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Resonant magneto-optical spin transitions in zinc-blende and wurtzite semiconductors
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A theoretical study of the resonant magneto-optical spin-flip transitions due to electrons bound to shallow
donors is made. We present a general formalism of the integrated absorption coefficient for semiconductors
having an arbitrary crystal structure. The model is based on the parity-violating spin-orbit interaction respon-
sible for the active electric-dipole transition. Simple analytic expressions of the integrated absorption coeffi-
cient are obtained for the Faraday and Voigt field configurations and for any crystals having zinc-blende and
wurtzite structure, respectively. A comparison between theory and far-infrared magneto-optical transmission
measurements in InSb and &g 1Se yields to the strength of the spin-orbit interaction and effective Bohr
radius of the donors involved.

[. INTRODUCTION guasimomentunk for the materials having a wurtzite struc-
ture, and proportional tk® in materials having a zinc-blende
Far-infrared laser spectroscopy is a useful tool to probetructure, respectively.
the natures of shallow donors and the band-structure param- The present work attempts to develop a theory of EDSR
eters in I1l-V and 1I-VI compound semiconductors. Here we transitions based on the spin-orbit coupling mechanism but
concentrate on the study of resonant magneto-optical spiravoiding the knowledge of the crystal symmetry up to the
flip transitions. Far-infrared observations of electric-dipole-1ast step of the calculations of the integrated absorption co-
induced electron-spin resonantEBDSR were reported for  efficient. _ _
the first time more than 20 years alyoThis pioneering work Section Il is devoted to a general formalism based on
has given rise to a great deal of EDSR measurements invohalgarno’s  “operator technique” in perturbation theory.
ing either conduction electrons or donor electrons both in th&iMple analytic expressions of the electric-dipole operator
cubic (zinc-blende structuré®and in the hexagonaiurtz- ~ @ré obtained for intermediate and weak magnetic-field inten-
ite) structure'® The observed spin resonance is a magnetoSities. In Sec. lll we apply the results of Sec. Il to the deter-
optical spin-flip transition between two spin states belongingnination of the integrated absorption coefficient in cubic
to the same Landau subband of the conduction electron, dffa) and hexagonalGg,) crystals. In Sec. IV we analyze
the same orbital ground state of the donor electron. Surprighe far-infrared magneto-optical transmission data in InSb
ingly, the intensity of the spin-resonance line is up to two(Ref. 8 and Cg gMiny ;Se (Refs. 10 and 1ilon the basis of
orders of magnitude stronger than the symmetry-allowedreviously obtained results.
magnetic-dipole interaction due to the intrinsic magnetic mo-
ment of the electron. Furthermore, its intensity is anisotropic,
and changes when the applied magnetic field is reversed or
the direction of the incidence radiation is modiffed. We consider the absorption of an electromagnetic wave of
The above experimental facts have been attributed to thiequencyw and intensityl , by bound electrons in the pres-
combined action of the magnetic-dipole amplitude and theance of a uniform magnetic fielB,=V XA, corresponding
electric-dipole contribution arising from a parity-violating to the vector potential,. Let A be the vector potential of
coupling process which mixes states with opposite spin orithe electromagnetic wave with a wave vectppropagating
entations and paritie€€. Different coupling mechanisms have along the direction of the unit vector=n(w/c)q in a mate-
been proposed by theoretical investigations: the effect ofial of index of refractiomn and polarized along the direc-
spin-orbit coupling in crystals lacking centers of inversiontion. Since we are only interested in the one-photon process,
symmetry:®*13-2the nonparabolicity of the conduction the electron-photon interaction is linear in the vector poten-
band?'~**the warping of constant ener@yinhomogeneities  tial A and the alternating field of the incident radiatiBn
that lower the symmetry of the cryst&t?’ and the effect of As mentioned in Sec. I, we concentrate only on resonant
exchange interaction in semimagnetic semiconductors. transitions. At the resonant frequenay=w;;, the inte-
A critical analysis of the previously mentioned experi- grated absorption coefficienl =al' is given byo-3t
mental and theoretical studies show that the predominant
contribution to the coupling mechanism arises from spin- N
orbit interaction with inversion asymmetry. From group- _ o _le 2
theoretical arguments, this interaction is linear in the electron @ =2m n ool Myl .13

Il. GENERAL FORMALISM
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with Ne
=27 — wagl{v',s'|M+i[M,S]|»,s)|2, (2.5
Mzi{[é-r H] eiq"}—E (dxé)&— e'dr )
ho B e By’ ' leads to %nsgdditional contributionN[,S]) due to spin-orbit

