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This paper takes the structure example of the AlPdMn quasicrystal, as determined from diffraction data, to
derive useful self-similarity rules in consistency with composition and atomic valence constraints. These rules
are then accounted for to explain inelastic-neutron-scattering data and thermal conductivity behavior. Basically,
three regimes can be identified: extended low-energy phonon conductivity at low temperature following
roughly aT2 power law which transforms into a plateau of constant conductivity and, at higher temperature, a
phonon assisted localized-state hopping mechanism with aT3/2 power law and hierarchically distributed hop-
ping distances. Electrical conductivity is also briefly analyzed along the same approach: accordingly, pure
perfect quasicrystals should show as(T)}T behavior with deviation inT0.5 at low temperature and inT3/2 at
high temperature coming from quasiperiodicity breaking.

I. INTRODUCTION

Quasicrystals are materials presenting a new type of long-
range order. Their diffraction pattern shows sharp Bragg re-
flections revealing symmetries which are incompatible with
periodicity.1 That quasicrystalline alloys are highly ordered
systems was demonstrated with ‘‘perfect’’ quasicrystals of
the AlCuFe and AlPdMn systems.2,3 These quasicrystals ex-
hibit extremely sharp Bragg reflections corresponding to cor-
relation lengths of several tenths of a micrometer,4 similar to
what is obtained for good periodic crystals. Moreover, cen-
timeter size grains can be grown in the AlPdMn system via
classical methods.5–7The quality of these large grains is such
that dynamical diffraction is observed on a macroscopic
scale.4

The atomic structure of icosahedral quasicrystals is now
well understood via higher-dimensional crystallography. Fol-
lowing this approach, atomic models have been proposed for
AlCuFe ~Ref. 8! and AlPdMn ~Refs. 9 and 10! icosahedral
phases. The result is only a ‘‘low resolution’’ image in that
the details of the atomic structure are not yet specified. How-
ever, clear insights are obtained about the existence of well-
defined atomic clusters, which are packed quasiperiodically
into hierarchical aggregates.11

The calculation of the dynamical response of quasicrys-
tals remains difficult, however, since atomic surfaces are not
pointlike objects and the Bloch wave expansion is not an
appropriate description in a quasilattice. Beyond one- or two-
dimensional toy models realistic calculations have been
proposed12–14 for the derivation of the density of states and
the dispersion law in periodic approximants of the icosahe-
dral phase. From these calculations, well-defined acoustic
modes are predicted to show up close to the strong Bragg
reflections which can be selected as some sort of Brillouin
zone centers. Accordingly, quasi-Brillouin zone boundaries
are attached to high symmetry points in the reciprocal
space15,16and are packed hierarchically around the zone cen-
ters. Far from strong reflections, acoustic modes broaden
significantly.17 Gap openings in the acoustic branches are
also predicted when crossing the quasi-Brillouin zone bor-
ders. At higher energy, the calculations produce a very large

density of almost flat optic branches corresponding mostly to
standing modes.12,13 Experimental results18–21 partially sup-
port the theoretical derivations as long as low-energy acous-
tic modes are concerned. The point will be elaborated further
in the body of the paper.

The available information on physical properties1 include
data on electrical22–25 and thermal transport,26,27 the com-
plete electrodynamic response,28 the low-temperature ther-
modynamic and magnetic properties,29,30 results from photo-
emission and x-ray spectroscopy,31,32 as well as mechanical
behavior ~elasticity/plasticity pattern, friction coefficient,
surface hardness, tribology, etc.!.33

The present paper is intended to focus on relations be-
tween structure, atomic vibrations, and anomalous transport
properties of icosahedral quasicrystals, exemplified with the
AlPdMn system. Basically, the very unexpected behavior of
icosahedral quasicrystals is their very high electrical~and
thermal! resistivity, practically that of an insulator,34 untypi-
cal indeed for materials containing about 70 at. % of alu-
minium. Moreover, and conversely to usual metallic alloy
properties, impurities, structural defects, and increase of the
temperature improve the conductivity.35 So far, most of the
attempts to explain the origin of high resistivity in the stable
quasicrystals have been linked to a combination of the exist-
ence of a deep pseudogap in the electron density of state at
the Fermi level with a localization tendency of electrons near
the Fermi level.36Along the same line of extrapolation of the
models which are usually invoked for crystalline or amor-
phous systems, the presence of a pseudogap has been as-
cribed to Hume-Rothery stabilization37 while the temperature
dependence has been suggested to come from Anderson
weak localization and electron-electron interactions. But
these theories are unable to fully explain the experimental
behavior of the best highly resistive quasicrystals: the very
low density of state at the Fermi level and small mean free
path are unacceptable for quantum interferences and Ander-
son localization to be sensibly evoked while the thermal be-
havior or imperfection effects on conductivity just goes the
other way of that predicted by Hume-Rothery-like
descriptions.38,39The alternative approach is to consider hop-
ping conduction between strongly localized states. This has
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been qualitatively suggested by several authors.11,25,35,40,41It
is one purpose of the present paper to elaborate on such an
approach, using both structure and phonon data to design a
variable range hopping mechanism based on anharmonic
phonon assistance and compatible with self-similarity prop-
erties. Strong localization in quasicrystals is in particular
demonstrated via the observed magnetic-field dependence of
the conductivity and has recently been related to the direct
observation by tunneling spectroscopy that the pseudogap at
the Fermi level is actually very narrow~;50 meV!,30,42,43

