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Quantum Monte Carlo~QMC! calculations are only possible in finite systems and so solids and liquids must
be modeled using small simulation cells subject to periodic boundary conditions. The resulting finite-size errors
are often corrected using data from local-density functional or Hartree-Fock calculations, but systematic errors
remain after these corrections have been applied. The results of our jellium QMC calculations for simulation
cells containing more than 600 electrons confirm that the residual errors are significant and decay very slowly
as the system size increases. We show that they are sensitive to the form of the model Coulomb interaction
used in the simulation cell Hamiltonian and that the usual choice, exemplified by the Ewald summation
technique, is not the best. The finite-size errors can be greatly reduced and the speed of the calculations
increased by a factor of 20 if a better choice is made. Finite-size effects plague most methods used for extended
Coulomb systems and many of the ideas in this paper are quite general: they may be applied to any type of
quantum or classical Monte Carlo simulation, to other many-body approaches such as theGWmethod, and to
Hartree-Fock and density-functional calculations.

I. INTRODUCTION

Most local-density functional~LDF! calculations for ex-
tended systems use Bloch’s theorem and hence rely on trans-
lational symmetry. Indeed, the simplifying power of Bloch’s
theorem is so great that translational symmetry is often im-
posed even on aperiodic systems: the region of interest —
perhaps consisting of a point defect and a few of the sur-
rounding atoms — is periodically repeated to make an arti-
ficial crystal so that standardk-space methods can be used.
The periodically repeated region is called the supercell and is
made as large as is computationally feasible, but there are
significant finite-size errors for practical system sizes.

One can easily make plausible arguments predicting how
these finite-size errors should depend on the linear dimension
L of the supercell. If the supercell is charge neutral but has a
nonzero dipole moment, for example, then one might expect
that dipole-dipole interactions between supercells would
contribute unwanted terms of orderL23 to the total energy.
In fact, as shown by Makov and Payne,1 one can do better
than this if the supercell Hamiltonian is defined appropri-
ately.

In LDF calculations for perfect crystals the periodicity is
not imposed artificially and so there are no finite-size errors
in principle. There are still errors in practice, however, be-
cause discrete quadratures are used to approximate Brillouin-
zone integrals. Thesek-point sampling errors are often ex-
plained using the mathematical theory of quadrature, but a
different approach is to view them as finite-size effects. Con-
sider a large but finite crystal containing many unit cells. The
application of periodic boundary conditions at the surfaces of
this crystal determines the set of allowedk points in the
Brillouin zone. As long as the crystal is large, the quadrature

grid is fine, and the results are almost the same as for an
infinite system; but when the crystal is small, thek-point
sampling grid is coarse, and the Brillouin-zone integration
errors are large. The sampling errors therefore reflect the
differences between the finite crystal implied by the integra-
tion grid and the infinite crystal we would like to model. Not
all k-point sampling schemes fit into the framework of this
argument, of course, but the ones that do happen to be the
ones of interest for quantum Monte Carlo~QMC!
calculations.2,3

We have now mentioned both types of finite-size error
present in LDF calculations. The supercell errors described
in the first two paragraphs arise when a periodic ‘‘model
Hamiltonian’’ is used to represent an aperiodic system; the
system remains infinite in extent but the periodicity is im-
posed artificially. Thek-point sampling errors are caused by
the boundary conditions used to make an infinite periodic
system finite, and hence affect calculations for perfect crys-
tals as well as supercell calculations.

This paper is concerned with finite-size errors in QMC
calculations for infinite periodic systems; errors in QMC cal-
culations for aperiodic systems will not be considered. Since
QMC methods can only be applied when the number of par-
ticles is finite, infinite periodic systems must be modeled
using finite simulation cells subject to periodic boundary
conditions. The replacement of an infinite system by a finite
one introduces errors analogous to thek-point sampling er-
rors in a LDF calculation. The current practical limit on the
size of the simulation cell is a few hundred electrons, corre-
sponding to perhaps a few tens ofk points in the primitive
Brillouin zone, and so it is not surprising that these finite-size
errors are large. Furthermore, although the cost of a LDF
calculation rises only linearly with the number ofk points,
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the cost of a QMC calculation rises more rapidly and so it is
harder to decrease the QMC finite-size error by increasing
the system size.

Finite-size errors in QMC calculations for infinite peri-
odic systems are not well understood. They decay rather
slowly as functions ofL, so the obvious tactic of increasing
the size of the simulation cell until they go away is imprac-
tical. The usual approach is to assume that they are the same
as the finite-size errors in LDF or Hartree-Fock~HF! calcu-
lations for the same simulation cell~i.e., with the appropriate
restrictedk-point sampling! and to correct them using LDF
or HF results.4,5 Systematic errors remain after these correc-
tions have been applied, however, and our large homoge-
neous electron gas~HEG! calculations have confirmed that
these residual finite-size effects are significant~typically 0.1
or 0.2 eV per electron! and very slowly decaying. Past at-
tempts to reduce the residual errors have used Coulomb and
correlation corrections of various types,6–8 but it has not
been possible to make a reliable extrapolation to the infinite
system size limit without carrying out simulations for several
different system sizes.

The existence of the long-ranged residual errors shows
that the finite-size effects in QMC calculations differ quali-
tatively from thek-point sampling errors in LDF calcula-
tions. The finite simulation cell used to model the infinite
system is the same in both cases, and so the differences must
reflect the different ways in which the two methods treat the
electron-electron interaction. In LDF calculations, the inter-
action is replaced by an effective one-electron potential,
which depends only on the charge density and is the same in
every unit cell of the crystal. In QMC calculations, however,
it is necessary to evaluate the full interacting Coulomb en-
ergy, which depends on the current positions of all the
~pointlike! electrons in every unit cell of the crystal. The
electronic positions differ from cell to cell and hence it is
impossible to avoid approximating the Coulomb energy
when the large crystal is replaced by a small simulation cell
subject to periodic boundary conditions. This approximation
introduces an extra finite-size error that is not present in LDF
calculations and is the main cause of the long-ranged re-
sidual errors.

In most calculations the full Coulomb energy is replaced
by the Ewald energy,9 which is a periodic function of the
positions of theN electrons in the simulation cell~these are
the only electrons in the simulation!. The periodicity implies
that the Ewald energy does not change when any single elec-
tron is translated by a simulation cell lattice vector, but such
a translation does change the Coulomb energy of the infinite
system. This is reminiscent of the LDF supercell method, in
which a periodic model Hamiltonian is used to approximate
an aperiodic system; the main difference is that now we must
use a model Hamiltonian even for perfect crystals.

There is, of course, no need to use periodic boundary
conditions: the small group of atoms in a QMC calculation
for a solid or liquid could be treated as a cluster embedded in
a vacuum or a dielectric. In practice, however, the number of
atoms is so small that almost all would then be on or near a
surface and the cluster properties would not resemble those
of the solid or liquid. The use of periodic boundary condi-
tions avoids this problem by wrapping the finite system
around into a torus with no surfaces, but the price is that the

long-ranged Coulomb interactions must now be replaced by
the model Ewald interactions.

The main result of our work has been to show that the
long-ranged residual errors are Coulomb finite-size effects
associated with the use of the Ewald model Hamiltonian~we
have already explained that these Coulomb errors are not
present in LDF calculations and hence are not removed when
LDF finite-size corrections are applied!. Having identified
the cause of the long-ranged errors, we have also been able
to see how to alter the form of the model simulation cell
Hamiltonian to reduce them. The freedom to choose the
model Hamiltonian to minimize the finite-size errors has not
been exploited in previous QMC work~although it has in
classical simulations10–13!, but the long-ranged Coulomb er-
rors disappear if the right choice is made.

Perhaps surprisingly, the smallest finite-size errors are ob-
tained when the complicated Ewald interactions in the simu-
lation cell Hamiltonian are replaced by truncated Coulomb
interactions. If this simplification is combined with the use of
short-ranged Jastrow factors of the type introduced by Ortiz
and Ballone,14,15 a typical HEG QMC calculation is sped up
by a factor of at least 20 and the finite-size errors are much
reduced. The remaining errors are negligible even for quite
small system sizes, and the extrapolation to the infinite sys-
tem size limit is unnecessary in many cases.

For simplicity, this paper concentrates on the homoge-
neous electron gas. It is clear that the ideas also apply to
other homogeneous systems such as electron-hole liquids
and electron gases containing positrons, but the generaliza-
tion to inhomogeneous systems such as solids is more diffi-
cult and will be dealt with in a future paper.

The rest of the paper is organized as follows. In Sec. II we
describe the variational QMC method, taking particular care
to explain the model Coulomb interactions used in the simu-
lation cell Hamiltonian. In Sec. III we discuss the usual
finite-size corrections applied to QMC results, and present
some HEG calculations that demonstrate the presence of the
long-ranged residual finite-size effects referred to above. We
point out that the existence of such long-ranged effects is
unexpected given the short range of the exchange-correlation
hole, and argue that the problem must be due to the form of
the simulation cell Hamiltonian. In Sec. IV we summarize
the problems associated with defining Coulomb potentials in
periodic solids, and give physically motivated derivations of
the fundamental results of the classic~but mathematically
complicated! paper by de Leeuw, Perram, and Smith.16 In
Sec. V we show how the general theory of Sec. IV applies to
the special case of QMC calculations, and explain how the
conventional~Ewald! choice of boundary conditions for the
solution of Poisson’s equation inevitably produces large
finite-size errors. Two different solutions to this problem are
presented in Sec. VI, backed up by the results of an extensive
series of HEG QMC calculations. Section VII recaps what
we have learned about finite-size effects in the HEG, and
emphasizes again that the work described in this paper may
be of use to those involved in LDF and HF calculations,GW
and other many-body calculations, and classical simulations
of charged liquids.

