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Quantum Monte Carl6QMC) calculations are only possible in finite systems and so solids and liquids must
be modeled using small simulation cells subject to periodic boundary conditions. The resulting finite-size errors
are often corrected using data from local-density functional or Hartree-Fock calculations, but systematic errors
remain after these corrections have been applied. The results of our jellium QMC calculations for simulation
cells containing more than 600 electrons confirm that the residual errors are significant and decay very slowly
as the system size increases. We show that they are sensitive to the form of the model Coulomb interaction
used in the simulation cell Hamiltonian and that the usual choice, exemplified by the Ewald summation
technique, is not the best. The finite-size errors can be greatly reduced and the speed of the calculations
increased by a factor of 20 if a better choice is made. Finite-size effects plague most methods used for extended
Coulomb systems and many of the ideas in this paper are quite general: they may be applied to any type of
guantum or classical Monte Carlo simulation, to other many-body approaches suchG#/timethod, and to
Hartree-Fock and density-functional calculations.

I. INTRODUCTION grid is fine, and the results are almost the same as for an
infinite system; but when the crystal is small, tkeoint

Most local-density functionalLDF) calculations for ex- sampling grid is coarse, and the Brillouin-zone integration
tended systems use Bloch’s theorem and hence rely on transrrors are large. The sampling errors therefore reflect the
lational symmetry. Indeed, the simplifying power of Bloch’s differences between the finite crystal implied by the integra-
theorem is so great that translational symmetry is often imtion grid and the infinite crystal we would like to model. Not
posed even on aperiodic systems: the region of interest —all k-point sampling schemes fit into the framework of this
perhaps consisting of a point defect and a few of the surargument, of course, but the ones that do happen to be the
rounding atoms — is periodically repeated to make an artiones of interest for quantum Monte CarlQMC)
ficial crystal so that standarktspace methods can be used. calculations®
The periodically repeated region is called the supercell and is We have now mentioned both types of finite-size error
made as large as is computationally feasible, but there aneresent in LDF calculations. The supercell errors described
significant finite-size errors for practical system sizes. in the first two paragraphs arise when a periodic “model

One can easily make plausible arguments predicting howdamiltonian” is used to represent an aperiodic system; the
these finite-size errors should depend on the linear dimensiogystem remains infinite in extent but the periodicity is im-
L of the supercell. If the supercell is charge neutral but has @osed artificially. Thek-point sampling errors are caused by
nonzero dipole moment, for example, then one might expedhe boundary conditions used to make an infinite periodic
that dipole-dipole interactions between supercells wouldsystem finite, and hence affect calculations for perfect crys-
contribute unwanted terms of order  to the total energy. tals as well as supercell calculations.
In fact, as shown by Makov and Payhene can do better This paper is concerned with finite-size errors in QMC
than this if the supercell Hamiltonian is defined appropri-calculations for infinite periodic systems; errors in QMC cal-
ately. culations for aperiodic systems will not be considered. Since

In LDF calculations for perfect crystals the periodicity is QMC methods can only be applied when the number of par-
not imposed artificially and so there are no finite-size errorgicles is finite, infinite periodic systems must be modeled
in principle. There are still errors in practice, however, be-using finite simulation cells subject to periodic boundary
cause discrete quadratures are used to approximate Brillouigonditions. The replacement of an infinite system by a finite
zone integrals. Thesk-point sampling errors are often ex- one introduces errors analogous to #point sampling er-
plained using the mathematical theory of quadrature, but @ors in a LDF calculation. The current practical limit on the
different approach is to view them as finite-size effects. Consize of the simulation cell is a few hundred electrons, corre-
sider a large but finite crystal containing many unit cells. Thesponding to perhaps a few tenslofoints in the primitive
application of periodic boundary conditions at the surfaces oBrillouin zone, and so it is not surprising that these finite-size
this crystal determines the set of allow&dpoints in the errors are large. Furthermore, although the cost of a LDF
Brillouin zone. As long as the crystal is large, the quadraturecalculation rises only linearly with the number bkfpoints,
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the cost of a QMC calculation rises more rapidly and so it isong-ranged Coulomb interactions must now be replaced by

harder to decrease the QMC finite-size error by increasinghe model Ewald interactions.

the system size. The main result of our work has been to show that the
Finite-size errors in QMC calculations for infinite peri- 10ng-ranged residual errors are Coulomb finite-size effects

odic systems are not well understood. They decay rath ssociated with the use of the Ewald model Hamiltorfiae

slowly as functions of, so the obvious tactic of increasing N2ve already explained that these Coulomb errors are not
" . ] : o present in LDF calculations and hence are not removed when
the size of the simulation cell until they go away is imprac-

LDF finite-size corrections are appliedHaving identified
A ° ! e cause of the long-ranged errors, we have also been able
as the finite-size errors in LDF or Hartree-FaekF) calcu-  tg see how to alter the form of the model simulation cell
lations for the same simulation céile., with the appropriate Hamiltonian to reduce them. The freedom to choose the
restrictedk-point sampling and to correct them using LDF model Hamiltonian to minimize the finite-size errors has not
or HF results® Systematic errors remain after these correcbeen exploited in previous QMC wortalthough it has in
tions have been applied, however, and our large homogeslassical simulation§=13, but the long-ranged Coulomb er-
neous electron gaddEG) calculations have confirmed that rors disappear if the right choice is made.
these residual finite-size effects are significéppically 0.1 Perhaps surprisingly, the smallest finite-size errors are ob-
or 0.2 eV per electronand very slowly decaying. Past at- tained when the complicated Ewald interactions in the simu-
tempts to reduce the residual errors have used Coulomb ar@tion cell Hamiltonian are replaced by truncated Coulomb
correlation corrections of various typ%_sg, but it has not interactions. If th|S Slmp|lflcatI0n IS Comb|n'ed W|th the use Of
been possible to make a reliable extrapolation to the inﬁnit@hort-rangedd?strow factors of the type introduced by Ortiz
system size limit without carrying out simulations for several@nd Ballon€'**a typical HEG QMC calculation is sped up
different system sizes. by a factor of at Iea.st' 20 and the f|n|te—s_|;e errors are muph
The existence of the long-ranged residual errors Showgeduced. The remaining errors are negllg|ble eV?‘”_fO_f quite
that the finite-size effects in QMC calculations differ quali- small system sizes, and the e_xtrapolatlon to the infinite sys-
tatively from thek-point sampling errors in LDF calcula- tem size I|m|.t IS unnecessary in many cases.
tions. The finite simulation cell used to model the infinite For simplicity, this paper concentrates on the homoge-
system is the same in both cases, and so the differences mu ous electron gas. It is clear that the ideas also apply to

reflect the different ways in which the two methods treat the? der lhotmogeneous sytstgms Sucht as elbec:rt(:]n-hole I'qllf"ds
electron-electron interaction. In LDF calculations, the inter-2"d ©!€Cron gases containing positrons, but the generaliza-

action is replaced by an effective one-electron potentialj“on to inhomogeneous systems such as solids is more diffi-

which depends only on the charge density and is the same fHJIt and will be dealt with in a future paper.

every unit cell of the crystal. In QMC calculations, however,d Thgbrefr'g of th? gape: IS I\c/)lré:]amzt(ra]d g\stfc;(l_lows. Ir:.Selc. Il we
it is necessary to evaluate the full interacting Coulomb en- escribe the variationa Q method, taxing particular care
to explain the model Coulomb interactions used in the simu-

ergy, which depends on the current positions of all theI . Il Hamiltoni n S " di th |
(pointlike) electrons in every unit cell of the crystal. The f‘fi !?n ce amlt_oman. nI de(t:. Mvz/:e 'SC&JSS de usua i
electronic positions differ from cell to cell and hence it is Inite-size corrections applied 1o Q results, and presen
impossible to avoid approximating the Coulomb energysome HEG calculations that demonstrate the presence of the
when the large crystal is replaced by a small simulation cel|°ng;ran??g rtefr:dual f|r;|te-5|zefeﬁecr:slreferred to dabgve'; We
subject to periodic boundary conditions. This approximatio omn out da' etﬁXIshenct:e 0 sut;thong-rﬁmge N eclst_ls
introduces an extra finite-size error that is not present in LDr_unIexpec de glve?h tetr? or rglnge 0 tebexg antget-r::orfre a 'OP
calculations and is the main cause of the long-ranged reho €, and argue that the probleém must beé due to the form o
sidual errors. the simulation cell I.-lam|lto.n|an. !n. Sec. IV we summarize
In most calculations the full Coulomb energy is replacedthe.pr(.)blem.S assoua;ed with _defmmg Cpulomb p'otentlals n
by the Ewald energ§,which is a periodic function of the periodic solids, and give physically motivated derlva_tlons of
positions of theN electrons in the simulation celthese are the fu_ndamental results of the classlut mathematically
complicatedl paper by de Leeuw, Perram, and SniftHn

the only electrons in the simulatiarnThe periodicity implies \
that the Ewald energy does not change when any single eleﬁ'aec' v we show how the general theory of Sec. IV. applies to
e special case of QMC calculations, and explain how the

tron is translated by a simulation cell lattice vector, but such

a translation does change the Coulomb energy of the inﬁnitgonvgnhonal(Eyvald) f:h0|ce of bogndqry conditions for the
Solution of Poisson’s equation inevitably produces large

system. This is reminiscent of the LDF supercell method, ir%. te-si TWo diff t soluti o thi bl
which a periodic model Hamiltonian is used to approximateInI €-Slz€ errors. Two ditierent solutions to this probiem are

an aperiodic system; the main difference is that now we musrere_sented In Sec. VI, backed up by the rgsults of an extensive
use a model Hamilténian even for perfect crystals series of HEG QMC calculations. Section VII recaps what