confirming an estimate based previously on thermal conduc-
tivity data.27

II. QUASICRYSTAL STRUCTURE AS A HIERARCHY
OF LOCALIZATION WELLS

A. The structure from diffraction data

Details about preparation and characterization of the
AlPdMn quasicrystals, including in the form of perfect big
centimeter size single grains, have been published
elsewhere.5–7 Techniques relevant to quasicrystallography
were also extensively and critically presented on several
occasions.1,8–10We will then restrict the content of this sec-
tion to the practically useful part of the structure, as obtained
from x rays and neutron diffraction data, for the AlPdMn
icosahedral quasicrystals. Though being known at a rather

low level resolution only, the structure reveals several build-
ing rules which appear as astonishingly simple, with both
chemical and geometrical order.

First of all, everything in the structure is based on atomic
units containing 51 atoms in total, named pseudo-Mackay
icosahedra~PMI! hereafter, and made of three centrosym-
metrical shells as shown in Fig. 1: an inner small centered
cubic core of 9 atoms, an intermediate icosahedron of 12
atoms, and an external icosidodecahedron of 30 atoms. The
last two shells have practically equal radii and constitute al-
together the boundary of the PMI whose diameter is slightly
less than 10 Å. Apart from this well-defined geometry, the
PMI’s show two different chemical compositions: one family
~PMI-A! has 6 manganese plus 6 palladium atoms on the
icosahedron sites and 39 aluminium atoms elsewhere while
the second family~PMI-T! exhibits 20 palladium atoms
among the 30 of the icosidodecahedron, the rest~31 atoms!
being aluminum atoms. The calculated atomic density of an
individual PMI is 0.064 atoms/Å3, which compares quite
well with the measured density of the bulk material, within
experimental accuracy. It is, however, fair to say that several
ingredients in the description of the PMI’s do not show up
directly from diffraction data. The Patterson analysis
strongly suggests that the PMI cores are made of about 8–9
atoms distributed into pieces of dodecahedra; it is indeed a
speculation to state that these pieces are arranged in centered
cubic geometry. Similarly, it is not yet possible to be defini-
tive about the exact PMI compositions. We will see in Sec.
II B that the ones proposed above allow self-consistency be-
tween structure and overall chemical composition of the al-
loy.

Then, these PMI units combine to reproduce a similar
geometry within inflation by a scale factort3 ~t52 cos36° is
the golden mean!. This is shown in Fig. 2 which presents the
cut of a piece of the structure by a plane perpendicular to a
fivefold axis. In the figure center, the equatorial section of a
PMI shows up. Around this central PMI, there are 42 PMI’s
whose centers are distributed on the combined sites of the

FIG. 1. Successive atomic shell of a pseudo-Mackay icosahe-
dron ~PMI!.

FIG. 2. Example of a planar section of the AlPdMn quasicrystal
structure. Rings of ten atoms are equatorial sections of a PMI. The
t3 inflated ring is also visible, as well as thet2 inflated ring of
overlapping PMI’s~* Al; •, Mn! ~Refs. 10 and 11!.
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icosahedron plus the icosidodecahedron of a big PMI with a
radius t3 as large as that of the base unit~about 42 Å,
namely!. An intermediate shell, witht2 inflated radius, is
also visible in Fig. 2. This shell does not reproduce the cen-
tered cube of a PMI and is made of 42 overlapping pieces of
PMI units. Each of these PMI pieces contributes to the total
number of atoms in the inflatedt3-PMI with 9 atoms in the
cubic core, 12 atoms in the icosahedron which do not overlap
with others, and 19~instead of 30! in the icosidodecahedron
which has a 5 atom truncation in its bonding with the exter-
nal shell and in which 12 atoms contribute only one half
because of the overlapping geometry. Thus, thet2 shell
brings 42340 atoms to the inflatedt3-PMI, in addition to the
43351 atoms which come from thet3 shell of PMI’s ~42
351! and from the central PMI~1351!. This amounts to
75.941 effective elementary PMI’s~3 873551375.941!. It
demonstrates that the bigt3-PMI keeps the atomic density of
its PMI units, with a very small residual fractality. Indeed,
the t3-PMI volume ist9576.013 . . . as large asthat of the
elementary PMI and contains 75.941 as many atoms; the
calculated fractal dimension is then 2.999 . . . , which is
equivalent to vacancy concentration of less than 331024.

The structure subsequently develops via successive steps
of exactt3inflation operations. Figure 3 shows a planar pro-
jection of a layer of atoms presenting the result of at33t3

inflation, with at3-PMI in the center, a shell of 42t3-PMI on
a t33t3 radius ‘‘sphere’’ and thet33t2 intermediate shell of

overlapping truncatedt3-PMI. Pentagonal ‘‘tiles’’ at various
scales are also visible in the figure; they come from PMI and
inflated PMI whose equatorial plane is not in the figure. In
conclusion, at any inflation stage, we have a cluster of PMI
clusters.

