
Envelope-function formalism for valence bands in wurtzite quantum wells

Yu. M. Sirenko, J.-B. Jeon, K. W. Kim, and M. A. Littlejohn
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911

M. A. Stroscio
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211

~Received 24 May 1995!

A theoretical treatment of the valence-band spectrum of wurtzite-type materials is developed starting from
the Rashba-Sheka-Pikus~RSP! 636 matrix Hamiltonian for coupledG9 , G7 , andG7 levels. A unitary trans-
formation is applied in order to diagonalize the RSP Hamiltonian to two 333 blocks and the results are
compared with those obtained for cubic structures@C. Y.-P. Chao and S. L. Chuang, Phys. Rev. B46, 4110
~1992!#. Using the diagonalized form of the Hamiltonian, a solution for hole states in wurtzite quantum wells
~QW’s! is constructed and explicit expressions for the QW valence subband edges are obtained. We suggest
that parameters of the RSP Hamiltonian for wu¨rtzite structures can be deduced from experimental observations
of the energy separation between edges of the hole subbands in QW’s.

I. INTRODUCTION

Recently, there has been growing interest in III-V nitrides
~such as GaN, AlxGa12xN, InxGa12xN, etc.! and significant
progress has been made in crystal growth and device pro-
cessing techniques~see reviews1–6!. Numerous devices have
been demonstrated for various applications including opto-
electronics ~blue light-emitting diodes7 and ultraviolet
photodetectors8! as well as high temperature, high power,
and high frequency electronic devices.9 However, detailed
understanding of the optical and electronic properties in
III-V nitride semiconductors requires further experimental
and theoretical effort.

Unlike Si or GaAs, the III-V nitrides can exist in different
crystal polytypes depending on the growth conditions, and
take primarily the wurtzite structure with hexagonal symme-
try ~in addition to the zinc-blende polytype!. A number of
approaches, such asab initio, tight-binding, muffin-tin, linear
combination of atomic orbitals, and linearized augmented
plane wave methods,10,11 have been used to calculate the
energy bands for both wurtzite and zinc-blende structures.
Due to the lack of available experimental data, many details
of these studies must be improved in order to provide an
accurate band description. More importantly, most of these
complicated efforts have been limited to the study of bulk
binary materials11 with an emphasis on overall electronic
properties. Thus, calculated band structures cover a large en-
ergy spectrum~tens of eV!, and details at the conduction-
and valence-band edges near theG point tend to be ignored
or simplified. However, for direct band gap nitrides~GaN,
AlN, InN, and their alloys!, the detailed knowledge of elec-
tron and hole spectra near the center of the Brillouin zone is
crucial for proper description of transport and optical prop-
erties of these materials. Qualitative analysis of carrier spec-
tra can be made based on irreducible representations of the
wurtzite space groupC6v

4 at theG point.
The conduction-band wave functions originate from the

atomics orbitals and transform at theG point according to
theG7 representation of theC6v

4 space group. The electronic

states are doubly degenerate and for smallk the energy spec-
trum is characterized by ellipsoidal isoenergetic surfaces
with two effective mass parameters,mni andmn' . The top
of the valence band at theG point originates from thep3

atomic orbitals. As shown in Fig. 1, under the action of the
crystal field and spin-orbit interaction the sixfold degenerate
level G15 splits

12,13 into G9 , upperG7 , and lowerG7 levels.
The separation between the levels in the nitride structures is
of the order of 10 meV and is comparable to the thermal

FIG. 1. Valence band in wurtzite structures at theG point. Split-
ting of G15 level toG9 , G7 , andG7 levels is due to the hexagonal
crystal field and spin-orbit interaction~Refs. 12 and 13!. The labels
W and ZB stand for classifications of irreducible representations in
wurtzite and zinc-blende structures.
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energykBT'26 meV at room temperature. Therefore, gen-
erally speaking, the valence-band treatment in hexagonal ni-
tride structures should take into account interaction between
all three levels, which results in a rather complicated disper-
sion relation. The effect of strain is another important issue
for nitride-based heterostructures because of the relatively
large mismatch between the constitutive materials.

Consideration of processes involving carriers in the vicin-
ity of valence-band maxima at theG point favors the use of
the envelope-function method. The latter allows a physically
accurate analytical description of hole spectra for smallk
with an adequate number of empirical parameters. The
Hamiltonian for the wurtzite valence band which accounts
for the interaction ofG9 , G7 , andG7 levels has been derived
by Rashba and Sheka14 within the k–p formalism. Later,
Pikus15 proposed an elegant derivation of the wurtzite
Hamiltonian based on the method of invariants,16,17 includ-
ing the effects of strain on the hole spectra. Subsequent
experimental18 and theoretical19,20 work dealt mainly with
the details of valence-band spectra and optical properties of
bulk wurtzite structures, in particular, the group II-VI semi-
conductors~CdS, CdSe, etc.!.

While the valence bands in unstrainedcubic structures
can be described by four parameters~three Luttinger param-
eters and the spin-orbit split-off energy!, the hole spectra in
hexagonal material are specified by ten constants, two of
which are determined by the energy splitting between the
different hole bands. However, due to lack of experimental
data and proper theoretical analysis for the nitrides, the com-
plexity of the valence band has been so far described by a
single scalar hole effective mass constantmp , which is taken
as (0.860.2)m0 for GaN.

5,21 An accurate set of parameters
describing the valence-band edge in the nitrides is necessary
for understanding and design of optoelectronic devices.
Since it is very difficult to obtainall unknown band param-
eters by fitting to experimental data, simplifying theoretical
models~based, for example, on a cubic approximation17! be-
come critical. At the same time, the added degrees of free-
dom available in heterostructures can be utilized to deduce
additional information on the material parameters.