There is, of course, no need to use periodic boundary\/Ne have learned about finite-size effects in the HEG, and

conditions: the small group of atoms in a QMC CalculationemphaSizes again that the work described in this paper may

for a solid or liquid could be treated as a cluster embedded irl?e of use to those involved in LDF and HF calculatioBsy

a vacuum or a dielectric. In practice, however, the number o?nd other many-body calculations, and classical simulations

atoms is so small that almost all would then be on or near 5."( charged liquids.

surface a_nd the_ cll_Jster properties W(_)ulo_l not resemble thpse”. VARIATIONAL QMC CALCULATIONS FOR SOLIDS

of the solid or liquid. The use of periodic boundary condi-

tions avoids this problem by wrapping the finite system When performing variational quantum Monte Carlo
around into a torus with no surfaces, but the price is that théVQMC) calculations it is not possible to study an infinite
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system. It is, therefore, a finite system which is actually studwhere D' and D! are Slater determinants of spin-up and
ied. A model electron-electron interaction is used which isspin-down one-electron states, respectively, dngdis the
designed to mimic the forces on the electrons in the infiniteJastrow factor. This wave function distinguishes between

solid. This interaction will be discussed in more detail below.spin-up electronsd' is zero unlessry, o, .. Lo, are all
+1) and spin-down electronsD{ is zero unIeSScrN 1
A. The VQMC method ON.12,-.., oy are all—1) and hence is not anusymmetnc

: - : 1
The VQMC method’**derives from the variational prin- under exchange of opposite spin electrons. However, it gives

ciple. If a system is described by a Hamiltonieinand the exactly the same energy expectation value as the explicitly
energy of the ground state of the systenkjs then for any  antisymmetrized form as long as the Hamiltonian is indepen-

reasonable wave functioff iy, dent of spin, and the replacement of one large determinant by
two smaller ones is numerically efficient.
1) \IfmalH\IfmaldT For the HEG system, the Jastrow factor has the form
——F=E,. (]_)
f\Ptrla dr

trial 1 N
Vo(X)=expl =5 2 2 Uy (i) |, ©)

If ¥yia=", is the true ground-state wave function for the
system then the equality holds; ¥, # 'V, then the expec- _
tation value ol is greater thar, and differs fromg, by a ~ Where the functionu, , (rj;), which depends only on the
quantity that is second order i, — V. It is hoped that if ~ relative spin of the two particles and their separation, is taken
the trial wave function is chosen carefully, taking account ofto be
the physics of the system being studied, then the expectation A(l—e T
value ofH will be a good estimate dE,. u(r)= g' 7
Our finite HEG system containd electrons and so the r
expectation value of the energy is found by evaluating  The parameters andF could be determined variationally,
. - but instead we choose them to ensure the correct correlation
fq’ (X)HP (X)dX ?) behavior in ther—0 and r—o limits.?* The spin-
JU* (X)W (X)dX ’ independent value & is related to the plasma frequency by

where ¥(X)=Y(rq,01,2,02,...,[n,0on) IS the trial 1

many-body wave function and the integral owérincludes A= o 8
both the N-dimensional spatial integral and the sum over P

spin indices. Many-dimensional integrals such as this canndnd the spin-dependent value ffis then fixed by the cusp
usually be evaluated analytically or by using standard griccondition atr =0,

based quadratures and so a Monte Carlo method is used.

Without loss of generalityl (X) is assumed normalized and ﬂ
Eq. (2) is rewritten as dr

9

—1/2 for opposite spins,
, |—1/4 for same spins.

1 Note that Hartree atomic units are used here and throughout
E= X oo HP (X)W (X)| 2dX. (3 this paper.

In calculations for inhomogeneous systems, the Jastrow
| ¥ (X)|? is now interpreted as a probability distribution and afactor includes a one-body terg(r) as well as the two-body
large but finite set of points is sampled from this probabilitytermu(r),
distribution using, for instance, the Metropolis algorithfit

N N N

these points ar&4, . ..Xy, then an unbiased statistical es- B 1

timate of the integral is Wi(X)=ex 21 x(r)=—3 Z 2 ooy (Fij) |- (10
j#i

The one-body term is used to vary the single-particle density
to minimize the energy calculated for the syst¥hand to
compensate for the fact that the two-body term tends to
and the statistical errors in this estimate decay hke smooth out the charge density. In the HEG, however, the
independent of the dimensidh. single-particle density is always uniform and the one-body
The many-body wave function used in this work is aterm is not necessary.

Slater determinant, as used in the Hartree-Fock approxima- Energies from VQMC calculations for various system
tion, multiplied by a Jastrow factor. The Slater determinantsjzes are shown in Fig. 1, along with the HF and LDF results
incorporates the effects of particle exchange, and the Jastrofgr the same systems. The method used to carry out the
factor introduces correlation. The full many-body wave funC-VQMC calculations C|05e|y follows that described by Fahy,

2 q,(x T O (4)

12

tion takes the following form: Wang, and Louié’ After an equilibration period consisting
' of 2000 moves of all the electrons, averages were accumu-
W(X)=Wy(X)XD(ry, 00, ... I 0N,) lated during a further 0to 1P N-electron movegfewer

D! 5 moves are needed for larger system siz&he one-electron
X (rNT“"TNﬁl' <o PN ON), ®)  trial moves were sampled from a Gaussian probability distri-
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0.680 ~ 13 5
1 H=—§;Vi+U(r1,r2,...rN,dl,dz,...dM). (12)
0.640 - . .
- | U is the total electrostatic energy of the cluster and may be
"g 0600 | calg:ulated in the usual way by'summing pairwise ibter-
g actions. It may also be written in the form
=]
£ o560 | \{ ] /N M B
-% +——e HF — X
. e U=5 ( 2, ed(r)+ 2 zaqs(da)), (13)
% 0520 {p ~—LDF _
& ] where¢(r) is the electrostatic potential at the poindue to
oaso | ¥ all the charges except the charger atself,
L}
: I‘S=1 _ - e
0440 5 100 200 300 400 500 600 ¢(ri)=|'mf—’ri(¢(r)_ |r—ri|)’ (14)
Number of electrons
- - z
o $(do)=lim, _g | b(r)- _—) (15
« |r—d|
ey #(r) is the Coulomb potential due to all the charges and may
8 be obtained by solving Poisson’s equation with the boundary
é -0.045 ¢ :\%MC 1 condition that the potential tends to zero|gs—.
= —a LDF Now consider the electrostatic potential-energy function
8 0055t 1 for a simulation cell in a solid-state QMC calculation. The
g z system being simulated is finite, of course, but in an attempt
& 0065 by A e to make it model an infinite system as well as possible, it is
g 1 r\'\r/ et S i usual to defindJ as the Coulomb energy per cell of an infi-
0075 | !:7 nltg per|od|_c a.rray_o!c identical replicas of the S|r.nulat|o.n cell.
' ! This quantity is difficult to evaluate by summing pairwise
i =3 1/ interactions since the sums are only conditionally
-0.085 - 00 200 300 400 500 600 convergent® Instead, it is easier to solve Poisson’s equation
Number of electrons to obtaing(r) and then calculat® from Eqgs.(13), (14), and

(15), where the sums overand a« now extend over théN

FIG. 1. Total energies per electron calculated for the densitieselectrons andW nuclei in a single simulation cell. Just as for
(@ rg=1, and(b) rg=3. The graphs show the Hartree-Fo¢kF),  the wave functions in the solution of Schinger’s equation,
variational quantum Monte Carly QMC), and local-density func- it seems natural to insist that the potential obeys periodic
tional (LDF) energies as functions of the number of electrons in theboundary conditions, and it is straightforward to show that
simulation cell. The HF and VQMC calculations were done usingthe solution of Poisson’s equation subject to such boundary
the conventional Ewald interactions between the electrons. conditions is unique up to an arbitrary constant. The value of

) ) ] ) this constant does not affett since the simulation cell is
buupn_ of variance 0.5 atomic units. In all _of the g_raphs thecharge neutral and so this approach gives an unambiguous
statistical errors are smaller than or similar in size to theggyt.
symbols and so have not been shown explicitly. The density |t js important to realize that Poisson’s equation is solved
of the HEG is described using the parametgrwhich is the o1y within a single simulation cell, with the periodic bound-
radius of a sphere whose volume equals the volume per elegy conditions building in everything about the surroundings

tron so that (any charges “outside” the simulation cglllt is plausible
1 4 that the use of periodic boundary conditions corresponds to
“=_ard. (1)  embedding the simulation cell in an infinite periodic array of
3 replicas of that cell, but because of the conditional conver-

gence of the Coulomb sums it is necessary to be very careful
about how the limit of infinite system size is taken. We will
return to consider this question more carefully in Sec. IV.

In practice, a convenient way to obtain the periodic solu-
tion of Poisson’s equation is to use the Ewald methéd.

We now discuss the form of the electronic Hamiltonian, This is reasonably efficient for typical QMC simulation cells
and in particular the form of the model electron-electron in-containing a few hundred point charges, but there is nothing
teraction. Consider first an isolated cluster contaiminglec-  fundamental about the Ewald approach and other methods
trons with charges= —1 at positiong; andM nuclei with  are more efficient in some cas€sGiven a simulation cell
chargesZ, at positionsd,,. Within the Born-Oppenheimer containing a single unit point charge at posit®along with
approximation, the nuclear positions are frozen and act a8 uniform canceling background, the Ewald expression for
parameters in the electronic Hamiltonian, the (unique periodic potential is

Two different densities are studieds=1 andrs=3 in
atomic units.