(2.1  coupling:
Here we limit ourselves to electric-dipole and magnetic-
pole transitions between the Zeeman subleyely asso-
ciated with the donor ground stal@. Since the transition
takes place in the donor ground state, only the part
S(M+i[M,S])g, which is even under inversion, has to be
considered in Eq(2.5). Using relation(2.4) and the Jacoby
identity, for the even-parity transition operator we obtain

H is the effective-mass Hamiltonian of the electron bound 104
the donor and in the presence of a uniform magnetic field
ay=e?/%ic is the fine-structure constamt, is the number of
electrons per unit volume involved in the absorption proces
andI’; is the full width at half-height of the absorption line.
Here, and in what followd,u,v] and{u,v}, respectively, de-
note the commutator and anticommutator of the operaiors
andv. 2i n
We describe the staté) in Eq. (2.1) within the theory of (M +i[M ,S])g=ﬁ— {Ho+H,,[S,e-r]}— 5 gx(gxe)-o.
shallows donoré? We choose a Cartesian coordinate system @ 26
(&,m,{) whose( axis is parallel tdB,. Notice that this coor- (2.6
dinate system is in general distinct from the cubic axigz Here X is the Compton wavelength.
for a given experimental field configuration. Using the sym-  The first contribution on the right-hand side of Eg.6) is
metric configuration gauge, for the effective-mass Hamil-responsible for the parity-violating electric-dipole transition,
tonianH we obtain whereas the second term in the right-hand side of (BEd)
leads to the well-known paramagnetic resonance. We now
H=Ho+H,+Hso, (2.28  exploit the fact that we are interested in spin-flip transitions
which connect the two staté®3) and|0,—3). Therefore, it is

_ p? e? Mg ’Bj 2, 2 useful to express the operatdésand Hgg in terms of the
Ho=5#2~ eor | HBmE Boli+ g 1vg (67 7) Pauli matricess,, o, ando, and their linear combinations
(2.2b .
og.=0:Fio, 2.7
_1
H o is the spin-orbit coupling. Hema* andmj, respectively, _ . s
are the effective mass of the electron and the free-electron S=5,0,+35,0-+35-0, (2.89

massi, is the static dielectric constanty is the Bohr mag-  gnd
neton; andg is the effective Landey factor of the bound
electron. Hso=H;o;+3H o +3H o, . (2.8b
Of course for a given crystal symmetry, the Hamiltonian
operator Eq(2.2) contains, in addition, higher-order terms in
the electron wave vectér=p/i+Ay/Aic. In the present paper
we neglect these contributions, as8 I/g%l as the weak anisot-
ropy of the effective Landg factor®'?°>Nevertheless, we . _. _
take into account the inversion-asymmetric form of the spin- H=+i[Ho,S-]+1g1gBoS- =0. (2.9
orbit Hamiltonian operatoH 5o, as demonstrated in Sec. lll. Finally, inserting Eq(2.9) into Eq.(2.6), the spin-flip matrix
Let Hgo be a small perturbation with respecthig+H,, elements become
and suppose that the state vectfiss)} with orbital quan-
tum numbers denoted collectively by and spin quantum
numberss, are solutions of

Condition (2.4) requires

(O,I%|(M+i[M,S])|O,i%>=i[ +(0[[S- ,&-r][0)

(Ho+H,)|v,s)=(E,+9gusBes)|,s). 2.3 . n a n

L 2 gA(gXxe) =
However, the transitions involved in expressi@l) are

related to the statelsy;) and |¢) of the total Hamiltonian (2.10
operatorH. It is convenient to describe these states by mean
of the unitary transformationae'S acting on the imperturbed
states|v,s): |¢;)=€"|v,s) and |¢;)=€'5|’,s’). The Her-
mitian operatolS is then determined so that the quantfy's
He'S is diagonal in the representati¢w,s)}. As a resultSis
given by the condition

3t the resonant conditiohw=0gugBg.

The absorption process associated with a transition from
state|0,3) to statel0,—3) [upper signs in Eq:2.10] occurs in
crystals with a negative Landg factor, while for crystals
with a positive Landey factor this process takes place from
the lower statd0,—3) to the upper stat{d,3).