In this paper, we obtain an analytical solution for the hole
spectra in strained wurtzite quantum wells~QW’s! based on
the envelope-function formalism. In order to simplify the
calculations, a block-diagonalized form of the bulk 636
Hamiltonian15 is derived. Hole wave functions in a QW are
written as a linear combination of bulk solutions satisfying
proper boundary conditions which leads to a transcendental

dispersion relation for hole spectra. It is important that the
positions of the valence-subband edges are described by rela-
tively simple analytical expressions depending on the geom-
etry of the system and the parameters of the bulk Hamil-
tonian. In addition, we suggest that the unknown parameters
of the Hamiltonian may be determined by measuring the
shift of the valence-band edges due to space quantization in
QW’s. However, it is noted that the present luminescence
experiments22 with wurtzite QW’s are not well suited for
determining of valence-band parameters because recombina-
tion occurs predominantly between electron and hole ground
states. Since holes are essentially heavier than electrons, the
observed confinement and deformation-induced blueshift are
mainly due to the conduction-band edges. In this instance,
absorption and photoreflectance measurements should be
used to study hole transitions with a transferred energy in the
infrared range.

The remainder of the paper is organized as follows. First,
Sec. II introduces the Rashba-Sheka-Pikus14,15 ~RSP! Hamil-
tonian for the top of the valence bands in bulk wurtzite struc-
tures in both invariant and 636 matrix form. Section III
describes the transformation of the 636 RSP Hamiltonian to
a block-diagonal form which allows description of the
valence-band spectrum with a much simpler 333 matrix
Hamiltonian. Comparison of the block-diagonalized wurtzite
Hamiltonian form with that for the cubic structures23 pro-
vides the means for introducing the quasicubic
approximation17 with a reduced set of empirical parameters.
A solution for the problem of hole quantization in pseudo-
morphic wurtzite quantum wells is presented in Sec. IV.
From the general solution, explicit expressions for the posi-
tions of the valence-subband edges are found in terms of
bulk parameters of the constituent materials. Finally, Sec. V
discusses our general conclusions and the Appendixes pro-
vide details of the calculations.

II. BULK HAMILTONIAN

The Hamiltonian for the valence band of wurtzite semi-
conductors, specified by coupledG9 , upper-G7 , and lower-
G7 levels, was derived by Rashba and Sheka.

14 Later, Pikus15

included the effects of strain and presented the invariant
form for the valence-band Hamiltonian. By including terms
to second order in the wave vectork and linear in the strain
tensor«, the RSP Hamiltonian14,15,17 can be written in the
following form independent of the choice of basis functions:

2H5I ~D11D21B1kz
21B3k'

21C1«zz1C3«'!2D2Jzsz2A2D3~J1s21J2s1!1Jz
2~2D11B2kz

21B4k'
21C2«zz1C4«'!

1B5~J1
2 k2

2 1J2
2 k1

2 !1C5~J1
2 «21J2

2 «1!12B6kz~@JzJ1#k21@JzJ2#k1!12C6~@JzJ1#«2z1@JzJ2#«1z!

1 i
\2K

2m0
~J1k22J2k1!, ~1!
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wherem0 is the free electron mass and

k65kx6 iky , k'
25kx

21ky
2 ,

J65
1

A2
~Jx6 iJy!, 2@JzJ6#5JzJ61J6Jz ,

s65
1

2
~sx6 isy!,

«6z5«xz6 i«yz , «65«xx2«yy62i«xy ,

«'5«xx1«yy .

Here,I is the unity matrix,sx , sy , andsz are Pauli matri-
ces, andJx , Jy , andJz are components of the angular mo-
mentum operatorJ; the z axis coincides with the (0001)
hexagonal lattice direction. Ten constants (D1 , D2 , D3 ,
B1 , B2 , B3 , B4 , B5 , B6 , andK ) should be found from
comparison with experimental data. Equation~1! omits the
relativistically small parameters15 of the order ofD/Egap,
which are negligible for wide band gap materials. The term
I (D11D2) is included in the Hamiltonian so that the energy
reference of the topmost band is equal to zero fork50. The
invariance of Eq.~1! under symmetry operations of theC6v
point group is demonstrated in Appendix A.

The Hamiltonian given by Eq.~1! can be written in more
compact form as follows:

2H5PI1QJz
22D2Jzsz2A2D3~J1s21J2s1!1RJ1

2

1R* J2
2 12S@JzJ1#12S* @JzJ2#1TJ11T* J2 ,

~2!

where

P5D11D21B1kz
21B3k'

21C1«zz1C3«' ,

Q52D11B2kz
21B4k'

21C2«zz1C4«' ,

R5B5k2
2 1C5«2 , ~3!

S5B6kzk21C6«2z ,

T5 i
\2Kk2

2m0
.

The matrix form of the RSP Hamiltonian is usually pre-
sented in the basisu1,m&u 12,s&, which is a direct product of
the basis functions of angular momenta 1 (m50,61 are the
projections on the quantization axis! and 1/2~the projections
s561/2 correspond to two possible orientations of spin!.
Using the quantum mechanical definitions26 for the matrices
J,

J15F 0 1 0

0 0 1

0 0 0
G , J25F 0 0 0

1 0 0

0 1 0
G ,

Jz5F 1 0 0

0 0 0

0 0 21
G ,

and the standard form for the Pauli matricess, one can
present the RSP Hamiltonian given in Eqs.~1! and~2! in the
form of a 636 matrix:15,17

H52UUP1Q2D2 0 T1S 0 R 0

0 P1Q1D2 2A2D3 T1S 0 R

T*1S* 2A2D3 P 0 T2S 0

0 T*1S* 0 P 2A2D3 T2S

R* 0 T*2S* 2A2D3 P1Q1D2 0

0 R* 0 T*2S* 0 P1Q2D2

UUu1,1&u↑&
u1,1&u↓&
u1,0&u↑&
u1,0&u↓&
u1,21&u↑&
u1,21&u↓&

. ~4!

