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In order to illustrate the flexibility of the variational solution of the Boltzmann equation for transport
coeflicients, and in particular for the thermoelectric power of solids, we use a simple model of free elec-
trons and consider their scattering from a spherical Fermi surface by acoustic phonons alone, without
any mass enhancement effect or umklapp process. We recall the variational method, pointing out that
formal constraints exist; we take two trial functions only, and we calculate the Seebeck effect in such a
framework. The low-temperature behavior of this effect is known to be very complicated. Sign reversals
occur which cannot be explained by a model based upon free or nearly free electrons. As shown hereby,
when the inelasticity of the scattering of quasifree electrons by phonons is taken into account, nontrivial
behavior in the intermediate (but still low) temperature range can be found. The Appendixes contain

analytical expressions.

I. INTRODUCTION

The theory of the thermoelectric power (TEP) is cer-
tainly not yet given in a complete form. The various
techniques and/or approximations for describing TEP
still receive much attention. In related work,! we have
discussed two methods based on the Boltzmann equation,
i.e., the relaxation-time approximation and the variation-
al method. It was found that they are not easily related
to each other from a theoretical point of view. Thus it
seems of interest to perform some analytical and numeri-
cal calculations on standard models in order to sort out
the features of various approximations and to understand
the order in which they can be made in order to obtain
reliable results, and if possible to recover qualitatively
features of experimental data. This of course means that
some model system must be defined, and that the number
of scattering processes must be limited in order to have a
handle on the final results.

One could consider dissipation due to phonons, mag-
nons, impurities, etc. No need to say that in some sys-
tems those scatterers must be taken into account. How-
ever, such an accumulation of dissipative processes will
obscure the main features. It is best to concentrate on a
simple metallic system and consider the scattering by
phonons only. In so doing one can expect to observe
whether such a process gives the overall behavior and
whether other events or approximations must be taken
into account. It will appear below which effects can or
cannot be described within a simple model, e.g., in a
free-electron band approximation within a Boltzmann
equation.

In fact other approaches,®> * through linear-response
theory, sometimes including fluctuation effects near criti-
cal transitions,* have been used. They have led to

0163-1829/96/53(4)/1762(11)/$06.00 53

theoretical concepts such as a “mass enhancement
effect"> which serves to explain some experimental
features. In this formalism electron-electron interac-
tions>3 can be taken into account. ‘However, there is no
proof that such a formalism is better suited to describe
experimental data nor consequently that the model
features which can be used in that formalism are the
main ones to be considered for explaining the experimen-
tal findings.

Moreover, such a formalism?? is restricted to either
the low-temperature region or the high-temperature
range. It has sometimes been concluded that since the
behavior at high and low temperature is linear with a
finite slope (depending on the charge carrier sign) the
whole TEP behavior was smooth, including at intermedi-
ate temperature, when phonon drag®’ is neglected.

However, in keeping with the most simple physics
scheme, it appears that one should remember that the
main effect of the thermal gradient leading to the obser-
vation of a related potential difference on a sample is the
spreading with distortion of the Fermi sea.” The notion of
vertical and horizontal scattering should also be recalled.
In the case of the electrical resistivity the Fermi sphere is
merely displaced by the electric field, and the scattering is
quasielastic (horizontal); hence the scattering can be
thought to be somewhat restricted to the Fermi level, so a
metallic approximation is valid. This is not the case
when a thermal gradient is applied. So-called vertical
scattering and hence inelastic scattering take place and a
metallic limit from the very beginning of a calculation
will not be quite correct. This leads to restrictions of
scattering events on the Fermi sheet.

A simple physical picture can show that at finite tem-
peratures the scattering events should be affected by the
charge distribution distorted around the Fermi level by
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the thermal gradient.7 In some sense electron states are
emptied and hole states created. Therefore a competitive
distribution of charge carriers with different signs occurs
and the carriers are intrinsically inelastically scattered.
Therefore a change of sign and some fine structure can be
expected in the TEP vs T data at intermediate tempera-
ture. One should notice that the intermediate tempera-
ture range is hardly investigated in a linear-response for-
malism.

We stress that in the variational approach-method"’
the metallic-limit approximation is not necessary from
the start, nor is the “equilibriumlike” situation mandato-
ry. Furthermore, if necessary, a nontrivial band struc-
ture can even be considered.>’ We also wish to stress
that the scattering mechanisms have different features in
the case of an applied electric field and in the case of
thermal gradient.

