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Envelope-function formalism for valence bands in wurtzite quantum wells
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A theoretical treatment of the valence-band spectrum of wurtzite-type materials is developed starting from
the Rashba-Sheka-PikgRSP 6 6 matrix Hamiltonian for coupled'y, I';, andI'; levels. A unitary trans-
formation is applied in order to diagonalize the RSP Hamiltonian to twa33blocks and the results are
compared with those obtained for cubic structy@sY.-P. Chao and S. L. Chuang, Phys. Rev4® 4110
(1992)]. Using the diagonalized form of the Hamiltonian, a solution for hole states in wurtzite quantum wells
(QW's) is constructed and explicit expressions for the QW valence subband edges are obtained. We suggest
that parameters of the RSP Hamiltonian foirtzite structures can be deduced from experimental observations
of the energy separation between edges of the hole subbands in QW's.

. INTRODUCTION states are doubly degenerate and for sialle energy spec-
trum is characterized by ellipsoidal isoenergetic surfaces
Recently, there has been growing interest in 11I-V nitrideswith two effective mass parameters, andm,, . The top
(such as GaN, AlGa; N, In,Ga; N, etc) and significant  of the valence band at thE point originates from thep®
progress has been made in crystal growth and device pr@&tomic orbitals. As shown in Fig. 1, under the action of the
cessing techniquesee reviews ®. Numerous devices have crystal field and spin-orbit interaction the sixfold degenerate
been demonstrated for various applications including optolevel I'ys splits™*2into T'g, upperl’7, and lowerT'; levels.
electronics (blue light-emitting diodes and ultraviolet ~The separation between the levels in the nitride structures is
photodetectof$ as well as high temperature, high power, Of the order of 10 meV and is comparable to the thermal

and high frequency electronic device$lowever, detailed

understanding of the optical and electronic properties in spin-orbit c;i{aslctdal

l1-V nitride semiconductors requires further experimental SPIMtNG ¢ itting

and theoretical effort. B B w
Unlike Si or GaAs, the IlI-V nitrides can exist in different —]

crystal polytypes depending on the growth conditions, and —_——

take primarily the wurtzite structure with hexagonal symme- Ig —T

try (in addition to the zinc-blende polytypeA number of r ]

approaches, such ab initio, tight-binding, muffin-tin, linear 15

combination of atomic orbitals, and linearized augmented

plane wave method®;!! have been used to calculate the

energy bands for both wurtzite and zinc-blende structures. L L

Due to the lack of available experimental data, many details

of these studies must be improved in order to provide an crystal o

accurate band description. More importantly, most of these field spin-orbit

complicated efforts have been limited to the study of bulk splitting splitting

binary materials with an emphasis on overall electronic B w w

properties. Thus, calculated band structures cover a large en- ‘ Iy

ergy spectrumtens of eV}, and details at the conduction- I~

and valence-band edges near the@oint tend to be ignored 6 —L

or simplified. However, for direct band gap nitridéSaN, o !

AIN, InN, and their alloy$, the detailed knowledge of elec-

tron and hole spectra near the center of the Brillouin zone is .

crucial for proper description of transport and optical prop- L ".__1~7

erties of these materials. Qualitative analysis of carrier spec-

tra can be made based on irreducible representations of the ;5 1 \alence band in wurtzite structures at fheoint. Split-

wurtzite space grouﬁ)gv at thel’ point. o ting of I';5 level toI'g, I';, andI'; levels is due to the hexagonal

The conduction-band wave functions originate from thecrystal field and spin-orbit interactidiiRefs. 12 and 18 The labels
atomics orbitals and transform at thEe point according to  w and zB stand for classifications of irreducible representations in
theI'; representation of th@év space group. The electronic wurtzite and zinc-blende structures.
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energykgT~26 meV at room temperature. Therefore, gen-dispersion relation for hole spectra. It is important that the
erally speaking, the valence-band treatment in hexagonal npositions of the valence-subband edges are described by rela-
tride structures should take into account interaction betweetively simple analytical expressions depending on the geom-
all three levels, which results in a rather complicated disperetry of the system and the parameters of the bulk Hamil-
sion relation. The effect of strain is another important issudonian. In addition, we suggest that the unknown parameters
for nitride-based heterostructures because of the relativelgf the Hamiltonian may be determined by measuring the
large mismatch between the constitutive materials. shift of the valence-band edges due to space quantization in
Consideration of processes involving carriers in the vicin-QW's. However, it is noted that the present luminescence
ity of valence-band maxima at tHe point favors the use of €xperiment& with wurtzite QW's are not well suited for
the envelope-function method. The latter allows a physicallydetermining of valence-band parameters because recombina-
accurate analytical description of hole spectra for srkall tion occurs predominantly between electron and hole ground
with an adequate number of empirical parameters. Thé&tates. Since holes are essentially heavier than electrons, the
Hamiltonian for the wurtzite valence band which accountsobserved confinement and deformation-induced blueshift are
for the interaction of'g, I';, andI'; levels has been derived mainly due to the conduction-band edges. In this instance,
by Rashba and SheKawithin the k-p formalism. Later, absorption and photoreflectance measurements should be
Pikus® proposed an elegant derivation of the wurtzite _used to study hole transitions with a transferred energy in the
Hamiltonian based on the method of invariatts’ includ- ~ infrared range. _ _ _
ing the effects of strain on the hole spectra. Subsequent The _remalnder of the paper is organized as foIIows_. First,
experimentdf and theoreticd?? work dealt mainly with ~ S€c. Il introduces the Rashba-Sheka-PikiS(RSP Hamil-
the details of valence-band spectra and optical properties ¢@nian for the top of the valence bands in bulk wurtzite struc-
bulk wurtzite structures, in particular, the group 11-VI semi- tures in both invariant and 6 matrix form. Section III
conductors(CdS, CdSe, et. describes the transformation of th&x® RSP Hamiltonian to
While the valence bands in unstrainedbic structures @ block-diagonal form which allows description of the
can be described by four parametétsee Luttinger param- Vvalence-band spectrum with a much simplex 3 matrix
eters and the Spin-orbit Sp”t-off enebgyhe hole Spectra in Hamiltonian. Comparison of the blOCk'diagona”ZEd wurtzite
hexagonal material are specified by ten constants, two dffamiltonian form with that for the cubic structufésro-
which are determined by the energy splitting between theides the means for introducing the quasicubic
different hole bands. However, due to lack of experimentaRPproximation’ with a reduced set of empirical parameters.
data and proper theoretical analysis for the nitrides, the comf solution for the problem of hole quantization in pseudo-
plexity of the valence band has been so far described by BlOrphic wurtzite quantum wells is presented in Sec. IV.
single scalar hole effective mass constant, which is taken ~ From the general solution, explicit expressions for the posi-
as (0.8:0.2)m, for GaN>?! An accurate set of parameters tions of the valence-subband edges are found in terms of
describing the valence-band edge in the nitrides is necessaPyllk parameters of the constituent materials. Finally, Sec. V
for understanding and design of optoelectronic devicesdiscusses our general conclusions and the Appendixes pro-
Since it is very difficult to obtairall unknown band param- Vide details of the calculations.
eters by fitting to experimental data, simplifying theoretical
models(based, for example, on a cubic approximatipme-