III. TRANSFORMATION OF THE RSP HAMILTONIAN

In this section, the block diagonalization of the 636 RSP
Hamiltonian for wurtzite structures is performed in a way
similar to that of Broido and Sham27 and Chao and Chuang23

for 434 and 636 zinc-blende Hamiltonians. The transfor-
mation of the matrix given in Eq.~4! to a block-diagonal
form is conveniently achieved in two steps. In Sec. III A, the
matrix form of the RSP Hamiltonian is obtained in the basis
of angular momenta 3/2 and 1/2. Section III B provides a
unitary transformation which block-diagonalizes the wurtzite
Hamiltonian. In Sec. III C, the relationship between the zinc-
blende and wurtzite Hamiltonians is discussed.

A. Clebsch-Gordan transformation

We perform a transformation of the Hamiltonian@Eq. ~4!#
written in the basisu1,m&u 12,s& to the basisu 32,6

3
2&, u 32,6

1
2&,

u 12,6
1
2& which is frequently used for the 636 Luttinger-

Kohn Hamiltonian for zinc-blende structures with the spin-
orbit split-off band included. The new basis set is given by a
linear combination of basis functionsu1,m&u 12,s& with the fol-
lowing Clebsch-Gordan coefficients:26

U32 ,mL 5A322m

6 U1,m1
1

2 L u↓&

1A312m

6 U1,m2
1

2 L u↑&, ~5!
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U12 ,mL 5A312m

6 U1,m1
1

2 L u↓&2A322m

6 U1,m2
1

2 L
3u↑&. ~6!

Usng Eqs.~5! and ~6! for the calculation of the matrix ele-
ments of the RSP Hamiltonian in the new basis set, we find
the form

H52**
P1Q A2

3
~T1S! R/A3 0 2~T1S!/A3 2A2

3
R

A2

3
~T1S!* P2Q24D8 ~2A2/3!T R/A3 A2~Q2D8! ~3S2T!/3

R* /A3 ~2A2/3!T* P2Q24D8 A2

3
~T2S! ~T13S!* /3 2A2~Q2D8!

0 R* /A3 A2

3
~T2S!* P1Q A2

3
R* ~T2S!* /A3

2~T1S!* /A3 A2~Q2D8! ~T13S!/3 A2

3
R P13D214D8 ~2A2/3!T

2A2

3
R* ~3S2T!* /3 2A2~Q2D8! ~T2S!A3 ~2A2/3!T* P13D214D8

**
U32 , 32 L
U32 , 12 L
U32 ,2 1

2 L
U32 ,2 3

2 L
U12 , 12 L
U12 ,2 1

2 L

.

~7!

In order to facilitate comparison with the zinc-blende Hamil-
tonian, the following notations are introduced:

P[P12Q/32D2 ,

Q[Q/3,

D8[~D32D2!/3.

In contrast to the zinc-blende Hamiltonian, the Hamiltonian
described in Eq.~7! in the basis of angular momenta 3/2 and
1/2 has only two zero elements and does not provide any
advantages compared to the form of Eq.~4! with 14 zero
elements and an additional four constant matrix elements.
However, this expression is a convenient intermediate form
useful for derivation of the block-diagonal Hamiltonian.

B. Block-diagonal form

Starting from the form of Eq.~7!, it is possible to block-
diagonalize the RSP Hamiltonian by applying a unitary
transformation similar to that introduced by Chao and
Chuang23 for 636 zinc-blende Hamiltonian. Since the hole
energies are independent of the direction of the wave vector
k in the xy plane, there exists an infinite set of transforma-
tions block-diagonalizing the wurtzite Hamiltonian. In Ap-
pendix B, we present the most general form of such a trans-
formation and the corresponding matrix form of the resulting
Hamiltonian.

A particular choice of transformation leading to a Hamil-
tonian in a form maximally close to that for cubic
structures23 is given below. A corresponding new basis set is
given by the elementsu1& to u38&, where (w5arctany/x)

u1&5
1

A2
FU32 , 32 L e2 i3w/22 iU32 ,2 3

2 L ei3w/2G ,
u2&5

1

A2
F iU32 , 12 L e2 iw/22U32 ,2 1

2 L eiw/2G , ~8!

u3&5
1

A2
F iU12 , 12 L e2 iw/21U12 ,2 1

2 L eiw/2G
and

u18&5
1

A2
FU32 , 32 L e2 i3w/21 iU32 ,2 3

2 L ei3w/2G ,
u28&5

21

A2
F iU32 , 12 L e2 iw/21U32 ,2 1

2 L eiw/2G , ~9!

u38&5
1

A2
F2 iU12 , 12 L e2 iw/21U12 ,2 1

2 L eiw/2G .
Using Eq. ~7!, we calculate the matrix elements for the
wurtzite Hamiltonian in the new basis of Eqs.~8! and ~9!.
The resulting Hamiltonian has a block-diagonal form,

H5FHU O

O HL
G , ~10!
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HU52UU P1Q 2R2 iS 22A3T 2A2R1 iS /A21A6T

2R1 iS 22A3T P2Q24~D81T ! A2~Q2D82T !1 iA3

2
S

2A2R2 iS /A21A6T A2~Q2D82T !2 iA3

2
S P13D214~D81T !

UU u1&

u2&

u3&

~11!

and the lower blockHL can be obtained from Eq.~11! by
taking complex conjugation and changingT to 2T . We
have defined the parameters of the Hamiltonian in a form
maximally close to that for cubic structures:23

P5
D1

3
1SB11

2

3
B2D kz21SB31

2

3
B4D k'

2

1SC11
2

3
C2D «zz1SC31

2

3
C4D «' ,

Q5
1

3
~2D11B2kz

21B4k'
21C2«zz1C4«'!,

R5
1

A3
~B5k'

21C5«8!, ~12!

S 52A2

3
~B6k'kz1C6«'z!,

T 5
\2Kk'

6A2m0

,

where«'z5A«xz
2 1«yz

2 and «85A(«xx2«yy)
214«xy

2 . Note
that R5e2iwR/A3, S 52A2/3eiwS, and T 52 ieiwT/
3A2. The expressions given in Eqs.~10!–~12! are more con-
venient than the original Hamiltonian@Eq. ~4!# since they
allow one to deal with 333 matricesHU,L instead of the
636 matrix.