B. Model electron-electron interaction
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1 exf — m?G?% k?>+27iG-(r—9)]
V &) 7G*

T 1 N N
W(r,9)= pray U=§22 eTy(ri,r)— ¢

erfd x|(r—s)+R|]

> [(r—s)+R| ' (16 A
R +Z Z eza[¢(ri1da)_§]
wherek is an arbitrary positive constant, is the simulation et
cell volume, theR are the lattice vectors for the periodically 1 MM
repeated simulation cell lattice, and ti@& are the corre- t3 2 2 Z,Zg¢(d,,dg)— €], (21)
sponding reciprocal lattice vectors satisfyiBggR=n with n ot g;i

an integer(note that the factors of2 are not included The _ . — .
value of (r,s) is independent ok, which can therefore be Wh!Ch Is the practical def'mt'on dp _that has b_een used in all
solid state QMC calculations until now. It is not the only
adjusted to minimize the total computer time required to
OSSIble definition, however, and we will show below that it
evaluate the absolutely convergent real and reciprocal space
IS not the best definition in most cases.
lattice summations. The zero of potential has been chosen so
All of the calculations in this paper are for the homoge-

that the average value @f(r,s) within the simulation cell is neous electron gas, which has a uniform canceling back-

zero. It can be seen thg{r,s) depends only on—sand we : . . :
: . ; L - N ground charge in place of the point nuclei. In this case Eq.
will occasionally make this explicit by writings(r —s) in (18) becomes

what follows.
The full charge distribution may be obtained by superpos-

ing all the point charges and their canceling backgrounds B(r)= 2 ep(ri,r)+eg, (22

(which sum to zero since the simulation cell is neutral over-

. . . .. 9&
all), and hence the full potential of the simulation cell is just J '

the sum of the potentials for each charge component, and the total Coulomb energy per simulation cell is
M N A
=3 2,000+ 3, ew(rr). (@7 U=3 2, e(r)
#(r;) then takes the form 1 NN Ne2¢
| =5 2 2 Ut —. (23

M N =
- q&
ri)= Z,(r;,d,)+ ey(ri,ri)+eé, 18 o o
(r) ;1 Y. do) 2’1 wror)res (19 The positive background does not appear explicitly because
17 the average value of(r,s) within the simulation cell was

where chosen to be zero.

£= Iim( w(r,s) — 1 Ill. USUAL CORRECTIONS TO THE VQMC RESULTS
= -9
r—s

From Fig. 1, it is clear that there are finite-size errors in
the VQMC results. These errors far outweigh the statistical

1 exp( — m*G?/ k?) 7 errors in the calculation. There are similar finite-size errors in
V ¢Zo G2 K2V the HF and the LDF results. Since the HF and LDF energies
can be calculated exactly for the infinite system simply by
N erf«[R) 2« (19 improving thek-point sampling, it is possible to find exactly
&0 IRl \/; the errors in HF and LDF calculations for finite systems. All

the methods appear to have similar size dependence and so
may be interpreted as the potential at the unit point chargéhe finite-size errors from HF and LDF are often used to try
due to its own background and array of images. An analoto correct those in VQMC calculations.
gous expression giveg(d,), and hence the total Coulomb

energy per simulation cell is A. Finite-size effects in local-density functional theory
1N N M In LDF theory?**the total energy of a solid with given
=3 2 e2y(r; 1. Z‘ Z w(ri,d,) ggrc]lsta; positions is written as a functional of the electron

v N v ELp(1=TLp(N)]+ Exd p(1)]
% ‘ Zﬁd/(da,dﬁ 2 E 2 + Ecoulomt 2(1) + Prucieak ) ] (24

%
t3 2,

I\JIH

(20) whereT][ p] is the kinetic energy of a fictitious noninteracting
electron gas moving in the external potential that makes its
Using the charge neutrality of the simulation cell, density equal t(r), Ecouomd P+ Pruciead 1S the Coulomb
Ne+=M ,Z =0, this may be simplified to interaction energyHartree energyof the superposition of
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the electronic and nuclear charge densities, &g p], most cases the one-electron wave functions should all corre-
known as the exchange-correlation energy, takes care of egpond to the samke point when reduced into the simulation
erything neglected in the first two terms. The nuclear chargéell Brillouin zone, but that point need not ke=0. We do
density, phuceak’), IS @ superposition of functions at the not use this extra freedom here.

given nuclear positions, but the electronic charge density is The exact exchange-correlation energy per electron in a
smooth. The exchange-correlation energy is approximatefinitt homogeneous electron gas of dengitgepends on the
using the local density approximatighDA), system size, and so it could be argued that we should use a
different e,.(p) for each different simulation cell we study.
We prefer to use the samg(p) in all cases, however, and

so our LDF estimate of the jellium exchange-correlation en-

Exc[p(r)]:f exc(p(r))p(r)dr, (25
. ) : ergy per electron does not depend on the system size.
wheree,(p) is the exchange-correlation energy per electron The LDF energy for the infinite system is found by con-

of a homogeneous electron gas of dengityWe use the . . ; .
X X verting the sum in Eq(26) into an integral ovek up to the
parametrized form ofe,(p) obtained by Perdew and Fermi wave vectoke = (372p) 3

Zungef® from the QMC results of Ceperley and Alder.

In jellium, the one-electron wave functions are plane 1. 10495
waves, the LDA is exact, anBcqyiomd P+ Pruclead 1S Z€ro €= + €x(p). (27)
since the nuclear charges are smeared out into a uniform S
positive background which exactly cancels the uniform elec-
tronic charge density. The energy per electron of an unpolar- B. Finite-size effects in Hartree-Fock theory
ized jellium simulation cell containingl electrons is there- The ground-state energy of tid-electron HEG simula-

fore given by tion cell Hamiltonian,

32V

2 1 N N 5

_ N

W g2y 2 ol (20 32 5 Uy (@9
j#i

I\)IH
I\.)IH

where the factor of 2 accounts for spin degeneracy. In our
QMC calculations the Slater determinant is constructed bynay be approximated using HF theory. The periodéoi-
doubly occupying each of the lowebt/2 k points on the dal) boundary conditions are built into the one-electron wave
simulation cell reciprocal lattice, so that all the one-electrorfunctions, (r,o|xx /)= 064/ Xko'(r)  With  xy (1)
wave functions have the same periodicity as the simulatior=e'*’ "1V, and all thek vectors correspond to the point
cell. If we are to attempt to correct the QMC finite-size errorsk=0 when reduced into the simulation cell Brillouin zone.
using LDF results, it is important that the LDF energy for the The only unusual feature is the presence of gife; ,r;) in-
simulation cell is calculated using this same restrictederaction in place of the more familiarrlCoulomb interac-
k-point sampling.(Note that recent wofkhas shown that tion. This has no effect on the formalism, however, and the
other wave vectors may also be used in QMC calculations: itotal energy is given by the usual HF expression,

1 Ne?¢ 1
E=> SK+——+ f Jdrldr2|Xko F)2g(r 1,1 xr,or(2)|?
k,o 2 2 2 k oK
occ. occ. occ
32 S | [ O BTt ), 9
OCZ kOCC
|
where all integrals are over the voluriveof the simulation dry -
cell. A similar expression would be obtained for any v e KD =2y (r 1)
N-electron Hamiltonian with pairwise interactions plus a
constant term. dr, _Viei(k—k’).(rl—@
Thek=k' exchange term and all the Hartree terms in Eq. =J A K2 P(ry,ry).
(29) vanish because the average value/adver the simula- | |
tion cell is zero, and hence only exchange integrals such as (31
dl’ldl’z |(kk)(r r 2
172 ih(r,rp) (300 Then we use the Hermiticity of th&? operator[assured

because botky(r,,r,) ande'® ) ("1=2) are periodic func-
with k#k’ are required. These are quite easy to evaluatetions] and the fact thaty satisfies Poisson’s equation within
First we write the simulation cell,
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Vig(r1, 1) =—4a[8(r— 1) +pracd, (32
0060 #  (a)
to obtain
- A R
drl . , dar 8 0000 AW AN A, St - -
— T ai(k=k")-(ry—ry) - FARY U o s A - S
f v e P(ry,ro) VK=K (33 é i N4
=
=1
i=}
The final expression for the HF ground-state energy pers -0.060 | —HF
electron of an unpolarized jellium simulation cell containing g == LDF
N electrons is thus %
) g -0120 |
2 1 et 1 by
NN T T N &, VKT =1
k occ. k occ. k' oce. s
k#k’ -0.180 ! . .
(34) 0 500 1000 1500 2000
Number of electrons
In the limit as the simulation cell becomes very large and
N—o, the “self-interaction” (§) term becomes negligible, 0.006
the sums over occupiekl vectors become integrals up to
ke, and Eq.(34) gives the usual result, o 0000
$
1.10495 0.4582 35 é -0.006
€= rg rs . ( ) g
g 0012
Note that Eq.(33) shows that the Fourier components of &
#(r) are the same as the familiarrk? Fourier components g 0018 |
of the Coulomb interaction. This does not mean, however®
that the complicated Ewald formula fgrcan be replaced by 0.024 1
the simple Fourier series, r=
-0.030 : : :
0 500 1000 1500 2000
A ket Number of electrons

; vie® (36)

FIG. 2. Finite-size errors in HF and LDF calculations for the
The problem is that the Fourier series is conditionally con-densities:(a) rs=1, and(b) rs=3. The finite-size errors are the
vergent and does not sum to a unique answer; it is only whefiifferences between the_energ_y per electron in a finite system and
the product ofi(r) and some smooth function occurs in an the energy per electron_ln_ an infinite system. The graphs show re-
integral over the simulation cell that the replacement is jusSUlts for systems containing up to 2000 electrons. The HF errors
tified. were calculated using the conventional Ewald Hamiltonian and de-
cay very slowly with system size.