come crit_ical. At the same time, the added (_JIQgrees of free- Il BULK HAMILTONIAN
dom available in heterostructures can be utilized to deduce
additional information on the material parameters. The Hamiltonian for the valence band of wurtzite semi-

In this paper, we obtain an analytical solution for the holeconductors, specified by coupléd, upper-I';, and lower-
spectra in strained wurtzite quantum wel3W’s) based on T, levels, was derived by Rashba and Sh¥kaater, Pikug®
the envelope-function formalism. In order to simplify the included the effects of strain and presented the invariant
calculations, a block-diagonalized form of the bulkk6  form for the valence-band Hamiltonian. By including terms
Hamiltoniart® is derived. Hole wave functions in a QW are to second order in the wave vectorand linear in the strain
written as a linear combination of bulk solutions satisfyingtensore, the RSP Hamiltonia>1" can be written in the
proper boundary conditions which leads to a transcendentdbllowing form independent of the choice of basis functions:

—H=1(A;+A,+Bk3+B3k? + Cie,,+ Cae, ) —Apd,o,— V2A5(J, 0 +J_0, ) +I3(— A+ Bok2+Bsk? + Che,+ Che | )
+B5(J2k2 +32K2)+Cx(I2e_+3%e,)+2Beky([ I Tk +[IJ Tk, ) +2Ce([I, 416 —,+[Id e y)

hia
Fmg K-k, )

+i
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wheremy is the free electron mass and

ke =kexiky, ki=KZ+k7,

J.= 2[3,3.1=3,3.+J.3,,

1 .
E(inuy),

O.izz(o-xilo-y)v
E+,=8,F 08y, Er=&n— &yt 2ig,y,

€1 =exxteyy.

Here,| is the unity matrix,oy, oy, ando, are Pauli matri-

ISM FOR VALENCE BANDS IN ... 1999
where
P=A;+A,+Bk?+B3k?+Cye,,+Cse, ,
Q=—A,+Byk2+B4k? +Cye,,+Cye, ,
R=Bsk® +Cse _, 3)

S=Bgk,k_+Cee_,,

u K2k
- 2my

The matrix form of the RSP Hamiltonian is usually pre-

ces, andly, J,, andJ, are components of the angular mo- sented in the basigl,m)|3,s), which is a direct product of

mentum operatod; the z axis coincides with the (0001)
hexagonal lattice direction. Ten constants;( A,, Agj,
B., By, B3, B4, Bs, Bg, and. %) should be found from
comparison with experimental data. Equatidn omits the
relativistically small parametel? of the order of A/E gqap,

the basis functions of angular momentami=£0,+ 1 are the
projections on the quantization ax&snd 1/2(the projections
s=*1/2 correspond to two possible orientations of $pin
Using the quantum mechanical definitiéhfor the matrices
J,

which are negligible for wide band gap materials. The term 01 0 00 0

[(A;+A)) is included in the Hamiltonian so that the energy

J,={0 0 1 1 00
0 0 O 0 1 0

reference of the topmost band is equal to zerdkfel0. The + , Jo= '
invariance of Eq(1) under symmetry operations of ti;,
point group is demonstrated in Appendix A.
The Hamiltonian given by Eq1) can be written in more 10 0
compact form as follows: J,=|0 0 0|,
0 0 -1

—H=PI+Q¥-A,,0,—\203(J,0_+J_0o,)+RE

and the standard form for the Pauli matrices one can

* 12 ok *
FREZH2H ), ]+ 287 I 1+ T+ TH present the RSP Hamiltonian given in E¢b. and(2) in the

(2)  form of a 6x6 matrix>*’
|
P+Q-A, 0 T+S 0 R 0 11,0(1)
0 P+Q+A, —\2A; T+S 0 R 11,2)]])
T* +S* —\2A, P 0 T-S 0 11,0]1)
H=" 0 T* 4+ 0 P — 2, T-s |11.0]1) @
R* 0 T*—S* —\2A; P+Q+A, 0 11,-1)|1)
0 R* 0 T*-sS* 0 P+Q—A,| 1L,-D)IL)