II. VARIATIONAL QMC CALCULATIONS FOR SOLIDS

When performing variational quantum Monte Carlo
~VQMC! calculations it is not possible to study an infinite
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system. It is, therefore, a finite system which is actually stud-
ied. A model electron-electron interaction is used which is
designed to mimic the forces on the electrons in the infinite
solid. This interaction will be discussed in more detail below.

A. The VQMC method

The VQMC method17–19derives from the variational prin-
ciple. If a system is described by a HamiltonianĤ and the
energy of the ground state of the system isE0 , then for any
reasonable wave functionC trial ,

*C trial* ĤC
trial
dt

*C trial* C
trial
dt

>E0 . ~1!

If C trial5C0 is the true ground-state wave function for the
system then the equality holds; ifC trialÞC0 then the expec-
tation value ofĤ is greater thanE0 and differs fromE0 by a
quantity that is second order inC trial2C0 . It is hoped that if
the trial wave function is chosen carefully, taking account of
the physics of the system being studied, then the expectation
value ofĤ will be a good estimate ofE0 .

Our finite HEG system containsN electrons and so the
expectation value of the energy is found by evaluating

E5
*C* ~X!ĤC~X!dX

*C* ~X!C~X!dX
, ~2!

where C(X)5C(r1 ,s1 ,r2 ,s2 , . . . ,rN ,sN) is the trial
many-body wave function and the integral overX includes
both the 3N-dimensional spatial integral and the sum over
spin indices. Many-dimensional integrals such as this cannot
usually be evaluated analytically or by using standard grid
based quadratures and so a Monte Carlo method is used.
Without loss of generality,C(X) is assumed normalized and
Eq. ~2! is rewritten as

E5E 1

C~X!
ĤC~X!uC~X!u2dX. ~3!

uC(X)u2 is now interpreted as a probability distribution and a
large but finite set of points is sampled from this probability
distribution using, for instance, the Metropolis algorithm.20 If
these points areX1 , . . .XM , then an unbiased statistical es-
timate of the integral is

1

M (
i51

M
1

C~X i !
ĤC~X i ! ~4!

and the statistical errors in this estimate decay likeM21/2

independent of the dimension.18

The many-body wave function used in this work is a
Slater determinant, as used in the Hartree-Fock approxima-
tion, multiplied by a Jastrow factor. The Slater determinant
incorporates the effects of particle exchange, and the Jastrow
factor introduces correlation. The full many-body wave func-
tion takes the following form:

C~X!5CJ~X!3D↑~r1 ,s1 , . . . ,rN↑,sN↑
!

3D↓~rN↑11 ,sN↑11 , . . . ,rN ,sN!, ~5!

whereD↑ and D↓ are Slater determinants of spin-up and
spin-down one-electron states, respectively, andCJ is the
Jastrow factor. This wave function distinguishes between
spin-up electrons (D↑ is zero unlesss1 , s2 , . . . ,sN↑

are all

11! and spin-down electrons (D↓ is zero unlesssN↑11 ,

sN↑12 ,. . . , sN are all21) and hence is not antisymmetric
under exchange of opposite spin electrons. However, it gives
exactly the same energy expectation value as the explicitly
antisymmetrized form as long as the Hamiltonian is indepen-
dent of spin, and the replacement of one large determinant by
two smaller ones is numerically efficient.

For the HEG system, the Jastrow factor has the form

CJ~X!5expS 2
1

2 (
i51

N

(
j51
jÞ i

N

us is j
~r i j !D , ~6!

where the functionus is j
(r i j ), which depends only on the

relative spin of the two particles and their separation, is taken
to be

u~r !5
A~12e2r /F!

r
. ~7!

The parametersA andF could be determined variationally,
but instead we choose them to ensure the correct correlation
behavior in the r→0 and r→` limits.21 The spin-
independent value ofA is related to the plasma frequency by

A5
1

vp
, ~8!

and the spin-dependent value ofF is then fixed by the cusp
condition atr50,

du

dr U
r50

5H 21/2 for opposite spins,

21/4 for same spins.
~9!

Note that Hartree atomic units are used here and throughout
this paper.

In calculations for inhomogeneous systems, the Jastrow
factor includes a one-body termx(r ) as well as the two-body
termu(r ),

CJ~X!5expS (
i51

N

x~r i !2
1

2 (
i51

N

(
j51
jÞ i

N

us is j
~r i j !D . ~10!

The one-body term is used to vary the single-particle density
to minimize the energy calculated for the system,17 and to
compensate for the fact that the two-body term tends to
smooth out the charge density. In the HEG, however, the
single-particle density is always uniform and the one-body
term is not necessary.

Energies from VQMC calculations for various system
sizes are shown in Fig. 1, along with the HF and LDF results
for the same systems. The method used to carry out the
VQMC calculations closely follows that described by Fahy,
Wang, and Louie.17 After an equilibration period consisting
of 2000 moves of all the electrons, averages were accumu-
lated during a further 104 to 105 N-electron moves~fewer
moves are needed for larger system sizes!. The one-electron
trial moves were sampled from a Gaussian probability distri-
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bution of variance 0.5 atomic units. In all of the graphs the
statistical errors are smaller than or similar in size to the
symbols and so have not been shown explicitly. The density
of the HEG is described using the parameterr s , which is the
radius of a sphere whose volume equals the volume per elec-
tron so that

1

r
5
4

3
pr s

3 . ~11!

Two different densities are studied:r s51 and r s53 in
atomic units.

B. Model electron-electron interaction

We now discuss the form of the electronic Hamiltonian,
and in particular the form of the model electron-electron in-
teraction. Consider first an isolated cluster containingN elec-
trons with chargese521 at positionsr i andM nuclei with
chargesZa at positionsda . Within the Born-Oppenheimer
approximation, the nuclear positions are frozen and act as
parameters in the electronic Hamiltonian,

Ĥ52
1

2 (
i51

N

¹ i
21U~r1 ,r2 , . . . rN ,d1 ,d2 , . . .dM !. ~12!

U is the total electrostatic energy of the cluster and may be
calculated in the usual way by summing pairwise 1/r inter-
actions. It may also be written in the form

U5
1

2 S (
i51

N

ef̄~r i !1 (
a51

M

Zaf̄~da!D , ~13!

wheref̄(r ) is the electrostatic potential at the pointr due to
all the charges except the charge atr itself,

f̄~r i !5 limr→r iS f~r !2
e

ur2r i u
D , ~14!

f̄~da!5 limr→daS f~r !2
Za

ur2dau D . ~15!

f(r ) is the Coulomb potential due to all the charges and may
be obtained by solving Poisson’s equation with the boundary
condition that the potential tends to zero asur u→`.

Now consider the electrostatic potential-energy function
for a simulation cell in a solid-state QMC calculation. The
system being simulated is finite, of course, but in an attempt
to make it model an infinite system as well as possible, it is
usual to defineU as the Coulomb energy per cell of an infi-
nite periodic array of identical replicas of the simulation cell.
This quantity is difficult to evaluate by summing pairwise
1/r interactions since the sums are only conditionally
convergent.16 Instead, it is easier to solve Poisson’s equation
to obtainf(r ) and then calculateU from Eqs.~13!, ~14!, and
~15!, where the sums overi anda now extend over theN
electrons andM nuclei in a single simulation cell. Just as for
the wave functions in the solution of Schro¨dinger’s equation,
it seems natural to insist that the potential obeys periodic
boundary conditions, and it is straightforward to show that
the solution of Poisson’s equation subject to such boundary
conditions is unique up to an arbitrary constant. The value of
this constant does not affectU since the simulation cell is
charge neutral and so this approach gives an unambiguous
result.

It is important to realize that Poisson’s equation is solved
only within a single simulation cell, with the periodic bound-
ary conditions building in everything about the surroundings
~any charges ‘‘outside’’ the simulation cell!. It is plausible
that the use of periodic boundary conditions corresponds to
embedding the simulation cell in an infinite periodic array of
replicas of that cell, but because of the conditional conver-
gence of the Coulomb sums it is necessary to be very careful
about how the limit of infinite system size is taken. We will
return to consider this question more carefully in Sec. IV.

In practice, a convenient way to obtain the periodic solu-
tion of Poisson’s equation is to use the Ewald method.9,22

This is reasonably efficient for typical QMC simulation cells
containing a few hundred point charges, but there is nothing
fundamental about the Ewald approach and other methods
are more efficient in some cases.23 Given a simulation cell
containing a single unit point charge at positions along with
a uniform canceling background, the Ewald expression for
the ~unique! periodic potential is

FIG. 1. Total energies per electron calculated for the densities:
~a! r s51, and~b! r s53. The graphs show the Hartree-Fock~HF!,
variational quantum Monte Carlo~VQMC!, and local-density func-
tional ~LDF! energies as functions of the number of electrons in the
simulation cell. The HF and VQMC calculations were done using
the conventional Ewald interactions between the electrons.
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c~r ,s!5
1

V (
G„Þ0…

exp@2p2G2/k212p iG•~r2s!#
pG2 2

p

k2V

1(
R

erfc@ku~r2s!1Ru#
u~r2s!1Ru

, ~16!

wherek is an arbitrary positive constant,V is the simulation
cell volume, theR are the lattice vectors for the periodically
repeated simulation cell lattice, and theG are the corre-
sponding reciprocal lattice vectors satisfyingG•R5n with n
an integer~note that the factors of 2p are not included!. The
value ofc(r ,s) is independent ofk, which can therefore be
adjusted to minimize the total computer time required to
evaluate the absolutely convergent real and reciprocal space
lattice summations. The zero of potential has been chosen so
that the average value ofc(r ,s) within the simulation cell is
zero. It can be seen thatc(r ,s) depends only onr2sand we
will occasionally make this explicit by writingc(r2s) in
what follows.

