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A comparative study of the numerical-renormalization group and noncrossing-approxitti@én results
for the spectral functions of the = Anderson impurity model is carried out. The noncrossing approximation
is the simplest conserving approximation and has led to useful insights into strongly correlated models of
magnetic impurities. At low energies and temperatures the method is known to be inaccurate for dynamical
properties due to the appearance of singularities in the physical Green’s functions. The problems in developing
alternative reliable theories for dynamical properties have made it difficult to quantify these inaccuracies. In
this paper we show, by direct comparison with essentially exact numerical-renormalization-group calculations
for the auxiliary and physical particle spectral functions, that the main source of error in the noncrossing
approximation is in the lack of vertex corrections in the convolution formulas for physical Green’s functions.
We show that the dynamics of the auxiliary particles within the NCA is essentially correct for a large parameter
region, including the physically interesting Kondo regime, for all energy scales dowp,tthe low-energy
scale of the model and often well below this scale. Despite the satisfactory description of the auxiliary particle
dynamics, the physical spectral functions are not obtained accurately on scBjeOur results suggest that
self-consistent conserving approximations which include vertex terms may provide a highly accurate way of
dealing with strongly correlated systems at low temperatures.

[. INTRODUCTION that starting with certain mean-field theories the constraint
and its consequences lead to the appearance of longitudinal
In recent years the physics of strongly correlated Fermand transverse fictitious gauge fields coupling equally to
systems has attracted wide interest, in particular in the corpseudofermions and slave bosdriEhe gauge fields restore
text of highT. superconductotsand their normal-state the local symmetry broken in mean-field theory.
properties’ Despite intense efforts, systematic and controlled However, it is not clear that the slave-boson mean-field
theoretical methods for dealing with such systems are stiffheories are a good starting poliecept for the cases where
lacking. At the heart of the problem is the effect of a strong@ Physical phase transition into a magnetic or superconduct-
on-site Coulomb repulsiot on fermions living on a lattice, N Phase takes plakeAlternatively one may guarantee the
in particular, ind=2 dimensions. At low energy such models local gauge invariance of approximations by deriving those

can be mapped onto effective Hamiltonians with the Con_from a generating functiondl.The local gauge invariance

straint of no double occupancy of any lattice sites. The pro_ensures conservation of the local occupation at each lattice

N . . site (the “local charge”) in time. In order to effect the actual
jection onto the corresponding subspace of Hilbert space is >~ ~-7 = ° ) .
rojection, it is still necessary to fix the occupation numbers

presumably responsible for a number of unusual propertie t a given time locally. So far this has only been achieved for

most remarkably the spin-charge separation and non-Fermi|r-npurity models, e.g., the Anderson model of a magnetic

liquid behavior. Unfortunately the local constraints on theimpurity in a metallic hosf~-28

site occupancy are _d|ff|cult .to handle. One possible 'Eyan if the projection is done exactly, an equally impor-
formulatior’ uses auxiliary particles such as slave bosongant question is the selection of the dominating contributions
(b) and pseudofermionsf() to represent an electron as a jn perturbation theory in the hybridizaticior in the hopping
composite particle consisting of a pseudofermion particlentegrals and exchange interaction in the case of lattice mod-
and a slave boson holg(b). The local constraint is holo- els). In this paper we address this question for the infitlte-
nomic in this formulation, and is given by the condition that Anderson impurity modeldegeneracyN=2). We employ

the sum of the occupation numbers of pseudofermions anthe numerical renormalization grogplRG) to calculate the
slave bosons is equal to unity at any lattice site,slave-boson and pseudofermion spectral functions and com-
2 ,Ns,+Ny=1. The constraint is closely related to the local pare the results with those of the simplest fully projected
gauge symmetry of the system with respect to simultaneousonserving approximation, the so called “noncrossing ap-
U(1) gauge transformations df and f,. It may be shown proximation” (NCA).%*° While the NCA is known to give
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excellent results for large degenerably and not too low *

temperatures, including the crossover from loWw<T) to H.= E 2 §nA‘“’2(cﬁ+1acnU+ H.c), 2
high temperature T>Tx, where T¢ is the Kondo n=0 o
temperaturg”° pronounced deviations from exactly known
results appedrtatN=2 . The comparisons will allow us to
pinpoint the deficiencies of the NCA and to identify possible
improvements.

with &,— (1+ A ~1)/2 for n>1. These steps are explained in
detail in Ref. 14 and can be taken over for the present model

In earlier publication&2we have presented results of an Without change. . o
NRG calculation of the slave-boson and pseudofermion The Hamiltonian(1) together with the discretized form of

spectral functions at zero temperature. We found these fundh® kinetic energy2) in the new basis is now diagonalized
tions to be infrared divergent at threshold, with critical ex-bPY the following iterative processi) one defines a sequence
ponents dependent on thdevel occupancyy and given by  Of finite-size HamiltoniansHy by replacingH, in (2) by
simple expressions identical to the well-known x-ray absorpHy= =" ,&A ~"3(c] 1, Cnp+H.C.); (ii) starting from
tion threshold exponents. HozedEl,ff,f,,ﬂL VE,,(C(T,(,be,,Jr H.c.), each successive
The paper is organized as follows: In Sec. Il we formulatehopping may be considered as a perturbation on the previous
the model, describe how we implement the numerical renorHamiltonian; (iii ) the HamiltoniansH are scaled such that
mglization group for st_udying auxiliary S_pectral functions of the energy Spacing remains the same. This defines a
this moc_jel, and de_scnl_oe the NCA within _the framework Ofrenormalization-group transformation Hy,,=AYH,
conserving approximations. Sec. Il describes our results fogLg s (cT Cry+H.C)— E with E chosen so
spectral functions calculated with the above two methods. In SN“@\¥N+10¥No T 105/ =G, N1y GNt1 _
Sec. IV we summarize our main results. Some details of thd1at the ground-state energy M., is zero. The Hamilto-
auxiliary particle technique, which make it suitable for anniansHy are diagonalized within subspaces of well-defined
effective evaluation at the lowest temperatures, are discussédNe,S,S,, whereN, is the total fermion number$ the
in the appendices. total spin, andS, the z component of total spin. The use of
these conserved quantities leads to significant reductions in
Il. FORMULATION the size of matrices to be diagonalized, however, the dimen-
sion of Hy grows as & and it is necessary to truncate the
higher-energy states foN>7. Approximately 1/4 of the
The Anderson model of an impurity electron state hy- states generated at each iteration are retained in the calcula-
bridizing with the conduction band with infinitely strong tions and this constitutes a surprisingly accurate approxima-
Coulomb repulsion in thel level in auxiliary particle repre- tjon for the present model. This accuracy is evidenced by the
sentation takes the form fact that various exact relations, such as the Friedel sum rule,
which relates the impurity spectral density at the Fermi level
H=H.+ 6d2 f:r,f(,+ VE (cg(,be(,+ H.c), (1)  tothe local level occupancy, are satisfied to a high degree of
7 7 accuracy?® In addition, the number of states retained per

where Hc=2kafk0lgcka is the conduction electron kinetic iteration,Ng;, which is a free parameter, can be varied from
energy andc,,=3,Cy, annihilates a conduction electron 250 to 2000 states without any significant change in the re-
with spin o at the impurity site 0. The Hilbert space consistsSults presented here. This, together with the almost cut off
of disjoint subspaces characterized by the conserved auxiltdependent results foA=1.5 indicates the convergence
iary particle numberQ=b'b+=,fif , Q=0,1,2... . andaccuracy of the method.

