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A central-force model with the next-nearest-neighbor interaction is studied using a series-expansion tech-
nique on a honeycomb lattice. The bulk modulus exponent is calculated and found to bef B53.9660.01. This
value is very close to the bulk modulus exponent for the bond-bending modelf B53.9660.04, calculated by
Zabolitzky and co-workers using a transfer-matrix technique on the same lattice. Our calculation suggests that
these two models are in the same universality class.

I. INTRODUCTION

Recently much attention1–6 has been directed towards
randomly diluted elastic networks. Various models have been
studied, such as the central-force model,1,3,5 the bond-
bending model,2,4 the granular disk model,7,8 etc. The bond-
bending model is perhaps the one we understand the best.
For this model the bulk modulusB goes to percolation
threshold. The bulk modulus exponentf B can be defined by
B;up2pcu f B. Based on numerical result and scaling argu-
ment it has been suggested that4,9–11 for the bond-bending
model, one has the relation

f B5t12n, ~1!

where n is the correlation length exponent for percolation
and t5(d22)n1zRe ~Ref. 12! is the exponent for the con-
ductivity of the analogous randomly diluted resistor network
defined byS(p);sup2pcu t, wheres is the conductance of
an occupied bond~which occurs with probabilityp! and the
vacant bonds occurring with probability 12p have zero con-
ductance. Herez Re is the conductivity crossover exponent
for the resistor network. In terms of this crossover exponent,
we have f B5dn1zRe. Zabolitzky et al.

13 have calculated
f B for the bond-bending model on a honeycomb lattice by
computer simulation using a transfer-matrix method. They
found that f B53.9660.04. Using t51.30 ~Ref. 14! and
n54/3, we see that Eq.~1! is almost exact. Recently, further
efforts have been made to understand the physics behind Eq.
~1!. For instance, it has been proved15 that the elastic splay
crossover exponent5 zSP of the bond-bending model, which
is related to the bulk modulus exponentf B5dn1zSP,

11,8,15

is the same as the conductivity crossover exponentzRe for
the lattice animal. Using the series-expansion method the
elastic splay crossover exponentzSPhas been calculated

16 on
a honeycomb lattice up to 13th order. Most recently, we17

have extended the series to 18th order which enables us to
estimate the exponent very accurately. We found that
zSP51.3160.02, which is in very good agreement with
zRe.

In this paper, we consider the randomly diluted central-
force model with the next-nearest-neighbor~NNN! interac-
tion in two dimensions whose Hamiltonian can be written as

H5Hcen1HNNN , ~2!

where

Hcen5
1

2 (
i , j

k1@~uW i2uW j !•RW i , j #
2, ~3!

and

HNNN5
1

2 (
NNN~ i , j !

k2@~uW i2uW j !•RW i , j #
2. ~4!

Here k1 and k2 are the elastic coupling constants of the
nearest-neighbor sites and the next-nearest-neighbor sites, re-
spectively,uW i is the displacement of the sitei , andRW i , j is the
unit vector along sitesi and j . The summation in Eq.~3! is
over the nearest-neighbor sites, whereas in Eq.~4! it is over
the next-nearest-neighbor sites.

This model has been considered by Garboczi and
Thorpe,18 but with two independent concentrationsp1 and
p2 , for Eqs. ~3! and ~4!, respectively. Their study was re-
stricted to the effective medium theory. In this paper, we
consider the following random dilution: bonds are present
with probabilityp, absent with probability 12p. For a given
cluster, Eq.~3! is present for every bond in the cluster, Eq.
~4! is present for sitesi and j provided that they are the NNN
sites. Whenk2 in Eq. ~4! is zero, we obtain the central-force
model. At present there is disagreement in the literature as to
whether the central force model and the bond-bending model
are in the same universality class. Although most
calculations1,3,16suggest that they are not in the same univer-
sality class, a recent one6 suggests that they are. The dis-
agreement may be due to anomalous corrections to scaling,
the treatment of which, in turn influences the exact location
of the critical threshold, and thereby the determination of the
critical exponents. In our model Eq.~2!, all the coupling
constants~spring constantsk1 and k2) are central force in
nature. Imagine that one carries out a real-space
renormalization-group~RG! calculation on the central-force
model Eq.~3!, the RG iteration will generate various cou-
pling constants including NN and NNN coupling constants.
Hence we may view Eq.~2! as a renormalized Hamiltonian
for the central-force model. Our study of Eq.~2! will provide
useful information about the relationship between the
central-force model and the bond-bending model and shine
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light on this controversial issue as to whether the central-
force model and the bond-bending model belong to the same
universality class.