The full charge distribution may be obtained by superpos-
ing all the point charges and their canceling backgrounds
~which sum to zero since the simulation cell is neutral over-
all!, and hence the full potential of the simulation cell is just
the sum of the potentials for each charge component,

f~r !5 (
a51

M

Zac~r ,da!1(
j51

N

ec~r ,r j !. ~17!

f̄(r i) then takes the form

f̄~r i !5 (
a51

M

Zac~r i ,da!1(
j51
jÞ i

N

ec~r i ,r j !1ej, ~18!

where

j5 lim
r→s

S c~r ,s!2
1

ur2su D
5
1

V (
G~Þ0!

exp~2p2G2/k2!

pG2 2
p

k2V

1 (
R~Þ0!

erfc~kuRu!
uRu

2
2k

Ap
~19!

may be interpreted as the potential at the unit point charge
due to its own background and array of images. An analo-
gous expression givesf̄(da), and hence the total Coulomb
energy per simulation cell is

U5
1

2 (
i51

N

(
j51
jÞ i

N

e2c~r i ,r j !1(
i51

N

(
a51

M

eZac~r i ,da!

1
1

2 (
a51

M

(
b51
bÞa

M

ZaZbc~da ,db!1
Ne2j

2
1

j

2 (
a51

M

Za
2 .

~20!

Using the charge neutrality of the simulation cell,
Ne1(a51

M Za50, this may be simplified to

U5
1

2 (
i51

N

(
j51
jÞ i

N

e2@c~r i ,r j !2j#

1(
i51

N

(
a51

M

eZa@c~r i ,da!2j#

1
1

2 (
a51

M

(
b51
bÞa

M

ZaZb@c~da ,db!2j#, ~21!

which is the practical definition ofU that has been used in all
solid state QMC calculations until now. It is not the only
possible definition, however, and we will show below that it
is not the best definition in most cases.

All of the calculations in this paper are for the homoge-
neous electron gas, which has a uniform canceling back-
ground charge in place of the point nuclei. In this case Eq.
~18! becomes

f̄~r i !5(
j51
jÞ i

N

ec~r i ,r j !1ej, ~22!

and the total Coulomb energy per simulation cell is

U5
1

2 (
i51

N

ef̄~r i !

5
1

2 (
i51

N

(
j51
jÞ i

N

e2c~r i ,r j !1
Ne2j

2
. ~23!

The positive background does not appear explicitly because
the average value ofc(r ,s) within the simulation cell was
chosen to be zero.

III. USUAL CORRECTIONS TO THE VQMC RESULTS

From Fig. 1, it is clear that there are finite-size errors in
the VQMC results. These errors far outweigh the statistical
errors in the calculation. There are similar finite-size errors in
the HF and the LDF results. Since the HF and LDF energies
can be calculated exactly for the infinite system simply by
improving thek-point sampling, it is possible to find exactly
the errors in HF and LDF calculations for finite systems. All
the methods appear to have similar size dependence and so
the finite-size errors from HF and LDF are often used to try
to correct those in VQMC calculations.

A. Finite-size effects in local-density functional theory

In LDF theory,24,25 the total energy of a solid with given
nuclear positions is written as a functional of the electron
density,

E@r~r !#5T@r~r !#1Exc@r~r !#

1ECoulomb@r~r !1rnuclear~r !#, ~24!

whereT@r# is the kinetic energy of a fictitious noninteracting
electron gas moving in the external potential that makes its
density equal tor(r ), ECoulomb@r1rnuclear# is the Coulomb
interaction energy~Hartree energy! of the superposition of
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the electronic and nuclear charge densities, andExc@r#,
known as the exchange-correlation energy, takes care of ev-
erything neglected in the first two terms. The nuclear charge
density,rnuclear(r ), is a superposition ofd functions at the
given nuclear positions, but the electronic charge density is
smooth. The exchange-correlation energy is approximated
using the local density approximation~LDA !,

Exc@r~r !#5E exc„r~r !…r~r !dr , ~25!

whereexc(r) is the exchange-correlation energy per electron
of a homogeneous electron gas of densityr. We use the
parametrized form ofexc(r) obtained by Perdew and
Zunger26 from the QMC results of Ceperley and Alder.6

In jellium, the one-electron wave functions are plane
waves, the LDA is exact, andECoulomb@r1rnuclear# is zero
since the nuclear charges are smeared out into a uniform
positive background which exactly cancels the uniform elec-
tronic charge density. The energy per electron of an unpolar-
ized jellium simulation cell containingN electrons is there-
fore given by

eN5
2

N (
occ.k

1

2
k21exc~r!, ~26!

where the factor of 2 accounts for spin degeneracy. In our
QMC calculations the Slater determinant is constructed by
doubly occupying each of the lowestN/2 k points on the
simulation cell reciprocal lattice, so that all the one-electron
wave functions have the same periodicity as the simulation
cell. If we are to attempt to correct the QMC finite-size errors
using LDF results, it is important that the LDF energy for the
simulation cell is calculated using this same restricted
k-point sampling.~Note that recent work2 has shown that
other wave vectors may also be used in QMC calculations: in

most cases the one-electron wave functions should all corre-
spond to the samek point when reduced into the simulation
cell Brillouin zone, but that point need not bek50. We do
not use this extra freedom here.!

The exact exchange-correlation energy per electron in a
finite homogeneous electron gas of densityr depends on the
system size, and so it could be argued that we should use a
different exc(r) for each different simulation cell we study.
We prefer to use the sameexc(r) in all cases, however, and
so our LDF estimate of the jellium exchange-correlation en-
ergy per electron does not depend on the system size.

The LDF energy for the infinite system is found by con-
verting the sum in Eq.~26! into an integral overk up to the
Fermi wave vectorkF5(3p2r)1/3,

e`5
1.10495

r s
2 1exc~r!. ~27!

B. Finite-size effects in Hartree-Fock theory

The ground-state energy of theN-electron HEG simula-
tion cell Hamiltonian,

Ĥ52
1

2 (
i51

N

¹ i
21

1

2 (
i51

N

(
j51
jÞ i

N

e2c~r i ,r j !1
Ne2j

2
, ~28!

may be approximated using HF theory. The periodic~toroi-
dal! boundary conditions are built into the one-electron wave
functions, ^r ,suxk,s8&5ds,s8xk,s8(r ) with xk,s8(r )
5eik•r/AV, and all thek vectors correspond to the point
k50 when reduced into the simulation cell Brillouin zone.
The only unusual feature is the presence of thec(r i ,r j ) in-
teraction in place of the more familiar 1/r Coulomb interac-
tion. This has no effect on the formalism, however, and the
total energy is given by the usual HF expression,

E5(
k,s
occ.

1

2
k21

Ne2j

2
1
1

2 (
k,s
occ.

(
k8,s8
occ.

E E dr1dr2uxk,s~r1!u2c~r1 ,r2!uxk8,s8~r2!u
2

2
1

2 (
k,s
occ.

(
k8,s8
occ.

ds,s8E E dr1dr2xk,s* ~r2!xk8,s8
* ~r1!c~r1 ,r2!xk,s~r1!xk8,s8~r2!, ~29!

where all integrals are over the volumeV of the simulation
cell. A similar expression would be obtained for any
N-electron Hamiltonian with pairwise interactions plus a
constant term.

Thek5k8 exchange term and all the Hartree terms in Eq.
~29! vanish because the average value ofc over the simula-
tion cell is zero, and hence only exchange integrals such as

E E dr1
V

dr2
V

ei ~k2k8!•~r12r2!c~r1 ,r2! ~30!

with kÞk8 are required. These are quite easy to evaluate.
First we write

E dr1
V

ei ~k2k8!•~r12r2!c~r1 ,r2!

5E dr1
V

S 2¹1
2ei ~k2k8!•~r12r2!

uk2k8u2 Dc~r1 ,r2!.

~31!

Then we use the Hermiticity of the¹1
2 operator@assured

because bothc(r1 ,r2) ande
i (k2k8)•(r12r2) are periodic func-

tions# and the fact thatc satisfies Poisson’s equation within
the simulation cell,
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¹1
2c~r1 ,r2!524p@d~r12r2!1rback#, ~32!

to obtain

E dr1
V

ei ~k2k8!•~r12r2!c~r1 ,r2!5
4p

Vuk2k8u2
. ~33!

The final expression for the HF ground-state energy per
electron of an unpolarized jellium simulation cell containing
N electrons is thus

eN5
2

N (
k occ.

1

2
k21

e2j

2
2
1

N (
k occ.

(
k8 occ.
kÞk8

4p

Vuk2k8u2
.

~34!

In the limit as the simulation cell becomes very large and
N→`, the ‘‘self-interaction’’ (j) term becomes negligible,
the sums over occupiedk vectors become integrals up to
kF , and Eq.~34! gives the usual result,

e`5
1.10495

r s
2 2

0.4582

r s
. ~35!

Note that Eq.~33! shows that the Fourier components of
c(r ) are the same as the familiar 4p/k2 Fourier components
of the Coulomb interaction. This does not mean, however,
that the complicated Ewald formula forc can be replaced by
the simple Fourier series,

(
k

4p

Vk2
eik•r. ~36!