The physical subspace is defined by the constr@ntl.
Following Wilson'* we (i) linearize the spectrum i, about
the Fermi energy,—k, (ii) introduce a logarithmic mesh of
k pointsk,= A", and(iii) perform a unitary transformation Within the framework of the NRG it is natural to repre-
of thec,,, such thatcy,, is the first operator in the new basis sent the Green functions in an eigenbasis of the Hamiltonian.
and H, takes the form of a tight-binding Hamiltonian ko In the enlarged Hilbert space the retarded propagators for
space, pseudofermions and slave bosons are defined by

A. Model and application of the renormalization group

B. NRG calculation of auxiliary spectral functions

1
Gi (w+i0T,N)= a: sz:n ||\/|In‘n|2(e*3(en+>\Q)+e*B[EmH(QH)])/[w_,_io_)\_(em_ el

1
Gp(w+i0TN)=5— > [ME [2(e Al Q — g Alem™ MQTVI) Il ) +{0— N — (em— €n)],
Zoc @mn ’
where, for eacl®, €, €, are eigenvalues of the subspa€es 1,Q, whereZs(T,\) is the grand canonical partition function,

ZGC(T,)\):;1 e_ﬁ(enﬁ—)\Q):ZQ=o+ e_'B)‘ZQ:J_-I- cee (3
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and M%n=<Q+ 1,m|0’|Q,n) with O=f_,b are the many-body matrix elements for pseudofermions and slave bosons,
respectively. The constrained propagators are then obtained as

: 1 .
Gip(@+i0T A=) =>— 2 [Mph |26 P/ [w+i0—(en—en)], )
Q=0 m,n
where the frequency has been shifted as—~w+\. We are interested in the following projected spectral
functions (see Appendix C for details Affb(w,T)z—Iime[ IMG¢ p(w,T,N)/7]  and  Afp(w,T)=
—limy_.[e P°/Z(T)I[IMG¢ y(w,T,N)/ 7],

1
Afp(w,T)= Zo—o(M % [(1m[OT|0n)[Pe™#ond(w— (€1m— €0n)), (5

— 1,m|OT[on)|2e Aerm(w— (€1m— €0p))- 6
ZC(T)ZQ:O(T) mEm |< | | >| (w ( 1m O,n)) ( )
In the definition ofA;, Zc=Zq_, is introduced in order to obtain a well-defined zero-temperature lifhte functions
A{, A} defined here correspond to the B functions, respectively in Ref. 7, and similarly the functigqs, A, correspond
to thea andb functions) At zero temperature the spectral functions reduce to

Afp(®,T)=

1
Afp(0,T=0)= Zo-0(0) % K1m|OT|®o)PS(w+ESS o~ e1m), )

1
Arp(0,T=0)= Ze(00Z0-0(0) 2 ®4]OTI0N)PS(w+ €op—ESS ). ®)

Here|®,) is the ground state of th®@=0 subspace of non- 1

interacting conduction electrons amiim) are the excited Gdo(w+i0,T)=Z—c % IMfnl?(e At e Pem)/[w+i0
states of theQ=1 subspace of the interacting system, '

Egio and €, ,, are the corresponding energy eigenvalues. —(em—€n)], (10
The spectral functioné\{,(T=0) vanish identicallybelow s independent oE, and is set by the Fermi levek=0.

the threshoIcE(,:ESil— Egio. Similarly, in the expression The matrix elementi Inbn of the pseudo-particle opera-
for A{,(T=0), |®,) is the ground state of the interacting torsz,, b' in (5) and(6) are calculated recursively using the
system Q=1 subspaceand|0,n) are the excited states of formulas given in Appendix A. Similar formulas apply to the
the noninteracting conduction electron syste§>; and ~ Matrix elementsm§, , for the physicald electron Green’s

€on the corresponding energy eigenvalues. These Spectrg’_nction. For each iteration step, they are sut_)stituted together
functions vanistabovethe threshold energg,. From (B4)  With the energy eigenvalues in(@) and(8) to give theT=0

and (B5) and (7) we see that thd=0 spectral functions SPectral functiond\y ¢ ,(w). In principle, if all states up to
A, satisfy the sum rule stageN were retainedH, would describe excitations on all

energy scales from the band ed@@®=1 down to the

lowest-energy scale present inHy, i.e., oy=
. D/2(1)(1+N"HN"(N"D'2 Dye to the elimination of
J Afp(0,00do=1. (99  higher-energy states at each step, the actual range of excita-
- tions in Hy, is restricted towy<w<Kwy, whereK~7 for

A~2 retaining 500 states per iteration. Thus at Stepthe
spectral functions are calculated at an excitation energy
In practice, within the NRG technique, it is the excitation ®~2wy in the above range. Thé functions in(7) and (8)

energies from the respecti@=0 or Q=1 ground states are broadened with Gaussians of widij~ wy appropriate
that are calculated. Hence, it is convenient to set the thresio the energy-level structure ofy.*°
old energyEo to zero. ThelT =0 projected aux”iary Spectra| F|na”y we note that the ConStraint Of no dOUb|e OCCuU-
functions then have divergences at zero energy. As describdtfncy,Q=1, is implemented exactly within the NRG calcu-
in Appendix D it is also possible to formulate the NCA equa- lations sinceQ is a conserved quantum number. Appendix C
tions of Sec. Il C such that the NCA spectral functions ex-describes in detail the implementation of this constraint for
hibit their T=0 divergences at zero energy. This makes itthe conserving approximation of the following section.
easier to compare with the NRG results and in addition im-
proves the accuracy of the NCA solution at the lowest tem-
peratures. The reference energy scale for the phydietdc- For small hybridizatior’V compared to the impurity level
tron Green'’s functionGy,(w,T) =<<beU;bf3>>Q=1, €4, a perturbation expansion in terms\dkseems reasonable.

C. Conserving approximation: NCA
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It is useful to express the auxiliary particle Green'’s functions (a) f
for given “chemical potential’—\ defined in(49) in terms a — <~
of self-energie ,(w,T,\) and3;(w,T,\) as P S o
4 AN
G, TN)=[0- A== 21,(0,TN)]7L (1D // \
C \
Gy, TN =[0-A—Sp(0, TNV L (12 € > )

wherew takes the values of fermionic or bosonic Matsubara

frequencies. The projected spectral functions are obtained by

shifting the frequencyw— w+X\ and taking the limit

A—o, as described in Appendix C. We define a local grand b
canonical  conduction electron  Green’s  function

Geo(,T,\) in terms of a self-energ¥ ., (w,T,\) by

Geol @, TN =[(GY,) =3¢ p(w, TN (13

WhereGgg(w):fdeN(e)/(w— €) is the local Green’s func-
tion of the bare conduction band, with(e) the density of
states. We call the quantiy..(»,T,\) the grand canonical
c-electron self-energy. This quantity enters naturally in the
conserving theory presented below and should be distin-
guished from the local conduction-electron self-energy in the
canonical ensemblghis is elaborated on in Appendix)C

There is an exact relation between thelectron Green's + .-
function and..:

FIG. 1. (a) The lowest-order contribution to the generating func-

Seo(®,T,N) 14 tional ®, and (b) the renormalized vertex pat(iw,,iw,—iw),
(14 entering the expressiof26) for the d-electron Green’s function

(with frequency conservation we can onib, in A). The solid
Thus, the principal problem remaining in the evaluation oflines are for band electrons, the dashed lines are for pseudofermi-
the theory is the proper choice of approximation in which theons, and the wiggly lines are for slave bosons.
three self-energies are calculated. The slave-boson Hamil-
tonian (1) is invariant under two independent(1) gauge 1
transformations: (1) simultaneous transformation of the Efg(w)=—V2E2 Geol(€)Gp(w—e), (17)
pseudofermion and the slave-boson operators(andimul- ¢
taneous transformation of the pseudofermion and the 1
conduction-electron operators. These symmetries correspond Sp(w)=V2i= 2 G (w+€),Ge,(€), (18
to the conservation of the auxiliary particle number and the B e
total number of fermions, respectively:

1
Carl@ T =2 15 (0. T NG (w)

1
zw<w>=—v252 Gto(€)Gple— w). (19)

> ff,+b'b= const, (15)
7 After the transformatiow— w+ X\, A—o0, one finds explic-
itly
> fIf,+ > ¢l c,=const. (16)
o ko

S0 1=V [1-f(e)]Gp(w =€), (20)
The Green’s function&;, G, are not invariant under local

(in time) gauge transformations, but we must requig to

be invariant. Constructing a gauge invariant approximation S0, T)=V2Y, f(€)G(w+ €, (21
is, a priori, a nontrivial task, since thd electron number ko

ng is not a conserved quantity. Yet, it may be shown that a

gauge invariant approximation obeying both conservation Ew(w,T,)\Hoc)=V2e‘ﬁ*f dee PGy (e+ w)A; (¢)
laws (15) and (16) is constructed by deriving all three self-

energies from one generating functiona®: 3, At _
= 5B/5G,, Sp=0D/6Gy, S..=0P/6G,,. Equation Ar (€)Go(e=w)], 22
(14) then provides the rule for a gauge invariant approxima-and G;, (0) '=w—e4—2,(w), Gp(w) '=w—34(w),
tion for G4. The functional® is given in terms of closed wheref(e,) is the Fermi function. The physical-electron
skeleton diagrams with suitable combinatorial factors. TheGreen’s function is obtained from the limiting procedure
lowest-order contribution to® is of second order in Gy, (w,T)=Ilim,_..eGy,(»,T,\) (compare Appendix L

V, ®=-V?1BZ,3 .Gi, ()G, (€)Gy(w—¢€) [Fig. 1@)]. As ., (w,T,\)~e P for \—x, the self-energy correc-
Functional differentiation yields the self-energies tions toG. and to the denominator @, vanish, and
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6.0
Gyo(w,T)= % lim eA*S . (,T,\). (23
A—
This equation shows that the quantity we call the grand- 0
canonical c-electron self-energy is related, in the limit
A—o, to the physical t matrix, t. (w,T), i.e., 3 20¢
lim, .3 (0, T,\)=V?Gy (0, T)=t,(»,T). The ca- <
nonical localc-electron self-energy, which is not explicitly % o0l
calculated in this paper, is a different quantity, which should =
not be confused with our projected conduction electron self-
energy(see Appendix € 20 ¢
The impurity spectral density follows as
-4.0

30 20 -10 00 1.0 2.0 3.0 4.0

1 .
Py (@, T) =~ — IMGyy(w+i0T) log,(le-EJ/T,)

+oo FIG. 2. TheT=0 NRG pseudofermior; (solid lineg and
= f de[A{ (e+ o, T)A, (¢,T) slave boso\; (dashed lingsspectral functions in the Kondo case
— eqg/A=—4, Ty/A=1.87x10 2, ny=0.874. The+ signs are for
FA (e, DA (e—w,T)], 24 the spectral function above the threshdtg, and the circles are for
to(€TAp (6=, T)] (24) the spectral function below the threshold. The arrow indicates the
which atT=0 reduces to position of| eg|.
Eo . -
NCA + scale of the model. This was sufficiently low to allow com-
,T=0)=0 deA +w0,T=0 . . .
pa e ) (w)on_w Arolet o ) parison with theT=0 NRG results over most of the inter-
esting energy range. We defiiig to be the Kondo tempera-
XAy (6,T=0)+0(—w) ture,
Eo A
X d As ,T=O -
f ey o o€ T=0) keTy=D \[5e o2 (27)
XA, (e—w,T=0). (25

in the Kondo regimesy/A<—2, A in the mixed valent re-
The above approximation is known as the “noncrossing apgime |eq/A|<1 and €4 in the empty orbital regime
proximation” because it does not include any diagrammaticaky/A>1.
contributions with crossed conduction electron lif&s.

In general the impurity electron Green'’s function may be
expressed with the help of a vertex functidfie, w) as[Fig.

1(b)]

A. Threshold behavior of the NRG auxiliary
spectral functions

The T=0 auxiliary spectral functions diverge at the
thresholdE, as shown in Figs. 2—4. This behavior may be
understood as a result of the orthogonality catastrophe

26) theorem'® To see this more clearly we reformulate the spec-

tral densities in(7) and (8) in the following way:
As shown below, there is reason to expect that the vertex

function A plays an important role. In particular, we shall see

Gyo(w)=—lim € G, (€)Gp(e—w)A(€,0).

A—o €

4.0

that the vertex part is singular at low energies, and its inclu-

sion in the convolution formulas for physical Green’s func- b

tions is required to restore the Fermi-liquid behavior at 20 |

w—0. f
Il. RESULTS 0.0}

10g,0A, ()

The NRG calculations were performed fér=2, keeping
250 states per iteration for each subspa@e-0,1). The hy-
bridization strengthA = 7V2p(eg) = wV2/2D was chosen to 207
be 0.0D with the half-bandwidthD=1. Several values of
the local level positiorey were chosen in order to character-
ize the behavior of the spectral densities in the various re- 40,0 20 10 0.0 10 20
gimes. The NRG spectral functions were evaluated -aD log,(l0-E,/T,)
and the NCA spectral functions were evaluated following
Appendix D for the same set of parameters and for tempera- FIG. 3. TheT=0 NRG spectral function#\;, in the mixed
tures down toT=10 °D<T,, whereT, is the low-energy valent regimee,/A =0, ng=0.314 with notation as in Fig. 2.
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4.0 T T v T 1.0
b
08
20
; o6 | %
2
<€‘ 0.0} 04 | O o ]
g
20 02 r
0.0 ——
0.0 0.2 0.4 0.6 0.8 1.0
-4.0

40 30 20 -0 00 10 20 n

log,(lo-EyIT,)
9uolloENT, FIG. 5. The exponente; (), a, (O) deduced from the as-

FIG. 4. TheT=0 NRG spectral function#\;, in the empty ymptotic power-law behavior of the auxiliary spectral functions as
orbital regimeey/A=+2, ng=0.172, with notation as in Fig. 2. calculated within the NRG for different values of the occupation

ng. The solid lines are the functioms,—n3/2 and 1—n%/2.