The secular equation for the hole spectrum in bulk wurtz-
ite materials,

det~HU,L2E!50, ~13!

defines three pairs of levels corresponding to the termsG9 ,
G7 , andG7 , which are frequently denoted asA, B, andC.
At the G point (k50), the hole states are doubly degenerate
and in the absence of deformation have energies

EA~0!50, ~14!

EB,C~0!5
1

2
@2~D113D2!6A~D12D2!

218D3
2#.

~15!

For finitek' , the degeneracy is removed20,24due to linear in
k' termsT . Therefore the energy maxima of the valence
bands are reached not at theG point, but along circular loops
with k'5 const.

C. Quasicubic approximation

For many wurtzite-type materials, the terms linear in the
wave vector are small.17 Therefore one can use thecentral
symmetric approximation~i.e., add the operation of inversion
to the point groupC6v), settingK andT equal to zero. In
this case, the form of the Hamiltonian given in Eqs.~10! and
~11! in the basis of Eqs.~8! and ~9! is simplified: the lower
block equals the complex conjugate~or transpose! of the
upper block,

H5FH O

O H* G , ~16!

where the 333 matrix Hamiltonian~11! is reduced to

H52UU P1Q 2R2 iS 2A2R1 iS /A2

2R1 iS P2Q24D8 A2~Q2D8!1 iA3

2
S

2A2R2 iS /A2 A2~Q2D8!2 iA3

2
S P13D214D8

UU . ~17!
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It is important to note that, with inclusion of the inversion
operation to the wurtzite symmetry group, the valence-band
branchesA, B, andC become doubly degenerate, and the
maxima of the hole bands are reached at theG point. In order
to facilitate the introduction of the quasicubic approximation
~see below!, it is convenient to redefine the parameters of
Eqs.~10! and ~11!:

P5
D1

3
1

\2

2m0
@a1kz

21a3k'
2 #1D1«zz1D3«' ,

Q52
D1

3
1

\2

2m0
@22a2kz

21a4k'
2 #22D2«zz1D4«' ,

R52
\2

2m0
A3a5k'

22A3D5«8, ~18!

S 5
\2

2m0
2A3a6k'kz12A3D6«'z .

The relations between the six constantsBi and seta i can be
obtained by comparison of Eqs.~12! and ~18!.

Let us compare the Hamiltonian obtained in Eqs.~16!–
~18! for wurtzitestructures with that for the heavy, light, and
split-off holes in cubic materials. As shown by Chao and
Chuang,23 for the axial approximation given byg25g3
~warping is neglected!, the 636 cubic Hamiltonian can be
block diagonalized to the form in Eq.~16! with the 333
upper blockHc equal to

Hc52UU P c1Qc 2Rc2 iS c 2A2Rc1 iS c /A2

2Rc1 iS c P c2Qc A2Qc1 iA3

2
S c

2A2Rc2 iS c /A2 A2Qc2 iA3

2
S c P c1Dso

UU , ~19!

where

P c5
\2

2m0
g1~k'

21kz
2!,

Qc5
\2

2m0
g2~k'

222kz
2!,

~20!

Rc52A3
\2

2m0
g2k'

2 ,

S c52A3
\2

2m0
g2kzk' .

Comparing Eqs.~17! and ~18! with Eqs.~19! and ~20!, it is
found that the wurtzite Hamiltonian is reduced to a cubic
form ~within an axial approximation!, provided thatD150,
D25Dso/3, and

K50, D8[~D32D2!/350,

a15a35g1 , D15D3 , ~21!

a25a45a55a65g2 , D25D45D55D6 .

The requirementD150 is physically inadmissible for de-
scribing the wurtzite valence-band spectra because it ignores
the crystal field splitting ofG8 level to levelsG9 andG7 ~see
Fig. 1!. The rest of the conditions, given by the set in Eq.
~21!, introduce aquasicubic approximation17 for structures
with wurtzite symmetry.

Experimental data for the energy separation betweenA-,
B-, andC-type valence-band edges in wurtzite structures are
usually described by two parameters,6 which are the crystal

field splitting Dcr5D1 and the spin-orbit splitting
Dso53D2 , derived from Eqs.~14! and~15! with the assump-
tion D25D3 . This results in

17

EA~0!2EB,C~0!5
1

2
@Dcr1Dso

7A~Dcr2Dso!
21~4/3!DcrDso#.

~22!

Thus the quasicubic approximation allows the simplest
physically meaningful description of the wurtzite valence
bands using only two fitting parametersa1 anda2 instead of
eight parametersa1 througha6 , D8, andK in the exact
model.

IV. QUANTUM WELL

In this section, an analytical solution for the hole spectra
in wurtzite quantum wells~QW’s! is derived using a linear
combination of bulk solutions that satisfy proper boundary
conditions. This procedure is similar to that used for QW’s in
zinc-blende structures.25,23 In Sec. IV A, the eigenvectors of
the bulk 333 Hamiltonian are obtained. The general solu-
tion for valence bands in infinitely deep QW’s is constructed
in Sec. IV B, Sec. IV C contains explicit expressions for the
QW valence-subband edges in the presence of uniaxial de-
formation. Section IV D deals with valence-band quantiza-
tion and subband edges in afiniteQW.

A. Bulk eigenproblem

An explicit form of the secular equation given in Eq.~13!
for the bulk 333 Hamiltonian@Eq. ~11!# is given by
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E313D2E
223lE2m50, ~23!

where E[E1P and l5Q21R21S 216(T 21d2)
14dD2 . For the upper block of Eq.~10!, we have
d[D81T and

m53D2~Q
21R21S 2!1Q~2Q213S 226R2118D82

136dT 112dD2!13A3R~S 2112dT 14D2T !

136D2T
2. ~24!

The result for the lower block of the Hamiltonian can be
obtained from Eq.~24! by changingT to 2T .