; _ We notice that the paramagnetic contribution in Eq10
Hsoti[Ho+H,,S]=0 @49 is obtained in a straightforward manner for a given field con-
to first order inHgg. Condition (2.4) clearly shows that at figuration. In order to carry out the expectation value over
the first order inS, the integrated absorption coefficient ob- the orbital ground stat¢0) involved in the electric-dipole
tained from Eq(2.1) contribution of Eq.(2.10, we introduce a complete orthogo-
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nal set of eigenvectors ¢f, with the eigenvalueg,. Using  wherea} =a*a, anda} =a*a, (@* =¢yh%/m* €’ is the ef-

Eq. (2.9, this allows us to write fective Bohr radius are physical parameters describing the
R electron orbit respectively in the plane perpendicular to the
(O[[S. ,5-11|0)= —i D (<O| H.lv)(vle r|0) direction of the magnetic fielB, and parallel to the direction
=’ EV_ Eoi g/*LBBO Of Bo.

R This is the well-known trial function proposed by Yafet,
N <0|8'T|V><V|H+|0>) (211  Keyes, and Adands for the problem described b, [see
E,—Eo+gugBoy /' | Eqg. (2.2b]. The variational parameteis and a, are then
obtained, minimizing the expression for the energy:

From expression(2.1]) it is evident that the spin-orbit

coupling mixes orbital statgs) of different parity, and that 1 &2 y2at2 2\ 12

the predominant contributions to the electric-dipole transi- E(at,a,)=R*[—2 1+ —|+ ——(—) e(1—g?)t2

Lot . . - . 2a 2 2 T

tion intensity arises from the terms in the sum ovéraving t

small denomir]ators. Therefore, crystals with shallow donors 1—(1—g?)12

and large Landg factors seem to be the best candidates for XIn —21,—} (2.16a

observing such transitions. 1+(1-¢9

We know that an exact solution for the statesis not with

available. Previous calculatiotts® have limited themselves

to one or two terms in the sum overand at weak magnetic- a

field intensitiest®° Here we shall eliminate the summation = gt, (2.16b
|

over the intermediate statds) (including the continuum

stateg by means of the so-called “operator technique” first yaore we have used effective unitsR?=m* e%/e 242 is the
used by Dalgarno and Lewi§ Since then, this technique has unit of energy, anda* is the unit of Iength.yo=,uB(m0/

been successfully applied to a great number of probigis m*)(By/R*), andR,= hc/eBy is the Landau length.

n t\?Ve f(;a?ewt?]rk gf p(larturbau(t)n thec')[_ry. ina th diti We know that this trial function is an excellent description
e define the dipole operators satisfying the conditions of a donor in the presence of a magnetic fieldforl, and is

o~ ~__ = . even satisfactory foy<<1. Moreover, it has the advantage of
([D=.Ho]+9reBoD +)|0) =& r|0). 212 providing exact solutions to equatio(12, as we shall see
Inserting Eq.(2.12 into Eq. (2.11) leads directly to the later. Finally, we shall show in Sec. Ill that resonant spin-flip

simple form transition intensities associated with conduction electrons are
P recovered, taking the limita,=1/./y anda,=x.
(0[[S. ,£-r]|0)=i(0|H.D.+D-"H.|0) (2.13 Substituting Eq(2.15 into Eq.(2.12), we obtain the fol-

: ) . . L i
for the electric-dipole contribution. lowing differential equation foD = (p,f,¢):

Finally taking into account Eg42.5), (2.6), (2.10, and .2 — .

(2.13, the integrated absorption coefficient is given by a*2v2D. + 2 Vﬁj,v%ﬂy D T yg m D.

- o - e my ~
ne
=271 — wagl(0,F 3| (M+i[M,S])40,= 3)|?, m*a*?
| n O|< 2|( [ ])g| 2>| =2 > 3, (2‘17)
(2.143 h
with where# ande are the polar angles ofwith £ as a polar axis.

. ] ) ‘ Knowing the structure ot-r, the right-hand sight of equa-
(0,%3[(M+i[M,S])4[0,= 3)=*(0|H.D.+DZH.|0) tion Eq. (2.17), we search for a solution dd. in terms of
n spherical harmonicS’T'(H,go). It is easily seen that due to
+ 2 gx(Gxe).. (2.14b  the orthogonality of the spherical harmonics, this solution is
restricted to the following form:
It is worthwhile to notice that this approach enables us to
determine the integrated absorption coefficient for any kind __ 2m*a”" | 0
of crystal structure, i.e., for any form of the spin-orbit inter- D+(r,6,¢)= —5—1[e/D=(r)Y1(6,¢)
action provided. We know the expressions for the electric-

*3

dipole operatorsD . from Eq. (2.12. This means that an +&_DL(NYX0,0)+2,DIH)Y X 6,0)]
accurate description of only the orbital ground state is re- 51
quired in order to find solutions for the operat@s , which (2.18

we assume fo be functions of positions alone. For thejeree, corresponds to the linear polarization of the electric-

ground-state wave functiofr|0) we choose the following field vector along the direction of the unit vectgrand

trial envelope function: &.=(&xim)IV2 are, respectively, related to circularly polar-
ized light with positive and negative helicity.