Afp(0,T=0)= ZL > |<1,m|(i,0>|25(w_61m), (2  T=0. The latter, shown in Fig. 6, was calculated by evalu-
Q=0 m atingny(T) from the partition function at a sequence of de-
creasing temperatureby~A ~(N"Y2 and then taking the
_ 1 ~ ) limit T—0.
Atpl@,T=0)= Zo—o ; KP4 0N+ eopn). (29 Remarkably, the threshold exponents turn out to be the
o= usual photoemission and absorption exponents for the x-ray
In the aboveJCi)()):OTld)O), with O=f, b, represents the Problem and are given in terms of the conduction electron
noninteracting U =0) ground state with 1@=f1) or 0  Phase shift at the Fermi levél,5,= &,(ef), by

(O=b") local electrons present. Similarly,i>1>=0|<1>1), R s 5\2

with O=f_,b, represents the interactindJ&«) ground af=nNyg— _d:2_"_2 <_") , (30)
state with 1 O=f) or 0 (O=b") local electrons present. In 2 m F\m

this formulation, we see tha#; , measures the overlap den- 2 2

sity between the ground state of the noninteractibg=Q) ap=1— @:1_2 (ﬁ , (31)
band electrons with 0 or 1 local electrons present with the 2 -

lexitlte'gistates of th?hmteracltmgd:oo .It—lagnlttonlan.thSlml- where the last equations on the right-hand $RIES) of (30)
ary, ?bhmgasures_ e_over ap .lens.|y gr\:vgen ?grcl)ungnd (32) follow from the Friedel sum rules,= wngy/2.
Stlat? of the mteri\ctlr:jg{[h—oo Hz;tmétotr1|?n W:‘tth or 1. ?Ca i These results are clearly illustrated in Fig. 5 where the func-
band elections. This interpretation is dentical o that for thelc> 1142 and 1-ng2 are plotted against, together
: >rpret with the exponents; , deduced from the spectral functions.
core-level spectral functions in the x-ray problem. The anal- ' :
. ) : ; . The exponents; ,, agree with the RHS of30) and(31) to 3
ogy is useful but requires care since the matrix elements in. ~.- . 0
: . significant figures in nearly all cases and are the same below
(5) and(6) are no longer between two noninteracting systems
. X : . and above the threshold,
as in the x-ray problem. This leads, in particular, to a new
energy scaleT,, for the onset of the asymptotic power-law A7y =a7 | w— Eq| . (32)
behavior, which isT, A, or €4 in the Kondo, mixed valent, o ' ’ ) )
and empty orbital regimes, respectively. We find that it isA qualitative argument based on charge neutrality consider-
only in the Fermi-liquid regime|w—Ey|<T,, that the ations has been given for the above form of the exponénts.
power-law behavior is well characterized. The approach tdVe note that the same functional form of the exponents on
this asymptotic power law is faster for the boson spectrafhe phase shift30)~(31) is also found in the spinless model
functions than for the fermion spectral functions in all casesWith constraint® in agreement with exact analytic resufts.
We note that within the NCA, the approach to the thresholdThe single phase shift in this case is givendy 7ny. An
behavior with ny independent exponentsy;=1/3 and pd—dependent exponent was also found by R.ead in consider-
ap=2/3 is also only asymptotic and requires in particularing how Gaussian and higher-order corrections restore the

going down to temperaturds< 10~ 2T, in order to see these dJauge symmetry broken by the slave-boson mean-field
exponents. theory!’ Generalizing the above-threshold exponents to the
The threshold exponents for the slave-boson and pseuddl-fold  degenerate  model we havea;=26y/7
fermion spectral functions were extracted by numerically dif-— Sm(Sm/m)?=2ng/N=n3/N  and ap=1—3(5y/m)?
ferentiating the spectral functions. Typically, well-defined =1—nZ/N wherem labels the scattering channels. The same
exponents can be extracted only for energy scalesxponents were found for thid-fold degenerate Anderson
|w—Eq|<10 2T,. The exponents are shown in Fig. 5 and impurity model in perturbative calculations to ordét add-
Table | as a function ofy, the local level occupancy at ing to the plausibility of the above generalizatithThe



1856

T. A. COSTI, J. KROHA, AND P. WQFLE

53

TABLE I. The threshold exponents; ;, for the auxiliary spectral functionAﬁb~|w—Eo|’“tb. The quantitiesx; ,, are nd—nﬁlz and

1-n?/2, respectively, wheray=n}R¢

significant figures The NCA results for the impurity occupationy

is the impurity occupation calculated from the NRG partition functigmantities shown to 3
NCA

, are also shown. The impurity spectral density at the Fermi level

calculated within the NCApS‘CA(GF), and NRG,pgRG(eF), are tabulated together with the percentage of relative error in the Friedel sum
rule, py(er) =sirf(mmy/2)/wA. The exponenty; is difficult to estimate close tny=1 due to the small Kondo scale and the slow asymptotic
behavior of the pseudofermion spectral function. The low-energy 3¢aie T given by (27) in the Kondo regimeA in the mixed valent

regime andey in the empty orbital regime.

NRG NCA

€g/A Ny Ng o (€r) pa " (€r) To/A o aj ap ay,
-7 0.947 1.6%10°4 0.501 0.499 0.552 0.552
-6 0.934 30.72.5% 8.0% 104 0.499 0.498 0.563 0.564
-5 0.913 0.909 29.75.0% 31.1-0.3% 3.8%10°° 0.499 0.496 0.583 0.583
-4 0.874 0.865 3041.7% 34.3-12.1% 1.8%10°2 0.493 0.492 0.618 0.619
-3 0.796 0.781 27:83.3% 30.4-7.8% 8.98<10°? 0.480 0.479 0.684 0.683
-2 0.648 0.641 2341.4% 32.4-42.3% 4.3x10°* 0.439 0.438 0.790 0.790
-1 0.460 0.464 1353% 28.5+102% 1 0.354 0.354 0.894 0.894
0 0.314 0.322 7.061% 26.3+ 252% 1 0.265 0.265 0.951 0.951
+1 0.226 0.232 3.801% 25.7+535% 1 0.200 0.200 0.975 0.974
+2 0.172 0.176 2.270.1% 17.5-637% 2 0.158 0.157 0.985 0.985

above conjecture fowy , is in disagreement with recent
result$® obtained in the liming—1 and in the largeN ex-
pansion including order W2, &=(1—1/N?)/
(N+1-1/N?), a,=(N—2/N?)/(N+1—-1/N?). These re-

sults were obtained using a perturbative renormalization

group technigue, which we do not expect to be as accurate

the nonperturbative numerical scheme used here. We s

from our results, generalized to arbitral; that the NCA
exponentsa} A= 1/(N+1)=1/N+ O(1/N?) and a})“*=N/
(N+1)=1—1/N+O(1/N?) are correct only in the limit
ng—1 andN—oo (or in the trivial limit ng—0). Away from
this limit, vertex corrections in the auxiliary Green’s func-

tions, absent in the NCA, are therefore important in deter-
mining the correct threshold exponents. The expressions fo

there is a peak in the slave-boson spectral funcégnat
w=|eyg| and a much less pronounced feature in the corre-
sponding pseudofermion spectral functiég . As €4 is
raised through the Fermi level from below the pealdjp at

w=|€4| becomes less pronounced and almost disappears in

#Ke mixed valentey/A~0 (Fig. 3), and empty orbital re-
E(}ﬁmes.sd/A>1 (Fig. 4). In addition, its position is renormal-

ized above the bare valye,y|. At the same time the small
feature at positive energies in the pseudofermion spectral
function A{” develops into a well-defined peak in the mixed
valent and empty orbital regimes. The-" spectral func-
tions A¢ ,(w,T=0) exhibit monotonic behavior for all pa-
rfameter regimes.

the threshold exponents of auxiliary particle propagators in
terms of x-ray photoemission exponents appears to be a ger§>. Comparison of NRG and NCA auxiliary spectral functions

eral property of several impurity models exhibiting Fermi-

liquid fixed points.