To avoid cumbersome calculations we neglect the re-
moval of the double degeneracy of the valence bands
(T 50) and, in addition, assumeD850. Then the Hamil-
tonian given in Eq.~17! formally coincides with the cubic
Hamiltonian of Eq.~19!,23 differing only in the definition of
parametersP , Q , R, and S . In this case the dispersion
relation

E5Ej~kz ,k'! ~25!

for the three valence bands (j5A,B,C) is given by solutions
of the cubic equation@Eq. ~23!#. For the assumptions de-
scribed above, this results in the following relationship:

l5Q21R21S 2,

m5Q~2Q213S 226R2!13A3RS 213D2l.

For any wave vectork, there exist three linearly independent
eigenvectorsFk

( j ) of the Hamiltonian@Eq. ~17!# correspond-
ing to eigenenergiesEjk :

Fk
~ j !~r !5F Kj

L j

M j

G eikr . ~26!

Here, the componentsKj , L j , andM j can be chosen as

Kj5~H222Eik!H132H23H12,

L j5~H112Eik!H232H21H13, ~27!

M j5uH12u22~H112Eik!~H332Eik!,

whereH i j are elements of the Hamiltonian~17! with the
parameterD8 set to zero.

For the particular case ofk'50 anduniaxial deforma-
tion,

«xx5«yy , «xy5«xz5«yz50, ~28!

we haveR5S 50 and bandA is decoupled from bandsB
and C. In this case the dispersion relations take a simple
form:

EA~kz,0!52~a122a2!
\2kz

2

2m0
2D , ~29!

EB,C~kz,0!52~a11a2!
\2kz

2

2m0
2D8

6AS 3a2

\2kz
2

2m0
1D9D 212D2

2, ~30!

where

D5~D122D2!«zz1~D31D4!«' ,

D85~D113D2!/21~D11D2!«zz1~D31D4/2!«' ,
~31!

D95~D12D2!/213D2«zz2~3D4/2!«' .

The corresponding eigenvectors are given by

Fkz,0
~A! 5F 10

0
G eikzz, ~32!

Fkz,0
~B,C!5F 0

2A2Q
Ekz,0

~B,C!1P13D2

G eikzz. ~33!

B. Construction of solutions for a QW

Consider a QW of widthW perpendicular to the growth
direction ~0001! and located at2W/2,z,W/2. For sim-
plicity, in this section we consider the case of an infinitely
deep QW, the solution for a finite QW is presented in Sec.
IV D. Due to translational invariance in thexy plane, it is
convenient to use eigenstates with defined in-plane wave
vector k'5(kx ,ky). The hole wave function in QW corre-
sponding to energyE is given by the three-row vector

FE,k'
~r !5F F1

F2

F3

G eik'–r'

L
, ~34!

which satisfies the bulk Schro¨dinger equation

~Ĥ2E!F50 ~35!

with the boundary conditions

Fuz5W/250, Fuz52W/250 . ~36!

Here the operatorĤ is obtained from the matrix Hamil-
tonian of Eq.~17! by the substitutionk→2 i¹.

For any given energyE, the bulk Schro¨dinger equation
@Eq. ~35!# is identically satisfied by three solutionsFkz ,k'

( j )

given by Eq.~26! with j5A,B,C andkz given by

kz5kz j~E,k'!. ~37!

Here the functionkz j(E,k') is inverse to the function de-
scribed in Eq.~25! and specifies three values ofkz ~real or
imaginary! corresponding to the energyE and in-plane wave
vectork'. Since the hole energy does not depend on the sign
of kz , three additional linearly independent solutions can be
obtained by changingkz j to 2kz j . The latter set of solutions
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is complex conjugate to the original one. Thus, for any given
energyE and in-plane wave vectork', there exist six lin-
early independent solutionsFkz ,k'

( j ) and F2kz ,k'

( j ) of the

Schrödinger equation@Eq. ~35!# and six scalar boundary con-
ditions @Eq. ~36!# can be satisfied by their proper linear com-
bination.

It is convenient to define the following set of real eigen-
vectors corresponding to a standing wave in thez direction:

FE,k'

~ j1 ![
Fkz ,k'

~ j ! 1F2kz ,k'

~ j !

2L

5F Kj8coskz jz2Kj8sinkz jz

L j8coskz jz2L j8sinkz jz

M j8coskz jz2M j8sinkz jz
G eik'–r'

L
, ~38!

FE,k'

~ j2 ![
Fkz ,k'

~ j ! 2F2kz ,k'

~ j !

2iL

5F Kj8sinkz jz1Kj8coskz jz

L j8sinkz jz1L j8coskz jz

M j8sinkz jz1M j8coskz jz
G eik'–r'

L
. ~39!

Here primes and double primes denote the real and imagi-
nary parts ofK, L, andM ~we assumed that«xz5«yz50).
Note that the real parts are even in wave vectorkz , while the
imaginary parts are proportional to the parameterS which
contains a linear inkz term. Since rows of eigenvectors do
not possess parity with respect to the operationz→2z, sat-
isfaction of the boundary condition at one interface~e.g.,
z5W/2) does not imply that the boundary conditions will be
satisfied for another interface (z52W/2). Therefore all six
boundary conditions given by Eq.~35! are independent.

We seek the hole wave function in a QW as a linear com-
bination of six linearly independent bulk eigenvectors@ob-
tained in Eqs.~38! and~39!# with unknown coefficientsc1 to
c6:

FE,k'
~r !5c1FE,k'

~A1 !1c2FE,k'

~A2 !1c3FE,k'

~B1 !

1c4FE,k'

~B2 !1c5FE,k'

~C1 !1c6FE,k'

~C2 ! . ~40!

