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A comparative study of the numerical-renormalization group and noncrossing-approximation~NCA! results
for the spectral functions of theU5` Anderson impurity model is carried out. The noncrossing approximation
is the simplest conserving approximation and has led to useful insights into strongly correlated models of
magnetic impurities. At low energies and temperatures the method is known to be inaccurate for dynamical
properties due to the appearance of singularities in the physical Green’s functions. The problems in developing
alternative reliable theories for dynamical properties have made it difficult to quantify these inaccuracies. In
this paper we show, by direct comparison with essentially exact numerical-renormalization-group calculations
for the auxiliary and physical particle spectral functions, that the main source of error in the noncrossing
approximation is in the lack of vertex corrections in the convolution formulas for physical Green’s functions.
We show that the dynamics of the auxiliary particles within the NCA is essentially correct for a large parameter
region, including the physically interesting Kondo regime, for all energy scales down toT0 , the low-energy
scale of the model and often well below this scale. Despite the satisfactory description of the auxiliary particle
dynamics, the physical spectral functions are not obtained accurately on scales;T0 . Our results suggest that
self-consistent conserving approximations which include vertex terms may provide a highly accurate way of
dealing with strongly correlated systems at low temperatures.

I. INTRODUCTION

In recent years the physics of strongly correlated Fermi
systems has attracted wide interest, in particular in the con-
text of high-Tc superconductors1 and their normal-state
properties.2 Despite intense efforts, systematic and controlled
theoretical methods for dealing with such systems are still
lacking. At the heart of the problem is the effect of a strong
on-site Coulomb repulsionU on fermions living on a lattice,
in particular, ind52 dimensions. At low energy such models
can be mapped onto effective Hamiltonians with the con-
straint of no double occupancy of any lattice sites. The pro-
jection onto the corresponding subspace of Hilbert space is
presumably responsible for a number of unusual properties,
most remarkably the spin-charge separation and non-Fermi-
liquid behavior. Unfortunately the local constraints on the
site occupancy are difficult to handle. One possible
formulation3 uses auxiliary particles such as slave bosons
(b) and pseudofermions (f s) to represent an electron as a
composite particle consisting of a pseudofermion particle
and a slave boson hole (f s

†b). The local constraint is holo-
nomic in this formulation, and is given by the condition that
the sum of the occupation numbers of pseudofermions and
slave bosons is equal to unity at any lattice site,
(snfs1nb51. The constraint is closely related to the local
gauge symmetry of the system with respect to simultaneous
U~1! gauge transformations ofb and f s . It may be shown

that starting with certain mean-field theories the constraint
and its consequences lead to the appearance of longitudinal
and transverse fictitious gauge fields coupling equally to
pseudofermions and slave bosons.4 The gauge fields restore
the local symmetry broken in mean-field theory.

However, it is not clear that the slave-boson mean-field
theories are a good starting point~except for the cases where
a physical phase transition into a magnetic or superconduct-
ing phase takes place!. Alternatively one may guarantee the
local gauge invariance of approximations by deriving those
from a generating functional.5 The local gauge invariance
ensures conservation of the local occupation at each lattice
site ~the ‘‘local charge’’! in time. In order to effect the actual
projection, it is still necessary to fix the occupation numbers
at a given time locally. So far this has only been achieved for
impurity models, e.g., the Anderson model of a magnetic
impurity in a metallic host.6–8

Even if the projection is done exactly, an equally impor-
tant question is the selection of the dominating contributions
in perturbation theory in the hybridization~or in the hopping
integrals and exchange interaction in the case of lattice mod-
els!. In this paper we address this question for the infinite-U
Anderson impurity model~degeneracyN52!. We employ
the numerical renormalization group~NRG! to calculate the
slave-boson and pseudofermion spectral functions and com-
pare the results with those of the simplest fully projected
conserving approximation, the so called ‘‘noncrossing ap-
proximation’’ ~NCA!.9,10 While the NCA is known to give
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excellent results for large degeneracyN and not too low
temperatures, including the crossover from low (T!TK) to
high temperature (T@TK , where TK is the Kondo
temperature!,7,10 pronounced deviations from exactly known
results appear8,11 atN52 . The comparisons will allow us to
pinpoint the deficiencies of the NCA and to identify possible
improvements.

In earlier publications12,13we have presented results of an
NRG calculation of the slave-boson and pseudofermion
spectral functions at zero temperature. We found these func-
tions to be infrared divergent at threshold, with critical ex-
ponents dependent on thed-level occupancynd and given by
simple expressions identical to the well-known x-ray absorp-
tion threshold exponents.

The paper is organized as follows: In Sec. II we formulate
the model, describe how we implement the numerical renor-
malization group for studying auxiliary spectral functions of
this model, and describe the NCA within the framework of
conserving approximations. Sec. III describes our results for
spectral functions calculated with the above two methods. In
Sec. IV we summarize our main results. Some details of the
auxiliary particle technique, which make it suitable for an
effective evaluation at the lowest temperatures, are discussed
in the appendices.

II. FORMULATION

A. Model and application of the renormalization group

The Anderson model of an impurityd electron state hy-
bridizing with the conduction band with infinitely strong
Coulomb repulsion in thed level in auxiliary particle repre-
sentation takes the form

H5Hc1ed(
s

f s
† f s1V(

s
~c0s

† b†f s1 H.c.!, ~1!

whereHc5(ksekcks
† cks is the conduction electron kinetic

energy andc0s5(kcks annihilates a conduction electron
with spins at the impurity site 0. The Hilbert space consists
of disjoint subspaces characterized by the conserved auxil-
iary particle numberQ5b†b1(s f s

† f s , Q50,1,2, . . . .
The physical subspace is defined by the constraintQ51.
Following Wilson14 we ~i! linearize the spectrum ofHc about
the Fermi energyek→k, ~ii ! introduce a logarithmic mesh of
k pointskn5L2n, and~iii ! perform a unitary transformation
of thecks such thatc0s is the first operator in the new basis
andHc takes the form of a tight-binding Hamiltonian ink
space,

Hc5 (
n50

`

(
s

jnL
2n/2~cn11s

† cns1H.c.!, ~2!

with jn→(11L21)/2 for n@1. These steps are explained in
detail in Ref. 14 and can be taken over for the present model
without change.

The Hamiltonian~1! together with the discretized form of
the kinetic energy~2! in the new basis is now diagonalized
by the following iterative process:~i! one defines a sequence
of finite-size HamiltoniansHN by replacingHc in ~2! by
HN
c 5(n50

N-1 (sjnL
2n/2(cn11s

† cns1H.c.); ~ii ! starting from
H05ed(s f s

† f s1V(s(c0s
† b†f s1 H.c.), each successive

hopping may be considered as a perturbation on the previous
Hamiltonian;~iii ! the HamiltoniansHN are scaled such that
the energy spacing remains the same. This defines a
renormalization-group transformation H̄N115L1/2H̄N

1jN(s(cN11s
† cNs1H.c.)2ĒG,N11 , with ĒG,N11 chosen so

that the ground-state energy ofH̄N11 is zero. The Hamilto-
niansH̄N are diagonalized within subspaces of well-defined
Q,Ne ,S,Sz , whereNe is the total fermion number,S the
total spin, andSz the z component of total spin. The use of
these conserved quantities leads to significant reductions in
the size of matrices to be diagonalized, however, the dimen-
sion of H̄N grows as 4N and it is necessary to truncate the
higher-energy states forN.7. Approximately 1/4 of the
states generated at each iteration are retained in the calcula-
tions and this constitutes a surprisingly accurate approxima-
tion for the present model. This accuracy is evidenced by the
fact that various exact relations, such as the Friedel sum rule,
which relates the impurity spectral density at the Fermi level
to the local level occupancy, are satisfied to a high degree of
accuracy.15 In addition, the number of states retained per
iteration,Nst, which is a free parameter, can be varied from
250 to 2000 states without any significant change in the re-
sults presented here. This, together with the almost cut off
independent results forL>1.5 indicates the convergence
and accuracy of the method.