The problem is that the Fourier series is conditionally con-
vergent and does not sum to a unique answer; it is only when
the product ofc(r ) and some smooth function occurs in an
integral over the simulation cell that the replacement is jus-
tified.

C. Corrected results for two densities

The LDF and HF energies for an infinite simulation cell
with r s51 are 0.5872 and 0.6468 hartree. Whenr s53, the
LDF energy is 20.0672 hartree and the HF energy is
20.0299 hartree. The LDF and HF finite-size corrections for
a range of different simulation cells are shown in Fig. 2, and
the corrected VQMC results are shown in Fig. 3. It can be
seen from the graph of finite-size corrections that there is a
very slow decay of the HF corrections with increasing sys-
tem size, which looks as if it must be systematic. Neither
method of correction removes all the finite-size errors in the
VQMC calculation satisfactorily.

D. Constituent parts of the finite-size error

The VQMC expectation value of the HEG simulation cell
Hamiltonian may be written in the form

E5T1
Ne2j

2
1
e2

2 E E dr 8drc~r 8,r !n~r 8,r !, ~37!

whereT is the kinetic energy expectation value, ther and
r 8 integrals both extend over the simulation cell, and
n(r 8,r ) is the~diagonal part of the! two-electron density ma-
trix,

n~r 8,r !5E dXuC~X!u2 (
i , j51
jÞ i

N

d~r 82r i !d~r2r j !. ~38!

When ur 82r u is large,n(r 8,r ) tends ton(r 8)n(r ), where

n~r !5E dXuC~X!u2 (
i51

N

d~r2r i ! ~39!

is the electron density. For smallur 82r u, however,n(r 8,r ) is
suppressed because of Coulomb repulsion and~for spin par-
allel electrons! the Pauli principle. The suppression of the
density atr 8 due to the presence of an electron atr is con-
veniently described in terms of the exchange-correlation
hole,nxc(r 8,r ), defined via

FIG. 2. Finite-size errors in HF and LDF calculations for the
densities:~a! r s51, and ~b! r s53. The finite-size errors are the
differences between the energy per electron in a finite system and
the energy per electron in an infinite system. The graphs show re-
sults for systems containing up to 2000 electrons. The HF errors
were calculated using the conventional Ewald Hamiltonian and de-
cay very slowly with system size.
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n~r 8,r !5n~r 8!n~r !1nxc~r 8,r !n~r !. ~40!

It is easy to show that

E
cell
dr 8nxc~r 8,r !521 ~41!

irrespective of the size of the system and so the full
exchange-correlation hole containing chargeueu is always
‘‘squashed in’’ to even the smallest simulation cell.

Since the average value ofc(r 8,r ) over the simulation
cell is zero and the density is constant in jellium, the total
energy becomes

E5T1
e2

2 E E dr 8drnxc~r 8,r !@c~r 8,r !2j#n~r !

5T1Uxc , ~42!

whereUxc is the exchange-correlation energy. The interpre-
tation of this equation is clear: the exchange-correlation en-
ergy arises from the interaction of the electron atr with the
unit positive charge distribution that makes up its exchange-

correlation hole. A similar result holds in an infinite jellium
system, of course, except that then the 1/ur 82r u Coulomb
interaction replaces the effectivec(r 8,r )2j interaction.
Note that

c~r 8,r !;
1

ur 82r u
1j1••• ~43!

for small ur 82r u, and so the effective interaction does at
least resemble the Coulomb interaction near the origin. Note
also that although the exchange-correlation hole in an infinite
jellium is exactly spherical, the hole in a finite simulation
cell is not.

If the kinetic energy expectation value is split up into a
one-electron part,T1e , as in density functional theory, and a
many-electron part,Tme, then the full VQMC energy is

E5T1e1Tme1Uxc ~44!

5T1e1Ũxc , ~45!

whereŨxc is the exchange-correlation energy as used in den-
sity functional theory and is defined by Eq.~45!. Ũxc is not
the same asUxc but may also be expressed as an integral
over an exchange-correlation hole.24,25The form of the inte-
gral is the same as in Eq.~42!, but now it is necessary to use
an averaged exchange-correlation hole accumulated as the
electron-electron interactions are slowly ‘‘switched on.’’

When VQMC results are finite-size corrected using LDF
results it isDT1e , the error in the one-electron kinetic en-
ergy, which is being corrected. The LDF exchange-
correlation energy is independent of the cell size and so
DTme, the error in the many-electron part of the kinetic en-
ergy, andDUxc , the error in the exchange-correlation energy,
remain.

When HF results are used, bothDT1e andDUx , the error
due to the exchange energy, are corrected. The exchange
energy arises from the effective@c(r 8,r )2j# interaction of
an electron with its exchange hole. Like the exchange-
correlation hole, the exchange hole contains chargeueu, and
so any difference betweenDUx andDUxc must be entirely
attributable to the different shapes of the two holes.

Figures 4 and 5 show the exchange and exchange-
correlation holes in jellium as functions of the size of the
simulation cell. The calculations were carried out using our
QMC program and the statistical errors are visible near
r50. It can be seen that both the exchange hole and the
exchange-correlation hole are short ranged and hardly
change at all with simulation cell size.@The exchange hole
decays like 1/(kFr )

4 in an infinite jellium but the larger tail
is small and oscillatory and contributes little to the exchange
energy.# For this reason, one might expect the finite-size er-
rors inUx andUxc ~and presumably also inŨxc) to converge
very quickly to zero with increasing system size, and hence
both the HF and LDF corrected VQMC results should also
converge quickly. However, it is clear from Fig. 3 that the
errors do not converge quickly and that they still appear to
have a systematic nature. This suggests that the problem
must lie with the slow convergence of the effective interac-
tion, c(r 8,r )2j, to the Coulomb 1/ur 82r u form. It seems

FIG. 3. VQMC results corrected using the finite-size errors from
HF and LDF calculations. The VQMC and HF results were ob-
tained using the conventional Ewald simulation cell Hamiltonian.
Results are for systems containing from 18 to 614 electrons and for
the densities~a! r s51 and~b! r s53. Even for large system sizes the
corrected VQMC results do not converge.

53 1821FINITE-SIZE EFFECTS AND COULOMB INTERACTIONS IN . . .



that the slowly decaying finite-size errors are caused by the
form of the simulation cell Hamiltonian rather than the form
of the trial wave function.

IV. COULOMB ENERGIES AND POTENTIALS
IN PERIODIC SOLIDS

A. Introductory discussion

Since the long-ranged finite-size errors seem to be a con-
sequence of the form of the simulation cell Hamiltonian, let
us look again at the definition of the simulation cell Coulomb
energy. The only sensible criterion to use in choosing the
form of U is to try to mimic the interactions in a real solid as
well as possible. The main problem is the obvious one: a real
solid is a macroscopic~but finite! cluster containing an enor-
mous number of electrons, whereas a QMC simulation cell
contains only a few hundred.

The standard solution to this problem is to makeU the
Coulomb energy per simulation cell of an infinite periodic
array of identical copies of that cell. This approach suffers
from problems of its own, however, arising from the infinite

range of the correlations between electronic positions in the
periodic array. Even when the simulation cell has no dipole
moment on average, almost every configuration,X, sampled
during the QMC run will have a nonzero dipole moment.
This moment will be mirrored in every other simulation cell
of the infinite periodic array, and the interactions between all
these dipoles may give rise to an unphysical contribution to
the potential energy of the configuration. There will also be
contributions from interactions involving higher multipole
moments, but these decay more quickly as the simulation
cell size increases and so are less important. In a real solid,
the central dipole induces much weaker dipoles in surround-
ing regions~hence the van der Waals interaction!, but these
die off very rapidly with distance.

Even if we accept the use of a periodic array of copies of
the simulation cell, there still remains the practical difficulty
of calculating the potential energy. We cannot simply sum
1/r interactions as in a finite cluster since the long range of
the Coulomb interaction means that such sums are only con-
ditionally convergent; the answer obtained depends on the
order of summation and it is hard to know which order is the
appropriate one.

FIG. 4. Spherically averaged exchange hole as calculated using
the VQMC program for the densities~a! r s51 and~b! r s53. Each
figure shows the exchange hole for systems containing various
numbers of electrons. The graphs for different system sizes have
been offset by multiples of 0.05 for clarity; they all tend to 1 at
large r and are equal to 0.5 atr50.

FIG. 5. Spherically averaged exchange-correlation hole calcu-
lated using the VQMC program for the densities~a! r s51 and~b!
r s53. Each figure shows the exchange-correlation hole for systems
containing various numbers of electrons. The graphs for different
system sizes have been offset by multiples of 0.05 for clarity; they
all tend to 1 at larger .
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At first sight, this conditional convergence difficulty is
surprising. We know that the only effect of the surfaces on
the electrostatic potential deep inside a real piece of solid is
a constant shift due to the surface dipole layer. The value of
this constant does not affect the electrostatic energy per unit
volume as long as the solid is charge neutral on average and
soU is independent of the shape of the piece of solid. This
unique value ofU is clearly the right one to associate with
the total electrostatic energy per simulation cell and is in
principle straightforward to evaluate: one simply chooses a
sensible cluster shape and sums 1/r interactions for a se-
quence of bigger and bigger clusters of that shape until the
calculated values ofU converge.

The fact that the final result is independent of the shape of
the cluster relies, however, on a statistical cancellation of the
contributions from far regions of the solid: some distant re-
gions have an excess of positive charge and some of negative
charge, but the fields they produce cancel out on average
because the charges are randomly distributed. The cancella-
tion must be very efficient since at any given time most of
the cells in the cluster will have nonzero monopole moments
as well as nonzero dipole and higher multipole moments.