These coefficientsci should be found from six boundary
conditions for the hole wave function. One obtains as a result
a homogeneous set of six linear equations, which we will not
write in an explicit form. The energy spectrum of holes in the
QW is found from the zeros of the corresponding 636 de-
terminant. The secular equation defines three infinite sets of
energy levels corresponding to quantum subbands of~gener-
ally speaking mixed! valence bandsA,B, andC. Thus the
dispersion relation for holes in an infinite QW should be
found by a numerical solution of a transcendental equation
originating from the 636 determinant. As shown in Sec.
IV D, in the case of afiniteQW with twice as many bound-
ary conditions involved, the valence-band spectrum is speci-
fied by the zeros of a 12312 determinant.

C. Edges of valence subbands

From the above discussion, we observe that the presence
of imaginary parts ofK, L, andM , which are proportional to
the parameterS , does not permit constructing eigenvectors
F with components possessing parity with respect to mirror
reflectionz→2z. As a result, the boundary conditions given
in Eq. ~35! at the left and right QW interfaces are indepen-
dent of one another and the dispersion relation is specified by
a 636 determinant. In this section, we will consider
valence-subband edges for an important case where

S [
\2

2m0
2A3a6k'kz12A3D6A«xz

2 1«yz
2 50. ~41!

This equation is satisfied if~i! the nondiagonal strain com-
ponents«xz and «yz are equal to zero, and~ii ! either the
in-plane or z component of the wave vector vanishes
(kz50 ork'50). As discussed in Appendix C, the condition
kz50 holds for the subband edges of a QW grown perpen-
dicular to thez axis~taken as the main crystallographic axis!.
Since QW’s are grown along thez axis in most cases,22

k'50 is used in our derivation. In addition, we assume the
presence of uniaxial deformation in a pseudomorphically
grown QW@see Eq.~28!#.

Whenk'50, the valence bandA decouples from bandsB
and C, and the bulk eigenenergies and eigenvectors are
given by Eqs.~29!–~33!. Since the components of the eigen-
vectors are purely real, we can construct standing wave so-
lutions which are symmetric and antisymmetric with respect
to the coordinatez. Following Eqs.~38! and~39!, we find a
symmetric set

FE,0
~A1 !5

coskzAz

L F 10
0
G ,

FE,0
~B,C1 !5

coskzB,Cz

L F 0

2A2Q
Ekz,0

~B,C!1P13D2

G , ~42!

and an antisymmetric set of eigenvectors

FE,0
~A2 !5

sinkzAz

L F 10
0
G ,

FE,0
~B,C2 !5

sinkzB,Cz

L F 0

2A2Q
Ekz,0

~B,C!1P13D2

G , ~43!

from Eqs.~32! and~33!. The major simplification stems from
the fact that for the states described by Eqs.~42! and ~43!
only one of the boundary conditions given in Eq.~36! should
be imposed. The second one is satisfied automatically.

For an infinite QW, the wave function is equal to zero at
the interfaces. Thus two sets of solutions are obtained:~i! the
symmetric set given by Eq.~42! with kz j5pnj /W, where
nj51,3,5, . . . , and~ii ! the antisymmetric set given by Eq.

2004 53SIRENKO, JEON, KIM, LITTLEJOHN, AND STROSCIO



~43! with kz j5pnj /W andnj52,4,6, . . . . Combining both
sets, the energy positions of the subband edges can be writ-
ten as

En
~ j !5Ej S kz5pn

W
,0D .

Using Eqs. ~29! and ~30!, analytical expressions for the
valence-subband edges are obtained in a pseudomorphically
grown QW:

En
~A!52~a122a2!

p2\2n2

2m0W
2 2D , ~44!

En
~B,C!52~a11a2!

p2\2n2

2m0W
2 2D8

6AS 3a2

p2\2n2

2m0W
2 1D9D 212D2

2, ~45!

where the strain-related parametersD , D8, andD9 are given
by Eq. ~31!.

D. Finite quantum well

For a finite QW occupying the region2W/2,z,W/2,
we assume the potential for holes is equal to 0 inside the QW
and2V0 outside the QW. Solution of the Schro¨dinger equa-
tion insidethe QW should be sought as a linear combination
of six bulk eigenvectors@given in Eqs.~38! and~39!# corre-
sponding to a negative energyE. For the bound states, the
wave functionsoutsidethe well should be constructed as two

linear combinations~for z,2W/2 and z.W/2) of three
evanescent solutions~with j5A,B,C! with positive energy
E1V0:

FE1V0 ,k'

~ j ! 5e2ukz juzF Kj

L j

M j

G eik'–r'

L
. ~46!

Here, kz j is a purely imaginaryz component of the wave
vector corresponding to a positive energyE1V0 , i.e.,

E1V05Ej~kz j ,k'!. ~47!

Twelve unknown coefficients of the linear combinations
~six for the well and three for each barrier! should be found
from boundary conditions at each interface, which can be
written as

Fl5Fr , ~48!

J lFl5J rFr . ~49!

Here the indicesl andr refer to values of the parameters on
the left and right sides of the interface. Equation~48! is a
requirement of continuity of the wave functionF, and Eq.
~49! is obtained in a standard way by integrating the Schro¨-
dinger equation@Eq. ~35!# across the interface.26,28Thus the
matrixJ can be obtained from the Hamiltonian given in Eq.
~11! by a formal replacementk̂z

2[2]2/]z2→2]/]z,
k̂z[2 i ]/]z→2 i , and settingkz-independent terms to zero.
Canceling the common factors of\2/2m0 , we find from Eqs.
~11! and ~18!

J5F ~a122a2!]/]z 2A3a6k' 2A6a6k'

22A3a6k' ~a112a2!]/]z 22A2a2]/]z23A2a6k'

A6a6k' 22A2a2]/]z13A2a6k' a1]/]z
G . ~50!

In many cases the difference between the parametersa i for
Hamiltonians in the well and in the barriers can be neglected.
For example, for an AlxGa12xN/GaN/AlxGa12xN QW, a
strong carrier confinement is achieved at small composition
fraction x;0.1. In this case the second boundary condition
~49! can be simplified with the help of Eq.~48! to

F 1 0 0

0 a112a2 22A2a2

0 22A2a2 a1

G ]

]z
~Fl2Fr !50. ~51!

