=1.30 (Ref. 14 and sites. Wherk, in Eq. (4) is zero, we obtain the central-force
v=4/3, we see that Eq1) is almost exact. Recently, further model. At present there is disagreement in the literature as to
efforts have been made to understand the physics behind Eghether the central force model and the bond-bending model
(1). For instance, it has been provédhat the elastic splay are in the same universality class. Although most
crossover exponehtsp of the bond-bending model, which calculationd®*®suggest that they are not in the same univer-
is related to the bulk modulus exponeig=dv+{sp,"*®*>  sality class, a recent ofisuggests that they are. The dis-
is the same as the conductivity crossover expordgptfor  agreement may be due to anomalous corrections to scaling,
the lattice animal. Using the series-expansion method thehe treatment of which, in turn influences the exact location
elastic splay crossover exponghp has been calculatétion  of the critical threshold, and thereby the determination of the
a honeycomb lattice up to 13th order. Most recently'we critical exponents. In our model Eq2), all the coupling
have extended the series to 18th order which enables us tonstants(spring constantk, andk,) are central force in
estimate the exponent very accurately. We found thahature. Imagine that one carries out a real-space
{sp—=1.31+0.02, which is in very good agreement with renormalization-grougRG) calculation on the central-force
{Rre- model Eq.(3), the RG iteration will generate various cou-

In this paper, we consider the randomly diluted central-pling constants including NN and NNN coupling constants.
force model with the next-nearest-neighlf®tNN) interac- Hence we may view Eq2) as a renormalized Hamiltonian
tion in two dimensions whose Hamiltonian can be written asfor the central-force model. Our study of E&) will provide

useful information about the relationship between the
H=Hcent Hunn s (2)  central-force model and the bond-bending model and shine
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light on this controversial issue as to whether the centralwherev, . is the pair-connectedness function of bond per-
force model and the bond-bending model belong to the sameolation: v, ,,=1 if sites x and x’ are connectedin the

universality class. same clustgrand is zero otherwise. For large
From Egs.(3) and (4) one can construct the dynamical

matrix and find all the eigenmodes of lattice vibration. A o \?

cluster is defined as rigid if there are only three zero- XX = | vy | 1= 5 e

frequency modes in two dimensioftsvo for translation and &

one for rotation. Note that Eq.(4) plays the role of the _ ) A2,

bond-bending term. As a result, a percolation cluster is rigid =X PN L= ot

and we expect that the central-force model with NNN inter- )

Egmrfg frilgc;;.the same universality class of the bond P (xx") 1—%|X—X'|§R“—‘IV 10

In this paper, we have developed a low concentration se- ) " - i
ries expansion up to 18 bonds on a honeycomb lattice. W&here x™(x,x) is the susceptibility for percolation and
have calculated the elastic splay crossover expofignand  Txx =[TRex Jav= P Pc| ~¢reis the configurationally aver-
found thatZs=1.29+0.01. Recently, w&'!® have related aged dimensionless resistance between sitsdx’ subject
the elastic splay crossover exponégpto the bulk modulus 10 these sitex andx’ being in the same cluster. One can say
exponentfg that x,(x,x’) defines a percolation problem in the limit

o—, This so-defined percolation problem is, of course,
fg=dv+ {sp, (5) identical to the traditional percolation problem. In this
formulation®?° the critical exponents describing the ran-
wherew is the correlation length exponent. From E§), we  domly diluted resistor network can be expressed in terms of
obtained fg=3.96-0.01 which agrees very well with the the exponents for percolation and the crossover exponent
most accurate valuég=3.96-0.04 for the bond-bending ¢, of Eq. (10). Using the node-link pictur&: or scaling
model obtained by Zabolitzkgt al** using a transfer-matrix  theory?22° one obtains
technique on the honeycomb lattice. Our result suggests that
the central-force model with the NNN interaction and the t=(d=2)v+ {re, (13)

bond-bending model are in the same universality class. wheret is the conductivity exponent. For the elastic network,

the analogy would be to define the elastic susceptibility and
Il. ELASTIC SUSCEPTIBILITIES the elastic crossover exponent. We define two elastic suscep-
AND CROSSOVER EXPONENTS tibilities, x sgr and x.;, where ygr describes the elastic re-
sponse to the splay distortion ang, the response to the
extension. The two-bond splay elastic susceptibility is
defined® as follows:

To formulate the elastic network, it is useful to recall the
nature of the crossover from percolation to conductivity in
the analogous randomly diluted resistor netwtf for

which the HamiltonianH is XSR(b,b’):[Tre’H‘Pk(b)‘P,A(b’)/Tre’H]a\,, (12)

_ ) whereW, (b) =exp{j)\(ﬁgx Ry)-K]=exp(\6,) is the splay or-

H= 2 Eb: T €p(Vo1~Vi2)%, 6) der parameter andl is an unit vector perpendicular to the

_ _ two-dimensional plane. Denotingﬁi, the effective bond
whereVy; —Vy,;, is the voltage difference across the bdnd  angle elastic resistandee., inverse of elastic constarfor
For this model, the susceptibility, (x,x") (which plays the the splay distortion defined as the angular displacement of
role of the correlation functioris taken to b& the two bonds divided by the torque needed to maintain the

equilibrium, we have'®
XXX =[Tr{e "W, ()T, (x)}/Tre M0y, (D) -

where ¥, (x)=e "™ [ ], indicates an average over Xiopy ={ 0= 07| G0~ 1), a3
the random bond variables,, Tr indicates integration over where G is the Green's function defined as
all V variables from— to +, and similarly for the dis- G=Ilim._.(V+ie)~%, V is the dynamical matrix. From
placement in the elastic model. One can write Egs.(12) and(13), we obtain

2
1 A sr
ex;{ - 5)\2Rx,x' ex;{ - ﬂXb,b')

~SR _ | SR L SR _ -
whereR, . is the resistance between siteandx’. We now WhereXb,b’_k,Xb,b’ andk~k;~k,. Note thaty,, =< if
consider the interpretation gf, for largeo. First of all, note ~ bondsb andb’ are not in the same cluster, so that
thatR, ,» = if sitesx andx’ are not in the same cluster, so \2
~SR
Vphb' eX[{ — ﬂxb,b’)

1 . . .
Vy x! ex;{ —E)\ZRX,X,” , (9)  where v, is the pair-connectedness function. For small
av N2k, we expand Eq(15) in powers of\?/k:

: (14)

av

X)\(X!XI): B (8) XSR(b!b,):

av

: (15

av

X)\(X!X’):
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2
A ~SR

XSR(bab,): Vb,b’( 1— ﬂxb,b’—’_”'

} S(p)~ o€ p—pg|7T2AHRe
av

~o|p—pg 7T R 2 ~glp—pl', (29
2

A and using the scaling relatiop+28=2— a and the hyper-
1—- ﬂ“b_ 'Y

scaling relatiordv=2— « we obtain Eq.(11).

) ) ] For the elastic network, we consider the angle-angle cor-
wheregpis the elastic splay crossover exponent which deyejation functiof® 1516

scribes the way[)(ﬁi,]a\, scales with the distance and

|55P/V ’

~xp(b,b") (16

xp(b,b") is the susceptibility for percolation. In the limit (66056)=(|Vxu||Vxul)
k—o, ysr(b,b’) defines the percolation problem. There- 5
fore, the elastic problem can be described by this crossover _Pp)

= ~|lp=p.|" 7 klp—p.l¢sp). (24
exponent’sp. ) |p—pcl791(q€,kIp—pc[*s?), (24)

We can also defifé!® two-point elastic susceptibility

Xt Similar to Eq.(12): where g, is the scaling function defined in Eq18) and

u(p) is the shear modulus. We get

Xel(X.XT) =[Tre™ "W, ()W _,(x")/Tre™ "],y P(p)Zp—pe|”
2 pm(p)= — s ~klp—p| 7 2Atse (25)
exp( A o an 91(a&.k|p—pc/*s?)
= T o Xxx! ' . . ;
2k By assumingB and u to have the same critical behaviGr,
- Loe e we have

where ¥, (x) =e™x® andb denotes the bond connecting
sitesx andx’. Herexg,, =kxs,, and fg=dv+{sp. (26)

| - - n - -2 Similarly if we consider théuu) correlation function, we

X = (U= Uxr) - Ro| Gl (U= Uy ) - Ry obtain another relatidir*® e

is the effective two-point elastic resistance between sites fo=(d—2) v+ ¢y (27)
= el

andx’. In the critical region, whek ! is nonzero, the Fou-

rier transform ofysg(b,b’) and y(X,x’) can be written as From Eqs.(26) and(27), we have