C. Corrected results for two densities whereT is the kinetic energy expectation value, thand

The LDF and HF energies for an infinite simulation cell r’ integrals both extend over the simulation cell, and
with r,=1 are 0.5872 and 0.6468 hartree. Wher 3, the  n(r’,r) is the(diagonal part of thetwo-electron density ma-
LDF energy is —0.0672 hartree and the HF energy is trix,
—0.0299 hartree. The LDF and HF finite-size corrections for
a range of different simulation cells are shown in Fig. 2, and , ) N ,
the corrected VQMC results are shown in Fig. 3. It can be n(r ,r):f dX| W (X)] izl o(r'—ri)&(r—ry. (39
seen from the graph of finite-size corrections that there is a 'jjsﬁi
very slow decay of the HF corrections with increasing sys-
tem size, which looks as if it must be systematic. Neither When|r’—r| is large,n(r’,r) tends ton(r')n(r), where
method of correction removes all the finite-size errors in the
VQMC calculation satisfactorily.

N
n(r)zf dX| W (X)|? 21 S(r—ry) (39

D. Constituent parts of the finite-size error ) . )
is the electron density. For smatl —r|, howevern(r’,r) is

suppressed because of Coulomb repulsion (dspin par-
allel electrong the Pauli principle. The suppression of the
density atr’ due to the presence of an electrorr as con-
veniently described in terms of the exchange-correlation
hole, n,(r',r), defined via

The VQMC expectation value of the HEG simulation cell
Hamiltonian may be written in the form

2
E=T+N%2§+e?f [ ararucronen, @
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correlation hole. A similar result holds in an infinite jellium

(a) system, of course, except that then thig'Hr| Coulomb
061 | 1 interaction replaces the effectiveéy(r’,r)—¢ interaction.
- Note that
S 0.60 [
g 1
£ 059 - A —teep ] W' )~ +é+- - (43
g A Ir'—r]
3 e s
g *% f/ —HF | for small |[r’ —r|, and so the effective interaction does at
% osr | &= LDF | least resemble the Coulomb interaction near the origin. Note
| / also that although the exchange-correlation hole in an infinite
os6 | | jellium is exactly spherical, the hole in a finite simulation
56 1 .
r=1 cell is not.
0.55 . . . . LS . If the kinetic energy expectation value is split up into a
100 200 300 400 500 600 one-electron parfl;., as in density functional theory, and a
Number of electrons many-electron parfl ., then the full VQMC energy is
! E=Tiet Tmet U (44)
0.056 - — lle me XC
§ 0059 | : =T1e+ Use, (45
e} ~
5 -0062 | 1 whereU,. is the exchange-correlation energy as used in den-
=] . . . . =~ .
3 sity functional theory and is defined by E@5). U, is not
g -0.065 . T the same adJ,. but may also be expressed as an integral
& g T o over an exchange-correlation héfe®> The form of the inte-
g 0088y ,l" = LDF 1 gral is the same as in E2), but now it is necessary to use
/! an averaged exchange-correlation hole accumulated as the
oom 1 electron-electron interactions are slowly “switched on.”
=3 y
I= When VQMC results are finite-size corrected using LDF
-0.074 - L - L ! ! . . . .
0 100 200 300 400 500 600 results it isAT,., the error in the one-electron kinetic en-
Number of electrons ergy, which is being corrected. The LDF exchange-

. o correlation energy is independent of the cell size and so
FIG. 3. VQMC results corrected using the finite-size errors fromATme, the error in the many-electron part of the kinetic en-

HF and LDF calculations. The VQMC and HF results were ob-gqy "angAU, ., the error in the exchange-correlation energy,
tained using the conventional Ewald simulation cell Ham”ton'an'remain

Results are for sy_stems contaTlng from 18 to 614 electro_ns and for When HF results are used, batfT;, andAU,, the error
the densitiea) r,=1 and(b) r,=3. Even for large system sizes the due to the exchange energy, are corrected. The exchange
corrected VQMC results do not converge. . ! s .
energy arises from the effectiyes(r’,r) — &] interaction of
SN , an electron with its exchange hole. Like the exchange-
n(rt,n)=n(r)n(r)+ny(r',nn(r). (40 correlation hole, the exchange hole contains chiefjeand
It is easy to show that so any difference betweehdU, and AU,. must be entirely
attributable to the different shapes of the two holes.
Figures 4 and 5 show the exchange and exchange-
correlation holes in jellium as functions of the size of the
_ ) ) simulation cell. The calculations were carried out using our
irrespective of the size of the system and so the fullgmC program and the statistical errors are visible near
exchange-correlation hole containing chaige is always =0, It can be seen that both the exchange hole and the
“squashed in” to even the smallest simulation cell. exchange-correlation hole are short ranged and hardly
Since the average value @f(r’,r) over the simulation change at all with simulation cell sizEThe exchange hole
cell is zero and the density is constant in jellium, the totalgecays like 1K¢r)? in an infinite jellium but the large tail

dr'ng(r’',r)=—1 (41

cell

energy becomes is small and oscillatory and contributes little to the exchange
2 energy] For this reason, one might expect the finite-size er-

E=T+ e_f f dr'drny(r’,n)[¢(r’,r)—&n(r) rors inU, andU,. (and presumably also id,.) to converge
2 very quickly to zero with increasing system size, and hence

_ both the HF and LDF corrected VQMC results should also
=T+U,, (42 - e i

converge quickly. However, it is clear from Fig. 3 that the
whereU,. is the exchange-correlation energy. The interpre-errors do not converge quickly and that they still appear to
tation of this equation is clear: the exchange-correlation enhave a systematic nature. This suggests that the problem
ergy arises from the interaction of the electrorr atith the  must lie with the slow convergence of the effective interac-
unit positive charge distribution that makes up its exchangetion, y(r’,r)—&, to the Coulomb 1f'—r| form. It seems
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FIG. 4. Spherically averaged exchange hole as calculated using g|G. 5. Spherically averaged exchange-correlation hole calcu-
the VQMC program for the densiti¢a) rs=1 and(b) rs=3. Each  |ated using the VQMC program for the densiti@s r.=1 and(b)
figure shows the exchange hole for systems containing varioug — 3. Each figure shows the exchange-correlation hole for systems
numbers of electrons. The graphs for different system sizes havgyntaining various numbers of electrons. The graphs for different
been offset by multiples of 0.05 for clarity; they all tend to 1 at gystem sizes have been offset by multiples of 0.05 for clarity; they
larger and are equal to 0.5 at=0. all tend to 1 at large.

that the slowly decaying finite-size errors are caused by th&ange of the correlations between electronic positions in the
form of the simulation cell Hamiltonian rather than the form Periodic array. Even when the simulation cell has no dipole
of the trial wave function. moment on average, almost every configuratdénsampled

during the QMC run will have a nonzero dipole moment.
This moment will be mirrored in every other simulation cell
IV. COULOMB ENERGIES AND POTENTIALS of the infinite periodic array, and the interactions between all
IN PERIODIC SOLIDS these dipoles may give rise to an unphysical contribution to
the potential energy of the configuration. There will also be
contributions from interactions involving higher multipole
Since the long-ranged finite-size errors seem to be a commoments, but these decay more quickly as the simulation
sequence of the form of the simulation cell Hamiltonian, letcell size increases and so are less important. In a real solid,
us look again at the definition of the simulation cell Coulombthe central dipole induces much weaker dipoles in surround-
energy. The only sensible criterion to use in choosing théng regions(hence the van der Waals interactiphut these
form of U is to try to mimic the interactions in a real solid as die off very rapidly with distance.
well as possible. The main problem is the obvious one: areal Even if we accept the use of a periodic array of copies of
solid is a macroscopitbut finite) cluster containing an enor- the simulation cell, there still remains the practical difficulty
mous number of electrons, whereas a QMC simulation celbf calculating the potential energy. We cannot simply sum
contains only a few hundred. 1/ interactions as in a finite cluster since the long range of
The standard solution to this problem is to malkehe  the Coulomb interaction means that such sums are only con-
Coulomb energy per simulation cell of an infinite periodic ditionally convergent; the answer obtained depends on the
array of identical copies of that cell. This approach suffersorder of summation and it is hard to know which order is the
from problems of its own, however, arising from the infinite appropriate one.