B. NRG calculation of auxiliary spectral functions

Within the framework of the NRG it is natural to repre-
sent the Green functions in an eigenbasis of the Hamiltonian.
In the enlarged Hilbert space the retarded propagators for
pseudofermions and slave bosons are defined by

Gfs~v1 i0,T,l!5
1

ZGC
(
Q,m,n

uMm,n
f u2~e2b~en1lQ!1e2b@em1l~Q11!#!/@v1 i02l2~em2en!#,

Gb~v1 i0,T,l!5
1

ZGC
(
Q,m,n

uMm,n
b u2~e2b~en1lQ!2e2b@em1l~Q11!#!/@v1 i02l2~em2en!#,

where, for eachQ, em ,en are eigenvalues of the subspacesQ11,Q, whereZGC(T,l) is the grand canonical partition function,

ZGC~T,l!5(
Q,m

e2b~em1lQ!5ZQ501e2blZQ511••• ~3!
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and Mm,n
O 5^Q11,muO†uQ,n& with O5 f s ,b are the many-body matrix elements for pseudofermions and slave bosons,

respectively. The constrained propagators are then obtained as

Gf ,b~v1 i0,T,l→`!5
1

ZQ50
(
m,n

uMm,n
f ,b u2e2ben/@v1 i02~em2en!#, ~4!

where the frequency has been shifted asv→v1l. We are interested in the following projected spectral
functions ~see Appendix C for details!: Af ,b

1 (v,T)52 liml→`@ ImGf ,b(v,T,l)/p# and Af ,b
2 (v,T)5

2 liml→`@e2bv/ZC(T)#@ ImGf ,b(v,T,l)/p#,

Af ,b
1 ~v,T!5

1

ZQ50~T! (
m,n

z^1,muO†u0,n& z2e2be0,nd„v2~e1,m2e0,n!…, ~5!

Af ,b
2 ~v,T!5

1

ZC~T!ZQ50~T! (
m,n

z^1,muO†u0,n& z2e2be1,md„v2~e1,m2e0,n!…. ~6!

In the definition ofAf ,b
2 ZC5ZQ51 is introduced in order to obtain a well-defined zero-temperature limit.~The functions

Af
1 , Ab

1 defined here correspond to theA, B functions, respectively in Ref. 7, and similarly the functionsAf
2 , Ab

2 correspond
to thea andb functions.! At zero temperature the spectral functions reduce to

Af ,b
1 ~v,T50!5

1

ZQ50~0! (
m

z^1,muO†uF0& z2d~v1EQ50
GS 2e1,m!, ~7!

Af ,b
2 ~v,T50!5

1

ZC~0!ZQ50~0! (
n

z^F1uO†u0,n& z2d~v1e0,n2EQ51
GS !. ~8!

Here uF0& is the ground state of theQ50 subspace of non-
interacting conduction electrons andu1,m& are the excited
states of theQ51 subspace of the interacting system,
EQ50
GS and e1,m are the corresponding energy eigenvalues.

The spectral functionsAf ,b
1 (T50) vanish identicallybelow

the thresholdE05EQ51
GS 2EQ50

GS . Similarly, in the expression
for Af ,b

2 (T50), uF1& is the ground state of the interacting
system (Q51 subspace! and u0,n& are the excited states of
the noninteracting conduction electron system,EQ51

GS and
e0,n the corresponding energy eigenvalues. These spectral
functions vanishabovethe threshold energyE0 . From ~B4!
and ~B5! and ~7! we see that theT50 spectral functions
Af ,b

1 satisfy the sum rule

E
2`

1`

Af ,b
1 ~v,0!dv51. ~9!

In practice, within the NRG technique, it is the excitation
energies from the respectiveQ50 or Q51 ground states
that are calculated. Hence, it is convenient to set the thresh-
old energyE0 to zero. TheT50 projected auxiliary spectral
functions then have divergences at zero energy. As described
in Appendix D it is also possible to formulate the NCA equa-
tions of Sec. II C such that the NCA spectral functions ex-
hibit their T50 divergences at zero energy. This makes it
easier to compare with the NRG results and in addition im-
proves the accuracy of the NCA solution at the lowest tem-
peratures. The reference energy scale for the physicald elec-
tron Green’s function,Gds(v,T)5^^b†f s ;b fs

†&&Q51 ,

Gds~v1 i0,T!5
1

ZC
(
m,n

uMm,n
d u2~e2ben1e2bem!/@v1 i0

2~em2en!#, ~10!

is independent ofE0 and is set by the Fermi leveleF50.
The matrix elementsMm,n

f ,b of the pseudo-particle opera-
tors f s

† , b† in ~5! and~6! are calculated recursively using the
formulas given in Appendix A. Similar formulas apply to the
matrix elementsMm,n

d for the physicald electron Green’s
function. For each iteration step, they are substituted together
with the energy eigenvalues into~7! and~8! to give theT50
spectral functionsĀN, f ,b

6 (v). In principle, if all states up to
stageN were retained,HN would describe excitations on all
energy scales from the band edgeD51 down to the
lowest-energy scale present inHN , i.e., vN5
D/2(1)(11l21)l2(N21)/2 . Due to the elimination of
higher-energy states at each step, the actual range of excita-
tions inHN is restricted tovN<v<KvN , whereK'7 for
L'2 retaining 500 states per iteration. Thus at stepN, the
spectral functions are calculated at an excitation energy
v'2vN in the above range. Thed functions in~7! and ~8!
are broadened with Gaussians of widthaN'vN appropriate
to the energy-level structure ofHN .

15

Finally we note that the constraint of no double occu-
pancy,Q51, is implemented exactly within the NRG calcu-
lations sinceQ is a conserved quantum number. Appendix C
describes in detail the implementation of this constraint for
the conserving approximation of the following section.

C. Conserving approximation: NCA

For small hybridizationV compared to the impurity level
ed , a perturbation expansion in terms ofV seems reasonable.
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It is useful to express the auxiliary particle Green’s functions
for given ‘‘chemical potential’’2l defined in~49! in terms
of self-energiesSb(v,T,l) andS f(v,T,l) as

Gfs~v,T,l!5@v2l2ed2S fs~v,T,l!#21, ~11!

Gb~v,T,l!5@v2l2Sb~v,T,l!#21, ~12!

wherev takes the values of fermionic or bosonic Matsubara
frequencies. The projected spectral functions are obtained by
shifting the frequencyv→v1l and taking the limit
l→`, as described in Appendix C. We define a local grand
canonical conduction electron Green’s function
Gcs(v,T,l) in terms of a self-energyScs(v,T,l) by

Gcs~v,T,l!5@~Gcs
0 !212Scs~v,T,l!#21, ~13!

whereGcs
0 (v)5*deN(e)/(v2e) is the local Green’s func-

tion of the bare conduction band, withN(e) the density of
states. We call the quantityScs(v,T,l) the grand canonical
c-electron self-energy. This quantity enters naturally in the
conserving theory presented below and should be distin-
guished from the local conduction-electron self-energy in the
canonical ensemble~this is elaborated on in Appendix C!.

There is an exact relation between thed-electron Green’s
function andSc :

Gds~v,T,l!5
1

V2

Scs~v,T,l!