B. NRG auxiliary spectral functions at higher energies

In comparing NRG and NCA spectral functions, three en-
ergy regimes should be distinguished é3:asymptotically
low-energy regimew—Eg|/To<1, (Il) crossover regime,
|o—Eo|/To~1, and (Ill) high-energy regime|w—Eg|/T,

At higher frequencies the following features are observed-1. The energy rang@) corresponds to that discussed in the

in the T=0 spectral functions. In the Kondo regime, Fig. 2,

1.0

RN

08

N

0.6 r

n(T)

0.4

0.2

0.0 ‘ ‘
10° 10*
k,T/D

.
2

10

section on threshold exponents. Here we discuss the energy
ranges betweefl) and (II), and betweer(ll) and (lll). In
Figs. 7—9 the same qualitative trends described in the previ-
ous section for the NRG auxiliary spectral functions can be
seen in the corresponding NCA solutions. The NCA results
for a finite but very low temperatur&€=10 °D are com-
pared to the correspondinf=0 NRG results. The diver-
gence of the NCA spectral functions is cut off belaw-T

due to the use of a small but finite temperature in solving the
NCA equations. Surprisingly good quantitative agreement is
seen in the slave-boson spectral functidfj above the
threshold down to energy scales well beldwy in all re-
gimes. The agreement is particularly good in the Kondo re-
gime for —4=<ey/A<-2, where it extends down to
10 2T, [e.g., Fig. Ta)]. The spectral functiol, below the

FIG. 6. The temperature dependence of the occupation numbdhreshold also shows good agreement with the NRG result in

ny(T) for different ey (the curves are labeled hy;/A). The high-
temperature limit of 2/3indicated by an arrolwis recovered in all
cases.

the Kondo regime with decreasing agreement in the mixed
valenteq/A~0 and empty orbital regimesy/A>1. Turn-
ing now to the pseudofermion spectral functions we see that



53 SPECTRAL PROPERTIES OF THE ANDERSON IMPURIT . . 1857

4.0 6.0
(a)
30¢ 40
3 207 3 20t
< <
2 10} g oo}
00 -2.0
-1.0 . . - -4.0 . .
-4.0 -2.0 0.0 20 4.0 -4.0 -2.0 0.0 2.0 4.0
log,o(lo-Ef/T,) . log,(lo-E'T,)
4.0 - - : : 4.0 : : : .
(b) (d)
30} 30}
20 20t
g g
& 107 <: 1.0}
= =3
o 2
00 00
1.0 | 10}
-2.0 . . . : -2.0 . : . :
-5.0 -3.0 -1.0 1.0 3.0 -5.0 -3.0 -1.0 1.0 3.0
log,{le-Eyl/Ty) log,(lo-E /Ty

FIG. 7. Comparison of the NRG<) and NCA (O) auxiliary spectral functionsﬁ\{b (@,(b), A¢p (0),(d) in the Kondo case
€q/A=—4. The arrow indicates the position pfy|. The NRG results are fof =0 and the NCA results are foF=1.0x10"°D. The
divergence of the NCA spectral functions fer—0 is cut off below a frequencyw~T<T,, due to the use of a small temperatdren
solving the NCA equations.

there is again good quantitative agreement between NCA andgithin the conserving self-consisteftmatrix approxima-
NRG for A;" above the threshold and for all energy scalestion indicate that such improvements do indeed dise.
down toT,. This is true in all regimes. Below the threshold A different extension of NCA, called “post-NCA’ has
the agreement for th&; spectral function even extends to been proposed recently on the basis of W gkpansion of
well below T, except in the Kondo regime fary/A<—4  the N-orbital mode It represents a self-consistent scheme
where we could not obtain quantitative agreement except ifncluding vertex renormalizations, which is exact to order
the region 10'<w=<10'. From these comparisons we see 1/N.

that the most serious differences, as far as low-energy behav-

ior is concerned, between the NCA and NRG aukxiliary spec-
tral functions are imA{" for <T, in the Kondo case and in
A, in the mixed valent and empty orbital cases. The latter In the previous section we noted that the NCA auxiliary
we attribute to the inaccuracy of the NCA in the energyspectral functions were surprisingly close to the NRG ones
range betweergl) and (I1) in the mixed valent and empty for energies down to at least=T, and typically they were
orbital regimes to be described further in the section on imeven quantitatively accurate down éo<T,. Improvements
purity spectral densities. A more interesting discrepancy thaare primarily important in the auxiliary spectral functions in
arises from these comparisons is the former. The functiongvo areas, to restore the correct behavior of the pseudo-
Affb in NCA are related by self-consistency equatig@6)  fermion spectral functio®\{” below T, and to recover the
and (21) derived by second-order perturbation theoryMin  exact threshold exponents given by the NRG. We now turn to
As pointed out in Ref. 21, coherent spin-flip processes conthe comparisons for the impurity spectral function and dis-
sidered to be responsible for the Kondo resonance are nétiss the role of vertex corrections on the dynamics of the
included in the NCA. There are reasons to expect that th@hysical electrons. The impurity spectral denNsciges are shown

self-consistenf-matrix approximation proposed in Ref. 21 in Figs. 10—-12 where in addition to the NCAy"(w), and

will capture the essential contributions. Recent calculation®NRG spectral functionSpyRG(w), we also show the impu-

D. Comparison of NRG and NCA impurity spectral functions
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FIG. 8. Comparison of the NRG<{) and NCA (O) auxiliary spectral functionsé\{b (@,(b), Ary, (©),(d) in the mixed valent case
€4/A=0. The NRG results are foF=0 and the NCA results are far=1.0x10 °D.
rity spectral functionp)R°",
NRG auxiliary spectral functions as i26) but without the
vertex part, i.e.,

obtained by convoluting the troscopy w>0) side for energies below 5T,. On the pho-
toemission spectroscopy siden€0), i.e., for <0, the
agreement with the NRG is better.