B. Self-similarity constraints for composition
and atomic valences

The archetype of icosahedral structures is based on
Penrose-like tiling. Fivefold symmetries and self-similarity
force the numbers of the different prototiles to be in ratios
equal to power of the golden meant ~this is merely the
extension to quasicrystals of the relations between chemical
compositions and structures as currently observed in regular
crystals!. Then, it can reasonably be conjectured that ideal
compositions for quasicrystals should obey such atn law.
The simplest chemical description of the AlPdMn quasicrys-
tals would assume that we have two types of species in it: the
Al atoms in the one hand, the transition atomsT in the other
hand combined into AlxT12x with x5tn(12x). Experimen-
tally, the best AlPdMn quasicrystals are obtained withx in
the vicinity of 0.7, suggesting that we have a ‘‘t2’’ quasi-
crystal~t2/11t250.7236 . . . ! whose ideal composition may
be refined as Al0.7236T0.2764. Now, if the self-similar structure
described in the previous section is a robust view of reality,
the relative concentrations of the two types of PMI~PMI-A

FIG. 3. Planar section of the
structure identical to that shown in
Fig. 2 but presenting up to the sec-
ond inflation step.
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concentrationnA , PMI-T concentrationnT! should also obey
the t2 law (nA5t2nT). If so, we should have consistency
relations satisfied to account for PMI chemical composition
and structure altogether such that

39nA131nT
51

50.7236

and

12nA120nT
51

50.2764

with nA50.7236 andnT50.2764; these are indeed compat-
ible within less than 1%. Interest in such a conclusion is
twofold. First, it contains a consistent validation of both the
structure described above and thet2 law for composition.
But it also allows to calculate individual concentrations of
manganese and palladium in the alloy by using the compo-
sition of the PMI’s~A andT!, namely

CMn5
6nA
51

50.0828,

CPd5
6nA120nT

51
50.1935.

The ideal composition of the perfect quasicrystal thus
should be Al0.7236Pd0.1936Mn0.0828.

@Note: an interesting and somewhat mysterious fact may
be worth being mentioned here. Writing the chemical for-
mula AlxPdyMnz of the quasicrystal, we assumed without
proper justification that thet2 rule applied in cascade,
namely:

y5t2z, x5t2~y1z!

with

x1y1z51.

There is, then, a single solution such as
Al0.7236Pd0.2000Mn0.0764.

A similar rule, applied to the AlFeCu quasicrystal which
is a t compound instead oft2, gives Al0.618Cu0.237Fe0.145.
None of these compositions correspond exactly to those ex-
perimentally deduced from phase diagrams.44,45The AlPdMn
real quasicrystal has slightly less aluminum and slightly
more palladium while the AlFeCu one contains 2% less iron
and 2% more copper; these experimental compositions are
very close to that of the 3/2 and 2/1 periodic approximants,
respectively, when calculated with the above cascade rule but
with 3/2 or 2/1 instead oft. At this stage, it is difficult to
reach definitive conclusions. The experimental compositions,
after all, are partly mastered and corrupted by noncongruent
melting effects and kinetics of the phase transitions. The best
AlFeCu quasicrystals, with the so-called canonical composi-
tion, are even prepared via a procedure which associates melt
quenching and annealing in sequence, far enough from equi-
librium casting. AlPdRe and AlCuRu quasicrystals have
compositions that obey more closely thet2 and t rule, re-
spectively.#

One can even go further and take benefit of the self-
similarity properties to calculate the apparent atomic va-
lences of the three metals in the compound. This is based on
the idea that metallic clusters with icosahedral symmetry can
be stable entities to the point that they mimic the chemistry
of atoms, with the valence electrons distributed in states
which are the energy levels of the cluster instead of those of
the atoms. Such an idea has been supported by self-
consistent quantum-mechanical calculations46 which demon-
strate the point. Independently it has also been verified that
strong resonances occur when such an icosahedral cluster is
immersed into a free electron gas, thus confirming the stabil-
ity of the cluster levels.47 Formally, these cluster energy lev-
els can be obtained by solving the problem of the valence
electrons into the potential due to ionized atoms in the clus-
ter, or equivalently, to find the electronic eigenstates of an
appropriate potential well. In a naive jelliumlike approxima-
tion of this problem11 it has been shown that the cluster
would have very stable structure, comparable to that of
rare gas atoms with saturated levels containing
2,8,20,40,92,138,156, . . . electrons into the cluster states. As
far as the PMI clusters of the AlPdMn quasicrystal are con-
cerned, with their 70 at. % or so of aluminum, and their 51
atoms, the state corresponding to 92 electrons must be rea-
sonably selected. However, to be bonded to each other, the
PMI must contain slightly more or slightly less electrons
than the 92 saturated configuration. Moreover, we have, as
we know, two types of PMI’s~A and T! which are con-
strained to self-similarity and, then, must reproduce the be-
havior of the atomic species. It means that the two prototypes
of PMI’s contain 921VAl and 921VT electrons, respectively,
in which VAl53 is the aluminium atomic valence andVT is
the average atomic valence of palladium and manganese, i.e.,

0.2764VT50.0828VMn10.1936VPd.

Proper balance of electrons, as written for PMI-A and PMI-
T, gives

921VAl539VAl16VMn16VPd,

921VT531VAl120VPd.

The only unknown quantities areVMn andVPd, the atomic
valences of the two transition metals; going through the
arithmetic givesVPd520.107 andVMn523.559.