Therefore it is still worthwhile to investigate the sim-
plest case: that of free electrons scattered by phonons.
The Fermi surface is taken as spherical at zero tempera-
ture; there is no consideration of mass enhancement or U
processes. Under such a simple model the probability of
occupation of electronic states near the Fermi level, de-
pending on the phonon distribution, will be the main
cause of TEP features. This expectation has often been
underlined in earlier works.! In the following (Sec. IT)
we define the simple model which is used here. In Sec.
IIT we outline the variational method. In Sec. IV we cal-
culate the Seebeck effect in such a framework. We give
some conclusions in Sec. V, stressing some differences
with respect to previous work and theories, and outlining
that theoretical features could be those found in experi-
mental work.

II. MODEL

We shall thus consider electrons in a single band with
the spectrum

e=(#/2m)k* . (2.1)

They are to be scattered by acoustic phonons with energy

fio="mv.q (2.2)

where v, is the sound velocity with the corresponding
value for the Debye frequency w;. T, means the Debye
temperature and g, is the phonon wave vector length
cutoff. The phonon system is considered in the continu-
um medium approximation (see, e.g., Ref. 11). To avoid
complications concerning the lattice anisotropy'? we
confine ourselves to a cubic lattice with mass M per unit
cell. Phonon drag will be neglected; thus the phonon sys-
tem will be assumed to be in thermal equilibrium. The
electron-phonon interaction will be treated in the
deformation-potential approximation.’* The equilibrium
transition rate for the scattering of electrons will be as-
sumed to be

(E
Cli,k)=—2 =1
41 Mo

> o
Bf (e)[1—f(€)IW,8(e—€ —iw)

(2.3)
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where € and k are the electron energy and wave vector
before and €’ and k' after the scattering, while E is the
g-independent scattering potential, and ¥ stands for the
volume of the primitive cell of mass M. f=1/kyT, and
Wq=[exp(/3ﬁa))—1]_l,

fle)=[1+expBle—£)] 7!

with the chemical potential {. The above transition rate
and the spectrum (2.2) are in fact mean quantities aver-
aged over the directions in a cubic crystal (see Ref. 11).
The concentration of electrons or the value of the Fermi
energy will determine the temperature dependence of the
chemical potential. Let n, denote the number of elec-
trons with spin up or down in a unit volume. We have

2

3

1

_1 |2m
2%

#i

n.=

. e, (2.4a)

%‘(EF/kBT)3/2:F1/2(Z), Zzg/kBT N (24b)

where €5 is the Fermi energy and the Fermi-Dirac in-
tegral is defined by

o dxx"

D Taoi 2.5)

F,(z)=
The integrals (2.5) are convergent for n > —1 (see, e.g.,
the Appendix in Ref. 14). For z>20 the Sommerfeld
asymptotic  expressions!* can be applied F(z)
~z"*1/(n+1), which yield simply £(T')~¢g. The final
formulas for TEP in this paper are presented under this
approximation.

III. THE APPLICATION OF THE ZIMAN VARIATIONAL
METHOD TO THE MODEL

A convenient procedure of calculating the transport
coefficients on the basis of the Boltzmann equation is the
variational method developed by Ziman.”'® The ther-
moelectric power due to the phonon scattering within the
same model has been calculated by us in a restricted ap-
proximation.”’”'17 Recently, we also discussed the valid-
ity of the method and compared its results to the stan-
dard relaxation-time approximation.! The crux is to cal-
culate the elements of a matrix describing the scattering
and the components of two vectors governing the flow of
the electric charge and heat: i.e., the P matrix, see Eq.
(3.2) below, and trial currents J and U. The matrix and
the vectors are expressed in terms of trial functions pro-
posed by Ziman’

Q,(k)=k-a,Q,(k)=(e—¢)(k-a) ,

. 3.1)
Q;(k)=(e—¢) " Hk-a),

where a is the unit vector in the direction of the electric
field and/or the thermal gradient. We shall use these
functions in the present paper but note that for systems
containing electrons and holes'® and/or describing the
carriers beyond the free-electron approximation the
choice Q;(k)=(e—¢) ~!(v-a) with v=(#/m)Ve is more
convenient.