I1l. TRANSFORMATION OF THE RSP HAMILTONIAN A. Clebsch-Gordan transformation

We perform a transformation of the Hamiltonipiqg. (4)]
In this section, the block diagonalization of th&x6 RSP ritten in the basig1,m)|3,s) to the basig, +3), |3,+3),
Hamiltonian for wurtzite structures is performed in a way|3,+3) which is frequently used for the >66 Luttinger-
similar to that of Broido and Shathand Chao and Chuafly  Kohn Hamiltonian for zinc-blende structures with the spin-
for 4X4 and 6x6 zinc-blende Hamiltonians. The transfor- orbit split-off band included. The new basis set is given by a
mation of the matrix given in Eq(4) to a block-diagonal linear combination of basis functiofis,m)|3,s) with the fol-

form is conveniently achieved in two steps. In Sec. Il A, thelowing Clebsch-Gordan coefficients:

matrix form of the RSP Hamiltonian is obtained in the basis 3 3 om 1
2= e 31

of angular momenta 3/2 and 1/2. Section Ill B provides a
3+2m 1 1
V5 m=3 1)

unitary transformation which block-diagonalizes the wurtzite
Hamiltonian. In Sec. Ill C, the relationship between the zinc-
blende and wurtzite Hamiltonians is discussed.

®
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1 3+2m 1 3—2m 1 Usng Egs.(5) and (6) for the calculation of the matrix ele-
=.m)= 1m+35)[)— Im-5 ments of the RSP Hamiltonian in the new basis set, we find
2 6 2 6 2
the form
X|1). (6)
|
2 2 3
P+ 3T+9) R/\3 0 —(T+9V3  —\/3R 5
2 } ) 1
\[§<T+5)* S=C=4N (22137 R/V3 V2(0-4A")  (35-T)13 5

R*/\3 (2\213T*  7—C—4A’ \@(T—S) (T+39)*/13  —\2(¢-A")

H=— |
2 o 2
’ Rl \@(T‘S)* e \[ﬁR* (T=97*1\3 || |5, >
2 7 1

NI NP NW NDW NWw NwW
Nl T NW Nk, T— T—
-

_\ER* (3S—T)*/3 —\2(0—-A") (T-9S)V3  (2\213T*  7+3A,+4A’

—_—

)

In order to facilitate comparison with the zinc-blende Hamil- 1133\ s I3 30/2
. : ' : [1)=—||5,5 )& ¥ =i|5,—5 )€
tonian, the following notations are introduced: J2112'2 ' '
P=P+2QI3—A,,
\ |2>:i i § E e iel2_ § _1 glel2 8
o=QI3, J2112'2 2’ 2 '
A'=(A3—A,)/3. 17111 1 1
. i i i . |3>:_ | — e*itp/2+ - _= eitp/Z
In contrast to the zinc-blende Hamiltonian, the Hamiltonian 21122 2’ 2
described in Eq(7) in the basis of angular momenta 3/2 and
1/2 has only two zero elements and does not provide any
advantages compared to the form of Ed) with 14 zero and
elements and an additional four constant matrix elements.
However, this expression is a convenient intermediate form 1713 3 3 3
useful for derivation of the block-diagonal Hamiltonian. 11y =—=||=, = Je 13¢24j|= — = ) ei3R2
J2112'2 2’ 2 '
B. Block-diagonal form
Starting from the form of Eq(7), it is possible to block- |2")y= __1[, § E> e ey |Z — _>ei<p/2 ’ 9)

diagonalize the RSP Hamiltonian by applying a unitary \/5 2°2
transformation similar to that introduced by Chao and
Chuang® for 6x 6 zinc-blende Hamiltonian. Since the hole 1 11 1 1
energies are independent of the direction of the wave vector |3")= —[ —il=, —>e"P’2+ =, - —>ei‘P’2
k in the xy plane, there exists an infinite set of transforma- \/E 2°2 2" 2

tions block-diagonalizing the wurtzite Hamiltonian. In Ap-
pendix B, we present the most general form of such a tranggsing Eq. (7), we calculate the matrix elements for the
formation and the corresponding matrix form of the resultingyyyrtzite Hamiltonian in the new basis of Eq®) and (9).

Hamiltonian. _ _ _ _ The resulting Hamiltonian has a block-diagonal form,
A particular choice of transformation leading to a Hamil-

tonian in a form maximally close to that for cubic 7. 0

. . . . . Oy
structure$’ is given below. A corresponding new basis set is H= } (10)
given by the elementkl) to |3'), where (= arctary/x) o 7
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P+ —R—1.7=2\37 —\2.72+1.71\2+ 67 1)

] 3
— A+ =237 P=CO=AA +T 2(0— A —7)+i \ﬁ/
Hy=— V3 AHD AN =DHING 1y g
L 3
—\2.#—i712+ 67 2(0—A"—7)—i 57 A+ |3
[

de{Hy, —E)=0, (13

and the lower block7, can be obtained from Eq11) by
taking complex conjugation and changing to —.7. We

have defined the parameters of the Hamiltonian in a for

maximally close to that for cubic structurés:

Ay
P=73+

2 2
Bi+ =B, K2+

2 2
3 Ba+ =B, |K?