The disagreement between the NCA and NRG impurity
spectral function for energies below§is due primarily to
the absence of the vertex part in the convolution formula for
the NCA impurity spectral densit§24). This is seen from the

good agreement betweepl}"°~ and py* in the range

In the Kondo regimdFig. 10@)—-10(c)], the impurity spec- TOs“’gE?TO’ which ind_icates that the NCA auxiliary spec-
tral density shows two peaks, a charge fluctuation peak clogg?! functions are sufficiently accurate in thlﬁcrfmge and that
to the local level positior,, and a many-body Kondo reso- therefore the difference betwegr}"° and pd_ must be
nance at the Fermi level. The charge fluctuation peak i&nainly due to the neglect of the vertex part in (28)milar
broader in the NRG case, a result of using a logarithmiccomparisons for the other Kondo casggA = —5,-3 sup-
discretization for the conduction band that leads to loweP9rt, the same lgngnclusmn. In GTabIe I we also list
resolution at higher energies. This is not a fundamental prob2d  (@=0) andps"(0=0,T=10""D) together with the
lem with the NRG, and the resolution of the method at'espective relative deviations from the exact Friedel sum rule
higher energies can be improved by reducing the discretizd€Sult, pg,(@=0)=sin(mmy2)/wA. The NCA result in the
tion parameterA for the relevant iterations covering the Kondo regime appears reasonable because the singular be-
high-energy scales. We have explicitly checked that thdavior of the impurity spectral density 8t=0 Ref. 11 is
width and height of the many-body resonance at the Fermiemoved by our small finite temperatufle=10"°D. The

level, where the NRG gives the highest resolution, are unafexact NCA result forp{*(«=0,T=0) is actually much

+ o0
0 T)= [ adlA7 (er o, DA (e

+A; (6, T)A; (e—w,T)]. (33

fected by the broadening used to smooth ékinctions in "

the discrete specti@nless the broadening is made too small,

which will result in uneven spectraFrom Figs. 1(b)—10(c)

we see that the NCA gives a Kondo resonance that is toamongpyRG

worse:
We also show results for the mixed valdfig. 11), and
empty orbital regimegFig. 12. There is good agreement

, piRC”, andp!\“* for the high-energy parts of

broad and too high on the bremsstrahlung isochromat spethe renormalized resonant level=T,, but the incorrect
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FIG. 9. Comparison of the NRG<) and NCA (O) auxiliary spectral functiong\{,, (a),(b), A} (c),(d) in the empty orbital case
€4/A=+2. The NRG results are féF=0 and the NCA results are faf=1.0x 10 °D.

low-energy behavior of the NCA result féx, in the above impurity spectral function at intermediate~ T, and higher

regimes and the neglect of the vertex part(24) and (33) energiesw>T in the different parameter regimes, we now

makes bothp’C;ICA and pS‘RG* deviate from the exact NRG discuss the limitw<<Tj. In this limit, evaluating the impu-

result at low energies. The resonant level is approximately &ty spectral density, without vertex corrections, i.e., for

Lorentzian of widthA, and the small asymmetric broadening (€, ) A =1, using(30)—(32) in (26) gives

in the NRG curves is due to the logarithmic discretization.

An improved description of high energies could be obtained pg,(0—0")hm;19=a; ay 0!~ *~*B(1- ay,1+ a},)

in both NRG and NCA, if required. Within NRG it is pos-

sible to focus on high energies explicitly by using a smaller ~| | Ma(t"a), (34)

discretization parameterA, for the first few iterations.

Within NCA higher energies are easily resolved by using avhere B is the beta function. The exact result at=0

finer grid to solve the integral equations at these energies.is given by the Friedel sum rule, py,(0=0)
Having discussed the effect of vertex corrections on the=sin’(mny2)/7A, so we conclude that the vertex correc-

TABLE 1. Coefficientscif, appearing in Appendix A.

i’ C C;

11 1 1

22 V25(25+2)/(25+1)(25+1) 1

33 1 V25(25+2)/(25+1)(25+1)
44 1 1

23 0 U(B+1)

32 1 0
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FIG. 10. The impurity spectral function in the Kondo regime
eq=—4A, To/A=1.87x10"2, for (a) high energies and the low-
energy regionb) —5<w/T;<10, and(c) —2<w/Ty<+2. The
dashed curve is the NRG reswl}{ ", the dot-dashed curve is the
NRG result without the vertex part i33), and the solid curve is the

NCA result. The NRG results are far=0 and the NCA results are
for T=1.0x10"°D.

tions neglected ifi34) are singular at low energies, i.e., close
to the threshold, and lead to a singularitypig), at the Fermi
level that cancels that it84). Similar vertex corrections ap-
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FIG. 11. The impurity spectral function in the mixed valent
regimeey/A =0, with notation as in Fig. 10. The NRG results are
for T=0 and the NCA results are far=1.0x10 °D.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have made a comparison of the spectral
functions of theU =« Anderson model as calculated within
the simplest self-consistent conserving approximation, the
NCA, and within the NRG. At high energiee>T, we
found good quantitative agreement for the auxiliary and
physical spectral functions calculated within the two meth-
ods in all parameter regimes. Some small discrepancies in
the shape of high-energy peaks could be attributed to the
logarithmic discretization used in the NRG, which tends to
give lower resolution and slight asymmetries to high-energy
peaks. At lower energies we found good quantitative agree-
ment for both slave-boson and pseudofermion spectral func-
tions down to at leasT. In the Kondo regime the agree-
ment between the NCA and NRG slave-boson spectral
function A extended to well below the low-energy scale
To=Tg . Despite the accuracy of the NCA auxiliary spectral
functions down toTx we noted that the impurity spectral
density deviated from the essentially exact NRG, result on
energy scales up to . The source of this discrepancy was
traced directly to the lack of the vertex part in the NCA

30.0

20.0

P(®)

100 |

0.0
-5.0

10.0

FIG. 12. The impurity spectral function in the empty orbital

pear in the calculation of other physical quantities such a?egimeed/A: + 2, with notation as in Fig. 10. The NRG results are

the dynamic spin susceptibility.

for T=0 and the NCA results are faf=1.0x10 °D.
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expression for the impurity spectral density, thus showingenormalization-group methods are not as well developed as
that vertex corrections are required for the physical Green’$or impurity models.

functions even when the auxiliary particle dynamics appears

to be correctly described within the NG#or energies down ACKNOWLEDGMENTS

t To). In the Fermi-liquid regimaw<T,, the NCA gives We are grateful to K.A. Muttalib and P. Hirschfeld for

results for the impurity spectral density in disagreement Wiﬂhseful discussions concerning self-consistent conserving ap-
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ymptotic behavior of the auxiliary particle Green’s functions,

our results show that they are also needed for a correct de- APPENDIX A: MATRIX ELEMENTS

scription of the physical Green’s functions at much higher FOR AUXILIARY PARTICLE OPERATORS
energiesw~Tg. This is the main conclusion of the compari-

sons we made. In this Appendix we give the expressions for the matrix

We are in the process of including vertex correctionselements of the auxiliary particle operators, required for the
within a self-consistent theo?ﬁ thus going beyond the calculation of the spectral functions. The states,
lowest-order conserving approximation. We expect that in{Q.,N¢,S,S,,r)y, of the HamiltonianHy (which includes
clusion of vertex terms will substantially improve the physi- the orbitalsf ,cq,, ... ,C\,) are labeled by the quantum
cal Green's functions, the auxiliary Green’s functions, ashumbers Q,N.,S,S, and an index r, where
shown in this paper, being already well described down th=EUf:§fU+ b'b is the number of auxiliary particle®\, is
energies of ordefT, within the lowest-order theory. The the total number of fermionss the total spin, and, the z
availability of accurate results for dynamic properties via thecomponent of the total spin and the indexdistinguishes
NRG for impurity models make these a natural testingstates with the same conserved quantum numbers. A product
ground for developing such approximation schemes. Theskasis setQ,N.,S,S,,ri )y for the subspaceq,N,,S,S,) of
schemes could then be extended to study lattice models ¢fy in terms of eigenstates ofHy_; and states
strongly correlated electrons, for which, at present, numericg0),[1),|]),|T]) of the orbitalcy, is defined by

|Q.Ne,S,S,.r. Hn=1Q.Ne.,S,S;,1)n-1/0), (A1)