As by products of the calculation we get also the average
atomic valence of the transition metal,VT521,141 and the
global average atomic valence^V&51.855. Interestingly, we
see thatVAl.2t2VT , which means that thet2 rule would
apply here for both concentrations and atomic valences. This
is in favor of the existence of a very strong chemical order
with ionocovalentlike self-similar bonding between atoms
and cluster at any inflation stage. Noteworthy, if both the
concentration and the valence rules are taken for granted
~CAl5t2CT andVAl52t2VT or VT521.1459!, there is no
need of any model anymore to fix the number of electrons
into saturated PMI cluster levels; the value 92 emerges natu-
rally from calculations in wonderful consistency with the
model. To summarize the electronic structure of these quasi-
crystals: 51 atoms are packed into PMI’s, each Al atom giv-
ing 3 electrons to the cluster and eachT atom ‘‘trapping’’
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21.1459 electrons from the pool; the remaining ‘‘free’’ elec-
trons are distributed into cluster levels, 92 of them being into
saturated states to stabilize the cluster and bonding between
cluster being ionocovalentlike with again13 and21.1459
effective cluster valences; the same scheme repeats for the
PMI’s at subsequent inflation steps: saturated cluster levels
plus electrons for bonding and generating the next inflated
clusters. The elementary PMI’s, as we said, have 51 atoms
and 92 electrons~6 valences!; the inflated PMI’s have 76
PMI’s of the previous generation and then 138 electrons
~6 valences!, which, being also a saturated configuration,
adds to the self-consistency of the electronic and atomic
structures described above.

The negative effective valences for the transition atoms
are not surprising and currently understood for intermetallic
compounds.48 They manifest the strong interaction of thed
states with the conduction band. These negative valences
have not ‘‘universal’’ values and depend on both the chemi-
cal species and the structure in which they are engaged.
Thus, it is agreeable to have them derived from a physical
analysis of the structure.

In conclusion, the quasicrystal appears as some sort of a
hierarchically packed pseudomolecular solid, with strongly
localized states into PMI clusters; any wandering particles
~electrons! or quasiparticles~phonons! are then expected to
have mostly very short mean-free pathL of the order of the
PMI diameter; small and decreasing fractions of them
~1/t9,1/t18, . . . ,1/t9n, . . . ! have a hierarchy of increasing
mean-free paths ~t3L,t6L, . . . ,t3nL, . . . , respectively!.
Consequences on properties are expected to be fairly dra-
matic.

III. ATOMIC VIBRATIONS AND THERMAL
CONDUCTIVITY

A. A heuristic description of the critical states

In periodic crystals, atomic vibrations and electronic
states are analyzed in terms of independent plane waves and
Bloch waves, respectively. Any wave of that sort with wave
vectork propagates ad infinitum except for wave vectors that
obey the Bragg law 2k•G6uGu250 for which one has stand-
ing waves, steady state, zero group velocity, and gap opening
in the dispersive lawv~k! or band structureE~k!. This is a
rather rare circumstance and remains, in any case, an ex-
tended state in real space since the Bragg law can be satisfied
with a singleG for a givenk ~exceptionally with a small
number ofG as deduced, for instance, from the classical
Ewald sphere construction!.

In quasiperiodic structures, theG vectors define a dense
set of points. FormallyG depends on more than three lin-
early independent basis vectors~six for icosahedral
quasicrystals!.1 As a consequence the Bragg law is satisfied
for any k vector with a subset ofG which extends roughly
like the Ewald sphere size. Thus, the steadylike state be-
comes the rule rather than the exception: there is no actual
propagation~zero group velocity! but all the atoms contrib-
ute collectively. It looks like localized states that would re-
peat coherently again and again at distances scaling with
1/uku: this may be a simple description of what is currently
called critical states. The important consequence is observed
when states or excitations are tentatively analyzed using the

usual spectroscopy methods: the momentum transfer to the
solid being not properly defined, eigenmodes in the current
sense cannot be measured; a distribution of energy~or fre-
quency! values are found in the response to fixed momentum
excitation, and vice versa, the width of the distributions scal-
ing with eitheruku or E ~or v!.

An equivalent definition for the critical state of wave
function ci ~Ref. 49! is expressed in the answer to the fol-
lowing question: How system size dependent is the number
of sitesn~«! on which uci u

2 is larger than any small value«?
For a strictly localized staten~«! is bounded and does not
increase when the system expands:nl(«)5n0d

0 whered is a
length typical of the system size. For an extended state,ci is
observed equivalently at any site; thus,n~«! is proportional
to the system volume:nex~«!.d3. The critical state is just
formally in between withncr~«!.d3b where 0,b,1 is a
measure of the criticality of the state. The coherent commu-
nication between sites where vibrations or electrons are in
identical states forces the wave function to be space trans-
mitted with nothing else than some damping, i.e.,

c2d~x!;z~x!cd~x! ~1!

in which z(x) is the damping factor and we have accounted
for identical zones of extensiond being 2d apart in the qua-
siperiodic structure. Solutions of the above equation are of
the form

cd~x!;
1

da~x! ~2!

with a(x)52lnz/ln2 @for an extended mode we would have
z(x)51 anda50 since there is no damping#. It is interesting
to emphasize that in the case of critical modes, the wave
functions decay as a power law of the distance instead of the
exponential decay typical of strictly localized modes. The
conductivity is expected to be proportional to the overlap of
two identical states at isomorphic sites and then to decrease
as a power law 1/d2a. A macroscopic piece of quasicrystal,
consequently, is an insulator at 0 K. This is consistent with
the description of the structure in terms of stable atomic clus-
ters, trapping most of the electrons into their own energy
levels, rigidly bonded into a self-similar packing such that
the charge~or thermal! carrier density decays as a power law
of their mean free path~number of electrons that can travel
over distances scaling liket3n scales liket29n as explained
in the previous section!.