£+ 772+§_2 Using the reduced variabl®=r/a*, the coefficients

4ar? = 4ar’ D(m;:0,£1) in Eq.(2.18 satisfy the “radial” differential

(2.15 equations

1
r0)= —————=—=ex
< | > /(277)3’2a*t2a*, P-
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(2.193
with
W =pM+ T (2.19h
rm= L
L=V m|_gm—0 . (219()
For m;=0, we have
0_1 21 Jr3 1 »19
"2 l5a2 5 a2 (2199
o 21 1
V=g ¥—a—|2 , (2.19¢
t
and, form=1,—1,
1 1 1/41 11
u=u :E g;'ﬁ‘ga—lz , (2.199
t
1/1 1
vl=v_1=§(a2 22 (2.199
t
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netic field By affect the longitudinal electron motion charac-
terized by the orbital radiug, .

In a similar manner, we can obtain an analytic expression
for the electric-dipole operator valid in the limjt<1. In this
limit, and in order to take into account the electronic length-
ening of the wave function along the magnetic field, it is
evident to choose a cylindricghydrogenig for the envelope
function (r|0). Again, the solution of Eg(2.12 can be writ-
ten in the form of Eq.(2.19. However, as shown in the
Appendix, the radial coefficients are now expressed by a
series expression.

In order to obtain a more precise solution for the electric
dipole at all magnetic-field domains, we may consider the
following linear combination:

Yeom=AY1+ B, (2.23

A andB are variational parameters, augé (i) is the CYL
(YKA) wave function. Calculations with this function are in
progress. Dextéf has proposed a wave function with three
variational parameters for studying the hydrogenic impurity
polarizability. The com wave function has the advantage of
possessing only two variational parameters. On the other
hand, the Dexter wave function must be rejected for the
weak magnetic fields because the Bohr radius thus obtained
are greater than the unit and have no physical meaning. In
spite of this error the Dexter wave function is widely used in

A particular solution forDT' is adequate as long as it the literature.

represents a physical acceﬁtable solution of Efl19a.

Knowing the explicit form of the electric-dipole operator,

Therefore we attempt to find nonsingular solutions in thewe are now in a position to determine the integrated absorp-

form of a power series iR:

DT:EO anmR". (2.20

SubstitutingD'II in Eq.(2.19, and equating equal powers of

R, yields
Agm=a3m=0, (2.21a
1003, — (2u™+ WD) e =1, (2.21b
1803 = (4U™+ WD) 5 =0, (2.219

and, fora,

(n=1)(n+2)a;, n—[2(n=2)u™+ W ay ,,=1.
(2.219

As a consequence, there are no even poweiR,iand the

asymptotic solutions of Eq2.19, asR tends to infinity, are

tion coefficient for a given field configuration. This can be

easily achieved by carrying out the expectation values over
the orbital ground statkcf. Eq. (2.14)] for a given form of

the spin-orbit interaction. In Sec. 1l we apply the present
formalism to materials of different crystal structure.

Ill. INTEGRATED ABSORPTION COEFFICIENT
IN HEXAGONAL AND CUBIC SEMICONDUCTORS

The purpose of the present section is to illustrate the gen-
eral formalism developed in Sec. Il by considering absorp-
tion in the hexagona{wurtzite) structure with point-group
symmetryCg, and in the cubiqzinc-blend¢ structure with
point-group symmetryl 4, respectively. We calculate the in-
tensity of the electric-dipole spin resonance for different field
configurations.

A. Wurtzite structure

As mentioned above, the determination of the electric-

singular. However, there exists a polynomial solution satisdipole spin-resonance contributions implies the knowledge

fying the condition of Eq(2.21h with a3 ,,=0. This leads
to the simple form

DT'=— ! R.
T (2uM+™)+T

(2.22

of the spin-orbit interactiofl s for a given crystal structure.
This information can be obtained in an elegant manner by
group-theoretical arguments based on the theory of invari-
ants. We search of a form of the spin-orbit interaction which
leaves the Hamiltoniam g invariant under the symmetry
operations of the point grou@s,, as well as under the op-

Taking Egs.(2.19 and EQq.(2.22 into account shows that eration of time reversal. We construct this invariant with
circular polarized waves affect the transverse electron orbiproducts of the kindr;k | formed by the components of the
of radiusa,, while waves linearly polarized along the mag- Pauli matricesr,, g, ando,, and the electron wave number
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components,, k,, andk,. Using the character table and

basic functions associated with the point graZy,, we ob-
tain

N N 2
Hso=5 (5xK)-z+ 5 {K2,(0xk)- 3
3.2

A .
+ Et {(KC+K2),(5xk) -2}

if we restrict ourselves up ta=3. Here\, \;, and\; are

phenomenological parameters characterizing the strength
the spin-orbit coupling. For the purpose of the present wor

we neglect the high-orded(k®) term'® in Eq. (3.1).