A. Introductory discussion
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At first sight, this conditional convergence difficulty is and these expansions are substituted into Poisson’s equation
surprising. We know that the only effect of the surfaces onto obtain
the electrostatic potential deep inside a real piece of solid is
a constant shift due to the surface dipole layer. The value of (27G)?pg=4mpg. (48
this constant does not affect the electrostatic energy per unj _ . _
volume as long as the solid is charge neutral on average anriltéweQ—()l(etquatloTl IS no;[ ‘EOIUbk:e unles@io—l OA aTd henceth_
so U is independent of the shape of the piece of solid. This € §_|mu ation c.ef. rgush € charge neu r%.‘ S ongdas“ IS
unique value ofU is clearly the right one to associate with condition Is satisfied, oweverhg—o IS arbitrary and a
the total electrostatic energy per simulation cell and is inot_her Fourier components of the potential are unlq_uely deter-
principle straightforward to evaluate: one simply chooses ined. The arbitrary average valuelof the poteniad—o.
sensible cluster shape and sums fiteractions for a se- cancels from the expression forand is usually set equal to

; : ; ero for convenience.
n f bigger and bigger clusters of that sh ntil th " . .
g:\lecufaet;d Sagllggs Zﬂdcgngv%ergg usters ot that shape u é The charge densities for which we wish to evalubke

The fact that the final result is independent of the shape Ogurlng . solld—_state QMC calculations are ”.”ad_e up of
g-functlon point charges and so the Fourier series in(EQ).
does not converge. The required periodic solution of Pois-
gn’s equation may now be found using the Ewald method
ee Sec. Il and Ref)9however, andJ can still be obtained

contributions from far regions of the solid: some distant re-
gions have an excess of positive charge and some of negati
charge, but the fields they produce cancel out on avera ) - )
because the charges are randomly distributed. The cancell om Eq,. (13). T_he uniqueness of the periodic solution Of
tion must be very efficient since at any given time most of 0ISSon's equa’qon may npw'be demonstrated by supposing
the cells in the cluster will have nonzero monopole momentghere are tW.O dlfferent perlodlg solutiong, (r) and ¢(r),

as well as nonzero dipole and higher multipole moments. and  considering th? _dlfference . b_etween _them,

Unfortunately, the cancellation does not work for the pe—¢(r):¢,1(r)_¢2.(r)’ 2wh|ch is also perlod|c bqt satisfies

riodic array ofidentical replicas of the simulation cell used -@Place’s equationV=4(r)=0. If #(r) is anything other
to define the potential in a QMC calculation. Although thethan a constant th_en It must reach both_maX|mum and mini-
cells have no chargé.e., no monopole momentthey usu- mum values at points within the simulation cell and so can-

ally have a nonzero dipole moment and so the array of idennot satisfy Laplace’s equation everywhere. We therefore con-

tical replicas has a nonzero dipole moment per unit volumeSude thaté,(r) and ¢,(r) differ by at most an arbitrary
The surfaces of any finite cluster are therefore covered with §0nstant.

layer of polarization charge, and the valud bis affected by

the resulting depolarization fields, which are well known to B. Ewald potentials and cluster potentials

depend on the shape of the cIu§FeCIgsters of different The Ewald approach to the definition bfis clearly sen-
shapes give different values f&f even in the limit as the gjpje put the physical situation to which it corresponds is not
cluster size tends to infinity, an_d |_t is not clear which shape igjear. It seems plausible that the use of periodic boundary
best. Ferromagnets show a similar dependence of total eRpnditions is equivalent to embedding the simulation cell in
ergy on cluster shap@ithough large clusters avoid depolar- g infinite lattice of identical replicas of that cell, but we
ization fields by splitting up into domaihand the physics is  haye already explained that finite clusters of different shapes
of course well understood. We will come back to considerhaye different electrostatics even in the limit as the cluster
this problem in more detail below. size tends to infinity and so it is not clear exactly what this

In Sec. Il, the conditional convergence problem led us tGyeans. The question was settléthough only for ionic
calculateU using a different approach, which at least givessystems and simple cubic simulation cellsy de Leeuw,
an unambiguous result. Poisson’s equation was solved withiperram, and Smith using an approach that is quite rigorous
the simulation cell using periodic boundary conditions, andy;t highly mathematical and far from transparésge Ref.

U was then obtained from Eq13), where the sums over 22 for a concise summary of the resiits1 Appendix A we
a_md a exten_ded over all electrons and nuclei in the 5'mU|a'show how this approach may be generalized to arbitrary lat-
tion cell. This approach does not rely on the construction ofices and charge distributions with continuous components
an artificial periodic lattice of replicas of the simulation cell gych as the background charge in jellium. In this section,
since all the information about the “surroundings” is built however, we rederive the main results using more physical
into the periodic boundary conditions. arguments.

For smooth charge distributions, Poisson’s equation is e start by considering the Coulomb potential inside a
most easily solved by Fourier transformation. The chargearge spherical cluster of simulation cells and finding out
density and potential are expanded as Fourier series Witho it differs from the Ewald potential. Because of the long
components at spatial frequencies given by the reciprocahnge of the Coulomb interaction, it is necessary to be very
lattice vectors of the simulation cell, precise about the shape of the cluster boundary: a radius

R. is chosen and all simulation cells centered on lattice vec-
_ 2miGer torsR with |R|<R; are included in the cluster. Note that if a
p(r)= %: pce ' (46)  cellis included in the cluster theail charges within that cell
are included, even though some of them may be a little fur-
ther thanR, from the origin.
_ 27iG-r Now refer to Fig. 6 and consider the values of the poten-
(r) % ce ' @0 tial at the pointsr andr+A, whereA is one of the three
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sums of dipolar contributions giving the difference between

+ (D(’::%) _ Q)( :H:i) @(r) and ¢(r+A) may be replaced by integrals,
I —p-(R-T)

2m T
r+A r+A ¢(f+A)—¢(f):f f —5—3— ¢(0)d*Sg
¢=0Jo=m2 |R—T]
FIG. 6. The contributions to the difference in potential between 27 (@2 —p-(R—T)
pointsr andr + A when cluster boundary conditions are imposed on - J’ J R—g—c( 0)d28R
Poisson’s equatiorA is a simulation cell lattice vector andis an o=0Jo=0 [R—1|
arbitrary point near the center of the cluster. 1
o _ _ _ +0 —), (52
primitive vectors of the simulation cell lattice. Both the Re

Ewald and cluster potentials in any given cell may be obyynere the point®R= (R, , 6, #) lie on the spherical surface of
tained by solving Poisson’s equation within that cell, but they,o cluster, andi2S, is the element of surface area. Ignoring

two potentials are not the same because the boundary condie o(1/R.) contributions and combining the two integrals
tions are different. We will work out the difference between

ives
¢(r) and ¢(r+A) for an arbitrary point deep within the g
spherical cluster, and hence determine the boundary condi- |A| [ p-(R-T)
tions obeyed by the cluster potential and how it differs from (r+A)= ()=~ BEETER cospd’Sg

the periodic Ewald potential.
Since the spherical cluster is finite, botf(r) and IA| cos)
¢(r+A) can be obtained by summing Coulomly Tontri- =—(p-V,) ﬁ—dZSR-
butions from all the other charges in the cluster. Aimost all v IR=r|
the terms in the two sums are the same, ¥(t) contains (53
extra contributions from a shell of cells on the hemisphericalThe remaining integral can be evaluated as explained in Ref.
surface of the cluster centered around #alirection, and 28 and hence one obtains
¢(r+A) contains extra contributions from the hemispherical

shell of cells centered around theA direction. The differ- 4mp-A

ence betweenp(r) and ¢(r+A) comes entirely from the (r+A)=o(r)+ 3v (54)
single layer of cells on the surface of the large spherical

cluster. When viewed along the direction, the projection of Equation(54) is the main result of this section. It shows

all the cells in either of the two hemispherical shells exactlythat the cluster Coulomb potential is not periodic and so is
covers the projection of the sphere, and so it is straightfornot the same as the Ewald potential. However, given that
ward to find the number of cells in the surface layer per unitgg,,(r) is a periodic solution of Poisson’s equation, it fol-
area of the sphere. t?Siis an element of surface area on the lows that the function

sphere lying at an angle to the A direction, then the corre-

sponding projected area isos| d°S. The projected area of . 4mp-r

any single unit cell i8//|A| and hence the number of surface Potustek ") = bewad 1)+ 3v (59

cells in the areal®S is given by - . . S
satisfies Poisson’s equation for the same charge distribution

|cosd|d?S  |A coo) but with the boundary conditions specified in E§4). A
VIA[ — Vv d*s. (49)  simple adaptation of the uniqueness proof for periodic
boundary conditions shows that this solution of Poisson’s

Although the cells in the surface layer are all charge neu€duation is also unique, and gQy,s(r) must indeed be the
tral, they almost always have nonzero dipole and higher mulCoulomb potential of the cluster to within an arbitrary con-
tipole moments. The cell & with dipole momentp there- ~ Stant.

c(9)d?s=

fore produces a potential Equation(55) applies both for a system of point charges
and for jellium as long as the appropriate Ewald potential is

—p-(R-T) 1 used, but note that is the full dipole moment of the simu-
Pr(r)= R=1° ((R—r)3> (500 lation cell and so includes the dipole moment of the ions or

background charge distribution as well as the dipole moment
at the pointr. (Note that in an infinite periodic system, the of the electrons. It is only when the origin of coordinates is

dipole moment of the unit cell, chosen to make the dipole moment of the ions or background
N " equal to zero that the electronic dipole moment alone may be
used.
pP= 21 er;+ azl Zada s (51 The fact that the difference betweei,,qand dqysteriS @

uniform electric field should not be surprising. The sum of
depends on where you draw the cell boundaries and so cadipolar contributions that gives the value of the potential at
not be uniquely defined. In our case, howeyemeans the the center of the cluster is not absolutely convergent and so
dipole moment of the simulation cell used in the QMC cal-the result may depend on the cluster shape. The same applies
culation and there is no ambiguityGiven that the cluster is to the sum of first derivatives of dipole potentials that gives
large, and assuming thatis not too close to the surface, the the electric field, but sums of second derivatives of dipole
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1
Vacuum Perfect Metal Ip|2=— > 2 E qialri—rjl?, (58)
"k
and so the dipole term may be viewed as the result of an