From Eqs.~3! and ~4! one can construct the dynamical
matrix and find all the eigenmodes of lattice vibration. A
cluster is defined as rigid if there are only three zero-
frequency modes in two dimensions~two for translation and
one for rotation!. Note that Eq.~4! plays the role of the
bond-bending term. As a result, a percolation cluster is rigid
and we expect that the central-force model with NNN inter-
actions fall in the same universality class of the bond-
bending model.

In this paper, we have developed a low concentration se-
ries expansion up to 18 bonds on a honeycomb lattice. We
have calculated the elastic splay crossover exponentzSP and
found thatzSP51.2960.01. Recently, we11,15 have related
the elastic splay crossover exponentzSP to the bulk modulus
exponentf B

f B5dn1zSP, ~5!

wheren is the correlation length exponent. From Eq.~5!, we
obtained f B53.9660.01 which agrees very well with the
most accurate valuef B53.9660.04 for the bond-bending
model obtained by Zabolitzkyet al.13 using a transfer-matrix
technique on the honeycomb lattice. Our result suggests that
the central-force model with the NNN interaction and the
bond-bending model are in the same universality class.

II. ELASTIC SUSCEPTIBILITIES
AND CROSSOVER EXPONENTS

To formulate the elastic network, it is useful to recall the
nature of the crossover from percolation to conductivity in
the analogous randomly diluted resistor network,19,20 for
which the Hamiltonian,H is

H5
1

2 (
b

seb~Vb12Vb2!
2, ~6!

whereVb12Vb2 is the voltage difference across the bondb.
For this model, the susceptibilityxl(x,x8) ~which plays the
role of the correlation function! is taken to be12

xl~x,x8!5@Tr$e2HCl~x!C2l~x8!%/Tre2H#av, ~7!

whereCl(x)5e2 ilV(x), @ . . . #av indicates an average over
the random bond variableseb , Tr indicates integration over
all V variables from2` to 1`, and similarly for the dis-
placement in the elastic model. One can write5

xl~x,x8!5FexpS 2
1

2
l2Rx,x8D G

av

, ~8!

whereRx,x8 is the resistance between sitesx andx8. We now
consider the interpretation ofxl for larges. First of all, note
thatRx,x85` if sitesx andx8 are not in the same cluster, so
that

xl~x,x8!5Fnx,x8 expS 2
1

2
l2Rx,x8D G

av

, ~9!

wherenx,x8 is the pair-connectedness function of bond per-
colation: nx,x851 if sites x and x8 are connected~in the
same cluster! and is zero otherwise. For larges,

xl~x,x8!5Fnx,x8S 12
l2

2s
r x,x81••• D G

av

5x~p!~x,x8!F12
l2

2s
r x,x8
av

1••• G
;x~p!~x,x8!F12

l2

2s
ux2x8uzRe/nG , ~10!

where x (p)(x,x8) is the susceptibility for percolation and
r x,x8
av

5@sRx,x8#av;up2pcu2z Re is the configurationally aver-
aged dimensionless resistance between sitesx andx8 subject
to these sitesx andx8 being in the same cluster. One can say
that xl(x,x8) defines a percolation problem in the limit
s→`. This so-defined percolation problem is, of course,
identical to the traditional percolation problem. In this
formulation19,20 the critical exponents describing the ran-
domly diluted resistor network can be expressed in terms of
the exponents for percolation and the crossover exponent
z Re of Eq. ~10!. Using the node-link picture,21 or scaling
theory,12,20 one obtains

t5~d22!n1zRe, ~11!