12Scs~v,T,l!Gcs
0 ~v!

. ~14!

Thus, the principal problem remaining in the evaluation of
the theory is the proper choice of approximation in which the
three self-energies are calculated. The slave-boson Hamil-
tonian ~1! is invariant under two independent U~1! gauge
transformations: ~1! simultaneous transformation of the
pseudofermion and the slave-boson operators and~2! simul-
taneous transformation of the pseudofermion and the
conduction-electron operators. These symmetries correspond
to the conservation of the auxiliary particle number and the
total number of fermions, respectively:

(
s

f s
† f s1b†b5 const, ~15!

(
s

f s
† f s1(

ks
cks
† cks5const. ~16!

The Green’s functionsGf , Gb are not invariant under local
~in time! gauge transformations, but we must requireGd to
be invariant. Constructing a gauge invariant approximation
is, a priori , a nontrivial task, since thed electron number
nd is not a conserved quantity. Yet, it may be shown that a
gauge invariant approximation obeying both conservation
laws ~15! and ~16! is constructed by deriving all three self-
energies from one generating functionalF: S fs
5dF/dGfs , Sb5dF/dGb , Scs5dF/dGcs . Equation
~14! then provides the rule for a gauge invariant approxima-
tion for Gd . The functionalF is given in terms of closed
skeleton diagrams with suitable combinatorial factors. The
lowest-order contribution toF is of second order in
V, F52V21/b(v(eGfs(v)Gcs(e)Gb(v2e) @Fig. 1~a!#.
Functional differentiation yields the self-energies

S fs~v!52V2
1

b (
e
Gcs~e!Gb~v2e!, ~17!

Sb~v!5V2
1

b (
e
Gfs~v1e!,Gcs~e!, ~18!

Scs~v!52V2
1

b (
e
Gfs~e!Gb~e2v!. ~19!

After the transformationv→v1l, l→`, one finds explic-
itly

S fs~v,T!5V2(
k

@12 f ~ek!#Gb~v2ek!, ~20!

Sb~v,T!5V2(
k,s

f ~ek!Gfs~v1ek!, ~21!

Scs~v,T,l→`!5V2e2blE dee2be@Gfs~e1v!Ab
1~e!

2Af
1~e!Gb~e2v!#, ~22!

and Gfs(v)
215v2ed2S fs(v), Gb(v)

215v2Sb(v),
where f (ek) is the Fermi function. The physicald-electron
Green’s function is obtained from the limiting procedure
Gds(v,T)5 liml→`e

blGds(v,T,l) ~compare Appendix C!.
As Scs(v,T,l);e2bl for l→`, the self-energy correc-
tions toGc and to the denominator ofGd vanish, and

FIG. 1. ~a! The lowest-order contribution to the generating func-
tional F, and ~b! the renormalized vertex partL( ivn ,ivn2 iv),
entering the expression~26! for the d-electron Green’s function
~with frequency conservation we can omitivn in L). The solid
lines are for band electrons, the dashed lines are for pseudofermi-
ons, and the wiggly lines are for slave bosons.
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Gds~v,T!5
1

V2 lim
l→`

eblScs~v,T,l!. ~23!

This equation shows that the quantity we call the grand-
canonical c-electron self-energy is related, in the limit
l→`, to the physical t matrix, ts(v,T), i.e.,
liml→`e

blScs(v,T,l)5V2Gds(v,T)5ts(v,T). The ca-
nonical localc-electron self-energy, which is not explicitly
calculated in this paper, is a different quantity, which should
not be confused with our projected conduction electron self-
energy~see Appendix C!.

The impurity spectral density follows as

rd
NCA~v,T!52

1

p
ImGds~v1 i0,T!

5E
2`

1`

de@Afs
1 ~e1v,T!Ab

2~e,T!

1Afs
2 ~e,T!Ab

1~e2v,T!#, ~24!

which atT50 reduces to

rd
NCA~v,T50!5Q~v!E

E02v

E0
deAfs

1 ~e1v,T50!

3Ab
2~e,T50!1Q~2v!

3E
E01v

E0
deAfs

2 ~e,T50!

3Ab
1~e2v,T50!. ~25!

The above approximation is known as the ‘‘noncrossing ap-
proximation’’ because it does not include any diagrammatical
contributions with crossed conduction electron lines.10

In general the impurity electron Green’s function may be
expressed with the help of a vertex functionL(e,v) as@Fig.
1~b!#

Gds~v!52 lim
l→`

ebl(
e
Gfs~e!Gb~e2v!L~e,v!.

~26!

As shown below, there is reason to expect that the vertex
functionL plays an important role. In particular, we shall see
that the vertex part is singular at low energies, and its inclu-
sion in the convolution formulas for physical Green’s func-
tions is required to restore the Fermi-liquid behavior at
v→0.

III. RESULTS

The NRG calculations were performed forL52, keeping
250 states per iteration for each subspace (Q50,1). The hy-
bridization strengthD5pV2r(eF)5pV2/2D was chosen to
be 0.01D with the half-bandwidthD51. Several values of
the local level positioned were chosen in order to character-
ize the behavior of the spectral densities in the various re-
gimes. The NRG spectral functions were evaluated atT50
and the NCA spectral functions were evaluated following
Appendix D for the same set of parameters and for tempera-
tures down toT51026D!T0 , whereT0 is the low-energy

scale of the model. This was sufficiently low to allow com-
parison with theT50 NRG results over most of the inter-
esting energy range. We defineT0 to be the Kondo tempera-
ture,

kBTK5DAD

D
e2ped/2D ~27!

in the Kondo regimeed /D<22, D in the mixed valent re-
gime ued /Du<1 and ed in the empty orbital regime
ed /D@1.

A. Threshold behavior of the NRG auxiliary
spectral functions

The T50 auxiliary spectral functions diverge at the
thresholdE0 as shown in Figs. 2–4. This behavior may be
understood as a result of the orthogonality catastrophe
theorem.16 To see this more clearly we reformulate the spec-
tral densities in~7! and ~8! in the following way:

FIG. 2. TheT50 NRG pseudofermionAf
6 ~solid lines! and

slave bosonAb
6 ~dashed lines! spectral functions in the Kondo case

ed /D524, T0 /D51.8731022, nd50.874. The1 signs are for
the spectral function above the threshold,E0 , and the circles are for
the spectral function below the threshold. The arrow indicates the
position of uedu.

FIG. 3. TheT50 NRG spectral functionsAf ,b
6 in the mixed

valent regimeed /D50, nd50.314 with notation as in Fig. 2.
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Af ,b
1 ~v,T50!5

1

ZQ50
(
m

z^1,muF̃0& z2d~v2e1,m!, ~28!

Af ,b
2 ~v,T50!5

1

ZQ50
(
n

z^F̃1u0,n& z2d~v1e0,n!. ~29!