In the usual experimental geometry for hexagonal crys-

1875
_g2n2}(21+1 N\ o2r 2
@=Ne 7o ¢l g%n? | R*x 2 1
al

(3.6

taking the limiting casda,—), we obtain an expression in
agreement with the result obtained by Gopatiral® for
band electrons.

B. Zinc-blende structure

of For this structure, one can show that previously developed
|Symmetry arguments lead to the followiig® spin-orbit op-

eratorHgg:

~ o P Hgo= 8y0 k, 3.
tals, thec-crystal axis is taken along the cuticaxis, form- S0~ 09K S
ing an angle8 with the magnetic field in the plan@X). The Herm Sl 0o Kot e Kot G- 3.8
crystal or the magnetic field is rotated about theaxis. _ so= ol ox- ket 0y ky 0k, (389
This leads to the following expression fbtsg in the coor- with
dinate systent¢,7,{), with the ¢ axis alongBy: = K ok — Kook, (3.89
N oL _
HSO=§ (cX o) -k, (3.23 iy = Kakykz—kykyky (3.89
with K=Kk Ky — K KK, . (3.80
To obtain the form of the spin-orbit operator according to Eq.
\ (2.8), we use the Euler angl®a, B, andy of the coordinate
H =5 sinsk, (3.2b  system(¢,7,{) with respect to the cubic axi,y,z).2°
Proceeding in the same manner in Sec. Il A we find the
and following results for different field configurations.
(i) Faraday configuration(Blgll{). We find
A _ 2 2 iab 2
H.=7i 5 [singk +cog(ke=ik,)]. (329 o =nemg®naok’o | {1+ RLiAcFo}(*  (3.93
with
Using the envelope function Ed2.15 and the corre- 35 \/8—
sponding electric-dipole operators E¢®.18 and(2.22), the AER.= _ Z7ov®o [P(y)—P(—7)] (3.9h
expectation value involved in the electric-dipole contribution daou
(2.13 can be obtained by straightforward integration. Thisgng
leads to the following analytic expressions for the integrated
absorption coefficient Eq$2.14), 1+a’y s 4
(i) Faraday configuration(ByllZlclin andg>0). We know P(y)= T+a2y(1=2m) [1-e“+a/y"], (3.909
that only the polarization with positive helicity !
e, =(&+i7)V2 contributeqalso called cyclotron resonance Fo=— =i sin2a sin28 sinB (3.10

active (CRA)]. We find

22

~ghn X 1 N\ duy TP
= Ne = Aok w 1+gzn2<R*)( a 12| |’
(3.3
I=y(1-2up), (3.9
and
*
u=tgl =, 3.5
Mg

and for the free-electron case;E& 1/ \/;/) we obtain an ex-
pression in agreement with previous wafk.

(i) Parallel Voigt geometry(Bgl{lle, with nLc and
Byllcll&):

for donor electrons.

Here we have take the polarization of negative heliticy
e_=(&—in)/vV2 [also called cyclotron resonance inactive
(CRI) polarizatior]. This situation corresponds, for instance,
to the case of InSb, whose effective Largiéactor is nega-
tive (g<0).

In the free-electron case(= 1/\/§, a,—), we recover
the value forAcg,.}” Thus

b

AC
= (u=DIP(= ) =P()] (310
C

(i) Parallel Voigt geometry(Bollz), with n=(0,1,0 and
£=(0,0,1). We obtain

—ne 2 g2 2p[{1-161A F,}|2, (3.12
Q ”ezgnaowa ovF1H%  (3.123
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B B Bl B E)E

1 1
T=45K

with

b _300e0 aiy 0

OV ap  (2uaiy—e*)(2uaiy+e?) B 4144 KG
X[2—e2—(1—y%a})], (3.12h
_ 0.30 -
F,=:e"cos2r sin28+i sin2x sinB(3 cogB—1)]
(3.13
for donor-bound electrons. For band electrons we recover the *
value forAqy,” which yields £ 020
— L ]
Ady  2ualy(1+pafy?—e?) (3.14 4
Aov [(2pafy)®—&*] .
0.10

IV. COMPARISON WITH EXPERIMENT

The object of the present section is to compare the theory
developed above to far-infrared magneto-optical transmis- 44 : : . .
sion data respectively in InSiRef. 8 and C@ Mn, ;Se®t 0 30 60 90 120 150
Physical parameters characterizing the shallows donor in this
materials will be obtained from the best fit between the theo-
retical model and measurements.