Matching of the solutions of Eqs.~38!, ~39!, ~40!, and
~46! at the interfacesz56W/2 with the use of the boundary
conditions described in Eqs.~48!–~51! gives the hole disper-
sion relations in a finite QW in terms of a 12312 determi-
nant, which we do not write here in an explicit form. The
resulting secular equation defines three finite sets of hole
subbands corresponding to theA,B, andC types, localized
in the vicinity of the QW. As in the case of an infinitely deep

QW, analytical expressions can be derived for the edges of
the valence bands atk'50. At k'50 there are two impor-
tant simplifications:~i! bandA is decoupled from bandsB
andC, and~ii ! solutions with defined parity~symmetric and
antisymmetric! with respect to thez direction can be used
@see Eqs.~42!, ~43!, and~46!#. The positions of the subband
edges are found by imposing the boundary conditions of Eqs.
~48! and ~49! on the trial wave functions.

1. Edges of A subbands

Using Eqs.~29! and ~47! we the express wave vectors
kz ~in the well! andkz ~in the barriers! in terms of the energy
E:

kzA
2 5

2mAw

\2 ~2E2Dw!. ~52!

The expression forkz
2 can be obtained by changingE to

E1V0 and the indicesw to b in Eq. ~52!. Here, the ‘‘effec-
tive’’ massmA5m0 /(a122a2); indicesw andb denote the
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values of parameters in the well and barriers. Note thatkz
2 is

positive, and for bound stateskz
2 is negative. Matching of

wave functions at the boundaries gives a transcendental
equation forsymmetricstates at theA subband edges, similar
to that for an electron in a finite QW:26

AmAb

mAw
tan

kzAW

2
5A2mAw~V01Db2Dw!

\2kzA
2 21. ~53!

Energies ofantisymmetricstates are specified by Eq.~53!
with tan(kzAW/2) replaced by2cot(kzAW/2).

2. Edges of subbands B and C

Using Eq.~30!, we find that the dependence ofkz
2 on the

energyE is given by the solution of the biquadratic equation

~a1
212a1a228a2

2!S \2kz
2

2m0
D 212@~E1D8!~a11a2!

23a2D9#S \2kz
2

2m0
D 1~E1D8!22~D9!222D2

250, ~54!

where the parametersa, D , andD2 should be take from the
well region. Note thatkzB

2 (kzC) is given by the larger
~smaller! of the two solutions of Eq.~54!. For the barrier
region, the equation forkz

2 in terms of energyE can be
obtained from Eq.~54! by substituting kz

2 for kz
2 and

E1V0 for E, and taking barrier values for the rest of the
parameters. Matching of the well and barrier wave functions
at the interface leads to Eq.~65! ~see Appendix D!. For the
case of constant parametersa1 anda2 across the interface, it
is found that the subband positions forB andC, as well as
subbandA, are specified by a standard condition,

tan
kz jW

2
5

ukz ju
kz j

~55!

for symmetric states, and

2cot
kz jW

2
5

ukz ju
kz j

~56!

for antisymmetric states.

V. CONCLUSIONS

In this paper, we have studied the valence bands for bulk
and quantum well materials with hexagonal symmetry in the
presence of strain. The practical aspects of this study are
motivated by a recent rapid growth of interest in wide band
gap nitride semiconductors in their wurtzite polytype for op-
toelectronic applications. From a theoretical viewpoint, va-
lence bands in wurtzite structures allow a richer set of physi-
cal phenomena compared to the extensively studied zinc-
blende materials.

We consider the three topmost valence bands within the
envelope-function formalism, starting from the
Rashba-Sheka-Pikus14,15636 matrix Hamiltonian which in-

cludes the effects of strain. Using a unitary transformation
the RSP Hamiltonian is diagonalized to obtain a more con-
venient block-diagonal form with two nonzero 333 blocks.
Comparison of these 333 wurtzite Hamiltonians with simi-
lar results obtained for cubic materials23 leads to a physically
meaningful quasicubic approximation,17 which then allows
reduction of the number of fitting parameters in the RSP
Hamiltonian from 8 to 2.

Based on the block-diagonalized form of the Hamiltonian,
we have constructed a solution of the Schro¨dinger equation
for holes in wurtzite quantum wells and obtained relatively
simple analytical expressions for the valence-subband edges
in QW’s. The lack of experimental data for nitride valence
bands does not allow us to make numerical calculations for
hole dispersion relations in bulk and QW structures. How-
ever, our theoretical analysis allows an evaluation of un-
known parameters of the Hamiltonian by fitting theoretical
values for shifts of the QW valence-band edges to experi-
mental results. The observed blueshift in band-to-bandpho-
toluminescenceexperiments on nitride QWs22 is attributed
mainly to the much lighter electrons and the effect of strain.
Thus these types of measurements do not permit extracting
accurate information about valence-band parameters. To ob-
tain these parameters, the effect related to valence bands
should be singled out, e.g., in absorption- or reflectance-type
experiments in nitride QW’s.
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APPENDIX A: SYMMETRY OPERATIONS

In this appendix, it is verified that the Hamiltonian given
in Eq. ~1! is invariant under the operations of point group
C6v ~rotations around axisz and mirror reflections in the
vertical planes! and time reversal.17,26

It is noted that~a! the wave vectork transforms as an
axial vector;~b! the components of the symmetric strain ten-
sore i j transform as the product of two axial vectorskikj8 and
~c! the operators of angular momenta 3/2 and 1/2, vectors
J and s, transform as a polar vectorL . Under rotation of
the coordinate system through an anglew around thez axis,
the componentskz , Lz , «' , and«zz remain unchanged; the
rest of the components change as follows:

k6→e7 iwk6 , L6[Lx6 iL y→e7 iwL6 ,

«6z→e7 iw«6z , «6→e7 i2w«6 . ~A1!