In the above,uF̃0&5O†uF0&, with O5 f s ,b, represents the
noninteracting (U50) ground state with 1 (O5 f s

†) or 0
(O5b†) local electrons present. Similarly,uF̃1&5OuF1&,
with O5 f s ,b, represents the interacting (U5`) ground
state with 1 (O5 f s

†) or 0 (O5b†) local electrons present. In
this formulation, we see thatAf ,b

1 measures the overlap den-
sity between the ground state of the noninteracting (U50)
band electrons with 0 or 1 local electrons present with the
excited states of the interactingU5` Hamiltonian. Simi-
larly, Af ,b

2 measures the overlap density between the ground
state of the interactingU5` Hamiltonian with 0 or 1 local
electrons present and the excited states of the noninteracting
band electrons. This interpretation is identical to that for the
core-level spectral functions in the x-ray problem. The anal-
ogy is useful but requires care since the matrix elements in
~5! and~6! are no longer between two noninteracting systems
as in the x-ray problem. This leads, in particular, to a new
energy scale,T0 , for the onset of the asymptotic power-law
behavior, which isTK , D, or ed in the Kondo, mixed valent,
and empty orbital regimes, respectively. We find that it is
only in the Fermi-liquid regime,uv2E0u!T0 , that the
power-law behavior is well characterized. The approach to
this asymptotic power law is faster for the boson spectral
functions than for the fermion spectral functions in all cases.
We note that within the NCA, the approach to the threshold
behavior with nd independent exponentsa f51/3 and
ab52/3 is also only asymptotic and requires in particular
going down to temperaturesT,1022T0 in order to see these
exponents.

The threshold exponents for the slave-boson and pseudo-
fermion spectral functions were extracted by numerically dif-
ferentiating the spectral functions. Typically, well-defined
exponents can be extracted only for energy scales
uv2E0u,1022T0 . The exponents are shown in Fig. 5 and
Table I as a function ofnd , the local level occupancy at

T50. The latter, shown in Fig. 6, was calculated by evalu-
atingnd(T) from the partition function at a sequence of de-
creasing temperaturesTN;L2(N21)/2 and then taking the
limit T→0.

Remarkably, the threshold exponents turn out to be the
usual photoemission and absorption exponents for the x-ray
problem and are given in terms of the conduction electron
phase shift at the Fermi level,12 ds5ds(eF), by

a f5nd2
nd
2

2
52

ds

p
2(

s
S ds

p D 2, ~30!

ab512
nd
2

2
512(

s
S ds

p D 2, ~31!

where the last equations on the right-hand side~RHS! of ~30!
and ~31! follow from the Friedel sum rule,ds5pnd/2.
These results are clearly illustrated in Fig. 5 where the func-
tions nd2nd

2/2 and 12nd
2/2 are plotted againstnd together

with the exponentsa f ,b deduced from the spectral functions.
The exponentsa f ,b agree with the RHS of~30! and~31! to 3
significant figures in nearly all cases and are the same below
and above the threshold,

Af ,b
6 5af ,b

6 uv2E0u2a f ,b. ~32!

A qualitative argument based on charge neutrality consider-
ations has been given for the above form of the exponents.12

We note that the same functional form of the exponents on
the phase shift~30!–~31! is also found in the spinless model
with constraint13 in agreement with exact analytic results.18

The single phase shift in this case is given byd5pnd . An
nd-dependent exponent was also found by Read in consider-
ing how Gaussian and higher-order corrections restore the
gauge symmetry broken by the slave-boson mean-field
theory.17 Generalizing the above-threshold exponents to the
N-fold degenerate model we havea f52dm /p
2(m(dm /p)

252nd /N2nd
2/N and ab512(m(dm /p)

2

512nd
2/N wherem labels the scattering channels. The same

exponents were found for theN-fold degenerate Anderson
impurity model in perturbative calculations to orderV4 add-
ing to the plausibility of the above generalization.18 The

FIG. 4. TheT50 NRG spectral functionsAf ,b
6 in the empty

orbital regimeed /D512, nd50.172, with notation as in Fig. 2.

FIG. 5. The exponentsa f (L), ab (s) deduced from the as-
ymptotic power-law behavior of the auxiliary spectral functions as
calculated within the NRG for different values of the occupation
nd . The solid lines are the functionsnd2nd

2/2 and 12nd
2/2.
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above conjecture fora f ,b is in disagreement with recent
results19 obtained in the limitnd→1 and in the large-N ex-
pansion including order 1/N2, ã f5(121/N2)/
(N1121/N2), ãb5(N22/N2)/(N1121/N2). These re-
sults were obtained using a perturbative renormalization-
group technique, which we do not expect to be as accurate as
the nonperturbative numerical scheme used here. We see
from our results, generalized to arbitraryN, that the NCA
exponentsa f

NCA51/(N11)51/N1O(1/N2) andab
NCA5N/

(N11)5121/N1O(1/N2) are correct only in the limit
nd→1 andN→` ~or in the trivial limit nd→0). Away from
this limit, vertex corrections in the auxiliary Green’s func-
tions, absent in the NCA, are therefore important in deter-
mining the correct threshold exponents. The expressions for
the threshold exponents of auxiliary particle propagators in
terms of x-ray photoemission exponents appears to be a gen-
eral property of several impurity models exhibiting Fermi-
liquid fixed points.

B. NRG auxiliary spectral functions at higher energies

At higher frequencies the following features are observed
in theT50 spectral functions. In the Kondo regime, Fig. 2,

there is a peak in the slave-boson spectral functionAb
1 at

v5uedu and a much less pronounced feature in the corre-
sponding pseudofermion spectral functionAf

1 . As ed is
raised through the Fermi level from below the peak inAb

1 at
v5uedu becomes less pronounced and almost disappears in
the mixed valented /D;0 ~Fig. 3!, and empty orbital re-
gimesed /D.1 ~Fig. 4!. In addition, its position is renormal-
ized above the bare valueuedu. At the same time the small
feature at positive energies in the pseudofermion spectral
functionAf

1 develops into a well-defined peak in the mixed
valent and empty orbital regimes. The ‘‘2 ’’ spectral func-
tions Af ,b

2 (v,T50) exhibit monotonic behavior for all pa-
rameter regimes.

C. Comparison of NRG and NCA auxiliary spectral functions

In comparing NRG and NCA spectral functions, three en-
ergy regimes should be distinguished as:~I! asymptotically
low-energy regime,uv2E0u/T0!1, ~II ! crossover regime,
uv2E0u/T0;1, and ~III ! high-energy regime,uv2E0u/T0
@1. The energy range~I! corresponds to that discussed in the
section on threshold exponents. Here we discuss the energy
ranges between~I! and ~II !, and between~II ! and ~III !. In
Figs. 7–9 the same qualitative trends described in the previ-
ous section for the NRG auxiliary spectral functions can be
seen in the corresponding NCA solutions. The NCA results
for a finite but very low temperatureT51026D are com-
pared to the correspondingT50 NRG results. The diver-
gence of the NCA spectral functions is cut off belowv;T
due to the use of a small but finite temperature in solving the
NCA equations. Surprisingly good quantitative agreement is
seen in the slave-boson spectral functionAb

1 above the
threshold down to energy scales well belowT0 in all re-
gimes. The agreement is particularly good in the Kondo re-
gime for 24<ed /D<22, where it extends down to
1022T0 @e.g., Fig. 7~a!#. The spectral functionAb

2 below the
threshold also shows good agreement with the NRG result in
the Kondo regime with decreasing agreement in the mixed
valent ed /D;0 and empty orbital regimesed /D@1. Turn-
ing now to the pseudofermion spectral functions we see that

TABLE I. The threshold exponentsa f ,b for the auxiliary spectral functionsAf ,b
6 ;uv2E0u2a f ,b. The quantitiesa f ,b8 arend2nd

2/2 and
12nd

2/2, respectively, wherend5nd
NRG is the impurity occupation calculated from the NRG partition function~quantities shown to 3

significant figures!. The NCA results for the impurity occupation,nd
NCA , are also shown. The impurity spectral density at the Fermi level

calculated within the NCA,rd
NCA(eF), and NRG,rd

NRG(eF), are tabulated together with the percentage of relative error in the Friedel sum
rule,rd(eF)5sin2(pnd/2)/pD. The exponenta f is difficult to estimate close tond51 due to the small Kondo scale and the slow asymptotic
behavior of the pseudofermion spectral function. The low-energy scaleT0 is TK given by~27! in the Kondo regime,D in the mixed valent
regime anded in the empty orbital regime.