wheret is the conductivity exponent. For the elastic network,
the analogy would be to define the elastic susceptibility and
the elastic crossover exponent. We define two elastic suscep-
tibilities, x SR and xel , wherexSR describes the elastic re-
sponse to the splay distortion andxel the response to the
extension. The two-bond splay elastic susceptibility is
defined5,16 as follows:

xSR~b,b8!5@Tre2HCl~b!C2l~b8!/Tre2H#av, ~12!

whereCl(b)5exp@il(ubW3R̂b)•k̂#5exp(ilub) is the splay or-
der parameter andk̂ is an unit vector perpendicular to the
two-dimensional plane. Denotingxb,b8

SR the effective bond
angle elastic resistance~i.e., inverse of elastic constant! for
the splay distortion defined as the angular displacement of
the two bonds divided by the torque needed to maintain the
equilibrium, we have5,16

xb,b8
SR

5^ub2ub8uGuub2ub8&, ~13!

where G is the Green’s function defined as
G5 lime→`(V1 i e)21, V is the dynamical matrix. From
Eqs.~12! and ~13!, we obtain

xSR~b,b8!5FexpS 2
l2

2k
x̃b,b8
SR D G

av

, ~14!

where x̃b,b8
SR

5kxb,b8
SR and k;k1;k2 . Note thatxb,b8

SR
5` if

bondsb andb8 are not in the same cluster, so that

xSR~b,b8!5Fnb,b8 expS 2
l2

2k
x̃b,b8
SR D G

av

, ~15!

where nb,b8 is the pair-connectedness function. For small
l2/k, we expand Eq.~15! in powers ofl2/k:
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xSR~b,b8!5Fnb,b8S 12
l2

2k
x̃b,b8
SR

1••• D G
av

;xp~b,b8!S 12
l2

2k
ur b2r b8u

zSP/nD , ~16!

wherezSP is the elastic splay crossover exponent which de-
scribes the way@xb,b8

SR
#av scales with the distance and

xp(b,b8) is the susceptibility for percolation. In the limit
k→`, xSR(b,b8) defines the percolation problem. There-
fore, the elastic problem can be described by this crossover
exponentzSP.

We can also define15,16 two-point elastic susceptibility
xel similar to Eq.~12!:

xel~xW ,x8W !5@Tre2HCl~xW !C2l~x8W !/Tre2H#av

5FexpS 2
l2

2k
x̃x,x8
el D G

av

, ~17!

whereCl(xW )5eilu
W
x•R̂b and b denotes the bond connecting

sitesxW andx8W . Herex̃x,x8
el

5kxx,x8
el and

xx,x8
el

5^~uW x2uW x8!•R̂buGu~uW x2uW x8!•R̂b&

is the effective two-point elastic resistance between sitesxW

andx8W . In the critical region, whenk21 is nonzero, the Fou-
rier transform ofxSR(b,b8) andxel(xW ,x8W ) can be written as

xSR~q!5up2pcu2gg1~qj,kup2pcuz SP!

;k21up2pcu2g2zSP, ~18!

and

xel~q!5up2pcu2gg2~qj,kup2pcuz el!;k21up2pcu2g2zel,
~19!

whereg1 andg2 are scaling functions. Here we have intro-
duced another crossover exponentzel describing the way the
two-point elastic constant scales with the distance.

We now use a scaling argument11,15,16 to relatezSP and
zel to f B , the elastic bulk modulus exponent. For the resistor
network, one has the spatial Fourier transform of the voltage-
voltage correlation function@denoted^V(q)V(0)&;xl(q)#
at p,pc :

^V~q!V~0!&5up2pcug f ~qj,sup2pcuz Re!, ~20!

where f is some scaling function. Forp.pc we have12

^V~q!V~0!&5
P~p!2

S~p!q2
, ~21!

whereP(p) is the fraction of sites in the infinite cluster and
S(p) is the bulk conductivity. We assume that the form of
Eq. ~20! also holds forp.pc , in which case it assumes the
form written explicitly in Eq.~21!. Then it follows that

S~p!5
P~p!2up2pcug

q2f ~qj,sup2pcuzRe!
. ~22!