3

2
C1+ _C2

* 3

€41

2
C3+ §C4 €,

1
o=z

0= 3 (= A1+ BakGH+BKE + Coezpt Cae ),

1
= —3(551{ +Cse’'), (12)

J3

B 2
= \/;(Bekj_kz_‘_ Cee12)s

h2 7K,
6\/§m0 '

wheree | ,= Ve, + &5, and e’ = /(e ey,)2+4eZ,. Note

that .2=e?¢R/\3, ./=—\2/3'¥S, and 7=—ie'*T/

3\/5. The expressions given in Eq40)—(12) are more con-
venient than the original HamiltoniafEqg. (4)] since they
allow one to deal with X3 matricesH, | instead of the
6X 6 matrix.

T=

n_ﬂefines three pairs of levels corresponding to the tdrigps

7, andI';, which are frequently denoted &s B, andC.
At theI" point (k=0), the hole states are doubly degenerate
and in the absence of deformation have energies

EA(0)=0, (14)

1
Egc(0)= 5[~ (A1+342)F (A1 -4,)%+ 8A3].

(15

For finitek, , the degeneracy is remov8d*due to linear in

k, terms.”7. Therefore the energy maxima of the valence
bands are reached not at thegoint, but along circular loops
with k;, = const.

C. Quasicubic approximation

For many wurtzite-type materials, the terms linear in the
wave vector are small. Therefore one can use thentral
symmetric approximatiofi.e., add the operation of inversion
to the point grougCs,), setting.% and.” equal to zero. In
this case, the form of the Hamiltonian given in E¢EO) and
(11) in the basis of Eqs(8) and(9) is simplified: the lower
block equals the complex conjugater transposg of the
upper block,

7 0O
7 2] s

o

The secular equation for the hole spectrum in bulk wurtz-

ite materials,

where the X3 matrix Hamiltonian(11) is reduced to

PO - B=17 —\2.72+i71\2
, ; - 3
— PN P—— 4N 2(/— A +-\[_;/
= V2(o= AN+ a7

—\272—i71N2 \2(0-A")—i \[g/ 7+3A,+4A7
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It is important to note that, with inclusion of the inversion K2
operation to the wurtzite symmetry group, the valence-band Jo=— R\Easkf - \/§D58', (18
branchesA, B, andC become doubly degenerate, and the 0
maxima of the hole bands are reached afith@oint. In order 52
to facilitate the introduction of the quasicubic approximation = 2\3agk, k,+2/3Dge 5.
(see beloy, it is convenient to redefine the parameters of 0
Egs.(10) and(11): The relations between the six constaBfsand sety; can be
obtained by comparison of Eg&l2) and(18).
A 52 Let us compare the Hamiltonian obtained in E¢K5)—
p="14 ——[ak2+ azk? 1+ Dye,,+ Das (18) for wurtzitestructures with that for the heavy, light, and
3 2mg ‘ split-off holes in cubic materials. As shown by Chao and
Chuang?® for the axial approximation given byy,= 3
A 52 (warping is neglected the 6X6 cubic Hamiltonian can be
O=— 14 ——[—2ak2+ ask?]—2D,e,,+ Dy, block diagonalized to the form in Eq16) with the 3X3
- 3 2mg ‘ upper block 7, equal to
|
Pt Oy —Re—1.Ts  —\2BHIT N2
e — Bt D= e V20 +i \/;YC , (19

o 3 ,f
—\272~1.7IN2 \20,—i \[Z—y; Tt Aso

where field splitting A,=A; and the spin-orbit splitting
52 A¢,=3A,, derived from Eqs(14) and(15) with the assump-
. . _ . . 7
Peme (K2 +K2), tion A,=A5. This results if
0
1
- h? ) ) EA(O)_EB,C(O):E[Acr+ASO
Ce=5mv2(Ki = 2Ky),
0

I\/(Acr_Aso)z"'(‘]'B)AcrAso]-
(22)

Thus the quasicubic approximation allows the simplest

52 physically meaningful description of the wurtzite valence

Vo= 23— yokk, . bands using only two fitting parametets and «, instead of

2mg eight parametersy; throughag, A’, and .77 in the exact
Comparing Eqs(17) and (18) with Egs.(19) and (20), itis ~ model.
found that the wurtzite Hamiltonian is reduced to a cubic

) (20)

, h
He=— \/§Z—mO 72K |

form (within an axial approximation provided thatA;=0, IV. QUANTUM WELL
A2=Asf3, and In this section, an analytical solution for the hole spectra
=0, A'=(Az—A,)3=0, in wurtzite quantum well§QW'’s) is derived using a linear
combination of bulk solutions that satisfy proper boundary
a;=az=7y,, D;=Dg, (21)  conditions. This procedure is similar to that used for QW's in
zinc-blende structurés:3In Sec. IV A, the eigenvectors of
ar=ay=as=ag=vy;, D,=D,;=Ds=Dg. the bulk 33 Hamiltonian are obtained. The general solu-

tion for valence bands in infinitely deep QW's is constructed

- . L in Sec. IV B, Sec. IV C contains explicit expressions for the
scribing the wurtzite valence-band spectra because it |gn0rQ§W valence-subband edges in the presence of uniaxial de-

the crystal field splitting of's level to levelsl’s andI'; (s€€ {5y mation. Section IV D deals with valence-band quantiza-
Fig. 1. The rest of the conditions, given by the set in EQ-tion and subband edges infiaite QW.

(21), introduce aquasicubic approximatidri for structures
with wurtzite symmetry.

