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A theoretical study of the resonant magneto-optical spin-flip transitions due to electrons bound to shallow
donors is made. We present a general formalism of the integrated absorption coefficient for semiconductors
having an arbitrary crystal structure. The model is based on the parity-violating spin-orbit interaction respon-
sible for the active electric-dipole transition. Simple analytic expressions of the integrated absorption coeffi-
cient are obtained for the Faraday and Voigt field configurations and for any crystals having zinc-blende and
wurtzite structure, respectively. A comparison between theory and far-infrared magneto-optical transmission
measurements in InSb and Cd0.9Mn0.1Se yields to the strength of the spin-orbit interaction and effective Bohr
radius of the donors involved.

I. INTRODUCTION

Far-infrared laser spectroscopy is a useful tool to probe
the natures of shallow donors and the band-structure param-
eters in III-V and II-VI compound semiconductors. Here we
concentrate on the study of resonant magneto-optical spin-
flip transitions. Far-infrared observations of electric-dipole-
induced electron-spin resonance~EDSR! were reported for
the first time more than 20 years ago.1,2This pioneering work
has given rise to a great deal of EDSR measurements involv-
ing either conduction electrons or donor electrons both in the
cubic ~zinc-blende! structure3–9 and in the hexagonal~wurtz-
ite! structure.10,11The observed spin resonance is a magneto-
optical spin-flip transition between two spin states belonging
to the same Landau subband of the conduction electron, or
the same orbital ground state of the donor electron. Surpris-
ingly, the intensity of the spin-resonance line is up to two
orders of magnitude stronger than the symmetry-allowed
magnetic-dipole interaction due to the intrinsic magnetic mo-
ment of the electron. Furthermore, its intensity is anisotropic,
and changes when the applied magnetic field is reversed or
the direction of the incidence radiation is modified.6,7

The above experimental facts have been attributed to the
combined action of the magnetic-dipole amplitude and the
electric-dipole contribution arising from a parity-violating
coupling process which mixes states with opposite spin ori-
entations and parities.12 Different coupling mechanisms have
been proposed by theoretical investigations: the effect of
spin-orbit coupling in crystals lacking centers of inversion
symmetry,10,11,13–20 the nonparabolicity of the conduction
band,21–24the warping of constant energy,25 inhomogeneities
that lower the symmetry of the crystal,26,27 and the effect of
exchange interaction in semimagnetic semiconductors.28–30

A critical analysis of the previously mentioned experi-
mental and theoretical studies show that the predominant
contribution to the coupling mechanism arises from spin-
orbit interaction with inversion asymmetry. From group-
theoretical arguments, this interaction is linear in the electron

quasimomentumk for the materials having a wurtzite struc-
ture, and proportional tok3 in materials having a zinc-blende
structure, respectively.

The present work attempts to develop a theory of EDSR
transitions based on the spin-orbit coupling mechanism but
avoiding the knowledge of the crystal symmetry up to the
last step of the calculations of the integrated absorption co-
efficient.

Section II is devoted to a general formalism based on
Dalgarno’s ‘‘operator technique’’ in perturbation theory.
Simple analytic expressions of the electric-dipole operator
are obtained for intermediate and weak magnetic-field inten-
sities. In Sec. III we apply the results of Sec. II to the deter-
mination of the integrated absorption coefficient in cubic
(Td) and hexagonal (C6v) crystals. In Sec. IV we analyze
the far-infrared magneto-optical transmission data in InSb
~Ref. 8! and Cd0.9Mn0.1Se ~Refs. 10 and 11! on the basis of
previously obtained results.

II. GENERAL FORMALISM

We consider the absorption of an electromagnetic wave of
frequencyv and intensityI 0 by bound electrons in the pres-
ence of a uniform magnetic fieldB05“3A0 corresponding
to the vector potentialA0. Let A be the vector potential of
the electromagnetic wave with a wave vectorq propagating
along the direction of the unit vectorq5n(v/c)q̂ in a mate-
rial of index of refractionn and polarized along the«̂ direc-
tion. Since we are only interested in the one-photon process,
the electron-photon interaction is linear in the vector poten-
tial A and the alternating field of the incident radiationB.

As mentioned in Sec. I, we concentrate only on resonant
transitions. At the resonant frequencyv5vf i , the inte-
grated absorption coefficientaI5aG0 is given by20,31

a I52p
ne
n

va0z^c f uM uc i& z2, ~2.1a!
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M5
1

\v
$@«̂•r ,H#,eiq•r%2

n

e H ~ q̂3 «̂ !
]H

]B0
,eiq•rJ .

~2.1b!

H is the effective-mass Hamiltonian of the electron bound to
the donor and in the presence of a uniform magnetic field,
a05e2/\c is the fine-structure constant,ne is the number of
electrons per unit volume involved in the absorption process,
andG0 is the full width at half-height of the absorption line.
Here, and in what follows,@m,n# and$m,n%, respectively, de-
note the commutator and anticommutator of the operatorsm
andn.