Unfortunately, the cancellation does not work for the pe-
riodic array of identical replicas of the simulation cell used
to define the potential in a QMC calculation. Although the
cells have no charge~i.e., no monopole moment!, they usu-
ally have a nonzero dipole moment and so the array of iden-
tical replicas has a nonzero dipole moment per unit volume.
The surfaces of any finite cluster are therefore covered with a
layer of polarization charge, and the value ofU is affected by
the resulting depolarization fields, which are well known to
depend on the shape of the cluster.27 Clusters of different
shapes give different values forU even in the limit as the
cluster size tends to infinity, and it is not clear which shape is
best. Ferromagnets show a similar dependence of total en-
ergy on cluster shape~although large clusters avoid depolar-
ization fields by splitting up into domains! and the physics is
of course well understood. We will come back to consider
this problem in more detail below.

In Sec. II, the conditional convergence problem led us to
calculateU using a different approach, which at least gives
an unambiguous result. Poisson’s equation was solved within
the simulation cell using periodic boundary conditions, and
U was then obtained from Eq.~13!, where the sums overi
anda extended over all electrons and nuclei in the simula-
tion cell. This approach does not rely on the construction of
an artificial periodic lattice of replicas of the simulation cell
since all the information about the ‘‘surroundings’’ is built
into the periodic boundary conditions.

For smooth charge distributions, Poisson’s equation is
most easily solved by Fourier transformation. The charge
density and potential are expanded as Fourier series with
components at spatial frequencies given by the reciprocal
lattice vectors of the simulation cell,

r~r !5(
G

rGe
2p iG•r, ~46!

f~r !5(
G

fGe
2p iG•r, ~47!

and these expansions are substituted into Poisson’s equation
to obtain

~2pG!2fG54prG . ~48!

TheG50 equation is not soluble unlessrG5050, and hence
the simulation cell must be charge neutral. As long as this
condition is satisfied, however,fG50 is arbitrary and all
other Fourier components of the potential are uniquely deter-
mined. The arbitrary average value of the potential,fG50 ,
cancels from the expression forU and is usually set equal to
zero for convenience.

The charge densities for which we wish to evaluateU
during solid-state QMC calculations are made up of
d-function point charges and so the Fourier series in Eq.~46!
does not converge. The required periodic solution of Pois-
son’s equation may now be found using the Ewald method
~see Sec. II and Ref. 9!, however, andU can still be obtained
from Eq. ~13!. The uniqueness of the periodic solution of
Poisson’s equation may now be demonstrated by supposing
there are two different periodic solutions,f1(r ) andf2(r ),
and considering the difference between them,
f(r )5f1(r )2f2(r ), which is also periodic but satisfies
Laplace’s equation,¹2f(r )50. If f(r ) is anything other
than a constant then it must reach both maximum and mini-
mum values at points within the simulation cell and so can-
not satisfy Laplace’s equation everywhere. We therefore con-
clude thatf1(r ) and f2(r ) differ by at most an arbitrary
constant.

B. Ewald potentials and cluster potentials

The Ewald approach to the definition ofU is clearly sen-
sible but the physical situation to which it corresponds is not
clear. It seems plausible that the use of periodic boundary
conditions is equivalent to embedding the simulation cell in
an infinite lattice of identical replicas of that cell, but we
have already explained that finite clusters of different shapes
have different electrostatics even in the limit as the cluster
size tends to infinity and so it is not clear exactly what this
means. The question was settled~although only for ionic
systems and simple cubic simulation cells! by de Leeuw,
Perram, and Smith,16 using an approach that is quite rigorous
but highly mathematical and far from transparent~see Ref.
22 for a concise summary of the results!. In Appendix A we
show how this approach may be generalized to arbitrary lat-
tices and charge distributions with continuous components
such as the background charge in jellium. In this section,
however, we rederive the main results using more physical
arguments.

We start by considering the Coulomb potential inside a
large spherical cluster of simulation cells and finding out
how it differs from the Ewald potential. Because of the long
range of the Coulomb interaction, it is necessary to be very
precise about the shape of the cluster boundary: a radius
Rc is chosen and all simulation cells centered on lattice vec-
torsR with uRu<Rc are included in the cluster. Note that if a
cell is included in the cluster thenall charges within that cell
are included, even though some of them may be a little fur-
ther thanRc from the origin.

Now refer to Fig. 6 and consider the values of the poten-
tial at the pointsr and r1A, whereA is one of the three
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primitive vectors of the simulation cell lattice. Both the
Ewald and cluster potentials in any given cell may be ob-
tained by solving Poisson’s equation within that cell, but the
two potentials are not the same because the boundary condi-
tions are different. We will work out the difference between
f(r ) andf(r1A) for an arbitrary pointr deep within the
spherical cluster, and hence determine the boundary condi-
tions obeyed by the cluster potential and how it differs from
the periodic Ewald potential.

Since the spherical cluster is finite, bothf(r ) and
f(r1A) can be obtained by summing Coulomb 1/r contri-
butions from all the other charges in the cluster. Almost all
the terms in the two sums are the same, butf(r ) contains
extra contributions from a shell of cells on the hemispherical
surface of the cluster centered around theA direction, and
f(r1A) contains extra contributions from the hemispherical
shell of cells centered around the2A direction. The differ-
ence betweenf(r ) and f(r1A) comes entirely from the
single layer of cells on the surface of the large spherical
cluster. When viewed along theA direction, the projection of
all the cells in either of the two hemispherical shells exactly
covers the projection of the sphere, and so it is straightfor-
ward to find the number of cells in the surface layer per unit
area of the sphere. Ifd2S is an element of surface area on the
sphere lying at an angleu to theA direction, then the corre-
sponding projected area isucosuu d2S. The projected area of
any single unit cell isV/uAu and hence the number of surface
cells in the aread2S is given by

c~u!d2S5
ucosuud2S
V/uAu

5
uA cosuu

V
d2S. ~49!

Although the cells in the surface layer are all charge neu-
tral, they almost always have nonzero dipole and higher mul-
tipole moments. The cell atR with dipole momentp there-
fore produces a potential

fR~r !5
2p•~R2r !

uR2r u3
1OS 1

~R2r !3D ~50!

at the pointr . ~Note that in an infinite periodic system, the
dipole moment of the unit cell,

p5(
i51

N

er i1 (
a51

M

Zada , ~51!

depends on where you draw the cell boundaries and so can-
not be uniquely defined. In our case, however,p means the
dipole moment of the simulation cell used in the QMC cal-
culation and there is no ambiguity.! Given that the cluster is
large, and assuming thatr is not too close to the surface, the

sums of dipolar contributions giving the difference between
f(r ) andf(r1A) may be replaced by integrals,

f~r1A!2f~r !5E
f50

2p E
u5p/2

p 2p•~R2r !

uR2r u3
c~u!d2SR

2E
f50

2p E
u50

p/2 2p•~R2r !

uR2r u3
c~u!d2SR

1OS 1Rc
D , ~52!

where the pointsR5(Rc ,u,f) lie on the spherical surface of
the cluster, andd2SR is the element of surface area. Ignoring
theO(1/Rc) contributions and combining the two integrals
gives

f~r1A!2f~r !5
uAu
V R p•~R2r !

uR2r u3
cosud2SR

5
uAu
V

~p•¹ r ! R cosu

uR2r u
d2SR .

~53!

The remaining integral can be evaluated as explained in Ref.
28 and hence one obtains

f~r1A!5f~r !1
4pp•A

3V
. ~54!

Equation~54! is the main result of this section. It shows
that the cluster Coulomb potential is not periodic and so is
not the same as the Ewald potential. However, given that
fEwald(r ) is a periodic solution of Poisson’s equation, it fol-
lows that the function

fcluster~r !5fEwald~r !1
4pp•r

3V
, ~55!

satisfies Poisson’s equation for the same charge distribution
but with the boundary conditions specified in Eq.~54!. A
simple adaptation of the uniqueness proof for periodic
boundary conditions shows that this solution of Poisson’s
equation is also unique, and sofcluster(r ) must indeed be the
Coulomb potential of the cluster to within an arbitrary con-
stant.

Equation~55! applies both for a system of point charges
and for jellium as long as the appropriate Ewald potential is
used, but note thatp is the full dipole moment of the simu-
lation cell and so includes the dipole moment of the ions or
background charge distribution as well as the dipole moment
of the electrons. It is only when the origin of coordinates is
chosen to make the dipole moment of the ions or background
equal to zero that the electronic dipole moment alone may be
used.

The fact that the difference betweenfEwald andfclusteris a
uniform electric field should not be surprising. The sum of
dipolar contributions that gives the value of the potential at
the center of the cluster is not absolutely convergent and so
the result may depend on the cluster shape. The same applies
to the sum of first derivatives of dipole potentials that gives
the electric field, but sums of second derivatives of dipole

FIG. 6. The contributions to the difference in potential between
pointsr andr1A when cluster boundary conditions are imposed on
Poisson’s equation.A is a simulation cell lattice vector andr is an
arbitrary point near the center of the cluster.
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potentialsare absolutely convergent and so gradients and
higher derivatives of the electric field are independent of
cluster shape.

The extra electric field,

E52
4pp

3V
, ~56!

in Eq. ~55! has a simple physical interpretation in terms of
macroscopic electrostatics. Figure 7 shows a sphere with uni-
form dipole moment per unit volume,P5p/V. The charge
density within the sphere is everywhere zero and so all the
field comes from the surface charge per unit area,P•n,
wheren is the unit outward normal to the surface. The elec-
tric field at the center of the sphere due to this surface charge
distribution is easily evaluated and is exactly that of Eq.~56!.
The extra electric field that distinguishes the cluster potential
from the Ewald potential is therefore nothing more than the
depolarization field, which is present in the cluster potential
but not in the Ewald potential. Once this is understood, it is
easy to devise a physical system for which the periodic
Ewald potential is exact. If a large spherical cluster of iden-
tical simulation cells is embedded in a perfect metal, the
surface charges will be perfectly screened, the depolarization
field will be zero, and the Ewald potential will be the exact
potential.