Eigenfunctions of the form given by Eqs.~1! and ~2! ap-
ply to one-dimensional systems only. But extension to three
dimensions is straight-forward. Short-range propagation
without damping in a three-dimensional medium gives rise
to spherical waves whose total intensity integrated on a
sphere of any radius must remain constant, i.e.,

4pr 2uc~r !u25const

or

c~r !;1/r .

Damping results inc(r ) scaling asr2a with a.1. In the
case of the hierarchical structure of the AlPdMn quasicrystal,
the density of modes per atom is divided byt9 when the
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length scale for localization is multiplied byt3. The flux of
uc(r ) u2 must be damped accordingly, i.e.,

t29r 2uc~r !u25~t3r !2uc~t3r !u2

or

t29r 2~12a!5t6~12a!r 2~12a!

and finally

c~r !;r22.5. ~3!

B. Phason jumps and thermally activated transport

In incommensurate modulated crystals phason modes cor-
respond to fluctuations of the phase difference between the
periodic structure and the modulation function. For quasic-
rystals this translates easily in the high-dimensional periodic
image of the structure:1 phasons are due to fluctuations~po-
sitions or/and shapes! of the atomic surfaces in the comple-
mentary~perpendicular! space. The resulting observable ef-
fects of phasons are jumps of atoms over positions which are
almost energetically equivalent and at short distance apart.
As an example it is very easy to check on a Fibonacci se-
quence of large (L) and short (S) segments that permuting
nearest-neighborLS segments intoSL requires only small
atom displacements and allows identical~isomorphic! zones
to communicate directly instead of being twice their size
apart. As a consequence, if phason jumps are thermally acti-
vated, the conductivities will increase with temperature.

Looking back at Figs. 2 and 3, one remember that the
structure of the AlPdMn quasicrystal is a self-similar packing
of atomic clusters, with intermediate zones in which the clus-
ters are truncated and overlap partially. The critical states are
within the rigid nonoverlapping full clusters which form in-
sulator zones at 0 K. The sandwiched zones of overlapping
pieces of cluster are softer and may be reasonably credited of
a sizable conductivity. At 0 K there is no exchange whatso-
ever between insulator and conductive zones and the whole
packing behaves as an insulator. Now, we can see in Figs. 2
and 3 that sort of double atomic positions would possibly
accommodate short-distance thermally activated atom jumps,
thus allowing in particular the boundaries to fluctuate be-
tween insulator~solid clusters! and conductive~pieces of
clusters! zones. Such a mechanism would at least account
qualitatively for improved conductivity with temperature in-
crease. Static defects or impurities would also help in by-
passing insulator zones.

If phason jumps are obviously involved in thermal activa-
tion of the conductivity mechanism for quasicrystals, they
may be not strictly at the origin of the phenomena. In this
section, anharmonicity effects which describe nonlinear in-
teractions between phonons and may initiate phason jumps,
are going to be considered.

The self-similar structure of quasicrystals and the pres-
ence of ‘‘big molecules’’-like atomic clusters suggest indeed
that transport phenomena may be mastered by phonon-
assisted delocalization effects. Such an approach is reminis-
cent of what has been proposed to explain the dynamical
properties of fractal structures.50 In fractals, a crossover is
predicted, and sometimes observed, in the dynamical spec-
trum. At low energy ~large wavelength! excitations are

phononlike and extended. Conversely, at high energy~wave-
length smaller than or of the order of an isolated fractal
‘‘blob’’ ! the vibrations are localized and dubbed fractons.
Accordingly, fractons would not contribute to transport prop-
erties and, for instance, thermal transportk(T) would only
be accomplished by the extended normal modes. Ifk(T) is
calculated under these conditions,k(T) increases with in-
creasing temperature because both mode-density occupancy
and Bose factor increase. This will continue until all of the
extended phonon states are exhausted. The thermal conduc-
tivity from phonon transport will then saturate in the Dulong-
Petit regime~kBT@\vph!. This is not the case actually and
k(T) continues to increase above the phonon saturation in
real fractal materials.50 To explain such a peculiar and unex-
pected experimental fact, nonlinear anharmonicity effects
have been evoked. Nonlinearity allows vibrational modes to
interact~Fig. 4! and, in the particular case of phonon-fracton
coupling, may result in fracton ‘‘hopping’’ in much the same
sense as the ‘‘phonon-assisted electronic hopping’’ of Mott51

for localized electronic states. Calculations demonstrate that,
at temperature greater than the crossover energy, the thermal
conductivity from fracton hopping increases linearly with
temperature, which is reasonably well in agreement with ex-
perimental data.50

One may be tempted to formally use the same derivation
for quasicrystals, just substituting some ‘‘localized modes’’
in PMI clusters to fractons. But it is not as simple as that. In
quasicrystals the nonextended states are critical rather than
strongly localized, such as fractons. This implies, as derived
in the previous sections, that the eigenfunctions decay as a
power law of the distance and not exponentially. On the
other hand, the Mott-like calculation must here account for
hopping distances being strictly defined and hierarchically
distributed due to the deterministic self-similarity of the
structure; the most probable hopping distance of Mott51 in its
original sense relies instead on some random disorder.