We describe the statesuc& in Eq. ~2.1! within the theory of
shallows donors.32 We choose a Cartesian coordinate system
~ĵ,ĥ,ẑ! whoseẑ axis is parallel toB0. Notice that this coor-
dinate system is in general distinct from the cubic axisx̂,ŷ,ẑ
for a given experimental field configuration. Using the sym-
metric configuration gauge, for the effective-mass Hamil-
tonianH we obtain

H5H01Hs1HSO, ~2.2a!

H05
p2

2m* 2
2

e2

«0r
1mB

m0

m*
B0Lz1

1

8

e2B0
2

m* c
~j21h2!

~2.2b!

Hs5 1
2gmBB0sz , ~2.2c!

HSO is the spin-orbit coupling. Herem* andm0 respectively,
are the effective mass of the electron and the free-electron
mass;«0 is the static dielectric constant;mB is the Bohr mag-
neton; andg is the effective Lande´ g factor of the bound
electron.

Of course for a given crystal symmetry, the Hamiltonian
operator Eq.~2.2! contains, in addition, higher-order terms in
the electron wave vectork5p/\1A0/\c. In the present paper
we neglect these contributions, as well as the weak anisot-
ropy of the effective Lande´ g factor.8,19,33Nevertheless, we
take into account the inversion-asymmetric form of the spin-
orbit Hamiltonian operatorHSO, as demonstrated in Sec. III.

Let HSO be a small perturbation with respect toH01Hs ,
and suppose that the state vectors$un,s&% with orbital quan-
tum numbers denoted collectively byn and spin quantum
numberss, are solutions of

~H01Hs!un,s&5~En1gmBB0s!un,s&. ~2.3!

However, the transitions involved in expression~2.1! are
related to the statesuci& and ucf& of the total Hamiltonian
operatorH. It is convenient to describe these states by means
of the unitary transformationeiS acting on the imperturbed
statesun,s&: uc i&5eiSun,s& and uc f&5eiSun8,s8&. The Her-
mitian operatorS is then determined so that the quantitye2 iS

HeiS is diagonal in the representation$un,s&%. As a result,S is
given by the condition

HSO1 i @H01Hs ,S#50 ~2.4!

to first order inHSO. Condition ~2.4! clearly shows that at
the first order inS, the integrated absorption coefficient ob-
tained from Eq.~2.1!

a I52p
ne
n

va0u^n8,s8uM1 i @M ,S#un,s&u2, ~2.5!

leads to an additional contribution ([M ,S]) due to spin-orbit
coupling.34,35

Here we limit ourselves to electric-dipole and magnetic-
dipole transitions between the Zeeman sublevelsu61

2& asso-
ciated with the donor ground stateu0&. Since the transition
takes place in the donor ground state, only the part
(M1 i [M ,S]) g , which is even under inversion, has to be
considered in Eq.~2.5!. Using relation~2.4! and the Jacoby
identity, for the even-parity transition operator we obtain

~M1 i @M ,S# !g5
2i

\v
$H01Hs ,@S,«̂•r #%2

n

2
g|~ q̂3 «̂ !•s.

~2.6!

Here| is the Compton wavelength.
The first contribution on the right-hand side of Eq.~2.6! is

responsible for the parity-violating electric-dipole transition,
whereas the second term in the right-hand side of Eq.~2.6!
leads to the well-known paramagnetic resonance. We now
exploit the fact that we are interested in spin-flip transitions
which connect the two statesu0,12& andu0,21

2&. Therefore, it is
useful to express the operatorsS andHSO in terms of the
Pauli matricessj , sh , andsz and their linear combinations

s65sj6 ish ~2.7!

defining

S5Szsz1 1
2S1s21 1

2S2s1 ~2.8a!

and

HSO5Hzsz1 1
2H1s21 1

2H2s1 . ~2.8b!

Condition ~2.4! requires

Hz1 i @H0 ,Sz#50, ~2.9a!

H61 i @H0 ,S6#7 igmBB0S650. ~2.9b!

Finally, inserting Eq.~2.9! into Eq.~2.6!, the spin-flip matrix
elements become

^0,7 1
2 u~M1 i @M ,S# !u0,6 1

2 &5 i H 7^0u@S6 ,«̂•r #u0&

2 i
n

4
g|~ q̂3 «̂ !6J

~2.10!

at the resonant condition\v5gmBB0 .
The absorption process associated with a transition from

stateu0,12& to stateu0,2
1
2& @upper signs in Eq.~2.10!# occurs in

crystals with a negative Lande´ g factor, while for crystals
with a positive Lande´ g factor this process takes place from
the lower stateu0,2 1

2& to the upper stateu0,12&.
We notice that the paramagnetic contribution in Eq.~2.10!

is obtained in a straightforward manner for a given field con-
figuration. In order to carry out the expectation value over
the orbital ground stateu0& involved in the electric-dipole
contribution of Eq.~2.10!, we introduce a complete orthogo-
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nal set of eigenvectors ofH0 with the eigenvaluesEn . Using
Eq. ~2.9b!, this allows us to write

^0u@S6 ,«̂•r #u0&52 i(
n

S ^0uH6un&^nu«̂•r u0&
En2E06gmBB0

1
^0u«̂•r un&^nuH6u0&
En2E07gmBB0

D , ~2.11!