The expression for the Coulomb energy of the cluster may
be found by combining Eqs.~55! and ~13!, where the sums
over i anda run over all electrons and nuclei in the cluster.
The average value of the potential varies from cell to cell
because of the depolarization field term, but all the cells are
charge neutral and so contribute the same amount to the total
energy. The neglectedO(1/Rc) terms alter the potential near
the surface of the cluster, of course, but the proportion of
simulation cells affected tends to zero as the cluster size
tends to infinity, and as expected the cluster energy becomes
an extensive quantity. The energy per simulation cell is then

Ucluster5UEwald1
2pupu2

3V
. ~57!

Given that the simulation cell is neutral and contains
charges~electronic and nuclear! qk at positionsr k , it is easy
to show that

upu252
1

2 (
i

(
j

~ jÞ i !

qiqj ur i2r j u2, ~58!

and so the dipole term may be viewed as the result of an
extra quadratic interaction between charges. This means that
if the modified interaction,

ccluster~r ,s!5c~r ,s!2
2p

3V
ur2su2, ~59!

is used in place ofc(r ,s), then the standard Ewald formula,
Eq. ~21!, for the total energy of a simulation cell containing
electrons and ions gives the cluster energy instead.@Note,
however, that the average value ofccluster is not zero and so
the expression for the cluster energy of a jellium simulation
cell,

Ucluster5
1

2 (
i51

N

(
j51
jÞ i

N

e2ccluster~r i ,r j !1
Ne2j

2

1
eN

V (
i
E d3r S 2

2p

3V
ur i2r u2D

1
N2

2V2E d3r E d3r 8S 2
2p

3V
ur2r 8u2D , ~60!

involves background terms. It is not correct simply to replace
c by ccluster in Eq. ~23!.#

V. COULOMB ENERGIES AND POTENTIALS
IN QMC CALCULATIONS

In Sec. III we discussed the constituent parts of the finite-
size error in a VQMC calculation. We explained that the
error in the one-electron kinetic energy,DT1e , is completely
removed if LDF corrections are used, and so the residual
error is DŨxc5DTme1DUxc . Like the true exchange-
correlation hole shown in Fig. 5, the ‘‘averaged’’ exchange-
correlation hole that determinesŨxc is expected to be short
ranged and to converge rapidly with increasing cell size. The
existence of significant residual errors for large simulation
cells with well converged exchange-correlation holes shows
that the problem must lie in the choice of simulation cell
Hamiltonian rather than the choice of trial wave function.

In Sec. IV we explained that the Coulomb potential in a
large cluster of identical simulation cells depends on the
shape of the cluster and the properties of the medium in
which the cluster is embedded. The periodic boundary con-
ditions assumed in the calculation of the Ewald potential
~which amount to embedding a large spherical cluster in a
perfect metal! seem physically sensible, but they are not the
only sensible choice. Perhaps the residual finite-size errors
will be smaller if the model electron-electron interactions
used in the simulation cell Hamiltonian correspond to a dif-
ferent choice of boundary conditions?

To address this question, we return to the expression for
the exchange-correlation energy,

Uxc5
e2

2 E E dr 8drnxc~r 8,r !@c~r 8,r !2j#n~r !. ~61!

FIG. 7. Polarization charges and screening charges induced
when a large cluster of simulation cells is embedded in either a
vacuum or a perfect metal. The differences between the two mac-
roscopic charge distributions account for the differences between
the cluster potential and the Ewald potential.
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We can gain a better understanding of this expression by
considering a simulation cell containing just two charges, a
unit negative charge atr and a unit positive charge atr 8. A
simple application of Eq.~21! shows that the Ewald energy
of this two-charge cell isU2(r 8,r )5j2c(r 8,r ) and so Eq.
~61! can be rewritten as

Uxc52
e2

2 E E dr 8drnxc~r 8,r !U2~r 8,r !n~r !. ~62!

Given thatnxc settles down fairly rapidly to its asymptotic
form as the size of the simulation cell increases, the main
finite-size errors must arise from the slow convergence of
U2(r 8,r ) to the 21/ur 82r u Coulomb interaction. Further-
more, since the exchange-correlation hole charge density de-
creases rapidly to zero asr 82r increases, it is only the rate
of convergence whenr 82r is small that matters. We can
~and will! address this convergence question purely math-
ematically, but given the understanding of the Ewald poten-
tial gained in the previous section, it is more illuminating to
start by making a physical argument.

Imagine a large spherical cluster of copies of the ‘‘two-
charge’’ simulation cell embedded in a perfect metal. Ac-
cording to our earlier discussion,U2(r 8,r ) is the Coulomb
energy of the central cell in this cluster. We can therefore
obtainU2 by summing Coulomb contributions from all the
other charges in the cluster and from the metallic screening
charges that build up on the cluster surface.U2 is a periodic
function of the distance between the two charges and so is
unchanged when the two charges are picked up and moved
together through the simulation cell. It turns out, however,
that the argument is easier to follow when both charges are
near the center of the cell and this will be assumed from now
on.

The first contribution toU2(r 8,r ) arises from the interac-
tion of the two charges in the central simulation cell. This
term is just the21/ur2r 8u Coulomb energy and so any con-
tributions from the rest of the cluster may be regarded as
finite-size errors. The potentials from other cells may be rep-
resented as multipole expansions, but only the dipole terms
matter because the distance between the two charges is much
smaller than the shortest translation vector of the simulation
cell lattice ~the exchange-correlation hole decays so rapidly
that the form of the interaction is irrelevant when the two
charges are further apart!. The finite-size error due to the
other cells in the cluster may therefore be approximated as a
sum of dipole-dipole interaction energies.

Dipole-dipole interactions decay like 1/R3 and so lattice
dipole sums are conditionally convergent, but here the sum
runs over all the cells in the large but finite spherical cluster
and so is well defined. Furthermore, a straightforward sym-
metry argument27 shows that the sum is zero in any lattice
with cubic symmetry. Our QMC calculations used face-
centered cubic simulation cells and so the dipole sum is zero
and the leading nonzero contributions toU2(r 8,r ) arise from
higher multipole moments. These contributions must de-
crease at least as fast as 1/L5 and so cannot explain the
observed long-range (1/L3) finite-size errors.

The remaining term present inU2(r 8,r ) is due to the me-
tallic charges that flow to screen the polarization charges on
the surface of the cluster.~The polarization charges them-

selves simply provide a convenient macroscopic description
of the effects of the microscopic charges in the cluster of
cells and hence have already been included in the dipole
sum.! We have already explained that these screening
charges give rise to a uniform electric field,
E54pp/3V54p(r 82r )/3V, within the cluster, and hence
produce what amounts to a repulsive force,
Fscreening54p(r 82r )/3V, between the two unit charges in
the central simulation cell. This adds an extra quadratic term,

Uscreening52
2pur 82r u2

3V
, ~63!

to U2 .
How does this ‘‘screening’’ term affect the exchange-

correlation energy? To simplify the argument, we approxi-
mate by using the exchange hole in place of the exchange-
correlation hole in Eq.~62!, and assume that the simulation
cell is large enough for the exchange hole to be the same as
in an infinite jellium,

nx~r 8,r !5
1

r s
3 f ~ ur 82r u/r s!, ~64!

where f is a known function.29 The charge density,
n(r )5N/V53/(4pr s

3), is uniform and so the screening field
contribution to the total (N-electron! exchange-correlation
energy is given by

nUxc.2
Ne2

2 E d3r
1

r s
3 f ~r /r s!S 2

2pr 2

3V D
52

e2

4r s
E d3~r /r s! f ~r /r s!@2~r /r s!

2#. ~65!

The exchange-correlation energy per electron therefore con-
tains an extra contribution proportional to 1/(Nrs). The extra
contribution is negative sincenxc is negative, and hence the
quantum Monte Carlo results will contain a negative finite-
size error~the energy for small system sizes will come out
too low!, which is not removed by applying the LDF correc-
tions and which decays like 1/N. All this is exactly as ob-
served in Fig. 3. Coulomb finite-size corrections of this
1/(Nrs) form have been used before,6–8,3but the fact that the
corrections should be positive has not been understood be-
fore.

The existence of the 1/(Nrs) finite-size effect may also be
derived in a more mathematical and perhaps more convinc-
ing fashion, which does not rest on physical arguments about
finite clusters and metallic screening charges. In the limit
when the cubic simulation cell lattice parameter,L, is large,
but r is small, we show in Appendix B that

c~r !2j.
1

r
1
2pr 2

3V
1O~r 4!, ~66!

and the same unwanted quadratic contribution appears.
The simple fact that the Ewald interaction differs from the

Coulomb interaction should come as no surprise: the Ewald
interaction is periodic and so must depart from the non-
periodic 1/r form as the simulation cell boundary is ap-
proached. What we have done is to determine the leading
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contribution to this departure and explain how it gives rise to
the long-ranged finite-size errors in the exchange-correlation
energy.