ORIENTATION ©(deg )

FIG. 1. Integrated absorption coefficient of a donor-bound elec-
tron of InSb observed at 118/8m in the parallel Voigt geometry as
a function of orientation oB; in the (1,1,1) plane. The measure-
Barticevicet al® measured the spin-resonance absorptiorments, taken from Ref. 8, were carried out at low temperatures
coefficient for donor-bound electrons of InSb observed atT=4.5 K). The solid line is the theoretical curve Edg.2) ad-
118.8 um in the parallel Voigt geometry as a function of justed to the experiment, the best fit is obtained g,
orientation of By in the (1,1,1) plane. The measurements =6.2+0.4.
were carried out at low temperatur@s=4.5 K) with a value

A. Parallel Voigt configuration in n-type InSb

of B,=41.14 kG at the resonance. fo(x)=3(1+18x*— 48" +32°), (4.3b
In order to compare theory with experiment, we first have
to find the Euler angles corresponding to the experimental X=C09. (4.30

situation® Therefore we take two unit vectors=1~72[1,1,0]
andv=1/\/5[1,1,2] in the plane(1,1,1) and let# be the
angle betweemB, and U.

Thusé, 7, and{ are known for a given anglé, and from
the definition of the Euler angl&we obtain the relation

The solid circles in Fig. 1 correspond to the measurements
taken from Ref. 8. The solid line is the theoretical curve Egs.
(4.2) adjusted to the experiment. The best fit is obtained for a
value of the quantityA 3, =6.2+0.4. From the analytic form

of Egs.(4.2), we know that the maxima of the oscillations in
Fig. 1 are given byx==+0.5 andx==*1. It is interesting to

tana = v3 cosf—sing (4.19 note that the quantitA2,, determines the minima of these
V3 cos9+sing’ oscillations by the condition
— /2 g 3
cosB=—% sing, (415 AL (4XP—3)x=—=. (4.4
V6
tany=— - i (4.1¢  This difference in amplitude between tf@,1,1] direction
v2 cosd and the equivaleritL,1,0] and[1,0,]] directions is related to

the effect of electric-dipole—magnetic-dipole interference,
first discovered by Cheet al.” and Gopalan, Furdyna, and
Rodriguez’ for the free-electron-spin resonance.
- Knowing the quantityAQ,, we can now deduce a value
=N, > g%nagh 2wl {1+ f1(X) A2+ f2(X) (AR)?}2, for the spin-orbit coupling paramete, from Eq. (3.12b.
4.2 We use the following material parameters for InSb:
' m* =0.013n, ande,=17.98 This leads a value 0f=33.18
with at Bp=41.14 kG and values,;=0.17 anda;=0.39 for the
variational parameters deduced from E@s16). At the reso-
4 ) nance conditiomiw=gugB,, the effective Landey factor
fl(x)=ﬁx(3—4x ) (438 s given by|gKJ=43.82, which is in good agreement with
previous work: Inserting the above physical parameters into
and expression(3.12 yields §,=56.23+3 u a=(2.2+0.2)x10 %2

Substituting Eq(4.1) into Eq.(3.123 leads to the following
expression of the integrated absorption coefficient
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eV cm. Within the experimental errors we find a value &r obtained by Zorkani, Kartheuser, and Rodrigffeand in the
which is almost the same as the spin-orbit coupling paramlimit a,=a,=1, =0, andl=0,1, this equations agree with
eter obtained for conduction electrons. This is very reasonprevious calculation°41-44

able, because additional contributions&pdue to the impu- We now compare the theoretical model with the experi-
rity potential are negligible with respect to the crystal mental data taken at 4.7 K for a magnetic field parallel to the
potential. c-crystal axis(8=0) of the crystal and a donor concentration
ne=2x10 cm3. In addition to the effective mass*, the
B. Faraday geometry in Cd,_,Mn,Se static dielectric constant,, and the index of refractiom

e \/; there remain four ot,her material parameters to be
0(1ietermined: the effective Landgfactor, the spin-orbit cou-
Ipling parameteh, the orbital radius described lay, and the
isotropy parameter.*®