ed /D nd
NRG nd

NCA rd
NRG(eF) rd

NCA(eF) T0 /D a f a f8 ab ab8

27 0.947 1.6831024 0.501 0.499 0.552 0.552
26 0.934 30.722.5% 8.0731024 0.499 0.498 0.563 0.564
25 0.913 0.909 29.725.0% 31.120.3% 3.8831023 0.499 0.496 0.583 0.583
24 0.874 0.865 30.121.7% 34.3112.1% 1.8731022 0.493 0.492 0.618 0.619
23 0.796 0.781 27.823.3% 30.417.8% 8.9831022 0.480 0.479 0.684 0.683
22 0.648 0.641 23.411.4% 32.4142.3% 4.3231021 0.439 0.438 0.790 0.790
21 0.460 0.464 13.523% 28.51102% 1 0.354 0.354 0.894 0.894
0 0.314 0.322 7.0621% 26.31252% 1 0.265 0.265 0.951 0.951
11 0.226 0.232 3.8021% 25.71535% 1 0.200 0.200 0.975 0.974
12 0.172 0.176 2.2720.1% 17.51637% 2 0.158 0.157 0.985 0.985

FIG. 6. The temperature dependence of the occupation number
nd(T) for different ed ~the curves are labeled byed /D). The high-
temperature limit of 2/3~indicated by an arrow! is recovered in all
cases.
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there is again good quantitative agreement between NCA and
NRG for Af

1 above the threshold and for all energy scales
down toT0 . This is true in all regimes. Below the threshold
the agreement for theAf

2 spectral function even extends to
well belowT0 , except in the Kondo regime fored /D<24
where we could not obtain quantitative agreement except in
the region 1021<v<101. From these comparisons we see
that the most serious differences, as far as low-energy behav-
ior is concerned, between the NCA and NRG auxiliary spec-
tral functions are inAf

1 for v,T0 in the Kondo case and in
Ab

2 in the mixed valent and empty orbital cases. The latter
we attribute to the inaccuracy of the NCA in the energy
range between~I! and ~II ! in the mixed valent and empty
orbital regimes to be described further in the section on im-
purity spectral densities. A more interesting discrepancy that
arises from these comparisons is the former. The functions
Af ,b

1 in NCA are related by self-consistency equations~20!
and ~21! derived by second-order perturbation theory inV.
As pointed out in Ref. 21, coherent spin-flip processes con-
sidered to be responsible for the Kondo resonance are not
included in the NCA. There are reasons to expect that the
self-consistentT-matrix approximation proposed in Ref. 21
will capture the essential contributions. Recent calculations

within the conserving self-consistentT-matrix approxima-
tion indicate that such improvements do indeed arise.22

A different extension of NCA, called ‘‘post-NCA’’ has
been proposed recently on the basis of a 1/N expansion of
theN-orbital model.20 It represents a self-consistent scheme
including vertex renormalizations, which is exact to order
1/N2.

D. Comparison of NRG and NCA impurity spectral functions

In the previous section we noted that the NCA auxiliary
spectral functions were surprisingly close to the NRG ones
for energies down to at leastv5T0 and typically they were
even quantitatively accurate down tov!T0 . Improvements
are primarily important in the auxiliary spectral functions in
two areas, to restore the correct behavior of the pseudo-
fermion spectral functionAf

1 below T0 and to recover the
exact threshold exponents given by the NRG. We now turn to
the comparisons for the impurity spectral function and dis-
cuss the role of vertex corrections on the dynamics of the
physical electrons. The impurity spectral densities are shown
in Figs. 10–12 where in addition to the NCA,rd

NCA(v), and
NRG spectral functions,rd

NRG(v), we also show the impu-

FIG. 7. Comparison of the NRG (L) and NCA (s) auxiliary spectral functionsAf ,b
1 ~a!,~b!, Af ,b

2 ~c!,~d! in the Kondo case
ed /D524. The arrow indicates the position ofuedu. The NRG results are forT50 and the NCA results are forT51.031026D. The
divergence of the NCA spectral functions forv→0 is cut off below a frequencyv;T!T0 , due to the use of a small temperatureT in
solving the NCA equations.
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rity spectral function,rd
NRG2 , obtained by convoluting the

NRG auxiliary spectral functions as in~26! but without the
vertex part, i.e.,

rd
NRG-~v,T!5E

2`

1`

de@Af
1~e1v,T!Ab

2~e,T!

1Af
2~e,T!Ab

1~e2v,T!#. ~33!

In the Kondo regime@Fig. 10~a!–10~c!#, the impurity spec-
tral density shows two peaks, a charge fluctuation peak close
to the local level positioned , and a many-body Kondo reso-
nance at the Fermi level. The charge fluctuation peak is
broader in the NRG case, a result of using a logarithmic
discretization for the conduction band that leads to lower
resolution at higher energies. This is not a fundamental prob-
lem with the NRG, and the resolution of the method at
higher energies can be improved by reducing the discretiza-
tion parameterL for the relevant iterations covering the
high-energy scales. We have explicitly checked that the
width and height of the many-body resonance at the Fermi
level, where the NRG gives the highest resolution, are unaf-
fected by the broadening used to smooth thed functions in
the discrete spectra~unless the broadening is made too small,
which will result in uneven spectra!. From Figs. 10~b!–10~c!
we see that the NCA gives a Kondo resonance that is too
broad and too high on the bremsstrahlung isochromat spec-

troscopy (v.0) side for energies below;5T0 . On the pho-
toemission spectroscopy side (v,0), i.e., for v,0, the
agreement with the NRG is better.

The disagreement between the NCA and NRG impurity
spectral function for energies below 5T0 is due primarily to
the absence of the vertex part in the convolution formula for
the NCA impurity spectral density~24!. This is seen from the
good agreement betweenrd

NRG2 and rd
NCA in the range

T0<v<5T0 , which indicates that the NCA auxiliary spec-
tral functions are sufficiently accurate in this range and that
therefore the difference betweenrd

NRG and rd
NCA must be

mainly due to the neglect of the vertex part in (24). Similar
comparisons for the other Kondo casesed /D525,23 sup-
port the same conclusion. In Table I we also list
rd
NRG(v50) andrd

NCA(v50,T51026D) together with the
respective relative deviations from the exact Friedel sum rule
result,rds(v50)5sin2(pnd/2)/pD. The NCA result in the
Kondo regime appears reasonable because the singular be-
havior of the impurity spectral density atT50 Ref. 11 is
removed by our small finite temperatureT51026D. The
exact NCA result forrd

NCA(v50,T50) is actually much
worse.11

We also show results for the mixed valent~Fig. 11!, and
empty orbital regimes~Fig. 12!. There is good agreement
amongrd

NRG, rd
NRG2, andrd

NCA for the high-energy parts of
the renormalized resonant levelv>T0 , but the incorrect

FIG. 8. Comparison of the NRG (L) and NCA (s) auxiliary spectral functionsAf ,b
1 ~a!,~b!, Af ,b

2 ~c!,~d! in the mixed valent case
ed /D50. The NRG results are forT50 and the NCA results are forT51.031026D.
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low-energy behavior of the NCA result forAb
1 in the above

regimes and the neglect of the vertex part in~24! and ~33!
makes bothrd

NCA and rd
NRG2 deviate from the exact NRG

result at low energies. The resonant level is approximately a
Lorentzian of widthD, and the small asymmetric broadening
in the NRG curves is due to the logarithmic discretization.
An improved description of high energies could be obtained
in both NRG and NCA, if required. Within NRG it is pos-
sible to focus on high energies explicitly by using a smaller
discretization parameter,L, for the first few iterations.
Within NCA higher energies are easily resolved by using a
finer grid to solve the integral equations at these energies.