C. Experimental data for vibrational modes
and thermal conductivity

In good consistency with the analyses presented in the
previous sections, inelastic-neutron-scattering measure-
ments20,21show that extended phonons are observed only for
very small wave vectors in the vicinity of strong Bragg re-

FIG. 4. Schematic diagram of the nonlinear anharmonic interac-
tion phonon1‘‘fracton’’→‘‘fracton’’. The wavy symbol is the pho-
non, arrows in dashed lines are the fracton states.
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flections. These phonon modes have an acoustic character.
The corresponding dispersion curves allow one to deduce the
sound velocity and Young modulus which compare quite
well with those obtained directly~from ultrasonic and me-
chanical investigations! and with values typical of aluminum
metal ~vs53593 ms21 and 6520 ms21 for transverse and
longitudinal modes, respectively; Young modulus of 70–80
GPa in compression!. When wave vectors larger than about
0.35 Å21 are selected by the triple axis spectrometer, the
observed excitations broaden in energy; they also broaden in
wave-vector space if scans are carried out at constant energy.
This strongly confirms that plane wave modes are not rel-
evant anymore to describe the atomic vibrations in quasic-
rystals, except for the acoustic small domain close to strong
Bragg reflections. The point may even be better illustrated
with Fig. 5, which shows the energy dependence of scattered
intensities at constant wave vector, somewhere in reciprocal
space, away from any sizable Bragg peak. The observed sig-
nals cover an energy range which resembles and is as large
as that corresponding to the total ‘‘phonon’’ density of state
~Fig. 6!.52 This is obviously due to a lack of momentum
conservation which allows the interaction of neutrons not
only with one selected ‘‘phonon’’ but with all vibrational
excitations. However, the excitation intensity appears as
strongly modulated in the reciprocal space, contrary to what
would be observed for strictly localized states: criticality
contains a certain amount of coherent interference effects
which show up here in the reciprocal space modulation. This
has also been observed in infrared spectra,53 all modes be-
coming active regardless of selection rules, which is a direct
experimental evidence of the charge transfers between Al
and transition-metal atoms as resulting from the hierarchical
cluster structure described in the previous section. Wave-

vector scans originating from a strong Bragg peak, at con-
stant energies, give several flat branches in the dispersion
curves with some intensity modulation. Interestingly, the
minimum wavelength~or maximum wave vector! at which
true unbroadened acoustic modes can be observed~18 Å and
0.35 Å21, respectively! corresponds to the largest standing
wave that can settle into a cavity of about 9 Å size, which is
very close to the diameter of the PMI units. Possible standing
waves and optic modes being built in the successive genera-
tions of inflated clusters have not been observed actually. But
this may be hampered by experimental resolution which al-
low one to pick only the ‘‘low-hanging fruit.’’ The modes
also recover, to some extent, extendedlike character when the
localization length scale reaches 50–100 Å or so, i.e.,
roughly after the second inflation step. In conclusion, we
observed extended phonons with small wave vectors~smaller
than 0.35 Å! and low energy~below 1.5 THz;6 meV! and
fractonlike critical~‘‘localized’’ ! modes at larger energies.

Such a reduced range of real extended phonons should
result in very poor thermal conductivity of the quasicrystals,
with a temperature dependence showing a saturation behav-
ior in the Dulong-Petit regime as previously explained. The 6
meV limit for existing phonons would then force the thermal
conductivityk(T) to keep a constant value above about 60
K. These predictions are partially verified experimentally.
The observedk(T) values are indeed very small, much
smaller than expected from purely metallic compounds: at
room temperaturek(T) for an AlFeCu or AlPdMn quasicrys-
tal is more than two orders of magnitude smaller than for
aluminum, more than one order of magnitude smaller than
for steel, and about half that of zircon, which is currently
considered as one of the best thermal insulators.54

On the other hand, the phonon saturation plateau has also
been observed in AlPdMn~Ref. 26! and AlFeCu~Ref. 27!
quasicrystals~Fig. 7!, covering a temperature range from
about 25 to 100 K again in good agreement with the energy
range of extended phonons. But at higher temperaturesk(T)
resumes its increasing trend, though with anotherT
dependence;26,27k(T) follows the power lawsTn with n ap-
proximated by 2.5 below 0.1 K,n.2 between 0.4 to a few K
andn. 3

2 above room temperature~Fig. 8!. It is then rather
clear that we have all ingredients in hand to try to extrapolate
the fracton hopping mechanism to an appropriate variable-
range hopping scheme.

FIG. 5. Energy dependence of the inelastic-neutron-scattering
signal measured at constant wave vectors, at two different places in
the reciprocal space, away from any strong Bragg peak.