Although our explanations have been cast in terms of
QMC calculations, it is worth noting that our results are of
wider relevance. As pointed out in the recent work of Makov
and Payne1 ~which provides an alternative view of some of
the questions tackled here!, the quadratic terms in the Ewald
energy are also responsible for the leading finite-size errors
in density-functional calculations for supercells with dipole
moments. In addition, we believe that classical simulations
of Coulomb liquids should show 1/N finite-size errors due to
correlations in the ionic positions, and that the same ap-
proach we use for QMC calculations~see below! may allow
these errors to be reduced. There are also large finite-size
errors in Hartree-Fock calculations, which have traditionally
been explained in terms of the slow convergence of
Brillouin-zone integrals for the exchange energy.30 As ex-
plained in Sec. I, however, using a discretek-point sampling
grid is equivalent to working with a finite simulation cell
subject to periodic boundary conditions. Improvements in
k-point sampling correspond to increases in the size of the
simulation cell, and so this work provides an alternative real-
space explanation of the convergence problem. Almost ev-
erything we have said about finite-size effects in QMC cal-
culations applies equally well to HF calculations as long as
the exchange-correlation hole is replaced by the exchange
hole in Eq.~61!.

VI. FASTER QUANTUM MONTE CARLO CALCULATIONS
WITH SMALLER FINITE-SIZE ERRORS

The last section explained that the 1/(Nrs) finite-size er-
rors are due to the metallic screening charge contribution to
the Ewald potential. It also explained that this screening con-
tribution is not present in the cluster definition of the Cou-
lomb energy, and so the finite-size errors would presumably
be smaller if we defined our simulation cell Hamiltonian
usingUcluster instead ofUEwald. Unfortunately,Ucluster is not
a periodic function of the electronic positions~it differs from
the periodic Ewald energy by an electric field term! and so is
incompatible with the use of trial functions satisfying peri-
odic boundary conditions. If we want to useUcluster in place
of UEwald then we will also have to abandon the convenient
trick of wrapping the system round into a torus.

But all is not lost. We know that in jellium the total en-
ergy depends only on the behavior of the effective interac-
tion, c(r 82r )2j, when ur 82r u is small. The Ewald inter-
action is suitably periodic but contains an unwanted
2pur 82r u2/(3V) contribution at smallur 82r u. All we have
to do is modify the Ewald interaction to remove this contri-
bution while making sure that the interaction remains peri-
odic.

We have investigated two different ways of doing this.
The first is simply to subtract the appropriate quadratic terms
from the Ewald interactions. This method was used by de
Leeuw Perram, and Smith16 in a classical simulation of a
hard-sphere dipole fluid, but this is the first time anything
similar has been attempted in a QMC calculation. Given
charges atr 8 and r , we evaluater 82r and reduce it back
into the simulation cell centered on the origin by adding a

lattice vector if necessary. The resulting reduced difference
vector, Dr , is then used to work out the quadratic term,
2puDr u2/(3V)2C, which is subtracted from the Ewald in-
teraction to give a new effective interaction. The Ewald in-
teraction is defined so that it averages to zero over the simu-
lation cell, and the presence of the constant,

C5
2p

3V2E
cell
r 2d3r , ~67!

ensures that the new effective interaction also averages to
zero. This is convenient because it guarantees that terms in-
volving the uniform background do not have to be consid-
ered explicitly.@Note thatC must also be subtracted from the
self-energy,j, which was defined in Eq.~19! via a limiting
process involving the interaction; the value ofC therefore
cancels out of the expression for the total energy, Eq.~42!, as
expected.# The reduction of the difference vector into the
simulation cell ensures that the effective interaction is peri-
odic as required, but also introduces slope discontinuities
when Dr suddenly jumps from one side of the simulation
cell to the other. The fact that very good results are obtained
despite these discontinuities serves as a convincing confir-
mation of the theory presented above.

Our second method for reducing the finite-size errors is
even more drastic: the difference vector is calculated and
reduced into the simulation cell as before, but then we use
the simple Coulomb energy, 1/uDr u2D, instead of the Ewald
interaction. The constant,

D5
1

V E
cell

1

r
d3r , ~68!

is again chosen to make sure that the average value of the
interaction is zero, and again must be subtracted from the
self-energy~which would otherwise be zero in this case!.
The resulting potential energy is much easier to calculate
than the Ewald energy and gives smaller finite-size effects,
but again has discontinuities when the reduced difference
vector jumps from one side of the simulation cell to the
other. Note that the idea of reducing the difference vector
into the simulation cell centered on the origin is widely used
in classical simulations with short-ranged potentials, where it
is known as the minimum image convention;22 the surprise is
that we are using the minimum image convention with the
very long-ranged Coulomb interaction.

The changes in simulation cell Hamiltonian affect both
the QMC and HF results. It is therefore important to ensure
that the same Hamiltonian is used in both sets of calculations
when HF energies are used to correct the finite-size errors in
QMC results. Our LDF calculations always use the
Perdew-Zunger26 form of the LDA, and so the LDF simula-
tion cell Hamiltonian is the same no matter which many-
electron Hamiltonian we are using.

HF and QMC calculations for jellium simulation cells of
various sizes were carried out using both ther 2 corrected
Ewald interaction and the 1/r Hamiltonian. It is clear from
Fig. 8 that both Hamiltonians give identical results~to within
the statistical errors!, as would be expected from our analy-
sis. The residual finite-size errors are much smaller than for
the Ewald Hamiltonian, and the slowly decaying 1/N com-
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ponent is absent as predicted. The small remaining finite-size
errors are presumably due to correlation effects. Since our
trial wave functions include correlations by means of the
Jastrow factor, that is where one should look if one wants to
understand them better.

The difference between the LDF finite-size corrections
(DT1e only! and the HF finite-size corrections
(DT1e1DVx) for these Hamiltonians is also much smaller
than for the standard Ewald Hamiltonian. The small differ-
ence (DVx) that remains is shown in Fig. 9.

VII. CONCLUSIONS

The finite-size errors present in VQMC calculations for
homogeneous systems have been examined carefully and
compared to those in other methods. A better understanding
of the physical origins of the main finite-size effects has been
reached and the question of the optimal definition of the
Hamiltonian for simulations using periodic boundary condi-

tions has been clarified. The best choice ofĤ significantly
reduces the finite-size errors, which remain after HF or LDF
corrections have been applied to VQMC results.

The new Hamiltonian, which contains simple Coulomb
interactions treated using the minimum image convention,
proves, surprisingly, a much better way to calculate the po-
tential energy than the standard Ewald approach. Ewald sum-
mations with quadratic corrections give equally good results,
but the evaluation of Ewald sums is computationally costly.

Most of the computer time in conventional jellium QMC
calculations is spent doing Ewald summations. This paper
has shown that the potential energy is better evaluated using
truncated Coulomb interactions, but most QMC programs
also use Ewald sums to deal with the slowly decaying 1/r tail
of the Jastrow factor.17 There is no doubt that the Jastrow
factor should decay like 1/r in a metal,21 but the variational
principle guarantees that changing the trial wave function
has only a second-order effect on the energy, and so altering
the Jastrow factor to make it less costly to evaluate should
not change the energy very much.

One approach, introduced by Ortiz and Ballone,14 is to
replace the long-ranged Jastrow factor of Eq.~7! by a differ-
ent function, which is truncated smoothly at the boundary of
the simulation cell with a form determined using Umrigar’s

FIG. 8. VQMC results obtained using the new types of model
electron-electron interaction. Both the truncated Coulomb interac-
tion and the Ewald interaction with an extra quadratic term have
been used, but the results calculated using the two different Hamil-
tonians are almost indistinguishable. The VQMC results have been
corrected using either LDF corrections~the lower pair of lines on
each graph! or HF corrections~the upper pair! obtained using the
appropriate Hamiltonian. Results are for the densities~a! r s51 and
~b! r s53.

FIG. 9. The difference,DVx , between the LDF finite-size cor-
rections and the HF finite-size corrections for the simulation cell
Hamiltonian with truncated Coulomb interactions.
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variance minimization technique.31 For reasonably large
simulation cells we have confirmed32 that this approach gives
accurate variational energies comparable to those obtained
using standard Jastrow factors. When the use of a short-
ranged Jastrow factor is combined with the truncated 1/r
Hamiltonian introduced in this paper, the result is a HEG
QMC code which has no Ewald summations, which runs at
least 20 times faster than a conventional program, and which
gives results with much smaller finite-size errors.

So far, we have carefully avoided any discussion of finite-
size effects in real, inhomogeneous, solids. Ceperley and
Alder7 observed residual finite-size errors of the 1/N form in
their calculations for solid hydrogen, and we have seen simi-
lar 1/N errors in our work on Ge.3 The physical origin of
these errors is almost certainly the same as in jellium, and so
we ought to be able to improve the QMC results for real
solids by altering the simulation cell Hamiltonian just as we
did for jellium. Much of the computer time in QMC calcu-
lations for real solids is spent evaluating the one-electron
wave functions making up the Slater determinant, and so
getting rid of the Ewald sums may not improve the perfor-
mance dramatically; but typical simulation cells for real sol-
ids are even smaller than for jellium and so decreasing the
finite-size errors is even more important.

Unfortunately, getting rid of the 1/N finite-size errors in
real solids is more difficult than in jellium since the use of
truncated 1/r interactions affects the Hartree energy~which
is always zero in a homogeneous system! and produces large
errors. We are currently investigating one possible solution to
this problem and have obtained some encouraging prelimi-
nary results, but the work is not yet complete and will be
published in a future paper.