S+S, S-S,
QNe,S.S,.12n= \| 551 QiNe= 1.8~ 1/2,8,~ 112 1)y -1| 1)+ \/ 55 1QNe= 15~ 1/2 S+ 1/2 1)y 4] 1),

(A2)
S—S,+1 S+S+1
|Q,N¢,S,S,,r,3)n=— W|Q,Ne—l,S+1/2,SZ—1/2,I‘>N,1|T>+ W|Q,Ne—l,5+ 1/2,S,+1/12r)n_4|1),
(A3)
|Q,Ne,S,SZ,I’,4>N=|Q,Ne—2,S,SZ,r>N,1|Tl>. (A4)

The reduced matrix elementgQ,N,,S,r||f7]|Q—1, No— 1,5+ 1/2,8)y and \(Q,N,,S,r||b"||Q—1N,,S,s)y are calculated
recursively following the recursive calculation of the matrix elemegt®,N.,S,r||c/||Q,Ne—1,S*1/2,s)y required for
setting up the Hamiltoniahl . Details of the latter can be found in Ref. 14. We follow the notation of Ref. 14 and denote by
Ug’Ne’S(ri p), p=1,... ,Rg’NeS the matrix of eigenvectors of the subspa€g|.S,S,) of Hy whereRg,NeS is the dimen-

sionality of this subspace andandi=1, ... ,4label the product state basis, which is related to the diagonal basis by the
unitary transformation

Qe S, pIn=2 Ug, s(PrIr il (AS)
with |r,i)y denoting one of the four product stat@sl)—(A4) defined above. Defining

MG s(F ) =n(QNe, S, fT]]Q—1N— 1S 1721 ")y, (A6)

MEN, o(r.r)=r{Q.Ne. Sr[[b]|Q—LNe . Sr)y, (A7)

and using the unitary transformatigA5) we have
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MGRE s(P. ) =n(Q.Ne,Spl[f1|Q— 1N~ 1,5 1/2 g)y

E UQNS(p”)UQ 1N, “1s+12(0,1 1) = 1(Q, Ne,Sril|f1|Q—-1N e—1S=1/2r 1" )N-1,

I‘II‘I

MG, s(P.@)=n(QNe,S,pl[b||Q— 1N, S,a)y

> UQNS(p”)UQ 1N, (AT )n- 1{Q.Ne,S,ri||bT|Q—1Ng,S,r'i")y-1. (A8)

ri,r'i’

Evaluating these usingA1)—(A4) gives an expression relating the matrix elements at iterafida those at iteratio™N—1,

MfQ+NN s(p.a)= Cllz UQN s(p, rl)UQ 1Ng e 1)MfQ+N s(r r')

. . fr N—1 .
+C52§ U(I\QI,Nes(parz)ugfl,Nefl,Sillz(qJ Z)MQ,Ne—ls—%(r’r )
+C332 UQN s(p, r3)UQ 1N~ 15+ 1720 3)M

rr’

(r,r’)
2

QN -15+

+C44E UQN s(Pp, r4)UQ 1N— 15272 0T’ 4)MI)_N'::2},S(V,V')

rr’

+CzaE UQN s(p, rZ)UQ 1N,- 1512401 3)|V|

rr’

(r,r’)

-1S*5

+,N-1
+(:322 UQN s(p, r3)UQ 1N— 1.5 1720 T 2)M 1s+1(r r',

rr’

and

MG\, s(p.0)= Z Ugns(Pr UG sy, (i r DIMGRS(r,r >+E Ugns(P.r2US 1, (. 2MBN s 1l
+2 U(’\)l,NeS(pvrg)Ugfl,Ne,s(erIS)M%,';‘\I;El,S+1/2(rvr,)
rr

+E US,Nes(IO,M)Ug_l,Ne,s(q,r’4)M%,'§1;-12,s(r,r’),
rr’

where the coefficient€;, are given in Table II. (r|t!]s), (r|bf|s), and (r|c],|s) by making use of the
commutation relations for the creation and annihilation op-
APPENDIX B: ERRORS AND SUM RULES erators appearing in the Hamiltoniah),
In this Appendix we outline some of the checks carried f fl+flf,=1, (B1)
out to ensure the correctness of the numerical bt
renormalization-group programs. The eigenvectors and ei- b,b,—b;b,=1, (B2)
genvalues ofH can be calculated analytically and these can CNUCL i +CL Cne=1. (B3)

then be used to set up the matricesNbe 1. The latter have
been compared with those generated by the computer pré-or any statgdQ,N.,S,S,,k)y in the Hilbert space ofy,
grams forN=1 and found to be identical. We have also the completeness relatian, |r){r|=1 together with(B1)—
checked the recursive evaluation of the matrix elementsB3) yields
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1
25+2

> Q.Ne, SK[|fT]|Q—1Ng— 1,5+ 1/2k" )]

1=, (Q,Ng,SK||fT|Q—1Ne— 15— 1/2 k') +
Kk’ k'

+, KQ+1Ng+1,5+1/2k'||f7]]Q,Ng,S, k)2, (B4)
k!

Ib"[|Q—1Ne, Sk, (B5)

1=2, (Q+1Ne,Sk'[[b'|Q,Ne,S,k)?— > KQ,Ne,Sk
k' k'

1
1=2] KQ.Ne, SK|[c{][Q.Ne=15— 112k )P+ 55 2 [Q.Ne, SKI[el[|Q.Ne— 1.5+ 1/2 k')
k' Kk’
+ 2 (Q,Ng+1,5+1/2k'||ch||Q,Ng, S K)[2. (B6)
N
k!
|
In the calculations we verified that these relations were sat- ~ {O)gdN)
isfied to within rounding errors for each std@,Ng,S, k) (O)c=lim Q) (C3
in Hy for N=0,1,...,4, when all states are retained. This N G

gives a reliable test of the formulas in Appendix A and on the

routines for the recursive evaluation of the matrix elements. Thus, we obtain the constraineielectron Green func-
We note that once higher-energy states start being elimition in terms of the grand canonical op€y(w,T,\)] as
nated, typically foiN>4, the LHS of the above expressions

will be less than unity due to the missing states. The sum rule . Gy(w,T,N)

(B5) also provides a check on the construction of the Hamil- Gy(w)=lim 1QacV) (CH
tonianHy, since the latter depends on the matrix elements Ao ¢

_ ’ 1) _ 14
(Q=1Nc+1S= 1./.2’k ||CN||Q._1’.Ne’S’I$>' _The above In the enlarged Hilbert spaceQE=0,1,2...) Gy(w,T,\)
tests on all quantities appearing In t.he lterative pro<_:ed_ure foﬁway be expressed in terms of the pseudofermion and slave-
the first few iterations virtually eliminates the possibility of boson Green functions using Wick's theorem. It then follows
errors. from Eq. (C4) that the operator constrai@=1 is imposed
_ on the auxiliary Green'’s functions by simply taking the limit
APPENDIX C: EXACT PROJECTION N—oo of the respective unconstrained functions. Clearly, by
ONTO THE PHYSICAL SUBSPACE this procedure all excitation energies of pseudofermions and
In order to effect the constraint of the dynamics to theSlave bosons are shifted to. It is therefore convenient to

physical Hilbert subspace it is convenient to add the ternfédefine the auxiliary particle frequency scaledas: w+\

associated with the auxiliary particle numi@r The opera-  the energy scale of physical quantitigike the locald elec-
tor constraintQ=1 is imposed exactly on the expectation tron Green’s functiop which is thedifferencebetween the

value of any operato® by differentiating with respect to the the pseudofermion and the slave-boson energy.