_ =2v+ {sp. 28
xs’(@)=[p—pcl " 791(q&,klp—pcl*sP) b= 2V bsp @8
~k Yp—p 7 i (18) Equation(27) can also be obtained using the node-link
¢ ' picture or node-link and blob pictufé:2?2Near the percola-
and tion thresholdp.., the percolation backbone can be described

- . . - by the node-link and blob picturé;?? where the system is
Xel(@)=[P—Pc| 792(a& K|Ip—pc|* )~k Hp—pe[ "7 ¢, made up by long one-dimensional strings or links with blobs
connected at nodes. Typical separation between the nodes is

Wheregl and gz are sca”ng functions_ Here we have intro_ g Wthh iS the Correlation Iength fOI’ perCOIation. According
duced another crossover exponégtdescribing the way the to our definition the effective elastic constant for a string is
two-point elastic constant scales with the distance. 1/x§ . From the node-link and blob pictdfe? the bulk
We now use a scaling arguméht>*°to relate{sp and  modulusB scales likec? /' ,, from which we arrive at
Leito g, the elastic bulk modulus exponent. For the resistorgq, (27). ’
network, one has the spatial Fourier transform of the voltage-
v?lta<ge correlation functiofidenoted({V(q)V(0))~ x»(q)] IIl. SERIES EXPANSION AND ANALYSIS
atp<pc:
To calculate the exponetpand{,, we have developed
(V(@)V(0))=|p—pc|"f(qé olp—pc¢R9),  (20)  series expansions in powersphip top® on the honeycomb
lattice for the following quantities:

SR SR
’ = P F ’

av

wheref is some scaling function. Fr>p. we havé?

P(p)?2 -
(V(Q)V(0))= % (21) XSR

whereP(p) is the fraction of sites in the infinite cluster and
3,(p) is the bulk conductivity. We assume that the form of
Eq. (20) also holds forp>p., in which case it assumes the
form written explicitly in Eq.(21). Then it follows that

P(p)?lp—pc|”
9°f(qé,o|p—pe/*Re)

SinceX (p) is proportional too, we then have

E; anp"~|p—pc 74 (29

Xe%g Xi!xr} > P(T)XEE:F Xoy:

T

2(p)= (22)

; bap"~|p—pcl 7%, (30)
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TABLE |. Series coefficients, andb,,. 59
n én by
58+
1 3.0000 0.0000 ¢
2 6.0000 60.0000 \
3 77.7143 208.0000 z
4 401.5714 565.0000
5 1421.6669 1467.6667 5 sol
6 2426.7332 2368.8000
7 8302.4782 6505.4867
8 21261.5948 12879.7160 55 ‘ ‘ ‘ ‘ .
9 52696.9183 26476.3224 72 73 74 75 78 7
10 91294.4947 38488.9855 confluent exponent &
11 271399.5287 108945.1960 FIG. 1. Graph of Padapproximants toy+ {gp+2 as a function
12 499114.6696 1578415476 ot A\ at . for the x4 Series.
13 1131285.9690 316181.8901
14 2103714.2723 520638.8864 d
15 5141108.5374 1216143.2404 G(y)=A(y—1) av In(x), (33
16 8112170.7968 1424601.4426 y
17 20063145.7472 3750446.1292  which should converge te-h. Since we already know the
18 31912709.6575 4761271.8424

critical point p, we can simply plot graphs di versus the
inputA ; and choosé ; such that all Padapproximants give