Polarization Sg;erng;g extra quadratic interaction between charges. This means that
Charges g if the modified interaction,
Pelustek T s s)= W(r ,S)— |r_5|2 (59
Cluster Potential Ewald Potential

is used in place ofi(r,s), then the standard Ewald formula,
FIG. 7. Polarization charges and screening charges inducegq. (21), for the total energy of a simulation cell containing
when a large cluster of simulation cells is embedded in either &lectrons and ions gives the cluster energy instgsidte,
vacuum or a perfect metal. The differences between the two maowever, that the average value s is NOt zero and so
roscopic charge distributions account for the differences betweefhg expression for the cluster energy of a jellium simulation

the cluster potential and the Ewald potential. cell
potentialsare absolutely convergent and so gradients and 1 Nez
higher derivatives of the electric field are independent of Ugtusie = 2 2 2 sl i 1) + —— 3
cluster shape. 251> ]
The extra electric field, 1#i
eN T
- 3 _ 0 2
E=—4Lp - + 2. d r( 3V|r| r| )
CAVAN

N2 3 3,7 2m 12

in Eq. (55 has a simple physical interpretation in terms of + 22 d°r | d°r’| - 3—V|r—r %], (60)

macroscopic electrostatics. Figure 7 shows a sphere with uni-
form dipole moment per unit volumé&=p/V. The charge involves background terms. It is not correct simply to replace
density within the sphere is everywhere zero and so all they by ¢ s.erin EQ. (23).]
field comes from the surface charge per unit aréan,
wheren is the unit outward normal to the surface. The elec- V. COULOMB ENERGIES AND POTENTIALS
tric field at the center of the sphere due to this surface charge IN QMC CALCULATIONS
distribution is easily evaluated and is exactly that of &).
The extra electric field that distinguishes the cluster potential In Sec. Ill we discussed the constituent parts of the finite-
from the Ewald potential is therefore nothing more than thesize error in a VQMC calculation. We explained that the
depolarization field, which is present in the cluster potentialerror in the one-electron kinetic energyT 1, is completely
but not in the Ewald potential. Once this is understood, it issemoved if LDF corrections are used, and so the residual
easy to devise a physical system for which the periodierror is AUXC—ATmeJrAUXC Like the true exchange-
Ewald potential is exact. If a large spherical cluster of iden-correlation hole shown in Fig. 5, the “averaged” exchange-
tical simulation cells is embedded in a perfect metal, thecorrelation hole that determings, . is expected to be short
surface charges will be perfectly screened, the depolarizatioranged and to converge rapidly with increasing cell size. The
field will be zero, and the Ewald potential will be the exact existence of significant residual errors for large simulation
potential. cells with well converged exchange-correlation holes shows
The expression for the Coulomb energy of the cluster mayhat the problem must lie in the choice of simulation cell
be found by combining Eqg55) and(13), where the sums Hamiltonian rather than the choice of trial wave function.
overi ande« run over all electrons and nuclei in the cluster.  In Sec. IV we explained that the Coulomb potential in a
The average value of the potential varies from cell to cellarge cluster of identical simulation cells depends on the
because of the depolarization field term, but all the cells arghape of the cluster and the properties of the medium in
charge neutral and so contribute the same amount to the totahich the cluster is embedded. The periodic boundary con-
energy. The neglecte@(1/R.) terms alter the potential near ditions assumed in the calculation of the Ewald potential
the surface of the cluster, of course, but the proportion ofwhich amount to embedding a large spherical cluster in a
simulation cells affected tends to zero as the cluster sizperfect metal seem physically sensible, but they are not the
tends to infinity, and as expected the cluster energy becomemly sensible choice. Perhaps the residual finite-size errors
an extensive quantity. The energy per simulation cell is themwill be smaller if the model electron-electron interactions
used in the simulation cell Hamiltonian correspond to a dif-
27|p|? ferent choice of boundary conditions?
Ucuster= Uewaiat —3y,— (57) To address this question, we return to the expression for
the exchange-correlation energy,

Given that the simulation cell is neutral and contains

. . . . e2
fgirhgfvi(ilgitromc and nucleaq, at positionsr,, it is easy UXC:EJ J dr'drn,(r',0[e(r',r)—&In(r). (61



1826 LOUISA M. FRASERet al. 53

We can gain a better understanding of this expression bgelves simply provide a convenient macroscopic description
considering a simulation cell containing just two charges, af the effects of the microscopic charges in the cluster of
unit negative charge atand a unit positive charge at. A cells and hence have already been included in the dipole
simple application of Eq(21) shows that the Ewald energy sum) We have already explained that these screening
of this two-charge cell i&J,(r',r)=&—¢(r',r) and so Eq. charges give rise to a uniform electric field,
(61) can be rewritten as E=47p/3V=4=(r'—r)/3V, within the cluster, and hence
produce what amounts to a repulsive force,
e? Fscreening=4m(r' —r)/3V, between the two unit charges in
U=~ % f dridrng(r’,nUx(r’,nn(r). (62  the central simulation cell. This adds an extra quadratic term,

27lr' —r|?

Given thatn,. settles down fairly rapidly to its asymptotic o
Uscreenmg 3V ) (63)

form as the size of the simulation cell increases, the main
finite-size errors must arise from the slow convergence 0{0 U
U,(r’,r) to the —1/r"—r| Coulomb interaction. Further- 2

d . ; How does this “screening” term affect the exchange-
more, since the exchange-correlation hole charge density de- : S .
. . o correlation energy? To simplify the argument, we approxi-

creases rapidly to zero as—r increases, it is only the rate

of converaence when’ —r is small that matters. We can mate by using the exchange hole in place of the exchange-
(and will) gaddress this convergence question iJreI mathgorrelation hole in Eq(62), and assume that the simulation

. : 9 - d purely cell is large enough for the exchange hole to be the same as
ematically, but given the understanding of the Ewald poten- A,
i . X . S : N in an infinite jellium,
tial gained in the previous section, it is more illuminating to
start by making a physical argument. 1

Imagine a large spherical cluster of copies of the “two- n(r’,n)=—f(|r' —r|/ry), (64)

charge” simulation cell embedded in a perfect metal. Ac- s
cording to our earlier discussiokl,(r',r) is the Coulomb oo ¢ is a known functio?® The charge density,

energy of the central cell in this cluster. We can thereforen(r):NN:B/(MT@’ is uniform and so the screening field

obtainU, by summing Coulomb contributions frpm all ”“? contribution to the total N-electron exchange-correlation
other charges in the cluster and from the metallic screenin nergy is given by

charges that build up on the cluster surfddg.is a periodic

function of the distance between the two charges and so is Ne2 1 212

unchanged when the two charges are picked up and moved AUye=— Tf d3r—3f(r/rs)( ~3v )

together through the simulation cell. It turns out, however, s

that the argument is easier to follow when both charges are e?

near the center of the cell and this will be assumed from now =— FJ d3(rirg)f(rirg)[—(rirg)?]. (65
S

on.

The first contribution tdJ,(r',r) arises from the interac- The exchange-correlation energy per electron therefore con-
tion of the two ChargeS in the central simulation cell. Thistains an extra contribution proportiona' to NII(S) The extra
term is just the—1/[r —r’| Coulomb energy and so any con- contribution is negative since,. is negative, and hence the
tributions from the rest of the cluster may be regarded aguantum Monte Carlo results will contain a negative finite-
finite-size errors. The potentials from other cells may be repsijze error(the energy for small system sizes will come out
resented as multipole expansions, but only the dipole termgg |ow), which is not removed by applying the LDF correc-
matter because the distance between the two charges is mughns and which decays like N/ All this is exactly as ob-
smaller than the shortest translation vector of the simulatioRerved in Fig. 3. Coulomb finite-size corrections of this
cell lattice (the exchange-correlation hole decays so rapidly;/(Nr) form have been used befdte®3but the fact that the
that the form of the interaction is irrelevant when the twocorrections should be positive has not been understood be-
charges are further apartThe finite-size error due to the fgre.
other cells in the cluster may therefore be approximated as a The existence of the INr,) finite-size effect may also be
sum of dipole-dipole interaction energies. ~ derived in a more mathematical and perhaps more convinc-

Dipole-dipole interactions decay likeR7 and so lattice  ing fashion, which does not rest on physical arguments about
dipole sums are conditionally convergent, but here the sumfnite clusters and metallic screening charges. In the limit

runs over all the cells in the large but finite spherical clustefyhen the cubic simulation cell lattice parametey,is large,
and so is well defined. Furthermore, a straightforward sympytr is small, we show in Appendix B that

metry argumerif shows that the sum is zero in any lattice

with cubic symmetry. Our QMC calculations used face- 1 2mr?

centered cubic simulation cells and so the dipole sum is zero P —é=-+—35 + o(r?), (66)

and the leading nonzero contributionsdg(r’,r) arise from

higher multipole moments. These contributions must deand the same unwanted quadratic contribution appears.