SinceS(p) is proportional tos, we then have

S~p!;sj2up2pcug12b1z Re

;sup2pcug12b1zRe22n;sup2pcu t, ~23!

and using the scaling relationg12b522a and the hyper-
scaling relationdn522a we obtain Eq.~11!.

For the elastic network, we consider the angle-angle cor-
relation function11,15,16

^dudu&5^u¹3uW uu¹3uW u&

5
P~p!2

m~p!
;up2pcu2gg1~qj,kup2pcuzSP!, ~24!

where g1 is the scaling function defined in Eq.~18! and
m(p) is the shear modulus. We get

m~p!5
P~p!2up2pcug

g1~qj,kup2pcuzSP!
;kup2pcug12b1zSP. ~25!

By assumingB andm to have the same critical behavior,13

we have

f B5dn1zSP. ~26!

Similarly if we consider thêuu& correlation function, we
obtain another relation11,16

f B5~d22!n1zel . ~27!

From Eqs.~26! and ~27!, we have

zel52n1zSP. ~28!

Equation ~27! can also be obtained using the node-link
picture or node-link and blob picture.21,2,22Near the percola-
tion thresholdpc , the percolation backbone can be described
by the node-link and blob picture,21,22 where the system is
made up by long one-dimensional strings or links with blobs
connected at nodes. Typical separation between the nodes is
j which is the correlation length for percolation. According
to our definition the effective elastic constant for a string is
1/xx,x8

el . From the node-link and blob picture21,2 the bulk
modulusB scales likej22d/xx,x8

el , from which we arrive at
Eq. ~27!.

III. SERIES EXPANSION AND ANALYSIS

To calculate the exponentzSPandzel , we have developed
series expansions in powers ofp up top18 on the honeycomb
lattice for the following quantities:

xSR5F(
b

xb,b8
SR G

av

[(
G

P~G! (
bPG

xb,b8
SR

[(
n

anp
n;up2pcu2g2zSP, ~29!

xel5F(
x

xx,x8
el G

av

[(
G

P~G! (
xPG

xx,x8
el

[(
n

bnp
n;up2pcu2g2zel, ~30!
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wherexb,b8
SR andxx,x8

el have been defined in Sec. II, the sum-
mation(G is over all clusters,P(G) is the associated prob-
ability per site that the clusterG occurs. For the resistor
network, two clusters which are topologically equivalent
give the same two-point resistance. For the elastic network,
however, clusters with different shapes give different values
of elastic response. In calculating the series forx SR and
xel we have to count every cluster with different shape,
which is very time consuming.

The series up to orderp18 on the honeycomb lattice are
presented in Table I. For the model that we considered, be-
cause of the NNN interaction, the rigidity percolation thresh-
old is the same as that for the usual bond percolation on the
honeycomb lattice,pc50.6527, so it is much easier to ana-
lyze the series.

We have analyzed the series with two different methods,23

one based on the assumption that there are nonanalytic con-
fluent corrections to scaling and another24 based on the as-
sumption that there are logarithmic confluent corrections.
Nonanalytic confluent corrections to scaling13 have several
origins, including irrelevant operators. They are definitely
present in both isotropic and directed two-dimensional per-
colation and thus must be allowed for in the series discussed
in this paper. There is also evidence from simulation by
Zabolitzkyet al.13 that there may be logarithmic corrections
to elastic critical behavior in two dimensions.