It should also be noted that the assumption (3.1) is
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equivalent to looking for the variational solution with an
accuracy to the single directional harmonic which for a
spherical Fermi surface should suffice (see Sec. 6.1 in Ref.
19 or, e.g., also Refs. 1 and 8). The only approximation
within the method consists in truncating the sequence of
the functions in (3.1) and considering only the first two of
the sequence (3.1), i.e., the second-order scattering matrix
P and the two-component (trial) currents J and U. This is
the lowest-order approximation which in a proper quali-
tative way can describe TEP by taking into account both
the electrical and thermal currents.” The elements of the
scattering matrix are simply expressed by the transition
rate for the scattering C(k,k’) and read

Py= [dik’ [ dk Clk,K )u;(k,k) )
uy (kKD =[0,(k)— 0, () )[Q,(k)—Q; (k)] .

Notice that P;;=Pj;. The trial currents are defined by

i=—e [dk(—df /den(k)Q,(k)

(3.3)
U;= [dk(—df /de)e—En(k)Q, (k) ,

where v(k) is the component of the electron velocity
along the external field and/or the temperature gradient,
and e is the absolute value of the electron charge (—e is
the electron charge). In this “second-order approxima-
tion” the expression for the Seebeck coefficient is

S=(TA)"[PyJ U, —P,(J,U,+J,U)+P,J,U,],
(3.4)
where
A=P,,J}—2P,J,J,+PJ3 . (3.5)
The expression for the resistivity in the same approxi-
mation is
p=AT'[P;Py—P}] (3.6)
which in the metallic limit will be used only for demon-
strating that our results for the Seebeck coefficient (TEP)
are counterparts of certain standard ones for the electri-
cal resistivity. The trial currents for free electrons to any
arbitrary-order approximation are expressed by the

Fermi-Dirac integrals. The expressions up to the second
order are

Jy=—JolkgTP?Ly(z),
J,=—Jolkg TY*L\(2) ,

(3.7a)

Uy=—J,/e,
U,=UykpT)"*Ly(z),
where
Lo(z)=3Fp(z),
L\(z)=—22F, ,(z)+3F; ,(z)

5 (3.7b)
Ly(2)=32°F ;5(2)—232F; 5(z)+ 1F5 5(2) ,

v [am 2
p— m j—

UO—E;E —;{2‘— , Jo=eU, .
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The values of U, and J, are not essential for TEP in
our approximation. The lowest-order u;; matrices are

U =(Q'a)2 )

u12=u21 =[(€_§)+(61—6)](q'a)2 N
(3.8)
uy=[(e—£)2+2e—e)e—£)](qa)’

+(e'—e€)[(q-a)*+(k-a)?],

if the terms linear in k and k’, which do not contribute to
P, (3.2), are omitted. We note that in our notation € —¢€
means the electron energy difference before and after the
scattering. Therefore in (3.2) there are terms responsible
for inelastic scattering processes.!” The scattering matrix
elements Py, P,,, and P,, for our model assumptions can
be represented as double integrals and then computed
without any further approximations. To perform it (Ap-
pendix A) we represent the integral (3.2) in terms of the
electron energies € and €', the transferred wave vector
length ¢=|k—k’|, and the angles of the scattering. The
integration with respect to one of these energies, e.g., €,
and with respect to the scattering angles can be per-
formed analytically. The energy conservation constraint
in C(k,k’) reduces the wave vector cutoff below the value
qp for sufficiently low energies. This reduced cutoff is
sometimes related to the name of Sondheimer® who first
noticed that in systems with low electron concentration
the energy conservation constraint provides a cut for the
transferred electron momentum and thus also reduces the
maximal transferred phonon momentum. Therefore the
integral with respect to g has to be performed in the in-
terval [0, g, J,2! where the ratio g, /qp is

1/2
S =0 (o), e<e
Imax _ | | ¢, kgTp, ™7 " (3.9)
p 1, e=e, ,

where €,, is the value of € at which Q.. (€)=1. We ex-
Press ¢, in terms of the characteristic energies €, and
€, introduced by us in our earlier papers. The first one is
the electron energy corresponding to |k| =k =g /2, and
the second one is the electron energy at wave vector
g, =(2m /#)v,. This energy €, has been introduced by us
to discuss the electrical transport for the above model in
the relaxation-time approximation;?? the second energy
€, has been found to be a parameter of the expression for
TEP in the metallic limit (see Sec. IV) and its value has
been found relevant for the behavior of TEP at low tem-
peratures. The parameter €, has been also used by Zi-
man’ in his studies of semimetals. The two parameters
are interrelated, 4€,ep=(kpTp)* and their values for
typical metals are presented in Table I.