From expression~2.11! it is evident that the spin-orbit
coupling mixes orbital statesun& of different parity, and that
the predominant contributions to the electric-dipole transi-
tion intensity arises from the terms in the sum overn having
small denominators. Therefore, crystals with shallow donors
and large Lande´ g factors seem to be the best candidates for
observing such transitions.

We know that an exact solution for the statesun& is not
available. Previous calculations11,15 have limited themselves
to one or two terms in the sum overn and at weak magnetic-
field intensities.18,19 Here we shall eliminate the summation
over the intermediate statesun& ~including the continuum
states! by means of the so-called ‘‘operator technique’’ first
used by Dalgarno and Lewis.36 Since then, this technique has
been successfully applied to a great number of problems19,37

in the framework of perturbation theory.
We define the dipole operators satisfying the conditions

~@D6̂,H0̂#7gmBB0D6̂!u0&5 «̂•r u0&. ~2.12!

Inserting Eq. ~2.12! into Eq. ~2.11! leads directly to the
simple form

^0u@S6 ,«̂•r #u0&5 i ^0uH6D6̂1D7̂
†H6u0& ~2.13!

for the electric-dipole contribution.
Finally taking into account Eqs.~2.5!, ~2.6!, ~2.10!, and

~2.13!, the integrated absorption coefficient is given by

a I52p
ne
n

va0u^0,7
1
2 u~M1 i @M ,S# !gu0,6

1
2 &u2,

~2.14a!

with

^0,7 1
2 u~M1 i @M ,S# !gu0,6

1
2 &56^0uH6D61D7

† H6u0&

1
n

4
g|~ q̂3 «̂ !6 . ~2.14b!

It is worthwhile to notice that this approach enables us to
determine the integrated absorption coefficient for any kind
of crystal structure, i.e., for any form of the spin-orbit inter-
action provided. We know the expressions for the electric-
dipole operatorsD6 from Eq. ~2.12!. This means that an
accurate description of only the orbital ground state is re-
quired in order to find solutions for the operatorsD6 , which
we assume to be functions of positions alone. For the
ground-state wave function̂r u0& we choose the following
trial envelope function:

^r u0&5
1

A~2p!3/2a* t
2a* l

exp2S j21h2

4at*
2 1

z2

4al*
2D

~2.15!

whereat*5a* at andal*5a* al ~a*5«0\
2/m* e2 is the ef-

fective Bohr radius! are physical parameters describing the
electron orbit respectively in the plane perpendicular to the
direction of the magnetic fieldB0 and parallel to the direction
of B0.

This is the well-known trial function proposed by Yafet,
Keyes, and Adams38 for the problem described byH0 @see
Eq. ~2.2b!#. The variational parametersat and al are then
obtained, minimizing the expression for the energy:

E~at ,al !5R* F 1

2at
2 S 11

«2

2 D 1
g2at

2

2
2S 2p D 1/2«~12«2!1/2

3 ln
12~12«2!1/2

11~12«2!1/2G , ~2.16a!

with

«5
at
al
, ~2.16b!

Here we have used effective units: 2R*5m* e4/« 0
2\2 is the

unit of energy, anda* is the unit of length.g5mB(m0/
m* )(B0/R* ), andR05A\c/eB0 is the Landau length.

We know that this trial function is an excellent description
of a donor in the presence of a magnetic field forg.1, and is
even satisfactory forg,1. Moreover, it has the advantage of
providing exact solutions to equations~2.12!, as we shall see
later. Finally, we shall show in Sec. III that resonant spin-flip
transition intensities associated with conduction electrons are
recovered, taking the limitsat51/Ag andal5`.

Substituting Eq.~2.15! into Eq. ~2.12!, we obtain the fol-
lowing differential equation forD6~r,u,w!:

a* 2¹2D6̂1
2a* 2

c0
“D6̂•“c01 ig

]D6̂

]w
7gg

m*

m0
D6̂

52
m* a* 2

\2 «̂•r , ~2.17!

whereu andw are the polar angles ofr with z as a polar axis.
Knowing the structure of«•r , the right-hand sight of equa-
tion Eq. ~2.17!, we search for a solution ofD6 in terms of
spherical harmonicsY1

ml(u,w). It is easily seen that due to
the orthogonality of the spherical harmonics, this solution is
restricted to the following form:

D6̂~r ,u,w!5
2m* a*

3

\2 @ «̂zD6
0 ~r !Y1

0~u,w!