FIG. 6. Vibrational density of states of the icosahedral AlPdMn
quasicrystal measured with thermal neutron energy loss spectros-
copy ~Ref. 52! ~courtesy of J. B. Suck!.
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D. A variable-range hopping conductivity for quasicrystals

A formal simplified expression for the thermal conductiv-
ity is

k~T!5 1
3CvL ~4!

in whichC is a specific heat,v a velocity, andL a mean free
path for the thermal transport modes of interest. An exact
calculation would require a summation over the mode distri-
bution. At low temperature, only the low-energy modes can
be excited. We are in the linear regime and thermal transport
occurs via the existing extended phonons. In a mean-field
Debye-like approximation, the specific heat scales asT3, the
mean free path asT21, and the velocity is constant. This
gives correctly the observedT2 law for k(T), which culmi-
nates to a plateau when all available phonons are saturated in
the Dulong-Petit limit~both C andL keep constant values
when kBT.\vp,max!. At very low temperature, the mean
free path tends to become constant when limited by extrinsic
defects~surfaces, grain boundaries, defects, . . . !; then theT2

law changes progressively intok(T)}T3.
To explain the further increase ofk(T) at temperature

above the saturated phonon state, we must now enter the
nonlinear regime corresponding to interaction of the high-
energy critical modes with the low-energy extended
phonons. This interaction allows critical states to communi-

cate within the network of equivalent sites of the structure, in
a way similar to that of fracton hopping. For the sake of
simple wording we will call clustrons the hopping modes in
quasicrystals. Their contribution to the thermal conductivity
is given by a formula similar to that of Eq.~4!, which can be
rewritten as

k f~T!5 1
3CL2t l

21, ~5!

in which L is here the distance over which clustron jumps
occur andt l

21 is the jump frequency. If the overlap between
initial and final states is writtenuc~L!u2 and if DE is the
energy barrier to be overcome, the jump frequency is for-
mally given by

t l
215uc~L!u2 expS 2

DE

kBT
D . ~6!

We have demonstrated that the self-similarity of the structure
forcesc~L! to scale as a power law 1/La @Eq. ~3!#. In the
structure of the AlPdMn quasicrystal distances between
equivalent sites scale ast3n andDE ast26n; thus,DE is a
power lawb/L2 of the jump distanceL which, in turn, can
take any value in the seriesL0t

3n. A new expression for the
jump frequency is then

t l
21}

1

L2a expF 2b

L2kBT
G . ~7!

Jump distances which are effectively explored are tempera-
ture dependent; at a given temperature, jump distances are
selected to produce the maximum jump frequency, i.e.,

Lmax
2 5

b

a

1

kBT
~8!

and

t l ,max
21 }S a

b
kBTD a

exp~2a!}Ta. ~9!

The specific heat to be considered here is the one of phonons
in the Dulong-Petit regime, i.e., a constant value, the contri-
bution from the clustrons being zero since initial and final

FIG. 8. Schematic presentation of temperature dependence of
the thermal conductivity in quasicrystals.

FIG. 7. Thermal conductivity measured with AlPdMn~Ref. 26!
~a! and AlFeCu~Ref. 27! ~b! icosahedral quasicrystals as a function
of temperature~redrawn!.
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states are identical and, thus, have equal energies. The num-
ber of sites corresponding to a given hopping distanceL
decreases as the power lawL23 but the number of atoms
concerned and, thus, the number of modes concerned, in-
creases asL3. Accordingly the weighting factor for indi-
vidual phonon-clustron modes in Eq.~5! does not depend on
temperature. Substituting the temperature dependences ofL
andt l

21 @Eqs.~8! and~9!# into the expression of the thermal
conductivity givesk(T);Ta21 or k(T);T1.5 when the
value ofa is accounted for@Eq. ~3!#.

However, theT1.5 power law should not hold ad infini-
tum; L decreases asT21/2 @Eq. ~8!# down to its minimum
value Lmin corresponding to the distance between two el-
ementary PMI; at this stage, both the energy barrierDE and
c~L! stop injecting temperature effects into the jump fre-
quency t l

21 @Eq. ~6!#; then the thermal conductivity in-
creases exponentially up to saturation such that

k~T!5kmax expS 2
E0

kBT
D . ~10!

Of course, the various regimes may overlap in certain tem-
perature ranges because of a distribution of the effective
modes involved. The exponential regime has not been ob-
served actually, perhaps because of structure changes close
to the melting point, as suggested by recent diffraction mea-
surements~unpublished, by this author and co-workers!. Fi-
nally, it is fair to say that, at least at high temperature, elec-
trons should also contribute to thermal conductivity and
modify theT1.5 law.