crease at least as fast ad 3/and so cannot explain the The simple fact that the Ewald interaction differs from the

observed long-range (19) finite-size errors. Coulomb interaction should come as no surprise: the Ewald
The remaining term present I,(r’,r) is due to the me- interaction is periodic and so must depart from the non-

tallic charges that flow to screen the polarization charges operiodic 1f form as the simulation cell boundary is ap-

the surface of the clustefThe polarization charges them- proached. What we have done is to determine the leading
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contribution to this departure and explain how it gives rise tolattice vector if necessary. The resulting reduced difference
the long-ranged finite-size errors in the exchange-correlatiomector, Ar, is then used to work out the quadratic term,
energy. 27| Ar|?/(3V)—C, which is subtracted from the Ewald in-
Although our explanations have been cast in terms oferaction to give a new effective interaction. The Ewald in-
QMC calculations, it is worth noting that our results are ofteraction is defined so that it averages to zero over the simu-
wider relevance. As pointed out in the recent work of Makovlation cell, and the presence of the constant,
and Paynk (which provides an alternative view of some of
the questions tackled hgreéhe quadratic terms in the Ewald 2 » 3
energy are also responsible for the leading finite-size errors C= che”r r (67)
in density-functional calculations for supercells with dipole
moments. In addition, we believe that classical simulationgnsures that the new effective interaction also averages to
of Coulomb liquids should show W/finite-size errors due to zero. This is convenient because it guarantees that terms in-
correlations in the ionic positions, and that the same apvolving the uniform background do not have to be consid-
proach we use for QMC calculatiotisee belowmay allow  ered explicitly.[Note thatC must also be subtracted from the
these errors to be reduced. There are also large finite-sizgIf-energy,¢, which was defined in Eq19) via a limiting
errors in Hartree-Fock calculations, which have traditionallyprocess involving the interaction; the value ©ftherefore
been explained in terms of the slow convergence okancels out of the expression for the total energy,(E2), as
Brillouin-zone integrals for the exchange enetgy\s ex-  expected. The reduction of the difference vector into the
plained in Sec. I, however, using a discr&tpoint sampling  simulation cell ensures that the effective interaction is peri-
grid is equivalent to working with a finite simulation cell odic as required, but also introduces slope discontinuities
subject to periodic boundary conditions. Improvements inyhen Ar suddenly jumps from one side of the simulation
k-point sampling correspond to increases in the size of theell to the other. The fact that very good results are obtained
simulation cell, and so this work provides an alternative realdespite these discontinuities serves as a convincing confir-
space explanation of the convergence problem. Almost evmation of the theory presented above.
erything we have said about finite-size effects in QMC cal-  Our second method for reducing the finite-size errors is
culations applies equally well to HF calculations as long assven more drastic: the difference vector is calculated and
the exchange-correlation hole is replaced by the exchang@duced into the simulation cell as before, but then we use
hole in Eq.(61). the simple Coulomb energy,|&r| — D, instead of the Ewald
interaction. The constant,

VI. FASTER QUANTUM MONTE CARLO CALCULATIONS 1 1
WITH SMALLER FINITE-SIZE ERRORS D=y f ngr' (69)

The last section explained that the Nf¢) finite-size er- el
rors are due to the metallic screening charge contribution tés again chosen to make sure that the average value of the
the Ewald potential. It also explained that this screening coninteraction is zero, and again must be subtracted from the
tribution is not present in the cluster definition of the Cou-self-energy(which would otherwise be zero in this case
lomb energy, and so the finite-size errors would presumablirhe resulting potential energy is much easier to calculate
be smaller if we defined our simulation cell Hamiltonian than the Ewald energy and gives smaller finite-size effects,
using U gusterinstead ofU gyaq- Unfortunately,U o steriS NOt  but again has discontinuities when the reduced difference
a periodic function of the electronic positiofisdiffers from  vector jumps from one side of the simulation cell to the
the periodic Ewald energy by an electric field t¢ramd so is  other. Note that the idea of reducing the difference vector
incompatible with the use of trial functions satisfying peri- into the simulation cell centered on the origin is widely used
odic boundary conditions. If we want to ukk, e in place  in classical simulations with short-ranged potentials, where it
of Ugyaig then we will also have to abandon the convenientis known as the minimum image conventitithe surprise is
trick of wrapping the system round into a torus. that we are using the minimum image convention with the

But all is not lost. We know that in jellium the total en- very long-ranged Coulomb interaction.
ergy depends only on the behavior of the effective interac- The changes in simulation cell Hamiltonian affect both
tion, ¥(r' —r)— &, when|r’ —r| is small. The Ewald inter- the QMC and HF results. It is therefore important to ensure
action is suitably periodic but contains an unwantedthat the same Hamiltonian is used in both sets of calculations
27|r" —r|?/(3V) contribution at smal|r’ —r|. All we have  when HF energies are used to correct the finite-size errors in
to do is modify the Ewald interaction to remove this contri- QMC results. Our LDF calculations always use the
bution while making sure that the interaction remains peri-Perdew-Zungéf form of the LDA, and so the LDF simula-
odic. tion cell Hamiltonian is the same no matter which many-

We have investigated two different ways of doing this. electron Hamiltonian we are using.
The first is simply to subtract the appropriate quadratic terms HF and QMC calculations for jellium simulation cells of
from the Ewald interactions. This method was used by devarious sizes were carried out using both tifecorrected
Leeuw Perram, and Smithin a classical simulation of a Ewald interaction and the /Hamiltonian. It is clear from
hard-sphere dipole fluid, but this is the first time anythingFig. 8 that both Hamiltonians give identical resulis within
similar has been attempted in a QMC calculation. Giventhe statistical errojs as would be expected from our analy-
charges ar’ andr, we evaluate’ —r and reduce it back sis. The residual finite-size errors are much smaller than for
into the simulation cell centered on the origin by adding athe Ewald Hamiltonian, and the slowly decayindNl¢om-
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FIG. 8. VQMC results obtained using the new types of model  FIG. 9. The differenceAV,, between the LDF finite-size cor-
electron-electron interaction. Both the truncated Coulomb interacrections and the HF finite-size corrections for the simulation cell
tion and the Ewald interaction with an extra quadratic term haveHamiltonian with truncated Coulomb interactions.
been used, but the results calculated using the two different Hamil-
tonians are almost indistinguishable. The VQMC results have bee

corrected using either LDF correctiofthe lower pair of lines on - . : -
each graphor HF correctionsithe upper pairobtained using the reduces the finite-size errors, which remain after HF or LDF

appropriate Hamiltonian. Results are for the densi@s,=1 and corrections have l_aeen app"e?' to VQM_C res_ults.
(b) r =3. The new Hamiltonian, which contains simple Coulomb
interactions treated using the minimum image convention,

ponent is absent as predicted. The small remaining finite-sizZ&r0Ves, surprisingly, a much better way to calculate the po-
errors are presumably due to correlation effects. Since odntial energy than the standard Ewald approach. Ewald sum-
trial wave functions include correlations by means of theMations with quadratic corrections give equally good results,
Jastrow factor, that is where one should look if one wants tdut the evaluation of Ewald sums is computationally costly.
understand them better. Most of the computer time in conventional jellium QMC

The difference between the LDF finite-size correctionscalculations is spent doing Ewald summations. This paper
(AT, only) and the HF finite-size corrections has shown that the potential energy is better evaluated using
(AT, +AV,) for these Hamiltonians is also much smaller truncated Coulomb interactions, but most QMC programs

than for the standard Ewald Hamiltonian. The small differ-2lS0 use Ewald sums to deal with the slowly decayingail
ence (\V,) that remains is shown in Fig. 9. of the Jastrow factdr’ There is no doubt that the Jastrow

factor should decay like A/in a metal! but the variational

principle guarantees that changing the trial wave function

has only a second-order effect on the energy, and so altering
The finite-size errors present in VQMC calculations forthe Jastrow factor to make it less costly to evaluate should

homogeneous systems have been examined carefully am#t change the energy very much.

compared to those in other methods. A better understanding One approach, introduced by Ortiz and Balldhés to

of the physical origins of the main finite-size effects has beeneplace the long-ranged Jastrow factor of Ef).by a differ-

reached and the question of the optimal definition of theent function, which is truncated smoothly at the boundary of

Hamiltonian for simulations using periodic boundary condi-the simulation cell with a form determined using Umrigar’s

flons has been clarified. The best choicel:bfsignificantly

VIl. CONCLUSIONS
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variance minimization techniqué. For reasonably large C-90 at the Pittsburgh Supercomputing Cen@rant No.
simulation cells we have confirm&that this approach gives DMR930039P.

accurate variational energies comparable to those obtained

using standard Jastrow factors. When the use of a short-  APPENDIX A: QUADRATIC TERMS IN EWALD
ranged Jastrow factor is combined with the truncated 1/ SUMMATIONS

Hamiltonian introduced in this paper, the result is a HEG h dvi impl bic simulati I -
QMC code which has no Ewald summations, which runs a When stg ying simple cubic simulation cells (;ontaln|ng

. : ; “thargesqg; (i=1N), de Leeuw, Perram, and Smithused

least 20 times faster than a conventional program, and whic ;

. X L e potential energy
gives results with much smaller finite-size errors.