Having discussed the effect of vertex corrections on the

impurity spectral function at intermediatev;T0 and higher
energiesv.T0 in the different parameter regimes, we now
discuss the limitv!T0 . In this limit, evaluating the impu-
rity spectral density, without vertex corrections, i.e., for
(e,v)L51, using~30!–~32! in ~26! gives

rds8 ~v→01!hm;195af
1ab

2v12a f2abB~12a f ,11ab!

;uvu2nd~12nd!. ~34!

where B is the beta function. The exact result atv50
is given by the Friedel sum rule, rds(v50)
5sin2(pnd/2)/pD, so we conclude that the vertex correc-

TABLE II. CoefficientsCii 8
6 appearing in Appendix A.

i i 8 Cii 8
1 Cii 8

2

11 1 1
22 A2S(2S12)/(2S11)(2S11) 1

33 1 A2S(2S12)/(2S11)(2S11)
44 1 1
23 0 1/(2S11)
32

2
1

2S11

0

FIG. 9. Comparison of the NRG (L) and NCA (s) auxiliary spectral functionsAf ,b
1 ~a!,~b!, Af ,b

2 ~c!,~d! in the empty orbital case
ed /D512. The NRG results are forT50 and the NCA results are forT51.031026D.
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tions neglected in~34! are singular at low energies, i.e., close
to the threshold, and lead to a singularity inrds at the Fermi
level that cancels that in~34!. Similar vertex corrections ap-
pear in the calculation of other physical quantities such as
the dynamic spin susceptibility.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have made a comparison of the spectral
functions of theU5` Anderson model as calculated within
the simplest self-consistent conserving approximation, the
NCA, and within the NRG. At high energiesv@T0 we
found good quantitative agreement for the auxiliary and
physical spectral functions calculated within the two meth-
ods in all parameter regimes. Some small discrepancies in
the shape of high-energy peaks could be attributed to the
logarithmic discretization used in the NRG, which tends to
give lower resolution and slight asymmetries to high-energy
peaks. At lower energies we found good quantitative agree-
ment for both slave-boson and pseudofermion spectral func-
tions down to at leastT0 . In the Kondo regime the agree-
ment between the NCA and NRG slave-boson spectral
function Ab

1 extended to well below the low-energy scale
T05TK . Despite the accuracy of the NCA auxiliary spectral
functions down toTK we noted that the impurity spectral
density deviated from the essentially exact NRG, result on
energy scales up to 5TK . The source of this discrepancy was
traced directly to the lack of the vertex part in the NCA

FIG. 10. The impurity spectral function in the Kondo regime
ed524D, T0 /D51.8731022, for ~a! high energies and the low-
energy region~b! 25<v/T0<10, and~c! 22<v/T0<12. The
dashed curve is the NRG resultrd

NRG, the dot-dashed curve is the
NRG result without the vertex part in~33!, and the solid curve is the
NCA result. The NRG results are forT50 and the NCA results are
for T51.031026D.

FIG. 11. The impurity spectral function in the mixed valent
regimeed /D50, with notation as in Fig. 10. The NRG results are
for T50 and the NCA results are forT51.031026D.

FIG. 12. The impurity spectral function in the empty orbital
regimeed /D512, with notation as in Fig. 10. The NRG results are
for T50 and the NCA results are forT51.031026D.
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expression for the impurity spectral density, thus showing
that vertex corrections are required for the physical Green’s
functions even when the auxiliary particle dynamics appears
to be correctly described within the NCA~for energies down
to T0). In the Fermi-liquid regimev!T0 , the NCA gives
results for the impurity spectral density in disagreement with
exact results from Fermi-liquid theory. It also gives the in-
correct threshold exponentsa f ,b for the auxiliary particle
Green’s functions. We emphasize, however, that although
vertex corrections restore the Fermi-liquid behavior in the
physical spectral functions and the correct low-energy as-
ymptotic behavior of the auxiliary particle Green’s functions,
our results show that they are also needed for a correct de-
scription of the physical Green’s functions at much higher
energiesv;T0 . This is the main conclusion of the compari-
sons we made.

We are in the process of including vertex corrections
within a self-consistent theory,22 thus going beyond the
lowest-order conserving approximation. We expect that in-
clusion of vertex terms will substantially improve the physi-
cal Green’s functions, the auxiliary Green’s functions, as
shown in this paper, being already well described down to
energies of orderT0 within the lowest-order theory. The
availability of accurate results for dynamic properties via the
NRG for impurity models make these a natural testing
ground for developing such approximation schemes. These
schemes could then be extended to study lattice models of
strongly correlated electrons, for which, at present, numerical

renormalization-group methods are not as well developed as
for impurity models.
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APPENDIX A: MATRIX ELEMENTS
FOR AUXILIARY PARTICLE OPERATORS

In this Appendix we give the expressions for the matrix
elements of the auxiliary particle operators, required for the
calculation of the spectral functions. The states,
uQ,Ne ,S,Sz ,r &N , of the HamiltonianHN ~which includes
the orbitals f s ,c0s , . . . ,cNs) are labeled by the quantum
numbers Q,Ne ,S,Sz and an index r , where
Q5(s f s

† f s1b†b is the number of auxiliary particles,Ne is
the total number of fermions,S the total spin, andSz the z
component of the total spin and the indexr distinguishes
states with the same conserved quantum numbers. A product
basis setuQ,Ne ,S,Sz ,ri &N for the subspace (Q,Ne ,S,Sz) of
HN in terms of eigenstates ofHN21 and states
u0&,u↑&,u↓&,u↑↓& of the orbitalcNs is defined by

uQ,Ne ,S,Sz ,r ,1&N5uQ,Ne ,S,Sz ,r &N21u0&, ~A1!

uQ,Ne ,S,Sz ,r ,2&N5AS1Sz
2S

uQ,Ne21,S2 1/2 ,Sz2 1/2 ,r &N21u↑&1AS2Sz
2S

uQ,Ne21,S2 1/2 ,Sz1 1/2 ,r &N21u↓&,
~A2!

uQ,Ne ,S,Sz ,r ,3&N52AS2Sz11

2S12
uQ,Ne21,S11/2,Sz21/2,r &N21u↑&1AS1Sz11

2S12
uQ,Ne21,S1 1/2 ,Sz11/2,r &N21u↓&,

~A3!

uQ,Ne ,S,Sz ,r ,4&N5uQ,Ne22,S,Sz ,r &N21u↑↓&. ~A4!

The reduced matrix elementsN^Q,Ne ,S,r uu f †uuQ21,Ne21,S61/2,s&N and N^Q,Ne ,S,r uub†uuQ21,Ne ,S,s&N are calculated
recursively following the recursive calculation of the matrix elementsN^Q,Ne ,S,r uucN

† uuQ,Ne21,S61/2,s&N required for
setting up the HamiltonianHN . Details of the latter can be found in Ref. 14. We follow the notation of Ref. 14 and denote by
UQ,Ne ,S
N (ri ,p), p51, . . . ,RQ,NeS

N the matrix of eigenvectors of the subspace (Q,NeS,Sz) of HN whereRQ,NeS
N is the dimen-

sionality of this subspace andr and i51, . . . ,4 label the product state basis, which is related to the diagonal basis by the
unitary transformation

uQ,Ne ,S,Sz ,p&N5(
r ,i

UQ,Ne ,S
~p,ri !ur ,i &N ~A5!

with ur ,i &N denoting one of the four product states~A1!–~A4! defined above. Defining

MQ,Ne ,S
f6,N ~r ,r 8![N^Q,Ne ,S,r uu f †uuQ21,Ne21,S61/2,r 8&N, ~A6!