Experimental data for the energy separation betwken
B-, andC-type valence-band edges in wurtzite structures are An explicit form of the secular equation given in E43)
usually described by two parameténghich are the crystal for the bulk 3< 3 Hamiltonian[Eq. (11)] is given by

The requirementA;=0 is physically inadmissible for de-

A. Bulk eigenproblem



Z8+3A,£%2—3N&— =0, (23

where Z=E+7 and \=C?+.722+7%4+6(7%+ 6%
+48A,. For the upper block of Eq.10), we have
6=A'"+.7 and

w=3A,(P+ 7%+ 72+ (202 +372— 6.7+ 18N "2
+3667+ 126A,) + 3322+ 1267+ 4A L. 7)

+36A,772. (24

The result for the lower block of the Hamiltonian can be

obtained from Eq(24) by changing7 to —.7.

To avoid cumbersome calculations we neglect the re-
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moval of the double degeneracy of the valence bands

(7=0) and, in addition, assum&’=0. Then the Hamil-

tonian given in Eq(17) formally coincides with the cubic
Hamiltonian of Eq.(19),% differing only in the definition of

parameters”, ¢, .72, and.”. In this case the dispersion
relation

E=Ej(k;.k,) (25

for the three valence bandpg= A,B,C) is given by solutions
of the cubic equatiolEq. (23)]. For the assumptions de-
scribed above, this results in the following relationship:

=%+ %%+ 77,

w=N(202+3.72—6.72) + 337272+ 3A,\.

For any wave vectdk, there exist three linearly independent
eigenvectorsb{) of the Hamiltonian Eq. (17)] correspond-
ing to eigenenergiek; :

K;
(I)(kl)(r): L; ek

M;

Here, the components;, L;, andM; can be chosen as

(26)

K= (H 20— Biy) H 13— H23 712,

L= (H11~Biy) Hoz— #1713, (27)

M;=|71?— (11~ Ei)(H 33~ Ein),

where.7;; are elements of the Hamiltoniaid7) with the
parameter\’ set to zero.

For the particular case df, =0 anduniaxial deforma-
tion,

(28)
we have72=.=0 and bandA is decoupled from band3

Exx=Eyys  Exy= Exz= Ey;~ 0,

5
Eg.c(kz,0)= — (a1t @) 2my “
\/ —ﬁzkg 7% 2 2A2
=+ %
- 3&2 2m0 +< + ’ (30)
where
2=(D1—2D3)e,;+(D3+Dyle,,
9= (A1+3A2)/2+(D1+ D2)822+(D3+ D4/2)8L ,
(31
@I,Z(Al_Az)/2+3D2822_(3D4/2)8l .
The corresponding eigenvectors are given by
1
Do=| 0|7, (32
0
0
o=  —V2Q ek (33

B.C),
Eicy’+ 7434,

B. Construction of solutions for a QW

Consider a QW of widthW perpendicular to the growth
direction (0001 and located at-W/2<z<W/2. For sim-
plicity, in this section we consider the case of an infinitely
deep QW, the solution for a finite QW is presented in Sec.
IV D. Due to translational invariance in they plane, it is
convenient to use eigenstates with defined in-plane wave
vectork, = (ky,ky). The hole wave function in QW corre-
sponding to energ¥ is given by the three-row vector

Fi elkire
Fex (N=| Fa|——, (34
Fs
which satisfies the bulk Schdinger equation
(#—E)F=0 (35)
with the boundary conditions
Fl=w2=0, Fl,=_wr=0. (36)

Here the operator’Z is obtained from the matrix Hamil-
tonian of Eq.(17) by the substitutiork— —iV.

For any given energ¥, the bulk Schrdinger equation
[Eq. (35)] is identically satisfied by three solutior'ib(klz)’kL

given by Eq.(26) with j=A,B,C andk, given by

k,=Kzi(E,K,). (37
Here the functiork,;(E,k,) is inverse to the function de-

and C. In this case the dispersion relations take a simplescriped in Eq.(25) and specifies three values kf (real or

form:

2k2
VA
Ea(kz,0)=—(a;—2ay)

-, (29

2my

imaginary corresponding to the ener@yand in-plane wave
vectork . Since the hole energy does not depend on the sign
of k,, three additional linearly independent solutions can be
obtained by changing,; to —k,;. The latter set of solutions
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is complex conjugate to the original one. Thus, for any given C. Edges of valence subbands

energyE and in-plane wave vectdt,, there exist six lin- From the above discussion, we observe that the presence
early independent solution®{, and ®}  of the  ofimaginary parts oK, L, andM, which are proportional to
Schralinger equatiofiEg. (35)] and six scalar boundary con- the parameter”, does not permit constructing eigenvectors
ditions[Eq. (36)] can be satisfied by their proper linear com- F with components possessing parity with respect to mirror
bination. reflectionz— —z. As a result, the boundary conditions given

It is convenient to define the following set of real eigen-in Eq. (35 at the left and right QW interfaces are indepen-
vectors corresponding to a standing wave int@irection:  dent of one another and the dispersion relation is specified by

a 6X6 determinant. In this section, we will consider

. ‘I’fj),kjr‘l’@k P valence-subband edges for an important case where
L VA 2
B yfzmzﬁaﬁlgkﬁ 2\3Dg\eZ,+e2,=0. (4D
K7 cosk,jz—K;'sirk,;z . 0
, € This equation is satisfied ifi) the nondiagonal strain com-
Ljrcosk;z—L; sink,jz 7 (38) ponentse,, and e,, are equal to zero, andi) either the
M, cok,jz— M’ sink,z in-plane or z component of the wave vector vanishes
(k,=0 ork, =0). As discussed in Appendix C, the condition
o) — ) k,=0 holds for the subband edges of a QW grown perpen-
FU-)— Kk kg kg dicular to thez axis (taken as the main crystallographic axis
Ek, — 2i & Since QW's are grown along the axis in most case<,
k, =0 is used in our derivation. In addition, we assume the
Kjrsink,z+K;'cok,z o, preseaneW(Ef unié\xi(aZIS)%Ieformation in a pseudomorphically
. , € grown see Eq. .
=| Lijrsinkzz+L; cok,;z 7 (39) Whenk, =0, the valence band decouples from band®
M,/ sink,jz+ M’ cosk,z and C, and the bulk eigenenergies and eigenvectors are