1 «̂2D6
1 ~r !Y1

1~u,w!1 «̂1D6
21~r !Y1

21~u,w!#

~2.18!

Here«z corresponds to the linear polarization of the electric-
field vector along the direction of the unit vectorẑ and
«̂65( ĵ6 i ĥ)/& are, respectively, related to circularly polar-
ized light with positive and negative helicity.

Using the reduced variableR5r /a* , the coefficients
D

6

ml(ml :0,61) in Eq. ~2.18! satisfy the ‘‘radial’’ differential
equations
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d2D
6

ml

dR2
12S 1R2umlRD dD

6

ml

dR
2

2

R2 D6

ml2W
6

mlD
6

ml5R,

~2.19a!

with

W
6

ml5vml1G
6

ml ~2.19b!

G
6

ml5gSml6g
m*

m0
D . ~2.19c!

Forml50, we have

u05
1

2 S 25 1

at
2 1

3

5

1

al
2D , ~2.19d!

v052
2

5 S 1at22 1

al
2D , ~2.19e!

and, forml51,21,

u15u215
1

2 S 45 1

at
2 1

1

5

1

al
2D , ~2.19f!

v15v215
1

5 S 1at22 1

al
2D . ~2.19g!

A particular solution forD
6

ml is adequate as long as it
represents a physical acceptable solution of Eq.~2.19a!.
Therefore we attempt to find nonsingular solutions in the
form of a power series inR:

D
6

ml5 (
n50

`

an,mR
n. ~2.20!

SubstitutingD
6

ml in Eq. ~2.19!, and equating equal powers of
R, yields

a0,m
6 5a2,m

6 50, ~2.21a!

10a3,m
6 2~2um1W6

m!a1,m
6 51, ~2.21b!

18a4,m
6 2~4um1W6

m!a2,m
6 50, ~2.21c!

and, fora n,m
6 ,

~n21!~n12!an,m
6 2@2~n22!um1W6

m#an22,m
6 51.

~2.21d!

As a consequence, there are no even powers inR, and the
asymptotic solutions of Eq.~2.19!, asR tends to infinity, are
singular. However, there exists a polynomial solution satis-
fying the condition of Eq.~2.21b! with a 3,m

6 50. This leads
to the simple form

D
6

ml52
1

~2uml1vml !1G
6

ml
R. ~2.22!

Taking Eqs.~2.19! and Eq.~2.22! into account shows that
circular polarized waves affect the transverse electron orbit
of radiusat , while waves linearly polarized along the mag-

netic fieldB0 affect the longitudinal electron motion charac-
terized by the orbital radiusal .

In a similar manner, we can obtain an analytic expression
for the electric-dipole operator valid in the limitg!1. In this
limit, and in order to take into account the electronic length-
ening of the wave function along the magnetic field, it is
evident to choose a cylindrical~hydrogenic! for the envelope
function ^r u0&. Again, the solution of Eq.~2.12! can be writ-
ten in the form of Eq.~2.19!. However, as shown in the
Appendix, the radial coefficients are now expressed by a
series expression.

In order to obtain a more precise solution for the electric
dipole at all magnetic-field domains, we may consider the
following linear combination:

ccom5Ac11Bc2 . ~2.23!

A andB are variational parameters, andc1 ~c2! is the CYL
~YKA ! wave function. Calculations with this function are in
progress. Dexter39 has proposed a wave function with three
variational parameters for studying the hydrogenic impurity
polarizability. The com wave function has the advantage of
possessing only two variational parameters. On the other
hand, the Dexter wave function must be rejected for the
weak magnetic fields because the Bohr radius thus obtained
are greater than the unit and have no physical meaning. In
spite of this error the Dexter wave function is widely used in
the literature.

Knowing the explicit form of the electric-dipole operator,
we are now in a position to determine the integrated absorp-
tion coefficient for a given field configuration. This can be
easily achieved by carrying out the expectation values over
the orbital ground state@cf. Eq. ~2.14!# for a given form of
the spin-orbit interaction. In Sec. III we apply the present
formalism to materials of different crystal structure.

III. INTEGRATED ABSORPTION COEFFICIENT
IN HEXAGONAL AND CUBIC SEMICONDUCTORS

The purpose of the present section is to illustrate the gen-
eral formalism developed in Sec. II by considering absorp-
tion in the hexagonal~wurtzite! structure with point-group
symmetryC6v and in the cubic~zinc-blende! structure with
point-group symmetryTd , respectively. We calculate the in-
tensity of the electric-dipole spin resonance for different field
configurations.