The operation of mirror reflection, e.g., in thexz plane, can
be represented as a product of rotationC2y around axisy and
inversion I , i.e., sxz5C2y3I . Noting that axial~polar!
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vectors do~not! change sign under inversion, and transform
in the same way under rotations, it is found that

sxzkz5kz , sxzk65k7 ,

sxzLz52Lz , sxzL652L7 . ~A2!

The operation of time reversal changes the signs of vectors
k andL and leads to complex conjugation, i.e.,

kz→2kz , k6→2k7 , i→2 i , ~A3!

and the same transformation rules hold for components of
the polar vectorL . It is easy to see that the form given in Eq.

~1! is invariant15 under transformations described in Eqs.
~57!–~59!. Note that a choice of vertical reflection plane
other thanxz does not change the invariance of the Hamil-
tonian @Eq. ~1!#.

APPENDIX B: GENERAL FORM OF DIAGONALIZING
TRANSFORMATION

Direct substitution shows that the Hamiltonian given in
Eq. ~7! in the basisu 32,m&, u 12,m& is transformed to a block-
diagonal form of Eq.~10! by a unitary transformation speci-
fied by the matrix

U5
1

A2 S ae2 i3w/2 0 0 7 iaei3w/2 0 0

0 be2 iw/2 6 ibeiw/2 0 0 0

0 0 0 0 ge2 iw/2 7 igeiw/2

a* e2 i3w/2 0 0 6 ia* ei3w/2 0 0

0 b* e2 iw/2 7 ib* eiw/2 0 0 0

0 0 0 0 g* e2 iw/2 6 ig* eiw/2

D , ~B1!

where uau5ubu5ugu51 should be specified, as well as the choice of the upper or lower signs in the elements of the
transformation matrix. The matrix shown in Eq.~B1! can be written in more elegant form by rearranging the order of the basis
functions of the Hamiltonian@Eq. ~7!#, but that would complicate comparison of the wurtzite and zinc-blende Hamiltonians.
Application of the unitary transformation@Eq. ~B1!# to Eq. ~7! results in the block-diagonalized form of Eq.~10! with the
upper blockHU given by

HU52UU P1Q a*b@6 iR2S 1 i2A3T # 2a* gF7 iA2R2
S

A2
1 iA6T G

ab* @7 iR2S 2 i2A3T # P2Q24~D86T ! b* gFA2~Q2D87T !6 iA3

2
S G

2ag* F6 iA2R2
S

A2
2 iA6T G bg* FA2~Q2D87T !7 iA3

2
S G P13D214~D86T !

UU ,
~B2!

and the lower blockHL can be obtained fromHU by taking
the complex conjugation and changingT to 2T . Choosing
the upper signs and puttinga51 andb5g5 i in Eqs.~B1!
and ~B2!, we reproduce the transformation and the Hamil-
tonian of Eqs.~8!–~11! used throughout the paper. This par-
ticular choice of transformation allows us to obtain a block-
diagonal form of the wurtzite Hamiltonian which is
maximally close to that for zinc-blende structures.23

APPENDIX C: QW PARALLEL TO AXIS Z

In Sec. IV C, we obtained analytical expressions for
valence-subband edges in a QW perpendicular to thez axis
~i.e., grown along thez axis!. Here, we consider the case of
an infinite QW parallel to thexz plane, occupying the region
2Wy/2,y,Wy/2.

The subband edges correspond to zero in-plane wavevec-
tor (kx5kz50). Assuming that the nondiagonal strain com-
ponents are equal to zero («xz5«yz50), it is found that the

parameterS , defined by Eq.~18!, vanishes. In this case the
imaginary partsK9, L9, andM 9 of the components of eigen-
vectors~27! are equal to zero, and it is possible to define the
sets of eigenvectors which are symmetricalFE,kx5kz50

( j1) and

antisymmetricalFE,kx5kz50
( j2) with respect to thexz plane,

similar to Eqs.~42! and~43! for a QW perpendicular to thez
axis:

FE,kx5kz50
~ j1 ! 5

cosky jy

L F Kj

L j

M j

G ,
FE,kx5kz50

~ j2 ! 5
sinky jy

L F Kj

L j

M j

G . ~C1!

Here j5A,B,C and the parametersK, L, andM , defined by
Eq. ~27!, are taken atkx5kz50. From the boundary condi-
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tions of Eq.~36!, we find that the allowed values ofky j are
even or odd integer multiplies ofp/Wy . Thus the positions
of the subband edges corresponding to valence bands
j5A,B,C are specified by a discrete quantum numbernj and
are equal to

En
~ j !5Ej S kx50,ky5

pn

Wy
,kz50D , ~C2!

where the bulk dispersion relationEj (kx ,ky ,kz) is specified
by the cubic equation@Eq. ~23!#.

APPENDIX D: SUBBANDS B AND C IN FINITE QW

For the tops of valence subbandsj5B,C (k'50) accord-
ing to Eq.~42!, we can write the symmetric wave functions
in the wellF and the right barrierF8 as

F5Fc1c2Gcoskz jz, F85Fc18
c28

Gexp~2ukz juz!. ~D1!

Matching functionsF andF8 at z5W/2 with the help of the
boundary conditions given in Eqs.~48!–~50!, the equation
for the edges of subbandsB andC is found to be

U 1 1 0 0

0 0 1 1

2~a1w12a2w!kz jtan~kz jW/2! 2~a1b12a2b!ukz ju A8a2wkz jtan~kz jW/2! A8a2bukz ju

A8a2wkz jtan~kz jW/2! A8a2bukz ju 2a1wkz jtan~kz jW/2! 2a1bukz ju
U50. ~D2!

Here the indicesw andb refer to the values of the parametersa1 anda2 in the well and barrier; the dependence ofkzB,C and
kzB,C is specified by Eq.~54!. The equation for the subband edges corresponding toantisymmetricstates can be obtained from
Eq. ~D2! by changing all tangents to negative cotangents. In the case of parametersa1 anda2 being constant across the
interface, Eq.~D2! is reduced to Eq.~55!.
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