given by Eqs(29)—(393). Since the components of the eigen-

Here primes and double primes denote the real and imag)ectors are purely real, we can construct standing wave so-
nary parts of, L, andM (we assumed that,,=s,,=0). lutions which are symmetric and antisymmetric with respect
Note that the real parts are even in wave vekigrwhile the  t0 the coordinate. Following Egs.(38) and(39), we find a
imaginary parts are proportional to the parametéwhich ~ Symmetric set
contains a linear irk, term. Since rows of eigenvectors do

not possess parity with respect to the operatien—z, sat- cok. »Z 1
isfaction of the boundary condition at one interfa@eg., F{EAO*): - %A 0f,
z=W/2) does not imply that the boundary conditions will be ' &z 0
satisfied for another interface —W/2). Therefore all six
boundary conditions given by E¢35) are independent. 0
We seek the hole wave function in a QW as a linear com- COKon nz
bination of six linearly independent bulk eigenvectpob- FiBCt) = %BC -2Q , (42
lened in Egs(38) and(39)] with unknown coefficients; to = E<k3,0c>+:/>+ 37,
and an antisymmetric set of eigenvectors
Fex, (N =CiFEx +coFEy )+ caFy L
+eFS )+ esFS T eFS) . (40) F<EA’\6>=S'”;;AZ ,
B 0
These coefficientg; should be found from six boundary
conditions for the hole wave function. One obtains as a result 0
a homogeneous set of six linear equations, which we will not 5oy Sink,pgcz
write in an explicit form. The energy spectrum of holes in the Fi&s ):T -V2Q : (43
QW is found from the zeros of the corresponding & de- Ef(‘ibc>+.¢+ 3A,

terminant. The secular equation defines three infinite sets of

energy levels corresponding to quantum subbandgerfder-  from Egs.(32) and(33). The major simplification stems from
ally speaking mixeplvalence band#\,B, andC. Thus the the fact that for the states described by E@®) and (43
dispersion relation for holes in an infinite QW should beonly one of the boundary conditions given in E§6) should
found by a numerical solution of a transcendental equatiofbe imposed. The second one is satisfied automatically.
originating from the 66 determinant. As shown in Sec. For an infinite QW, the wave function is equal to zero at
IV D, in the case of dinite QW with twice as many bound- the interfaces. Thus two sets of solutions are obtaifigthe
ary conditions involved, the valence-band spectrum is specsymmetric set given by Eq42) with k,;=mn;/W, where
fied by the zeros of a 2212 determinant. nj=1,3,5..., and(ii) the antisymmetric set given by Eq.
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(43) with k,j=7n;/W andn;=2,4,6 ... . Combining both  linear combinations(for z<—-W/2 and z>W/2) of three
sets, the energy positions of the subband edges can be wraévanescent solutiongvith j=A,B,C) with positive energy
ten as E+Vq:
. K,
E<J>=E-(k =7T—n,o). . Meikin
T W Py, i =e el Ly | (46)
Using Egs.(29) and (30), analytical expressions for the Ml
valence-subband edges are obtained in a pseudomorphica‘l_}/ . i . £ th
grown QW: ere, k,; is a purely imaginaryz component of the wave
vector corresponding to a positive enefgy- Vo, i.e.,
w?h2n?
EN=—(a1—2ay)—n— 2, (44) E+Vo=Ej(xk;j.k,). (47)
2myW
Twelve unknown coefficients of the linear combinations
8O w*h®n? (six for the well and three for each barrieshould be found
En __(“1+0‘2)W_J from boundary conditions at each interface, which can be
written as
77_Zﬁznz 2
+ \/ 3a2W+y' +2A3, (45 F=F, (48)
where the strain-related parametérs ', and%” are given JF=7F . (49
by Eq. (3. Here the indice$ andr refer to values of the parameters on
the left and right sides of the interface. Equati@®) is a
D. Finite quantum well requirement of continuity of the wave functidf, and Eq.

For a finite QW occupying the regior W/2<z<W/2, (4_19) is obtained in a standard way b_y integratzigg the Sehro
we assume the potential for holes is equal to 0 inside the Qudinger equatioriEq. (35)] across the interfac€:** Thus the
and — V,, outside the QW. Solution of the Scltiager equa- Matrix 7 can be obtained from the Hamiltonian given in Eq.
tion insidethe QW should be sought as a linear combination(11) by a formal replacementki=— 3% 92— —dl iz,
of six bulk eigenvectorggiven in Eqs.(38) and(39)] corre- ,=—1dldz— —1i, and settingk,-independent terms to zero.
sponding to a negative ener@y For the bound states, the Canceling the common factors &f/2m,, we find from Egs.
wave functionsoutsidethe well should be constructed as two (11) and(18)

(a1—2ay,)dldz 2\Bagk, —6agk,
7=| —2\3aek, (ay+2ay)dl iz —2\2a,01 92— 3\2aek, |. (50)
\/éaﬁkl —2\/§a2&/&z+3\/§a6kl alﬁlﬁz