fugacity /=e A" and then taking the limik —:’ Finally we emphasize that the canonidak., projected
onto the Q=1 subspacelocal c-electron self-energy, de-

_ (d19g) t[Oe AHTAQ] fined byS, =Gyl — G, whereG,,(w,T) is the canonical

(O)c= lim (€1 local c-electron Green’s functiowannotbe obtained from

o (9130) e~ BHFAQT
the grand canonical one by simply taking the limit->o,

where the trace is taken over the complete, enlarged Hilbesince thec-electron density has a nonvanishing expectation

space. In particular, we state the following two results, whichvalue in theQ=0 subspace. Rather, it is related to the

are of use to us in this paper and which follow straightfor-matrix, t_(w), by

wardly from the abovefor details see Ref.)7 First, the

canonical partition function in the subspaQe=1 is t (0T

S(0,T)=——F— (CH

Ze=lim t{Qe AHMQ-VI]= |im [e#Q)sc(M)1Zo—0. T 1+t,(0,T)Goey

A—o N—o
(€2 It follows thatEGNexhibits(in an exact theorylocal Fermi-
where the subscripts GC ar@@l denote the grand canonical liquid behavior, 3, (0, T=0)=aw+ibw? for w— ez=0.
and the canonical@=1) expectation value, respectively. This is a different quantity from the grand canonical
Second, the canonic§ =1 expectation value of any opera- conduction-electron self-energy that is proportional to tthe
tor O having a zero expectation value in tQe=0 subspace matrix, t,(w), and has a finite imaginary part at the Fermi
is given by level.
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APPENDIX D: NCA CALCULATION defined above coincides exactly with that of the NRG spec-
OF THE AUXILIARY SPECTRAL FUNCTIONS = Af, tral functions defined ir{5). More importantly, however, the

In order to enter the asymptotic power-law regime of theabove way of determining a “threshold” is lessl hocthan,

auxiliary spectral functions and to compare with the0 for example, defining it by a maximum in some function
results of the NRG, the NCA must be evaluated for tempera‘:’lppea”ng in the NCA equations. It is also seen from Eq.

tures several orders of magnitude beloly, the low- (D3) that this procedure defines the frequency scale of the

temperature scale of the model. The equations are solvet%fxmary particles such that the= 0 threshold divergence of

numerically by iteration. In this Appendix the two main pro- - spectral functions is at trieed frequencyw=0. This
y by o PP ; . pre substantially increases the precision as well as the speed of
cedures are described to make the diagrammatic auxilia

r : . . ;
particle technique suitable for the lowest temperatures. Aumerical evaluations. EquatiorC4) for the projected

) . .. d-electron Green'’s function becomes
The grand canonical expectation value of the auxiliary

particle number appearing in E¢C4) is given in terms of
the (unprojectedl auxiliary particle spectral functions
A{p(w,T,\) by

Gy(w)= lim e Gy(w,T,\). (D4)

A—x©

(2) The divergence of the Boltzmann factors implies that
flw)D Al (@, T\ the self—consistgnt solutions 'férf*’b(a_)) vanish gxponentially
v ~eP* for negative frequencies. It is convenient, not to for-
mulate the self-consistent equations in terrrlsAqTffo as in
, (D1)  earlier evaluationd but to define new function&; p(w) and
Im2 p(w) such that

<Q>Gc(?\)=f do

+b(w)Ay (@, T,\)

where f(w), b(w) denote the Fermi and Bose functions.

Substituting this into the expressid@2) for the canonical Afp(0)=f(—w)As (o), (D5)
partition function we obtain after carrying out the transfor- .
mationw— w+\, and taking the limit\ — o, IM2¢ p(w)=f(—w)ImZ; y(w). (D6)
P Zc ) N After fixing the chemical potentiahy and performing the
e BFimp(M = Z = lim e"(Q)sc(N) projection onto the physical subspace, the canonical partition

Q=0 A—e function [Eq. (C2)] behaves as lig...ef* 2z (T)=1,
and it follows immediately from the definition d; ,, that
= f dwe A
N . ] In this way all exponential divergencies are absorbed by one
whereA; ,(»,T) are now the projected spectral functions assjngle function for each particle species. The NCA equations

defined in Eq. (5, and by definiton Fi,, in terms of these functions are free of divergencies of the

=—(1B)In(Zc/Zgy-0) is the impurity contribution to the free statistical factors and read
energy.

The numerical evaluation of expectation values like - _ , [1-f(e)][1-f(w—€)]
(Q)gc(A—»)[Eq. (D2)] or 2., (w,TA—x)[Eqg. (22)] is iM% (w—i0,T)=V Ek 1-T(w)
nontrivial (1) because af =0 the auxiliary spectral func-
tions Affb(w,T) are divergent at the threshold frequency XAb(w_Ek)i (D8)
Eqy, where the exact position & is a priori not known,
and(2) because the Boltzmann factas?® diverge strongly . fle)[1—f(w+e)] -~
for w<0. Therefore, we apply the following transformations: Im3,(w—i0,T)=V? >, X K A (w+ €,
(1) Before performing the projectiom—w+\, N — o ko 1=1(w)
we redefine the frequency scale of all auxiliary particle func- (D9)
tions Aﬁb according tow— w+\g, Wherel is a finite pa-
rameter. In each iteration, is then determined such that <Q>()\o,)\—>°°)=J dof(w)

2 Al T)+Ag (0,T)], )
7 Afp(@)=f(w)A¢ p(o). (D7)
(D2)

; Afg<w>+l\b<w>}=1,

D10
f dwe #°| D) Al (0)+A] (w)|=1, (D3) (b10
where Af (@) =lim\_.A{ (0+Xo+\,T,\) is now an |mGda(w_iOaT)=fdf[f(€+w)f(—6)
auxiliary spectral function with the new reference energy. It - -
is seen from Eq.(D2) that Ao(T)=Fins(T)=Fq_1(T) +f(—e—w)f(€)]Ai(e+ w)Ay(e),
—Fq=0o(T), i.e., \q is the chemical potential for the auxil- (D11)

iary particle numbeQ, or equivalently the impurity contri-
bution to the free energy. The difference of the free energiewhere the real parts of the self-energi®s, X,, 3.
becomes equal to the threshold enekgy- Egil—Egio at are determined from a Kramers-Kronig relation, and the

T=0, so the energy scale of the shifted spectral functionswxiliary spectral functions are the imaginary parts
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of the Green’s functionsA; (w)=— Im{{w+\;—i0— €4
~S(0=i0)] 7Y, Af(w)=— IM{[w+Xo—i0-Sy(w
~i0)] 71}
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effectively for temperatures down to typically=10"*T,. It

may be shown that the same procedure can also be applied to

self-consistently computing vertex correctiéhbeyond the

The above method allows us to solve the NCA equationdNCA.
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