In the case of a semimagnetic semiconductor such as
Cd,_,Mn,Se, the effective Landg factor depends substan-
Stially on the temperature and applied magnetic field due to

Dobrowolskaet all! measured the frequency dependenc
of the spin-resonance-integrated absorption coefficient
Cd;,_,Mn,Se in the Faraday configuration, and for severa
temperatures. The experiment was carried out at wavelengtﬁg
varying from 251um down to 95.5um, and the resonant
conditionAw=gugB, was obtained for magnetic-field in-

tensities varying from 0.5 to 8 T. The material parameter . ) .
* _ _ ; exchange interaction between the localizet? 8lectrons of
m’ =0.12my and &,=10.02(Ref. 4 related to CdSe yield Mn?* ions and the itinerant electroi$The energie€, of

values of the physical parameter=0.296 for a magnetic ) 1 .
field equal to 10 T. Therefore we shall compare the experi-itge_f>pm'up 'S;[aédoa;;]zzhaf:jd E_ of thz s;gln-dovm st%te
mental data with theory using the cylindrical trial function in '~ 2 associaled wi e donor ground stiiecan then be

order to describe the donor ground st@ein the presence of written in the form

a magnetic field. Inserting the expression for the dipole op- _ 1/ %
erator Egs.(2.19 and (A8) (see the Appendixinto Eq. E.=Eo*7(9" naBotNsee(Sy), (4.63
(2.14, for the Faraday geometry we find where N; is the effective MA'-ion density, a, is the ex-
0 change integral for the-like I'y electrons, andS,) is the
__e 2 2, p2 thermal average of the manganese spin in the magnetic-field
= X +P , 4.5 . .
=75 @A @{eod (@)} (453 direction. Hence
with Ei:EOi%gMBBOY (46b)
2ai\ cOB_,, <
— 1 21+1 N
Plo)=—mr—a 2 a4 (4.5 gogr 4 NS (4,60
#eBo
A :h_w a2l 1— Mo (4.50 Hereg is an effective Landg factor made up of two parts:
R M gm* )’ ' the intrinsic contribution and the magnetic contribution. The
intrinsic contributiong* is essentially related to band effects.
100 \4 (9+¢2)? Here we take the valug*=0.5+0.1 for CdSe, as obtained
t=l 9152 | YU T 10 |’ (450 from magneto-optical studies of exciton statem large-gap

semimagnetic semiconductors, the magnetic contribution re-
sulting from the exchange enerdi,a(S,) is the predomi-

u=10[5S(21+1) +[$5S(21 +2) - £5S(2+ D(e* - 1)}, nant contribution tag.

(4.59 Expressing the exchange energy within the framework of
the molecular-field approximation, the effective Largfac-
— 4 16 tor is given b
v (A—gm*/my) {3S(21+1)[=S(21+2) g y
8 2_ 5 Nga
T35SI+ D] 1} (.50 9=0*+ 5 —=" Bsuly), (4.79
I+2
g (2+K)!
D=2 ¢t 4.5
S(1) go ki pZFk (4.59 5 OwnusBo @7

Y 2 ke(T+Ta)
in the limit y<<1, where only circularly polarized light with

positive helicity contributes tey since the effective Landg ~ WhereBg(y) is the modified Brilluoin functiongy,=2 is
factor is positive for Cd_,Mn,Se, as we shall see. The co- the Landeg factor of the ion, andr ¢ is an effective tem-
efficientc,’| is given by the recursion relations shown in the E/Ier:guiroen;elﬁrﬁﬂéoe;he annferrc:magnetuf: interaction between
Appendix. From Egs(4.5 we remark thaty, (w) is ex- X perimental range of excitation energies

pressed in the form of an expansion in powers of the angulatlf’llketn tﬁt the resctJ_na:c_ncIS gondltlgrm—g,u E]iBEO’ W,? can4 ne-
frequencyw of the incident light. The quear contribution is '?hitri redeuc?;i%ne ic-ie ependence @f Equations(4.7)
essentially imposed by the effective Langefactor. More-

over, it can be shown that the sum ovker-0 depends 35 [Neag
strongly on the parameteis a;, anda, . In the limit e=1 g=g* s’ €