A. Wurtzite structure

As mentioned above, the determination of the electric-
dipole spin-resonance contributions implies the knowledge
of the spin-orbit interactionHSO for a given crystal structure.
This information can be obtained in an elegant manner by
group-theoretical arguments based on the theory of invari-
ants. We search of a form of the spin-orbit interaction which
leaves the HamiltonianHSO invariant under the symmetry
operations of the point groupC6v, as well as under the op-
eration of time reversal. We construct this invariant with
products of the kinds ik j

n formed by the components of the
Pauli matricessx , sy , andsz , and the electron wave number
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componentskx , ky , and kz . Using the character table and
basic functions associated with the point groupC6v, we ob-
tain

HSO5
l

2
~ ŝ3k!•z1

l l

2
$kz

2,~ ŝ3k!•z%

1
l t

2
$~kx

21ky
2!,~ ŝ3k!•z% ~3.1!

if we restrict ourselves up ton53. Herel, ll , andlt are
phenomenological parameters characterizing the strength of
the spin-orbit coupling. For the purpose of the present work
we neglect the high-orderO(k3) term15 in Eq. ~3.1!.

In the usual experimental geometry for hexagonal crys-
tals, theĉ-crystal axis is taken along the cubicẑ axis, form-
ing an angleb with the magnetic field in the plane~ẑ,x̂!. The
crystal or the magnetic field is rotated about theŷ axis.
This leads to the following expression forHSO in the coor-
dinate system~ĵ,ĥ,ẑ!, with the ẑ axis alongB0:

HSO5
l

2
~ ĉ3s!•k, ~3.2a!

with

Hz5
l

2
sinbkh ~3.2b!

and

H657 i
l

2
@sinbkz1cosb~kj6 ikh!#. ~3.2c!

Using the envelope function Eq.~2.15! and the corre-
sponding electric-dipole operators Eqs.~2.18! and~2.22!, the
expectation value involved in the electric-dipole contribution
~2.13! can be obtained by straightforward integration. This
leads to the following analytic expressions for the integrated
absorption coefficient Eqs.~2.14!.

~i! Faraday configuration~B0iẑi ĉi n̂ andg.0!. We know
that only the polarization with positive helicity
«̂15( ĵ1 i ĥ)/& contributes@also called cyclotron resonance
active ~CRA!#. We find

a I5ne
g2n2

2c
a0|

2vUH 11
1

g2n2 S l

R* | D 2F 4mg

at
242G2G2J ,

~3.3!

G5g~122m!, ~3.4!

and

m5 1
2 ugu

m*

m0
, ~3.5!

and for the free-electron case (at51/Ag) we obtain an ex-
pression in agreement with previous work.18

~ii ! Parallel Voigt geometry~B0iẑi «̂, with n̂' ĉ and
B0iĉi ĵ!:

a I5ne
g2n2

4c
a0|

2vH 11
1

g2n2 S l

R* | D 2F 2G

G22
1

al
2
G 2J

~3.6!
taking the limiting case~al→`!, we obtain an expression in
agreement with the result obtained by Gopalanet al.18 for
band electrons.

B. Zinc-blende structure

For this structure, one can show that previously developed
symmetry arguments lead to the following13,20spin-orbit op-
eratorHSO:

HSO5d0s•k, ~3.7!

HSO5d0@sx•kx1sy•ky1sz•kz#, ~3.8a!

with

kx5kykxky2kzkxkz ~3.8b!

ky5kzkykz2kxkykx ~3.8c!

kz5kxkzkx2kykzky . ~3.8d!

To obtain the form of the spin-orbit operator according to Eq.
~2.8!, we use the Euler angles40 a, b, andg of the coordinate
system~ĵ,ĥ,ẑ! with respect to the cubic axis~x̂,ŷ,ẑ!.20

Proceeding in the same manner in Sec. III A we find the
following results for different field configurations.

~i! Faraday configuration~B0iq̂i ẑ!. We find

a I5nepg
2na0|

2vu $11 16
3 iACRI

b F0%u 2, ~3.9a!

with

ACRI
b 52

3d0A«0
4a0m

@P~g!2P~2g!# ~3.9b!

and

P~g!5
11at

2g

11at
2g~122m!

@12«21at
4g2#, ~3.9c!

F052 3
16 i sin2a sin2b sinb ~3.10!

for donor electrons.
Here we have take the polarization of negative heliticy

«̂25( ĵ2 i ĥ)/& @also called cyclotron resonance inactive
~CRI! polarization#. This situation corresponds, for instance,
to the case of InSb, whose effective Lande´ g factor is nega-
tive ~g,0!.

In the free-electron case (at51/Ag, al→`!, we recover
the value forACRI .

17 Thus

AC
b

AC
5~m21!@P~2g!2P~g!#. ~3.11!

~ii ! Parallel Voigt geometry~B0iẑ!, with n̂5~0,1,0! and
«̂5~0,0,1!. We obtain

a I5ne
p

2
g2na0|

2vu$1216iAOV
b F1%u2, ~3.12a!
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with

AOV
b 5

3d0A«0
a0

at
2g

~2mat
2g2«2!~2mat

2g1«2!