SR ol _ ) as closely as possible the same valueb.of
wherey,, ,, andy, ,, have been defined in Sec. Il, the sum-  The assumption of logarithmic corrections entails fitting

mationXr is over all clustersP(I") is the associated prob- tg the form
ability per site that the clustel’ occurs. For the resistor
network, two clusters which are topologically equivalent x(P)~(pe—p) "In(pc—p)|?  p<pe. (39
give the same two-point resistance. For the elastic network, ) ) )
however, clusters with different shapes give different valued/Ve fitted this form with the method of Adler and Privméh.
of elastic response. In calculating the series fogz and The aqaly3|s of the Iogfirlthmlc form involves taking Pade
Yo We have to count every cluster with different shape,@PProximants to the series
which is very time consuming. ,

The series up to ordap® on the honeycomb lattice are 1 (P)=~(Pc=P)[IN(Pc—pP){(x"/x) ~[h/(pc—P) 1},
presented in Table I. For the model that we considered, be- (3

cause of the NNN interaction, the rigidity percolation thresh-so thatH (p) goes tof asp—p.. To get the exponerit, we

old is the same as that for the usual bond percolation on thgyke Padeapproximants taH(p) at p. to obtain graphs of
honeycomb latticep,=0.6527, so it is much easier to ana- g as a function oh.

lyze the series. - _ From our previous experien¢!’the convergence of the

We have analyzed the series with two different meti?é_?ds, Ysr Series is better thage. A graph of Padepproximants
one based on the assumption that th%e are nonanalytic COfiom .. series is given in Fig. 1 assuming the scaling form
fluent corrections to scaling and anotfiebased on the as- given in Eq.(31), whereygg is the second derivative of the
sumption that there are logarithmic confluent CorreCt'OnSserieSXSR All curves converge around,;=7.50, from
Nonanalytic confluent corrections to scaftidgave several | ih” We estimate h= v+ (ot 2=5.68£0.01 or
origins, including irrelevant operators. They are definitely —1.29+0.01. where we have used the exact value
present in both isotropic and directed two-dimensional per- S:PZ 3.883_ 26 and the error bar is somewhat subjective
_colat!on and thus must be aIIowe_d for in the SEries dls_cuss e have also tested the logarithmic corrections for the series
in this paper. There is also evidence from simulation by

Zabolitzky et al3 that there may be logarithmic corrections XSR and found no convergence. For the seneg we have

. o e

to elastic criical behavior in two dimensions. there is ndicatio that he logaritumie corrections exit
To analyze the series, denoted Jyp) in general, we the bond-bending model andEerom our previous series analy-

assume that the series has the form N9 ur previou ! y

sis for the bond-bending model we found the logarithmic
x(p)~a(pe—p) "M1+b(p.—p)ii+...], p<p., (31 corrections in the series yo. We found that

h=vy+{y+1=7.39£0.09 and 6=-0.5. This gives
whereh is the critical exponent that we wish to determine, ; =4.00+0.09 which satisfys the relation E¢28). The

andp is the critical point. We first transform the seriesgn  reason that the serigg, gives a poor result is the following:

into the series in the variablg where in calculating the serieg,;, we calculate the effective two-
_ A point elastic resistancqi'x,~ux « [Fyx between sitesx
y=1-(1-p/pc)=1, (32 , . XX X - .
andx’, whereu, . is the displacement along, ,,, the unit

and then take Padepproximant® to vector connecting sites andx’ andF, ,. is the force along
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obtainfg=3.96+0.01 which is very close to the bulk modu-
lus exponent for the bond-bending model obtained by Zabo-
litzky et al. This suggests that the central-force model with
obtainfg=3.96+0.01, which is the same as the bulk modu- the NNN interaction and the bond-bending model are in the

lus exponent for the bond-bending model. This shows thapame universality clasg. When_ enforci_ng the Ioga_lrithmic cor-
the central-force model with the NNN interaction and thereCt'on' the exponertl, is consistent with the scaling theory

bond-bending model are in the same universality class. {ea=2v+ {sp.
In summary, we have calculated the elastic crossover ex-

ponents,{sp and g, for the central-force model with the

NNN interaction using the series-expansion method on the | would like to thank Professor A. B. Harris for helpful

honeycomb lattice. We found thafsp—=1.29+0.01 and discussion. This work is supported by a CRCG grant at The

fvx needed to maintain the equilibrium. Henwé!x, de-

pends orT, ,, which will affect the result for small systems
or small clusters. Usindsp=1.29+0.01 and Eq(26), we
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