MQ,Ne ,S
b,N ~r ,r 8![N^Q,Ne ,S,r uub†uuQ21,Ne ,S,r 8&N , ~A7!

and using the unitary transformation~A5! we have
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MQ,Ne ,S
f6,N ~p,q![N^Q,Ne ,S,puu f †uuQ21,Ne21,S61/2 ,q&N

5 (
ri ,r 8 i 8

UQ,NeS
N ~p,ri !UQ21,Ne21,S61/2

N ~q,r 8i 8!21^Q,Ne ,S,ri uu f †uuQ21,Ne21,S61/2,r 8i 8&N21 ,

MQ,Ne ,S
b,N ~p,q![N^Q,Ne ,S,puub†uuQ21,Ne ,S,q&N

5 (
ri ,r 8 i 8

UQ,NeS
N ~p,ri !UQ21,Ne ,S

N ~q,r 8i 8!N21^Q,Ne ,S,ri uub†uuQ21,Ne ,S,r 8i 8&N21 . ~A8!

Evaluating these using~A1!–~A4! gives an expression relating the matrix elements at iterationN to those at iterationN21,

MQ,Ne ,S
f6,N ~p,q!5C11

6(
rr 8

UQ,NeS
N ~p,r1!UQ21,Ne21,S61/2

N ~q,r 81!MQ,Ne ,S
f6,N21~r ,r 8!

1C22
6(

rr 8
UQ,NeS
N ~p,r2!UQ21,Ne21,S61/2

N ~q,r 82!M
Q,Ne21,S2

1
2

f6,N21
~r ,r 8!

1C33
6(

rr 8
UQ,NeS
N ~p,r3!UQ21,Ne21,S61/2

N ~q,r 83!M
Q,Ne21,S1

1
2

f6,N21
~r ,r 8!

1C44
6(

rr 8
UQ,NeS
N ~p,r4!UQ21,Ne21,S61/2

N ~q,r 84!MQ,Ne22,S
f6,N21 ~r ,r 8!

1C23
6(

rr 8
UQ,NeS
N ~p,r2!UQ21,Ne21,S61/2

N ~q,r 83!M
Q,Ne21,S6

1
2

f7,N21
~r ,r 8!

1C32
6(

rr 8
UQ,NeS
N ~p,r3!UQ21,Ne21,S61/2

N ~q,r 82!M
Q,Ne21,S6

1
2

f7,N21
~r ,r 8!,

and

MQ,Ne ,S
b,N ~p,q!5(

rr 8
UQ,NeS
N ~p,r1!UQ21,Ne ,S

N ~q,r 81!MQ,Ne ,S
b,N21 ~r ,r 8!1(

rr 8
UQ,NeS
N ~p,r2!UQ21,Ne ,S

N ~q,r 82!MQ,Ne ,S21/2
b,N21 ~r ,r 8!

1(
rr 8

UQ,NeS
N ~p,r3!UQ21,Ne ,S

N ~q,r 83!MQ,Ne21,S11/2
b,N21 ~r ,r 8!

1(
rr 8

UQ,NeS
N ~p,r4!UQ21,Ne ,S

N ~q,r 84!MQ,Ne22,S
b,N21 ~r ,r 8!,

where the coefficientsCii 8
6 are given in Table II.

APPENDIX B: ERRORS AND SUM RULES

In this Appendix we outline some of the checks carried
out to ensure the correctness of the numerical
renormalization-group programs. The eigenvectors and ei-
genvalues ofH0 can be calculated analytically and these can
then be used to set up the matrices forN51. The latter have
been compared with those generated by the computer pro-
grams forN51 and found to be identical. We have also
checked the recursive evaluation of the matrix elements,

^r u f s
† us&, ^r ub†us&, and ^r ucNs

† us& by making use of the
commutation relations for the creation and annihilation op-
erators appearing in the Hamiltonian~1!,

f s f s
†1 f s

† f s51, ~B1!

bsbs
†2bs

†bs51, ~B2!

cNscNs
† 1cNs

† cNs51. ~B3!

For any stateuQ,Ne ,S,Sz ,k&N in the Hilbert space ofHN ,
the completeness relation( r ur &^r u51 together with~B1!–
~B3! yields
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15(
k8

z^Q,Ne ,S,kuu f †uuQ21,Ne21,S2 1/2 ,k8& z21
1

2S12 (
k8

z^Q,Ne ,S,kuu f †uuQ21,Ne21,S11/2,k8& z2

1(
k8

z^Q11,Ne11,S11/2,k8uu f †uuQ,Ne ,S,k& z2, ~B4!

15(
k8

z^Q11,Ne ,S,k8uub†uuQ,Ne ,S,k& z22(
k8

z^Q,Ne ,S,kuub†uuQ21,Ne ,S,k8& z2, ~B5!

15(
k8

z^Q,Ne ,S,kuucN
† uuQ,Ne21,S21/2,k8& z21

1

2S12 (
k8

z^Q,Ne ,S,kuucN
† uuQ,Ne21,S1 1/2 ,k8& z2

1(
k8

z^Q,Ne11,S11/2,k8uucN
† uuQ,Ne ,S,k& z2. ~B6!

In the calculations we verified that these relations were sat-
isfied to within rounding errors for each stateuQ,Ne ,S,k&N
in HN for N50,1, . . . ,4, when all states are retained. This
gives a reliable test of the formulas in Appendix A and on the
routines for the recursive evaluation of the matrix elements.
We note that once higher-energy states start being elimi-
nated, typically forN.4, the LHS of the above expressions
will be less than unity due to the missing states. The sum rule
~B5! also provides a check on the construction of the Hamil-
tonianHN , since the latter depends on the matrix elements
^Q51,Ne11,S61/2,k8uucN

† uuQ51,Ne ,S,k&.14 The above
tests on all quantities appearing in the iterative procedure for
the first few iterations virtually eliminates the possibility of
errors.

APPENDIX C: EXACT PROJECTION
ONTO THE PHYSICAL SUBSPACE

In order to effect the constraint of the dynamics to the
physical Hilbert subspace it is convenient to add the term
lQ to the Hamiltonian, where2l is a ‘‘chemical potential’’
associated with the auxiliary particle numberQ. The opera-
tor constraintQ51 is imposed exactly on the expectation
value of any operatorO by differentiating with respect to the
fugacity z5e2bl and then taking the limitl→`:7

^O&C5 lim
l→`

~]/]z! tr@Oe2b~H1lQ!#

~]/]z! tr@e2b~H1lQ!#
, ~C1!

where the trace is taken over the complete, enlarged Hilbert
space. In particular, we state the following two results, which
are of use to us in this paper and which follow straightfor-
wardly from the above~for details see Ref. 7!. First, the
canonical partition function in the subspaceQ51 is

ZC5 lim
l→`

tr@Qe2b@H1l~Q21!##5 lim
l→`

@ebl^Q&GC~l!#ZQ50 ,

~C2!

where the subscripts GC andC denote the grand canonical
and the canonical (Q51) expectation value, respectively.
Second, the canonicalQ51 expectation value of any opera-
tor O having a zero expectation value in theQ50 subspace
is given by

^O&C5 lim
l→`

^O&GC~l!