3@22«22~12g2at
4!#, ~3.12b!

F15
1
16e

ig@cos2a sin2b1 i sin2a sinb~3 cos2b21!#
~3.13!

for donor-bound electrons. For band electrons we recover the
value forAOV ,

17 which yields

AOV
b

AOV
5
2mat

2g~11mat
4g22«2!

@~2mat
2g!22«4#

. ~3.14!

IV. COMPARISON WITH EXPERIMENT

The object of the present section is to compare the theory
developed above to far-infrared magneto-optical transmis-
sion data respectively in InSb~Ref. 8! and Cd0.9Mn0.1Se.

10,11

Physical parameters characterizing the shallows donor in this
materials will be obtained from the best fit between the theo-
retical model and measurements.

A. Parallel Voigt configuration in n-type InSb

Barticevicet al.8 measured the spin-resonance absorption
coefficient for donor-bound electrons of InSb observed at
118.8 mm in the parallel Voigt geometry as a function of
orientation ofB0 in the ~1,1̄,1! plane. The measurements
were carried out at low temperatures~T54.5 K! with a value
of B0541.14 kG at the resonance.

In order to compare theory with experiment, we first have
to find the Euler angles corresponding to the experimental
situation.8 Therefore we take two unit vectorsû51/&@1,1,0#
and v51/A6@1,1,2# in the plane~1,1̄,1! and letu be the
angle betweenB0 and û.

Thus ĵ, ĥ, andẑ are known for a given angleu, and from
the definition of the Euler angles40 we obtain the relation

tana5
) cosu2sinu

) cosu1sinu
, ~4.1a!

cosb52A 2
3 sinu, ~4.1b!

tang52
1

& cosu
. ~4.1c!

Substituting Eq.~4.1! into Eq. ~3.12a! leads to the following
expression of the integrated absorption coefficient

a I5ne
p

2
g2na0l

2vu$11 f 1~x!AOV
b 1 f 2~x!~AOV

b !2%u2,

~4.2!

with

f 1~x!5
4

A6
x~324x2! ~4.3a!

and

f 2~x!5 1
3 ~1118x2248x4132x6!, ~4.3b!

x5cosu. ~4.3c!

The solid circles in Fig. 1 correspond to the measurements
taken from Ref. 8. The solid line is the theoretical curve Eqs.
~4.2! adjusted to the experiment. The best fit is obtained for a
value of the quantityAOV

b 56.260.4. From the analytic form
of Eqs.~4.2!, we know that the maxima of the oscillations in
Fig. 1 are given byx560.5 andx561. It is interesting to
note that the quantityAOV

b determines the minima of these
oscillations by the condition

AOV
b ~4x223!x5

3

A6
. ~4.4!

This difference in amplitude between the@0,1,1# direction
and the equivalent@1,1,0# and@1,0,1# directions is related to
the effect of electric-dipole–magnetic-dipole interference,
first discovered by Chenet al.7 and Gopalan, Furdyna, and
Rodriguez17 for the free-electron-spin resonance.

Knowing the quantityAOV
b we can now deduce a value

for the spin-orbit coupling parameterd0 from Eq. ~3.12b!.
We use the following material parameters for InSb:
m*50.013m0 and«0517.9.8 This leads a value ofg533.18
at B0541.14 kG and valuesat50.17 andal50.39 for the
variational parameters deduced from Eqs.~2.16!. At the reso-
nance condition\v5gmBB0 , the effective Lande´ g factor
is given by ugu543.82, which is in good agreement with
previous work.8 Inserting the above physical parameters into
expression~3.12! yieldsd0556.2363 u a5~2.260.2!310222

FIG. 1. Integrated absorption coefficient of a donor-bound elec-
tron of InSb observed at 118.8mm in the parallel Voigt geometry as
a function of orientation ofB0 in the ~1,1̄,1! plane. The measure-
ments, taken from Ref. 8, were carried out at low temperatures
~T54.5 K!. The solid line is the theoretical curve Eqs.~4.2! ad-
justed to the experiment, the best fit is obtained forAOV

b

56.260.4.
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eV cm. Within the experimental errors we find a value ford0
which is almost the same as the spin-orbit coupling param-
eter obtained for conduction electrons. This is very reason-
able, because additional contributions tod0 due to the impu-
rity potential are negligible with respect to the crystal
potential.

B. Faraday geometry in Cd12xMn xSe

Dobrowolskaet al.11 measured the frequency dependence
of the spin-resonance-integrated absorption coefficient of
Cd12xMnxSe in the Faraday configuration, and for several
temperatures. The experiment was carried out at wavelengths
varying from 251mm down to 95.5mm, and the resonant
condition \v5gmBB0 was obtained for magnetic-field in-
tensities varying from 0.5 to 8 T. The material parameters
m*50.12m0 and«0510.02 ~Ref. 42! related to CdSe yield
values of the physical parameterg50.296 for a magnetic
field equal to 10 T. Therefore we shall compare the experi-
mental data with theory using the cylindrical trial function in
order to describe the donor ground stateu0& in the presence of
a magnetic field. Inserting the expression for the dipole op-
erator Eqs.~2.18! and ~A8! ~see the Appendix! into Eq.
~2.14!, for the Faraday geometry we find

a I5
ne
2c

a0|
2v$«0g

21P2~v!%, ~4.5a!

with

P~v!5
2at

2l cosb

|R*
al

22g1(
l50

`

d tD t
2l11 ~4.5b!