To analyze the series, denoted byx(p) in general, we
assume that the series has the form

x~p!;a~pc2p!2h@11b~pc2p!D11 . . . #, p,pc , ~31!

whereh is the critical exponent that we wish to determine,
andpc is the critical point. We first transform the series inp
into the series in the variabley, where

y512~12p/pc!
D1, ~32!

and then take Pade´ approximants25 to

G~y!5D1~y21!
d

dy
ln~x!, ~33!

which should converge to2h. Since we already know the
critical point pc we can simply plot graphs ofh versus the
inputD1 and chooseD1 such that all Pade´ approximants give
as closely as possible the same values ofh.

The assumption of logarithmic corrections entails fitting
to the form

x~p!;~pc2p!2hu ln~pc2p!uu, p,pc . ~34!

We fitted this form with the method of Adler and Privman.24

The analysis of the logarithmic form involves taking Pade´
approximants to the series

H~p!52~pc2p!u ln~pc2p!u$~x8/x!2@h/~pc2p!#%,
~35!

so thatH(p) goes tou asp→pc . To get the exponenth, we
take Pade´ approximants toH(p) at pc to obtain graphs of
u as a function ofh.

From our previous experience,16,17 the convergence of the
xSR series is better thanxel . A graph of Pade´ approximants
from xSR9 series is given in Fig. 1 assuming the scaling form
given in Eq.~31!, wherexSR9 is the second derivative of the
seriesx SR. All curves converge aroundD157.50, from
which we estimate h5g1zSP1255.6860.01 or
zSP51.2960.01, where we have used the exact value
g52.3888 . . . ,26 and the error bar is somewhat subjective.
We have also tested the logarithmic corrections for the series
xSR and found no convergence. For the seriesx el we have
fitted the seriesxel8 to the form of Eq.~32!. This is because
there is indication13 that the logarithmic corrections exist in
the bond-bending model and from our previous series analy-
sis for the bond-bending model we found the logarithmic
corrections in the series xel . We found that
h5g1zel1157.3960.09 and u520.5. This gives
z el54.0060.09 which satisfys the relation Eq.~28!. The
reason that the seriesxel gives a poor result is the following:
in calculating the seriesxel , we calculate the effective two-
point elastic resistancexx,x8

el ;ux,x8 /Fx,x8 between sitesx
andx8, whereux,x8 is the displacement alongr̂ x,x8, the unit
vector connecting sitesx andx8 andFx,x8 is the force along

TABLE I. Series coefficientsan andbn .

n an bn

1 3.0000 0.0000
2 6.0000 60.0000
3 77.7143 208.0000
4 401.5714 565.0000
5 1421.6669 1467.6667
6 2426.7332 2368.8000
7 8302.4782 6505.4867
8 21261.5948 12879.7160
9 52696.9183 26476.3224
10 91294.4947 38488.9855
11 271399.5287 108945.1960
12 499114.6696 157841.5476
13 1131285.9690 316181.8901
14 2103714.2723 520638.8864
15 5141108.5374 1216143.2404
16 8112170.7968 1424601.4426
17 20063145.7472 3750446.1292
18 31912709.6575 4761271.8424

FIG. 1. Graph of Pade´ approximants tog1zSP12 as a function
of D1 at pc for thexSR9 series.
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r̂ x,x8 needed to maintain the equilibrium. Hencexx,x8
el de-

pends onr̂ x,x8 which will affect the result for small systems
or small clusters. UsingzSP51.2960.01 and Eq.~26!, we
obtain f B53.9660.01, which is the same as the bulk modu-
lus exponent for the bond-bending model. This shows that
the central-force model with the NNN interaction and the
bond-bending model are in the same universality class.

In summary, we have calculated the elastic crossover ex-
ponents,zSP and zel , for the central-force model with the
NNN interaction using the series-expansion method on the
honeycomb lattice. We found thatzSP51.2960.01 and
zel54.0060.09. From the scaling theoryf B5dn1zSP, we

obtain f B53.9660.01 which is very close to the bulk modu-
lus exponent for the bond-bending model obtained by Zabo-
litzky et al. This suggests that the central-force model with
the NNN interaction and the bond-bending model are in the
same universality class. When enforcing the logarithmic cor-
rection, the exponentzel is consistent with the scaling theory
zel52n1zSP.
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