The analysis which has just been carried out for the ther-
mal conductivityk(T) can easily be extended to understand
the temperature dependence of the dc electrical conductivity
s(T). As previously explained in the paper and detailed
elsewhere,11 valence electrons of the atoms are distributed in
hierarchical cluster levels; most of them, being in the rela-
tively narrow levels of the elementary PMI’s, are ‘‘localized’’
in these PMI’s~mean free path of about 10 Å!; smaller and
smaller parts of them scaling as 1/t9n ~n any integer! are less
and less localized with mean free paths increasing ast3n up
to some extrinsic limitation due to symmetry breakings~de-
fects, disorder, impurities, surfaces, . . . !. Localization, or
more precisely hierarchical localization, occurs because the
atomic valence electrons are in resonance with the cluster
energy levels46,47 while the Coulomb repulsion prevents the
electrons to coalesce and forces them to occupy all equiva-
lent localization sites. The density of states then shows a
very spiky self-similar profile with a steep square-root enve-
lope towards the Fermi level.11 In such a description, intrin-
sic conduction states cannot exist at all and all electrons re-
main paired into the self-similar distribution of the
hierarchical cluster levels. Unavoidable symmetry breaking
by surface or other structural defects may create a very flat
conduction band, right beyond the Fermi level, inducing a
weak semimetal contribution with thus a very small conduc-
tivity scaling roughly asT3/2.11 But most electronic transport
should come from phonon-assisted collective electron hop-
ping between sites of the same generation of inflation.

For electron hopping, in a Drude-like approximation, the
conductivitys(T) is still given by a formula similar to Eq.
~4!; C is only the specific heat for the low-energy assisting

phonons since electron hopping occurs between identical ini-
tial and final states;v is basically a constant sincekBT is
always small with respect to the electron kinetic energy; the
mean free-pathL can be calculated as previously done for
the thermal conductivity derivation and is then given by Eq.
~8!; the number of hopping modes with mean-free pathL
scales as 1/L3. The result isL22 or equivalently a linearT
dependence ofs(T). This s(T)}T law should hold over
most of the temperature range for very pure and perfect qua-
sicrystals. It may be corrupted at low or very low tempera-
ture if extrinsic effects due to defects of some sort bound the
mean-free path to a maximum value; then the hopping prob-
ability decreases as the number of states having the energy
E5EF2kBT, i.e., as AE,11 or 1/L, which gives a
s(T)}T1/2. The linears(T) behavior may also be corrupted
to some extent with the overall weakT3/2 semi-metal-like
contribution already mentioned. Finally, we should also ob-
serve the very high-temperature behavior corresponding toL
having reached its minimum value~i.e., distance between
elementary PMI’s, so thats(T) saturates exponentially ac-
cording to a law similar to Eq.~10!.

From the experimental point of view, one cannot say that
a universal behavior ofs(T) has been reported so
far.22–25,34,35,55,56But for the best quasicrystals of the AlPdRe
system,56 those having the more pronounced insulator char-
acter at 0 K exhibit aTn electrical conductivity withn;1 at
low or medium temperature andn;1.2–1.3 anywhere above
cryogenic temperature up to the highest~;1000 K!. Samples
with slightly lower resistivity have exponentn;0.5–0.6 be-
low 3 K ~Fig. 9!. If one accepts that then;1.2–1.3 values
result from a corruption of thes(T);T basic intrinsic law
by the weak extrinsicT3/2 contribution, there is a reasonably
good agreement between experiment and modeling. Recent
results with x-ray spectroscopy investigation of the same
AlPdRe quasicrystals57 also support the present model by
showing an almost vanishing ‘‘conduction band’’ beyond the
Fermi level.

According to this hierarchically variable-range hopping
mechanism, the frequency dependence of the conductivity
s~v! at a given temperature should show a broad resonance
centered atnc.t l

21(T) with t l
21 given by Eq.~9!. Such a

FIG. 9. The low-temperature part of thes(T) curves for AlPdRe
quasicrystals showing thes}T behavior for a perfect icosahedral
phase~m! and thes}T0.5 law for a slightly less good sample~j!.
A log-log plot is also shown in the inset forT,2 K. Redrawn from
Ref. 56.
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behavior has actually been observed with the AlPdRe and
AlPdMn good quasicrystals28,53 ~Fig. 10!. Assuming that the
electron energy is purely kinetic during hopping, one can
easily derive the relation between the observed resonance in
s~v! and the most represented hopping distance, i.e.,

Ee5
1
2mve

25 1
2mLnc

25hnc

or

L5S 2h

mnc
D 1/2.

If nc is taken equal to 9679 cm
21 or 290.2 THz as measured

by Degiorgiet al.,28 one getsL522.4 Å, which is very close
to the distance between two PMI centers in the AlPdMn
structure.

In a slightly different approach, Moulopoulos and
Cyrot-Lackmann58 have recently proposed to treat electronic
transport properties of quasicrystals in terms of electron/
fracton scattering in a strict formal sense. This gives good
qualitative interpretations of the observed thermal and elec-
tronic conductivities. Fracton superconductivity is also a
theoretical possibility resulting from matching model to re-
sistivity data.

IV. CONCLUSION

The description of quasicrystals in terms of hierarchical
clustering of atomic clusters in a self-similar structure as
deduced from diffraction data appears to be self-consistently
related to composition and atomic valences. Such a structure
implies that electrons and vibrational states have mostly lo-
calized characters. A hierarchical variable-range hopping
mechanism, compatible with inelastic-neutron-scattering
data, gives a satisfying explanation of the thermal and elec-
tronic transport phenomena in quasicrystals. The electronic
conductivity in particular should be basically a linear func-
tion of the temperature, but withAT andT3/2 contributions
coming from extrinsic effects due to symmetry breaking.
Strong deviation from the laws(T);T and absence of a
thermal conductivity plateau at some temperature are defini-
tive good reasons to suspect sample quality.
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