D t5
hv

R*
at
2S 12

m0

gm* D , ~4.5c!

d t5S 104

91«2D
4lFul1v l

~91«2!2

10 G , ~4.5d!

ul510$ 4
3S~2l11!1@ 8

15S~2l12!2 2
15S~2l11!#~«221!%,

~4.5e!

v l5
1

~12gm* /m0!
$ 4
3S~2l11!@ 16

15S~2l12!

1 8
15S~2l11!#~«221!% ~4.5f!

S~ l !5 (
k50

l12

ck,l
61 ~21k!!

221k ~4.5g!

in the limit g!1, where only circularly polarized light with
positive helicity contributes toaI since the effective Lande´ g
factor is positive for Cd12xMnxSe, as we shall see. The co-
efficientck,l

ml is given by the recursion relations shown in the
Appendix. From Eqs.~4.5! we remark thataI ~v! is ex-
pressed in the form of an expansion in powers of the angular
frequencyv of the incident light. The linear contribution is
essentially imposed by the effective Lande´ g factor. More-
over, it can be shown that the sum overk.0 depends
strongly on the parametersl, at , andal . In the limit «51
~the isotrope caseat5al5a! Eqs.~4.5! agree with the result

obtained by Zorkani, Kartheuser, and Rodriguez,42 and in the
limit at5al51, b50, andl50,1, this equations agree with
previous calculations.18,19,41–44

We now compare the theoretical model with the experi-
mental data taken at 4.7 K for a magnetic field parallel to the
ĉ-crystal axis~b50! of the crystal and a donor concentration
ne5231016 cm23. In addition to the effective massm* , the
static dielectric constant«0, and the index of refractionn
5A«`, there remain four other material parameters to be
determined: the effective Lande´ g factor, the spin-orbit cou-
pling parameterl, the orbital radius described byat , and the
anisotropy parameter«.43

In the case of a semimagnetic semiconductor such as
Cd12xMnxSe, the effective Lande´ g factor depends substan-
tially on the temperature and applied magnetic field due to
exchange interaction between the localized 3d5 electrons of
Mn21 ions and the itinerant electrons.45 The energiesE1 of
the spin-up stateu0,11

2& and E2 of the spin-down state
u0,2 1

2& associated with the donor ground stateE0 can then be
written in the form

E65E06
1
2 ~g*mBB01Nsae^Sz&!, ~4.6a!

whereNs is the effective Mn21-ion density,ae is the ex-
change integral for thes-like G6 electrons, and̂Sz& is the
thermal average of the manganese spin in the magnetic-field
direction. Hence

E65E06
1
2gmBB0 , ~4.6b!

g5g*1
Nsae^Sz&

mBB0
, ~4.6c!

Hereg is an effective Lande´ g factor made up of two parts:
the intrinsic contribution and the magnetic contribution. The
intrinsic contributiong* is essentially related to band effects.
Here we take the valueg*50.560.1 for CdSe, as obtained
from magneto-optical studies of exciton states.46 In large-gap
semimagnetic semiconductors, the magnetic contribution re-
sulting from the exchange energyNsae^Sz& is the predomi-
nant contribution tog.

Expressing the exchange energy within the framework of
the molecular-field approximation, the effective Lande´ g fac-
tor is given by

g5g*1
5

2

Nsae

mBB0
B5/2~y!, ~4.7a!

y5
5

2

gMnmBB0

kB~T1TAF!
, ~4.7b!

whereB5/2(y) is the modified Brilluoin function,gMn52 is
the Lande´ g factor of the ion, andTAF is an effective tem-
perature related to the antiferromagnetic interaction between
Mn21 ions. In the experimental range of excitation energies
taken at the resonance condition\v5gmBB0 , we can ne-
glect the magnetic-field dependence ofg. Equations~4.7!
then reduce to

g5g*1
35

12

uNsaeu
kB~T1TAF!

gMn . ~4.8!
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Adjusting expression~4.8! to spin-flip Raman-scattering
data47,48performed on the same ingot of Cd0.9Mn0.1Se yields
uaeNsu511.9 andTAF52.7 K.