—_— . (4.8
(the isotrope case,=a,=a) Egs.(4.5) agree with the result 12Kg(T+Tpp) V"
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FIG. 2. Integrated absorption coefficient of a donor-bound elec-

tr_on of CgygMng 1Se as a function of excitgtion energy. The S(_)“d FIG. 3. The angular dependence of the integrated absorption
circles correspond to the measurements in the Faraday Conf'gurgbefficient of a donor-bound electron in Cng Se as a function
tion, taken from Ref. 11. The solid line is the theoretical curve Eqs.Of orientation ofB,, when the crystal is rotated about an agis
(4.5 adjusted to the experiment, the best fit is obtainedife(2.40 perpendicular to the plane formed by thexis and the field direc-

—10 — —_

+0.2) 10 *“ eV cm,a;=43.5 A, ande=0.998. tion B fixed. For a different field geometry and at a fixed excitation
Adjusting expression(4.8) to spin-flip Raman-scattering ©€nergyi®=gugBo, whichBy=1.41 T andg=120.[Faraday, par-
dat748 performed on the same ingot of Gg¥n, ,Se yields allel Voigt (VOIGT I)), and perpendicular VoigtvOIGT L1)].
|0feNs| :llg andTA,:=27 K .

In Fig. 2 we have represented the integrated absorptioﬁnvempe functlpn of the donor ground state, we choose the
coefficient as a function of excitation energy. The soligtfial wave function
circles correspond to the measurements taken from Ref. 11.
The solid line is the theoretical curve Edd.5 adjusted to
the experiment withg=120 for T=4.5 K; the best fit is
obtained forn=(2.40+0.2x10 ° eV cm, a,=43.5 A, and y o .
the anisotropy parameter=0.998. The present value &fis Requiring the form 9f the electrlc—dlpolg operator given by
smaller than thé6.5+0.5x10"X° eV cm reported in previ- =95 (2.18, and using the orthogonality relations of the
ous work!'®but comparable ta=2.45x10*° eV cm re- Zﬁfheigﬁzgrersgggcrzr\l/\/ﬁnfiltng:fr:)/rg*l)-;ctg.17) the following
ported in previous calculatiofg,to A=2.7x10"% eV cm q :
reported by Zorkani, Kartheuser, and Rodrigfiezand to d2p™

§2+ 7]2 éfz )l/2
PRI S Nh,
ar® = at

1
ri0)= ex
(r|o) NEe p-

m b
A=1.6x10 '°eV cm obtained from spin-flip Raman scatter- . 1 by’ 32 DM _pMp™ . M pm
ing in CdS by Romestain, Geschwind, and DeRfn. dR R "™/ dR R "= "=7= R 7%
Finally, Fig. 3 shows the angular dependence of the reso- R (A2)
nant integrated absorption coefficient in Ghng ;Se when ’
the crystal is rotated about an axisperpendicular to the For m;=0,
plane formed by th& axis and the field directioB, fixed. 19 1
| a2
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APPENDIX _ol-e
’yo—8m. (ABC)

We derive the solution of the electric-dipole operator de-
fined in EQ.(2.17 in the limiting casey<1. Here, for the And, form==1,



= LT + 3 2 A4
a:1=5 |10 10° (Ada)
bij=a.1y+1, (Adb)
with
—41_82 A4
Y+1=45 2 (Adc)

We search for nonsingular solutions of E&2) of a power
of series in["}',

D’;"=I_EO QM(RIT', (A5)

with a polynomial solution oR;"(R). SubstitutingD"" into
Eqg. (A2), and equating equal powers Bf"'=T", we find

d’Qy' (1 dQy’ o P
92 TR Gr T REQ TR Q=R
(A6)
and
szlm' 1 dlel bm|
2 5] o Ol R A
(A7)

for 1=1. Qu(R) is the polynomial solution of Eq(A6) cor-
responding to the Iimif’I‘zO. SinceQq(R) is of degree 2,
Q"(R) must be of degreé+2:
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1+2
QM(R)=Y, cMa " "m" 3 HRk (A8)
k=0 M
Thus Eq.(A6) implies
4a:1m'
m|_ |
C, = , A9a)
10" (2= 3 (Y= ) (A93)
a™
m|_ |
Col=——", A9b
20 (7m|_4) ( )
m
Co=0 for k>2. (A9c)

Substitution of Eq(A8) into Eq. (A7) leads to a polynomial
solution forQ:"'(R), provided the coefficients, | satisfy ad-

ditional conditions.
For =1,

1

mo___ = M
Ciig 20+2)+ 7m c (A10)

+1)-1°
For k=2 andl=1,

m,
oo (k+2)(k=D)ei—ci",
K 2(k=1)+ym, ’

(A11)

m_

with Co

0 for all values ofl, andczj'lzo for k>1+2.
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