^Q&GC~l!
. ~C3!

Thus, we obtain the constrainedd-electron Green func-
tion in terms of the grand canonical one@Gd(v,T,l)# as

Gd~v!5 lim
l→`

Gd~v,T,l!

^Q&GC~l!
. ~C4!

In the enlarged Hilbert space (Q50,1,2, . . . ) Gd(v,T,l)
may be expressed in terms of the pseudofermion and slave-
boson Green functions using Wick’s theorem. It then follows
from Eq. ~C4! that the operator constraintQ51 is imposed
on the auxiliary Green’s functions by simply taking the limit
l→` of the respective unconstrained functions. Clearly, by
this procedure all excitation energies of pseudofermions and
slave bosons are shifted tò. It is therefore convenient to
redefine the auxiliary particle frequency scale asv→v1l
before taking the limitl→`. Note that this does not affect
the energy scale of physical quantities~like the locald elec-
tron Green’s function!, which is thedifferencebetween the
the pseudofermion and the slave-boson energy.

Finally we emphasize that the canonical~i.e., projected
onto theQ51 subspace! local c-electron self-energy, de-
fined byS̃s5G̃0cs

21 2Gcs
21 , whereG̃cs(v,T) is the canonical

local c-electron Green’s functioncannotbe obtained from
the grand canonical one by simply taking the limitl→`,
since thec-electron density has a nonvanishing expectation
value in theQ50 subspace. Rather, it is related to thet
matrix, ts(v), by

S̃s~v,T!5
ts~v,T!

11ts~v,T!G̃0cs

. ~C5!

It follows that S̃s exhibits ~in an exact theory! local Fermi-
liquid behavior, S̃s(v,T50)5av1 ibv2 for v→eF50.
This is a different quantity from the grand canonical
conduction-electron self-energy that is proportional to thet
matrix, ts(v), and has a finite imaginary part at the Fermi
level.
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APPENDIX D: NCA CALCULATION
OF THE AUXILIARY SPECTRAL FUNCTIONS Af ,b

6

In order to enter the asymptotic power-law regime of the
auxiliary spectral functions and to compare with theT50
results of the NRG, the NCA must be evaluated for tempera-
tures several orders of magnitude belowT0 , the low-
temperature scale of the model. The equations are solved
numerically by iteration. In this Appendix the two main pro-
cedures are described to make the diagrammatic auxiliary
particle technique suitable for the lowest temperatures.

The grand canonical expectation value of the auxiliary
particle number appearing in Eq.~C4! is given in terms of
the ~unprojected! auxiliary particle spectral functions
Af ,b

1 (v,T,l) by

^Q&GC~l!5E dvF f ~v!(
s

Afs
1 ~v,T,l!

1b~v!Ab
1~v,T,l!G , ~D1!

where f (v), b(v) denote the Fermi and Bose functions.
Substituting this into the expression~C2! for the canonical
partition function we obtain after carrying out the transfor-
mationv→v1l, and taking the limitl→`,

e2bF imp~T!5
ZC
ZQ50

5 lim
l→`

ebl^Q&GC~l!

5E dve2bvF(
s

Afs
1 ~v,T!1Ab

1~v,T!G ,
~D2!

whereAf ,b
1 (v,T) are now the projected spectral functions as

defined in Eq. ~5!, and by definition F imp
52(1/b)ln(ZC /ZQ50) is the impurity contribution to the free
energy.

The numerical evaluation of expectation values like
^Q&GC(l→`)@Eq. ~D2!# or Scs(v,T,l→`)@Eq. ~22!# is
nontrivial ~1! because atT50 the auxiliary spectral func-
tions Af ,b

1 (v,T) are divergent at the threshold frequency
E0 , where the exact position ofE0 is a priori not known,
and~2! because the Boltzmann factorse2bv diverge strongly
for v,0. Therefore, we apply the following transformations:

~1! Before performing the projectionv→v1l, l→`
we redefine the frequency scale of all auxiliary particle func-
tionsAf ,b

6 according tov→v1l0 , wherel0 is a finite pa-
rameter. In each iterationl0 is then determined such that

E dve2bvF(
s

Afs
1 ~v!1Ab

1~v!G51, ~D3!

where Af ,b
1 (v)5 liml→`Af ,b

1 (v1l01l,T,l) is now an
auxiliary spectral function with the new reference energy. It
is seen from Eq.~D2! that l0(T)5F imp(T)5FQ51(T)
2FQ50(T), i.e., l0 is the chemical potential for the auxil-
iary particle numberQ, or equivalently the impurity contri-
bution to the free energy. The difference of the free energies
becomes equal to the threshold energyE05EQ51

GS 2EQ50
GS at

T50, so the energy scale of the shifted spectral functions

defined above coincides exactly with that of the NRG spec-
tral functions defined in~5!. More importantly, however, the
above way of determining a ‘‘threshold’’ is lessad hocthan,
for example, defining it by a maximum in some function
appearing in the NCA equations. It is also seen from Eq.
~D3! that this procedure defines the frequency scale of the
auxiliary particles such that theT50 threshold divergence of
the spectral functions is at thefixed frequencyv50. This
substantially increases the precision as well as the speed of
numerical evaluations. Equation~C4! for the projected
d-electron Green’s function becomes

Gd~v!5 lim
l→`

eblGd~v,T,l!. ~D4!

~2! The divergence of the Boltzmann factors implies that
the self-consistent solutions forAf ,b

1 (v) vanish exponentially
;ebv for negative frequencies. It is convenient, not to for-
mulate the self-consistent equations in terms ofAf ,b

6 as in
earlier evaluations,8 but to define new functionsÃf ,b(v) and
ImS̃f ,b(v) such that

Af ,b
1 ~v!5 f ~2v!Ãf ,b~v!, ~D5!

ImS f ,b~v!5 f ~2v!ImS̃f ,b~v!. ~D6!

After fixing the chemical potentiall0 and performing the
projection onto the physical subspace, the canonical partition
function @Eq. ~C2!# behaves as liml→`e

b(l2l0)ZC(T)51,
and it follows immediately from the definition ofAf ,b

2 that

Af ,b
2 ~v!5 f ~v!Ãf ,b~v!. ~D7!

In this way all exponential divergencies are absorbed by one
single function for each particle species. The NCA equations
in terms of these functions are free of divergencies of the
statistical factors and read

ImS̃fs~v2 i0,T!5V2 (
k

@12 f ~ek!#@12 f ~v2ek!#

12 f ~v!

3Ãb~v2ek!, ~D8!

ImS̃b~v2 i0,T!5V2 (
k,s

f ~ek!@12 f ~v1ek!#

12 f ~v!
Ãfs~v1ek!,

~D9!

^Q&~l0 ,l→`!5E dv f ~v!F(
s

Ãfs~v!1Ãb~v!G51,

~D10!

ImGds~v2 i0,T!5E de@ f ~e1v! f ~2e!

1 f ~2e2v! f ~e!#Ãfs~e1v!Ãb~e!,

~D11!

where the real parts of the self-energiesS f , Sb , Sc
are determined from a Kramers-Kronig relation, and the
auxiliary spectral functions are the imaginary parts
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of the Green’s functions,Afs
1 (v)52 Im$@v1l02 i02ed

2S fs(v2 i0)]21%, Ab
1(v)52 Im$@v1l02 i02Sb(v

2 i0)]21%.
The above method allows us to solve the NCA equations

effectively for temperatures down to typicallyT51024T0 . It
may be shown that the same procedure can also be applied to
self-consistently computing vertex corrections22 beyond the
NCA.
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