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'H NMR study of spin dynamics in the |1 ,-doped PBMPV conducting polymers
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We have studied the room-temperature spin dynamics in a seriesdufped poly2-buthoxy-5-methoxy
phenylenevinylerie(PBMPV) conducting polymers by means 8 NMR in the Larmor frequency range 20
to 45 MHz. The nuclear magnetization recovery of thedbped(PBMPV) conducting polymers showed a
stretched-exponential form, and the spin-lattice relaxation rate was inversely proportional to the square root of
the *H Larmor frequency. Our results are consistent with the one-dimensional spin diffusion of the mobile
spin-carrying polarons along the main chain, and gave the intrachain diffusion constant as a function of the
electrical conductivity.

I. INTRODUCTION polymer samples were prepared by spin coating and iodine
doping, and the iodine concentration was determined as pre-
The conducting polymers have recently been the subjectiously described? The thin-film samples were a few mi-
of much experimental studies. When doped with electrorcrometers thick, and visual inspection showed some inho-
donors or acceptors, they can give remarkable electricahogenity. The four-in-line-probe method was employed for
conductivitiest The electrical conductivity is known to be the conductivity measurements.
governed by the one-dimensional diffusion of the charge- The samples were sealed in helium atmospherelfr
carrying solitons or polarons. Electron paramagnetic resoONMR measurements in the Larmor frequency range 20—45
nance and nuclear magnetic resona(id®IR) are powerful MHz at room temperature. The spin-lattice relaxation was
tools for spin dynamicé;!! and have been employed to measured by the inversion recovery method, and the line
study polyacetyleng, polypyrrole® polythiophend, and  shapes were obtained from the solid echoes. All the fits for
polyaniline®® In this work, we have investigated thtH  the experimental data were made using the least-squares
NMR line shapes and the nuclear spin-lattice relaxations amethod.
various Larmor frequencies in a series gfdoped poly2-
buthoxy-5-methoxy phenylenevinylehé®BMPV) samples.
The main charge-transfer mechanism in conducting poly-
mers is known to be the intrachain diffusion and the inter- The electrical conductivity for various degrees of doping

Ill. RESULTS AND DISCUSSION
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chain hopping of polarons and/or bipolardAs® In one- is shown in Fig. 2. The conductivity increases rapidly, before
dimensional structured systems, the nuclear spin-latticeecoming saturated at heavier doping. The maximum con-
relaxation rate is expressed in terms of the intrachain diffuductivity is about 18 S/cm.
sion constanD | and the interchain diffusion constabt, The *H NMR line shape for the undoped PBMPV and
ag 1 that for a heavily doped one are shown in Fig. 3. They con-
sist of a relatively broad and a narrow component. The nar-
i:(g) (%) 42 (@) + f(wy) (1) row component can be attributed to the main chiihsites
T, \4/[\5 “n @el | experiencing modulated magnetic fields by the mobile
charge carrier spins, while the broad component can be at-
1 (1+41+ (w/zoL)Z) 12 ? tributed to the side chaifH sites, which are less affected by
—— 2 , the mobile spins.
4D||Dl\ 1+(w/2D,) The typical magnetization recovery i3-toped PBMPV
wherew, and w, are the nuclear and electronic Larmor fre-
guencies, respectively.is the spin concentratiom, the sca- oc Hg
lar coupling constant, and the dipolar hyperfine coupling
constant. Thus, the spin-lattice relaxation rate is inversely
proportional to the square root of the NMR Larmor fre-
guency in the one-dimensional spin-diffusion case, i.e., in the —
limit of small interchain diffusion constar | . \

Il. EXPERIMENT — =N
OCH4

The structure of PBMPV, a derivative of PRyolyphe-
nylenevinyleng is shown in Fig. 1. The PBMPV conducting FIG. 1. The PBMPYV structure.
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Degree of doping/RU FIG. 4. Nuclear spin-lattice magnetization recovery in an

I,-doped PBMPV sample with a conductivity ef 10 S/cm.

FIG. 2. Electrical conductivity as a function of the degree of
doping. vestigated for all the samples, indicating that the main spin-
lattice relaxation mechanism is the one-dimensional spin dif-
is shown in Fig. 4. It is not well described by a single- or afusion. Assuming that the degree of doping is proportional to
double-exponential function, but can only be well describedhe spin concentrationand that the interchain diffusion con-
by a stretched-exponential forv} (t) =M [1—expt/T,)"], stantD, is negligible as is indicated in Fig. 5, the slopes in
with n=0.8+0.03. A stretched-exponential form is charac- Fig.- 5 and Egs(1) and (2) can give a relation between the
teristic of a system with a distribution of the correlation intrachain diffusion constanD; and the dc conductivity,
time X which is believed to arise from the inhomogeniousWhich is shown in Fig. 6. It shows tha, increases with the
charge-carrier environments created by theloping in our ~ conductivity, roughly obeying a power laif.
case. This seems to reflect relative inhomogeneity in this Figure 7a) shows the spin-lattice relaxation rafg * vs
series of PBMPV samples. the dc conductivityo at various NMR frequencies. A single

Figure 5 shows the Larmor frequency dependence of the
spin-lattice relaxation rat€l/T,) for samples with various

S : . . : 30— : . .
conductivities. It is seen that the spin-lattice relaxation rate ' ' ' '
has a lineaw ~ "2 dependence over the frequency range in- : ig"ld;gjd
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ation rate 1T, for samples with various electrical dc conductivities.
FIG. 3. 'H NMR line shape for the undoped PBMPV sample The data scatter in the range 0.5 S/cm is simply due to the smaller
and that for an J-doped sample with a conductivity ef 10 S/cm.  sample quantity resulting in a poorer signal-to-noise ratio.
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power-law relation was sought, and the relation 184 i
T1_1=A0'”+ b gave a resonable fit at all the frequencies with
n=0.08+0.007 andb=0.3=0.07. However, theA values
were dependent on the NMR frequency, which is shown in 16- ]
Fig. 7(b). This is believed to reflect the frequency depen- []
dence of the electrical conductivity in our NMR frequency [
range. 14 J
In summary, we have measured thd NMR spin-lattice <
relaxation times over a Larmor frequency range from 20—45 u
MHz in 1 ,-doped samples of PBMPV conducting polymers. 124 = 3
For all the samples with various conductivities, the spin-
lattice relaxation rate was inversely proportional to the
square root of théH Larmor frequency, and no dimensional 10- =
crossovers were observed in our frequency range. It can be
concluded that the conduction mechanism ig-dbped
PBMPYV is dominated by the one-dimensional spin diffusion e S —
along the main chain. In addition, the intrachain diffusion 10 15 20 25 30 35 40 45 50
constant could be obtained as a function of the spin concen- Larmor frequency (MHz)

tration (or degree of dopingand the electrical conductivity.

FIG. 7. (a) Spin-lattice relaxation rate vs the dc conductivity.
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