In many cases the difference between the parametefsr  QW, analytical expressions can be derived for the edges of
Hamiltonians in the well and in the barriers can be neglectecthe valence bands & =0. At k, =0 there are two impor-
For example, for an AlGa,_,N/GaN/Al,Ga;_,N QW, a tant simplificationsi(i) bandA is decoupled from bandB
strong carrier confinement is achieved at small compositiomndC, and(ii) solutions with defined paritysymmetric and
fractionx~0.1. In this case the second boundary conditionantisymmetri¢ with respect to thez direction can be used

(49 can be simplified with the help of E¢48) to [see Eqs(42), (43), and(46)]. The positions of the subband
edges are found by imposing the boundary conditions of Eqs.
1 0 0 (48) and (49) on the trial wave functions.
J
0 a;+2a, —2\2a, E(F|—Fr)=0. (51 1. Edges of A subbands
0 _2\/5“2 ay Using Egs.(29) and (47) we the express wave vectors

. . k, (in the wel) andk, (in the barriergin terms of the energy
Matching of the solutions of Eq¥38), (39), (40), and E:

(46) at the interfaceg= = W/2 with the use of the boundary

conditions described in Eq&8)—(51) gives the hole disper- ) Maw

sion relations in a finite QW in terms of a ¥2A2 determi- Kea=—72 (TE=Z). (52
nant, which we do not write here in an explicit form. The

resulting secular equation defines three finite sets of hol@he expression fok? can be obtained by changirg to
subbands corresponding to theB, andC types, localized E+V, and the indicesv to b in Eq. (52). Here, the “effec-
in the vicinity of the QW. As in the case of an infinitely deep tive” massmy=mq/(a;—2a5,); indicesw andb denote the
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values of parameters in the well and barriers. Note mﬁas cludes the effects of strain. Using a unitary transformation
positive, and for bound states’ is negative. Matching of the RSP Hamiltonian is diagonalized to obtain a more con-

wave functions at the boundaries gives a transcendentienient block-diagonal form with two nonzero<3 blocks.
equation forsymmetricstates at thé subband edges, similar Comparison of these>83 wurtzite Hamiltonians with simi-

to that for an electron in a finite QW lar results obtained for cubic materi@igeads to a physically
meaningful quasicubic approximatidhwhich then allows
Map,_ Kz AW 2Man(Vo+ Zh— D) reduction of the number of fitting parameters in the RSP
m,_an——= H212 —1. (539  Hamiltonian from 8 to 2.
Aw ZA

Based on the block-diagonalized form of the Hamiltonian,
Energies ofantisymmetricstates are specified by EG3)  we have constructed a solution of the Sclinger equation

with tan(k,,W/2) replaced by cot(k,,\W/2). for holes in wurtzite quantum wells and obtained relatively
simple analytical expressions for the valence-subband edges
2. Edges of subbands B and C in QW’s. The lack of experimental data for nitride valence

Using Eq.(30), we find that the dependencekﬁ on the bands does not allow us to make numerical calculations for

energyE is given by the solution of the biquadratic equation hole dispersion r<_e|at|ons In .bUIk and QW structures. How-
ever, our theoretical analysis allows an evaluation of un-

212\ 2 known parameters of the Hamiltonian by fitting theoretical
(a?+ 2a1a2—8a§)( 2] +2[(E+ 2" ) (ay+ay) values for shifts of the QW valence-band edges to experi-
2m ify
0 mental results. The observed blueshift in band-to-baimot
2)2 toluminescencexperiments on nitride QW3 is attributed
—3a,7"] 2mz +(E+ %’)2—(£Z”)2—2A§=0, (54) mainly to the much lighter electrons and the effect of strain.
0

Thus these types of measurements do not permit extracting

where the parameters, 7, andA, should be take from the accurate information about valence-band parameters. To ob-
well region. Note thatk?s (k,) is given by the larger tain these parameters, the effect related to valence bands

(smalle) of the two solutions of Eq(54). For the barrier shoul(_j be sin_gleql (_)ut, e.g.,, in absorption- or reflectance-type
region, the equation fok? in terms of energyE can be EXPErments in nitride QW's.

obtained from Eq.(54) by substituting «2 for k? and

E+V, for E, and taking barrier values for the rest of the ACKNOWLEDGMENTS

parameters. Matching of the well and barrier wave functions
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kzj\N |sz|
tan——= T (55) APPENDIX A: SYMMETRY OPERATIONS

In this appendix, it is verified that the Hamiltonian given
for symmetric states, and in Eqg. (1) is invariant under the operations of point group
Ce, (rotations around axig and mirror reflections in the
vertical planesand time reversai’28

It is noted that(a) the wave vectok transforms as an
axial vector;(b) the components of the symmetric strain ten-
sore;; transform as the product of two axial vectdaqkj’ and
(c) the operators of angular momenta 3/2 and 1/2, vectors
J and o, transform as a polar vectdr. Underrotation of
the coordinate system through an anglaround thez axis,
the componentk,, L,, €, , ande,, remain unchanged; the

In this paper, we have studied the valence bands for bulkest of the components change as follows:
and quantum well materials with hexagonal symmetry in the
presence of strain. The practical aspects of this study are . .
motivated by a recent rapid growth of interest in wide band kei—e k., LiEiniLyﬂe:"PLi ,
gap nitride semiconductors in their wurtzite polytype for op-
toelectronic applications. From a theoretical viewpoint, va-
lence bands in wurtzite structures allow a richer set of physi-
cal phenomena compared to the extensively studied zinc-
blende materials.

We consider the three topmost valence bands within thd@he operation of mirror reflection, e.g., in tle plane, can
envelope-function ~ formalism, starting from the be represented as a product of rotat@@yy around axig/ and
Rashba-Sheka-Piktfs'®6x 6 matrix Hamiltonian which in-  inversion.7, i.e., oy,= CyyX.7. Noting that axial (polar

—cot 17 (56)

for antisymmetric states.