Finally, we would like to reemphasize that our analysis of
the finite-size errors in QMC calculations can be applied to
Coulomb systems in general. Makov and Payne1 have al-
ready pointed out that the quadratic contributions to the
Ewald interaction affect supercell LDF calculations. We have
now shown that these same quadratic terms produce the
1/N finite-size errors in the exchange and exchange-
correlation energies of many-electron systems. We have also
demonstrated that the 1/N errors may be avoided by altering
the simulation cell Hamiltonian, and it is possible that simi-
lar tricks may prove useful in Hartree-Fock calculations,GW
and other many-body calculations, and classical simulations.
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APPENDIX A: QUADRATIC TERMS IN EWALD
SUMMATIONS

When studying simple cubic simulation cells containing
chargesqi ( i51,N), de Leeuw, Perram, and Smith16 used
the potential energy

U5
1

2 (
i51

N

(
j51
jÞ i

N

qiqjc~r i2r j !1
j

2 (
i51

N

qi
21

2p

3VU(i51

N

qir iU2,
~A1!

where the notation is as in Sec. II B.@Note that our notation
differs in several respects from theirs: they putR5nL and
G5n/L since they are only considering simple cubic simu-
lation cells, and their definitions ofc(r ) and j differ from
ours by an additive constant,p/(k2V).]

Equation~A1! was derived by an explicit summation of
1/r Coulomb interactions in an infinite simple cubic lattice.
The Coulomb energy of such a system can only be defined if
the simulation cell is charge neutral, but even then the sum of
1/r interactions is conditionally convergent. De Leeuw, Per-
ram, and Smith16 concentrated on the value of this sum when
one particular order of summation was chosen: to evaluate
the Coulomb energy of the cell at the origin, they started by
working out the contributions from interactions within that
cell itself (U0); then they added the sum of all the contribu-
tions from charges in the first shell of neighboring cells
(U1); then the contributions from the second neighbors
(U2); and so on. At each stage, they included all the charges
in a group of cells the centers of which were a given distance
from the origin, and these ‘‘spherical shell’’ contributions
were added together in ascending order of radius. The poten-
tial energy at each stage is therefore the energy of the central
cell in a large spherical cluster of simulation cells, exactly as
defined in Sec. IV B. They were able to show that this
spherical shell sum converges~albeit conditionally!, and that
the same answer may be obtained by taking the limit as
s→0 of the absolutely convergent sum,

U5 (
shells i51

`

Uie
2suRi u

2
, ~A2!

whereuRi u is the length of the lattice vector defining the cells
in the i th shell.

For a homogeneous system, the positive background
could be thought of as a set of infinitely many, infinitesimally
small point charges, and so intuitively the potential energy of
Eq. ~A1! should be applicable to homogeneous systems as
well as to the ionic systems discussed in Ref. 16. That this
potential energy can indeed be used for homogeneous sys-
tems will be demonstrated below, and the result will be gen-
eralized to any lattice. The resulting potential energy is

U5
1

2 (
i51

N

(
j51
jÞ i

N

e2c~r i j !1
Ne2j

2
1
2p

3VU(i51

N

er iU2, ~A3!

which is simply the ordinary Ewald potential energy for the
HEG plus an extra quadratic term.
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We will derive this result in two steps. First we sketch out
how the de Leeuw, Perram, and Smith derivation16 for ionic
systems may be generalized to an arbitrary Bravais lattice,
and then we discuss the limit as the positive ions are smeared
out into a uniform jellium background.

We start with the absolutely convergent lattice sum,

U~s!5
1

2 (
i51

N

(
j51

N

qiqj( 8
R

e2suRu2

ur i j1Ru
, ~A4!

where the prime on theR summation means that theR50
term is to be omitted wheni5 j . If we now define

c̃~r ,s!5(
R

e2suRu2

ur1Ru
, ~A5!

the expression forU(s) may be rewritten in the form

U~s!5
1

2 (
i51

N

(
j51
jÞ i

N

qiqj c̃~r i j ,s!

1
1

2 (
i51

N

qi
2 lim

ur u→0
S c̃~r ,s!2

1

ur u D . ~A6!

To evaluateU(s) a new representation ofc̃(r ,s) is
needed. The identities that are used are

x215
1

Ap
E
0

`

t21/2e2tx2dt ~A7!

and the Fourier series,

(
R

e2t~r1R!25
1

V S p

t D
3/2

(
G

e2p iG•r2p2G2/t. ~A8!

Using the first identity, theur1Ru21 factor in Eq. ~A5! is
replaced by an integral, which is then split into two integrals
at an arbitrary pointt5k2 giving

c̃~r ,s!5(
R

1

Ap
E

k2

`

dtt21/2exp@2suRu22tur1Ru2#

1(
R

1

Ap
E
0

k2

dtt21/2

3expF2
stur2u
s1t

2~s1t !UR1
tr

s1tU
2G . ~A9!

Using the second identity this becomes

c̃~r ,s!5(
R

1

Ap
E

k2

`

dtt21/2 exp@2suRu22tur1Ru2#

1
p

V (
G

E
0

k2

dt
1

t1/2~s1t !3/2

3expF2stur u22p2uGu212p i tG•r

s1t G . ~A10!

Both these integrals may be evaluated analytically~see de
Leeuw, Perram, and Smith16 for the mathematical details! to
give

c̃~r ,s!5
1

V (
GÞ0

exp@2p2G2/k212p iG•r #
pG2

2
p

Vk2 1(
R

erfc~kuR1r u!
uR1r u

1
2p

Vs
2
2p

3V
ur u21O~s!

5c~r !1
2p

Vs
2
2p

3V
ur u21O~s!, ~A11!

wherec(r ) is as defined in Sec. II B. Substituting back into
Eq. ~A6! and remembering the definition ofj,

j5 lim
r→0

S c~r !2
1

ur u D , ~A12!

gives

U~s!5
1

2 (
i51

N

(
j51
jÞ i

N

qiqj S c~r i j !2
2p

3V
ur i j u2D

1
1

2 (
i51

N

(
j51

N

qiqj
2p

Vs
1
1

2 (
i51

N

qi
2j1O~s!.

~A13!

The 1/s term vanishes because of charge neutrality and so
the limit ass→0 is easily taken. Charge neutrality also im-
plies that

(
i51

N

(
j51

N

qiqj ur i2r j u2522(
i51

N

(
j51

N

qiqj r i•r j ~A14!

and hence Eq.~A1! is obtained.
The corresponding results for a jellium cell may now be

found by considering the limit in which the simulation cell
containsN unit negative charges~the electrons! and a very
large number of very small uniformly distributed positive
charges which sum up to ensure charge neutrality. As the
number of positive charges becomes larger and the charge of
each becomes correspondingly smaller, the self-interaction
(j) contribution from the distribution of positive charges be-
comes negligible. Furthermore, since the average value of
c(r ) within the simulation cell is zero, allc terms involving
the positive charges may be neglected and Eq.~A1! reduces
to
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U5
1

2 (
i51

N

(
j51
jÞ i

N

e2c~r i j !1
Ne2j

2
1
2p

3V
upu2, ~A15!

wherep is the total dipole moment of the simulation cell.
This in turn reduces to Eq.~A3! as long as the origin of
coordinates is chosen so that the dipole moment of the posi-
tive background charge is zero.

APPENDIX B: SHORT-RANGE BEHAVIOR
OF THE EWALD INTERACTION
IN LARGE SIMULATION CELLS

OF CUBIC SYMMETRY

The expression for the exchange-correlation energy, Eq.
~61!, involves the ‘‘Ewald interaction’’c(r )2j. Using the
definitions ofc(r ) andj from Eqs.~16! and ~19!, this may
be written in the form

c~r !2j5(
R

erfc~kur2Ru!
ur2Ru

2 (
R~Þ0!

erfc~kR!

R

1
1

V (
G~Þ0!

exp~2p2G2/k212p iG•r !

pG2

2
1

V (
G~Þ0!

exp~2p2G2/k2!

pG2 1
2k

Ap
. ~B1!

We wish to determine the contributions that give rise to the
exchange-correlation finite-size errors in cubic systems;
these are terms that are important at smallr and decay only
slowly as the simulation cell size increases.

We start by considering the two real space sums. The
terms withRÞ0 decrease at least as fast as exp(2k2L2),
whereL is the length of the shortest simulation cell lattice
vector, and so rapidly become negligible as the simulation
cell size increases. Expanding theR50 term as a power
series inr then gives

R space sums5
1

r
2
2k

Ap
1
2k3r 2

3Ap
1 O~r 4!. ~B2!

The two reciprocal space sums are a little harder to deal
with. Thee2p iG•r factors in the first sum can be expanded as
power series inr , and ther -independent terms then cancel
the second sum. The odd powers ofr contribute nothing
because of the inversion symmetry of the simulation cell
reciprocal lattice and hence,

G space sums5
1

V (
GÞ0

e2p2G2/k2

pG2 S 2
4p2~G•r !2

2 D
1O~r 4!. ~B3!

Working in Cartesian coordinates, (G•r )25(Gxx
1Gyy1Gzz)

2, and noting that the cross terms sum to zero
because of the cubic symmetry, one obtains

G space sums52
2pr 2

3V (
GÞ0

e2p2G2/k2. ~B4!

The remaining sum may be evaluated by settingr50 in the
familiar Fourier series,

(
R

e2k2~r2R!25
p3/2

k3V (
G

e2p iG•r2p2G2/k2, ~B5!

to obtain

G space sums52
2pr 2

3V Fk3V

p3/2 (
R

e2k2R221G
5
2pr 2

3V
2
2k3r 2

3Ap
1O~e2k2L2!. ~B6!

Finally, combining the results for the real and reciprocal
space sums, we find

c~r !2j5
1

r
1
2pr 2

3V
1O~r 4!, ~B7!

which shows the slowly decaying quadratic finite-size cor-
rection discussed in Sec. V.
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