In Fig. 2 we have represented the integrated absorption
coefficient as a function of excitation energy. The solid
circles correspond to the measurements taken from Ref. 11.
The solid line is the theoretical curve Eqs.~4.5! adjusted to
the experiment withg5120 for T54.5 K; the best fit is
obtained forl5~2.4060.2!310210 eV cm, at543.5 Å, and
the anisotropy parameter«50.998. The present value ofl is
smaller than the~6.560.5!310210 eV cm reported in previ-
ous work,7,10,11but comparable tol52.45310210 eV cm re-
ported in previous calculations,49 to l52.7310210 eV cm
reported by Zorkani, Kartheuser, and Rodriguez,42 and to
l51.6310210 eV cm obtained from spin-flip Raman scatter-
ing in CdS by Romestain, Geschwind, and Delvin.50

Finally, Fig. 3 shows the angular dependence of the reso-
nant integrated absorption coefficient in Cd0.9Mn0.1Se when
the crystal is rotated about an axisĉ perpendicular to the
plane formed by theĉ axis and the field directionB0 fixed.

ACKNOWLEDGMENTS

The authors are grateful to S. Rodriguez, J. K. Furdyna
for stimulating discussion and M. Dobrowolska for provid-
ing us detailed data on their measurements.

APPENDIX

We derive the solution of the electric-dipole operator de-
fined in Eq.~2.17! in the limiting caseg!1. Here, for the

envelope function of the donor ground state, we choose the
trial wave function

^r u0&5
1

Apat*
2al*

exp2S j21h2

at*
2 1

z2

al*
2D 1/2. ~A1!

Requiring the form of the electric-dipole operator given by
Eqs. ~2.18!, and using the orthogonality relations of the
spherical harmonics we find from Eqs.~2.17! the following
differential equation~in unit R5r /a* !:

d2D
6

ml

dR2
12S 1R2aml D dD

6

ml

dR
2

2

R2 D6

ml2G
6

mlD
6

ml1
bml

R
D

6

ml

5R. ~A2!

Forml50,

a05
1

at
S 9101

1

10
«2D , ~A3a!

b05a0g0 , ~A3b!

with

g058
12«2

91«2
. ~A3c!

And, forml561,

FIG. 2. Integrated absorption coefficient of a donor-bound elec-
tron of Cd0.9Mn0.1Se as a function of excitation energy. The solid
circles correspond to the measurements in the Faraday configura-
tion, taken from Ref. 11. The solid line is the theoretical curve Eqs.
~4.5! adjusted to the experiment, the best fit is obtained forl5~2.40
60.2! 10210 eV cm,at543.5 A, and«50.998.

FIG. 3. The angular dependence of the integrated absorption
coefficient of a donor-bound electron in Cd0.9Mn0.1Se as a function
of orientation ofB0, when the crystal is rotated about an axisĉ
perpendicular to the plane formed by theĉ axis and the field direc-
tion B0 fixed. For a different field geometry and at a fixed excitation
energy\v5gmBB0 , whichB051.41 T andg5120. @Faraday, par-
allel Voigt ~VOIGT i!, and perpendicular Voigt~VOIGT'!#.
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a615
1

at
S 7101

3

10
«2D , ~A4a!

b615a61g61 , ~A4b!

with

g6154
12«2

91«2
. ~A4c!

We search for nonsingular solutions of Eq.~A2! of a power
of series inG

6

ml ,

D
6

ml5(
l50

`

Ql
ml~R!G l , ~A5!

with a polynomial solution ofQl
ml(R). SubstitutingD

6

ml into

Eq. ~A2!, and equating equal powers ofG
6

ml5G, we find

d2Q0
ml

dR2
12S 1R2aml D dQ0

ml

dR
2

2

R2 Q0
ml1

bml

R
Q0
ml5R

~A6!

and

d2Ql
ml

dR2
12S 1R2aml D dQl

ml

dR
2

2

R2 Ql
ml1

bml

R
Ql
ml2Ql21

ml 50

~A7!

for l>1. Q0(R) is the polynomial solution of Eq.~A6! cor-
responding to the limitG

6

ml50. SinceQ0(R) is of degree 2,

Ql
ml(R) must be of degreel12:

Ql
ml~R!5 (

k50

l12

ck,l
ml a

ml

2~2l1gml
132k!

Rk. ~A8!

Thus Eq.~A6! implies

c1,0
ml 5

4a
ml

gml

~22gml
!~gml

24!
, ~A9a!

c2,0
ml 5

a
ml

gml

~gml
24!

, ~A9b!

ck,0
ml 50 for k.2. ~A9c!

Substitution of Eq.~A8! into Eq. ~A7! leads to a polynomial
solution forQl

ml(R), provided the coefficientsck,l satisfy ad-
ditional conditions.

For l>1,

cl12,l
ml 52

1

2~ l12!1gml

cl11,l21
ml . ~A10!

For k>2 andl>1,

ck21,l
ml 5

~k12!~k21!ck,l
ml 2ck22,l21

ml

2~k21!1gml

, ~A11!

with c0,l
ml50 for all values ofl , andck,l

ml 50 for k. l12.
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