V. CONCLUSIONS

e.,—€ %, e,—e" %%, . (A1)
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vectors do(not) change sign under inversion, and transform(1) is invariant® under transformations described in Egs.

in the same way under rotations, it is found that (57—(59). Note that a choice of vertical reflection plane
other thanxz does not change the invariance of the Hamil-
ox K=Kz, Ooyke=Ks, tonian[Eg. (2)].
oyl,=—L;, oy li=—-L+. (A2)
APPENDIX B: GENERAL FORM OF DIAGONALIZING
The operation of time reversal changes the signs of vectors TRANSFORMATION
k andL and leads to complex conjugation, i.e.,

ko —k Ko ke i (A3) Direct substitution shows that the Hamiltonian given in

z z 0= o ’ Eq. (7) in the basig3,m), |3,m) is transformed to a block-
and the same transformation rules hold for components odiagonal form of Eq(10) by a unitary transformation speci-
the polar vectoL . It is easy to see that the form given in Eq. fied by the matrix

ae 32 0 0 Fioe'3e? 0 0
0 Be ¢ +ipele? 0 0 0
o 0 0 0 0 ye l¢2  Fjyelel?
YR\ areitr o 0 tia*el®2 0 0 ’ (B
0 pre i xipreel? 0 0 0
0 0 0 0 y*e ¢ xiyrele

where |@|=|B|=|y|=1 should be specified, as well as the choice of the upper or lower signs in the elements of the
transformation matrix. The matrix shown in E&1) can be written in more elegant form by rearranging the order of the basis
functions of the HamiltoniafEq. (7)], but that would complicate comparison of the wurtzite and zinc-blende Hamiltonians.
Application of the unitary transformatiofEq. (B1)] to Eqg. (7) results in the block-diagonalized form of EG.0) with the

upper block 7, given by

P+ a* B[ *i72— 7 +i2\37] —a*y| Fi2.72—- [+|f/
To=—||  aB*[Fin-r—i2\37] P—O—4A +.7) ﬁ*y[@(gﬂr;y)t,\@y} ,

7 3 }
—ay*| *i272— =—i67 * 2(0— AT T \[5/ P+3A,+4(A +.7)

V2

(B2)

and the lower block7, can be obtained from¥/, by taking  parameter/, defined by Eq(18), vanishes. In this case the
the complex conjugation and changingto —.7. Choosing  imaginary partK”, L”, andM” of the components of eigen-
the upper signs and putting=1 andg=y=i in Egs.(B1)  vectors(27) are equal to zero, and it is possible to define the
and (BZ) we reproduce the transformation and the Haml'-sets of e|genvect0rs which are SymmetnE@k —k,=0 and
tonian of Egs(8)—(11) used throughout the paper. This par- antlsymmetncaIF(‘ ) o with respect to thexz plane,

ticular choice of transformation allows us to obtain a block- i
diagonal form of the wurtzite Hamiltonian which is Similar to Eqs(42) and(43) for a QW perpendicular to the

maximally close to that for zinc-blende structufés. axis:
K;
. G+ _SoKyy |
APPENDIX C: QW PARALLEL TO AXIS Z FE’kx:kZZO_ 7 il

In Sec. IVC, we obtained analytical expressions for M;

valence-subband edges in a QW perpendicular tazthris K.

(i.e., grown along the axis). Here, we consider the case of - sinkyy !
an infinite QW parallel to thez plane, occupying the region FE,kj: k=0~ Li|. (CY

—W,/2<y<W,/2. - M;

The subband edges correspond to zero in-plane wavevec-
tor (k,=k,=0). Assuming that the nondiagonal strain com-Herej=A,B,C and the parametefs, L, andM, defined by
ponents are equal to zere=¢,,=0), it is found that the Eq. (27), are taken ak,=k,=0. From the boundary condi-
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tions of Eq.(36), we find that the allowed values &f; are

even or odd integer multiplies af/W, . Thus the positions
of the subband edges corresponding to valence bands

j=A,B,C are specified by a discrete quantum numfegind
are equal to

EV=E, k=0k=7T—nk=0 oy
n ] X mny W 11Nz ’ ( )
y

where the bulk dispersion relatidgy(ky Ky ,k,) is specified

by the cubic equatiofiEq. (23)].
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APPENDIX D: SUBBANDS B AND C IN FINITE QW

For the tops of valence subbandsB,C (k, =0) accord-
ing to Eq.(42), we can write the symmetric wave functions
in the well F and the right barrieF’ as

C1 cy
F= cok,iz, F'=| | |exp(—|k,l2). (D1)
Cy c

2

Matching functions= andF’ at z=W/2 with the help of the
boundary conditions given in Eq$48)—(50), the equation
for the edges of subbandsandC is found to be

1 1 0
0 0 1
0. (D2)
— (1wt 2a5,)K;tank, WI2) = (agpt 2am,)| Kyl \/§a2szjtar(ksz/2) \/§a2b|K2j|
\/§a2sz]-tar( k,jWI2) NCE K| — gk jtank, \WI2)  —aqp| i,

Here the indicesv andb refer to the values of the parametersanda, in the well and barrier; the dependencekgf - and
K,p,c is specified by Eq(54). The equation for the subband edges correspondiagtisymmetricstates can be obtained from
Eq. (D2) by changing all tangents to negative cotangents. In the case of parametarsl @, being constant across the

interface, Eq(D2) is reduced to Eq(55).
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