So far, we have carefully avoided any discussion of finite- 1 NN ¢ N oml N 2
size effects in real, inhomogeneous, solids. Ceperley andUZEE E qiqj:,b(ri—rj)+§_2 q‘2+W E airi| ,
Alder” observed residual finite-size errors of thél ¥6rm in it =1 =1

their calculations for solid hydrogen, and we have seen simi- (A1)

lar IN errors in our work on Gé.The physical origin of  \yhere the notation is as in Sec. Il Biote that our notation
these errors is almost certainly the same as in jellium, and sgiffers in several respects from theirs: they jRitnL and
we ought to be able to improve the QMC results for realg— /L since they are only considering simple cubic simu-
solids by altering the simulation cell Hamiltonian just as we|ation cells, and their definitions af(r) and ¢ differ from
did for jellium. Much of the computer time in QMC calcu- ours by an additive constant;/(«2V).]
lations for real solids is spent evaluating the one-electron Equation(Al) was derived by an explicit summation of
wave functions making up the Slater determinant, and s@/r Coulomb interactions in an infinite simple cubic lattice.
getting rid of the Ewald sums may not improve the perfor-The Coulomb energy of such a system can only be defined if
mance dramatically; but typical simulation cells for real sol-the simulation cell is charge neutral, but even then the sum of
ids are even smaller than for jellium and so decreasing thé/r interactions is conditionally convergent. De Leeuw, Per-
finite-size errors is even more important. ram, and SmitH concentrated on the value of this sum when
Unfortunately, getting rid of the W finite-size errors in  one particular order of summation was chosen: to evaluate
real solids is more difficult than in jellium since the use of the Coulomb energy of the cell at the origin, they started by
truncated 17 interactions affects the Hartree energyhich ~ Working out the contributions from interactions within that
is always zero in a homogeneous systamd produces large Cell itself (Uo); then they added the sum of all the contribu-
errors. We are currently investigating one possible solution t§ions from charges in the first shell of neighboring cells
this problem and have obtained some encouraging prelimiU1); then the contributions from the second neighbors

nary results, but the work is not yet complete and will be(U2); and so on. At each stage, they included all the charges
published in a future paper. in a group of cells the centers of which were a given distance

Finally, we would like to reemphasize that our analysis offrom the origin, and _these “spherical shell” (_:ontributions
the finite-size errors in QMC calculations can be applied tovere added together in a_scendmg order of radius. The poten-
Coulomb systems in general. Makov and Pdyhave al- tial energy at each ;tage is therefo_re the_energy of the central
ready pointed out that the quadratic contributions to theceII in a large spherical cluster of simulation cells, exactly as

. . X defined in Sec. IV B. They were able to show that this
Ewald interaction affect supercell LDF calculations. We have herical shell sum convergéaibeit conditionally, and that

now shown that these same quadratic terms produce tsé)
L : q P k{ e same answer may be obtained by taking the limit as
1/N finite-size errors in the exchange and exchange-

. X s—0 of the absolutely convergent sum,
correlation energies of many-electron systems. We have also

demonstrated that theN/errors may be avoided by altering o
the simulation cell Hamiltonian, and it is possible that simi- U= E Uie_S‘Rilz, (A2)
lar tricks may prove useful in Hartree-Fock calculatiocBsY shellsi=1

and other many-body calculations, and classical simulationgypere|R | is the length of the lattice vector defining the cells
in theith shell.
For a homogeneous system, the positive background
ACKNOWLEDGMENTS could be thought of as a set of infinitely many, infinitesimally

We thank David Vanderbilt, Stephen Fahy, and Guy I\/la_small point charges, and so intuitively the potential energy of
kov for helpful conversations. Financial support was pro-Eq' (A1) should be applicable to homogeneous systems as

vided by the Engineering and Physical Sciences Resear ell as to the ionic systems discussed in Ref. 16. That this
Council of Great Britain(Grants No. GR/K21061 and No. potentlgl energy can indeed be used for homogepeous Sys-
GR/K42318, and by the European Community via the Hu- tem§ will be demor_lstrated below,_ and the r_esult will bg gen-
man Capital and Mobility Research Network on Quantumerahzed to any lattice. The resulting potential energy is
Monte Carlo Calculations for Solid&Contract No. CHRX 1 NN N&? P
CT94-0462. Most of the computations were carried out on U==> > e?u(r; _§+ o > er,
the Cray YMP-8 at the Rutherford-Appleton Laboratory, the 25121 ! 2 3v|&E T
Fujitsu VPX240 at Manchester Computing Centre, and the !
Cray T3D at the Edinburgh Parallel Computing Centre.which is simply the ordinary Ewald potential energy for the
Some of the development work was carried out on the CraydlEG plus an extra quadratic term.
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, (A3)
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We will derive this result in two steps. First we sketch out

how the de Leeuw, Perram, and Smith derivatidor ionic

systems may be generalized to an arbitrary Bravais lattice,
and then we discuss the limit as the positive ions are smeared

out into a uniform jellium background.
We start with the absolutely convergent lattice sum,

e sIR?

U(s)=

(A4)

N[ =

|r|,+R|

where the prime on th& summation means that tHe=0
term is to be omitted when=j. If we now define

e SIRI?

h(r.s)= E TER] (AS)

the expression fotJ(s) may be rewritten in the form

1 XX .
U(s)=52 Z Q0 4(rij ,S)
= 51
N
i1 > g2 lim (fp(r,s)— i). (A6)
Tas A, I

To evaluateU(s) a new representation off;(r,s) is
needed. The identities that are used are

X l=— f t V2% dt (A7)
Jmto
and the Fourier series,
1/ 3/2 )
; et(HR)ZIV(T % eZmG~r7w262/t_ (AS)

Using the first identity, theér+R| ™! factor in Eq.(A5) is

replaced by an integral, which is then split into two integrals

at an arbitrary point= «? giving

N 1 (=
— . -1/ _ 2_ 2
z//(r,s)—; \/;szdtt 2%exd — s|R|2—t|r +R|?]

l KZ
+2 —| dtt7?
)

2

(A9)

st|r?| - tr
ep - (STORT o

Using the second identity this becomes
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~ 1 (=
zp(r,s):; \/—;j 2dttfl’2 exd —s|R|?—t|r+R|?]

+7TEJK2dt !
V2 ), e

" —st|r|?2— 7?|G|?+ 27itG-r AL
ex s+t - (A10)
Both these integrals may be evaluated analyticédlge de
Leeuw, Perram, and Smithfor the mathematical detajlso
give

. 1 exfd — m°G? k?+ 27 G r]
w(ras) vz# 7TG2
T erfq k|R+r|)
_WJFE |[R+r|
2 2,0
+ Vs —|r| +0(s)
=g+ —S——|r|2+0<s) (ALD)

where ¢(r) is as defined in Sec. Il B. Substituting back into
Eq. (A6) and remembering the definition &f

§=Iim(¢(r)—£), (A12)
r—0 |r|
gives

18 2

U(S)=§; Jz (l//(r” \ﬂ/-|rij|2)
j#i
1 N N
t32 2 a0 VS+ Z a7&+0(s).
(A13)

The 15 term vanishes because of charge neutrality and so
the limit ass—0 is easily taken. Charge neutrality also im-
plies that

N N N N
> 2 aglr -2 2 qiqri-r;  (Al4)
i=1j=1 =1j=1

and hence EqAl) is obtained.

The corresponding results for a jellium cell may now be
found by considering the limit in which the simulation cell
containsN unit negative charge&he electronsand a very
large number of very small uniformly distributed positive
charges which sum up to ensure charge neutrality. As the
number of positive charges becomes larger and the charge of
each becomes correspondingly smaller, the self-interaction
(&) contribution from the distribution of positive charges be-
comes negligible. Furthermore, since the average value of
#(r) within the simulation cell is zero, all terms involving
the positive charges may be neglected and(Bd) reduces
to
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The two reciprocal space sums are a little harder to deal

N N
Ne?¢ 2 .
U==> 2> > e+ T§+ 3—\7;|p|2, (A15)  with. Thee?™'C" factors in the first sum can be expanded as
i=1

';- power series irr, and ther-independent terms then cancel
the second sum. The odd powers rofcontribute nothing

wh_er(_ep is the total dipole moment of the S'mUIat'_On cell. hecause of the inversion symmetry of the simulation cell
This in turn reduces to EqA3) as long as the origin of reciprocal lattice and hence

coordinates is chosen so that the dipole moment of the posi-
tive background charge is zero.

N| =
=

22,2
1 e TN An?(Gar)?
G space sums — >, (— ( ))

2
APPENDIX B: SHORT-RANGE BEHAVIOR Vézo 76 2
OF THE EWALD INTERACTION + O(r4). (B3)
IN LARGE SIMULATION CELLS
OF CUBIC SYMMETRY Working in  Cartesian  coordinates, G(r)?=(G,x

+Gyy+ G,z)?, and noting that the cross terms sum to zero

The expression for the exchange-correlation energy, Eecause of the cubic symmetry, one obtains

(61), involves the “Ewald interaction™(r) — £. Using the

definitions of¥(r) and ¢ from Egs.(16) and(19), this may 2r2 b2 o
be written in the form G space sums — —; e TGk (B4)
G#0
erfo x|r—R]) erfo kR)

The remaining sum may be evaluated by setting) in the
R(#0) R familiar Fourier series,

A

1 exp(— G2 k?+ 2w G-r) 7312
+ — —Kk2(r-R)2_ 2miG-r — w2G2/ k2
\% G(#0) ’7TGZ ; € K3V EG: € ' (BS)
1 exp(— m*G% k%) 2« to obtain
g 2 ——az—+t—=. (BY
Veto e Vm 27r2[ K3V
m K — 2R2
We wish to determine the contributions that give rise to the G space sums — 3v | 77 ; e -1
exchange-correlation finite-size errors in cubic systems;
these are terms that are important at smaihd decay only 2mr2 24532 e
slowly as the simulation cell size increases. = ———+0(e “ ). (B6)

We start by considering the two real space sums. The 3V 3\

terms with R#0 decrease at least as fast as exgi{L?), Finall bining th its for th | and reci |
wherelL is the length of the shortest simulation cell lattice inally, combining the results for the real and reciproca

vector, and so rapidly become negligible as the simulatiorsPac€ sums, we find
cell size increases. Expanding tie=0 term as a power

> : 1 r2
series inr then gives —é=_+ +0O(r? B7
W)= =2+ o), ®7)
1 2c 2 4 hich shows the slowly decayi dratic finite-si
Rspace sums —— —+ —— + O(r%). (B2  Which shows the slowly decaying quadratic finite-size cor-
r Jm 3Jm rection discussed in Sec. V.
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