In order to represent the final expressions for Py
P,,=P,,, and P,, we introduce the reduced quantities
x =Pe,p=Pw=Phv,q, and z=PL(T) and as in Ref. 18
define the integrals
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TABLE 1. Material constants corresponding to values of ;.
A value T, =200 K is assumed, and a free-electron mass.

€s €p €m Vs dp
(K) (eV) (eV) (m/s) (nm™')
1.5 0.575 0.566 3370 7.77
3.0 0.287 0.279 4760 5.49
6.0 0.144 0.135 6740 3.88
12.0 0.0718 0.0635 9530 2.75
24.0 0.0359 0.0278 13400 1.94
48.0 0.0180 0.0104 19100 — 1.37

ka<z,T)=fo°°—d—’i‘(fe_Tfl——

k
f:max(eP—1)[1di§—<X'z+P>] (10
with the counterparts of (3.9)
2xe,B)?+Be,, x <Pe,,
Pmax= T /T=1/t, x>Be, . (.10

The integration over k and k’ of C(k,k’) and u;(kk’)
defined is performed in Appendix A. It yields

P =Pot°Gy(2,T)
Py, =Pyt (kzT){Gy,(z,T)+Gs(2,T)} ,

Py =Pot’ (kT G, ,(z,T)+2Gs (z,T)+Gg (2, T)

€
+EBS—T[G4,1(Z,T)+ZG4,0(Z,T)] :

(3.12)

The value of the constant P, is not essential for the
TEP considerations and is given in Appendix A. Notice
that each term of (3.8a)-(3.8¢c) is represented by an in-
tegral G ,,, in (3.12). The only exception is the last term
in u,, which is represented by the square bracket with
the coefficient €, /k3 T in P,, (see Appendix A).

Consider now the elastic scattering approximation.
The approximation is equivalent to considering only the
scattering events in which electrons do not change sheets
of equal energy, i.e., in our notation € =e¢. This con-
straint means that (i) the value of p is neglected with
respect to x —z in the last exponential of the denominator
in (3.10), (i) Qmax=(€/€p)'’? in (3.9) which is equivalent
to putting p,... =2(xe,8)*? for x <Bep in (3.11), and
finally (iii) the first terms of the matrix elements u;; con-
tribute to the final integral as seen from (3.8).

Consequently the scattering matrix elements are ex-
pressed by the integrals

m,x—z
e

o dx(x—2z)

(E) _ [edx(x—z)"e**
le’m(Z’T)-fo (1+ex~z)2

Dilpsp(x,T)],

(3.13)

where

Pmax dp p¥
Dicprnas) = | —e—ff—l (3.14)
is the standard Debye function? and
2(xesli’)1/2 for x <Pep
Pso D=1 /T for x >Be,, . (3.15)

Due to (iii) only the Debye function with index k =4 con-
tributes, whence the final expression for the matrix ele-
ments reads

PE'=Py(ky Ty I 2°GH (2, T) . (3.16)

Another common approximation is to assume the De-
bye cutoff [T}, /T in (3.14)] for all electron energies. This
can be done if the value of €}, is sufficiently low. As can
be expected from the form of the integral (3.12) the cri-
terion is €, <<€y which is satisfied for a well degenerate
electron gas. Otherwise, when € is of the order of €,
there is no clear criterion to test the validity of such an
approximation. It we nevertheless take it for granted we
obtain

GED =y, (2)D(Tp/T) , (3.17)

where 1,,(z) is defined in (B6). Such a product can then
be inserted into (3.16) in place of foi)+ j—2- The resultant
matrix elements along with the trial currents (3.7) can be
inserted into (3.4). It is then found that the explicit tem-
perature dependence is canceled in the final expression
for the Seebeck coefficient. The latter then only depends
on T through z in a ratio of combinations of functions ¥,
¥y, ¥y, Lo, L,, and L,. The final formula was compared
to the standard expression derived in the relaxation-time
approximation in Ref. 1.

The above approximation may have some physical
significance for systems with low carrier concentration.
For a highly degenerate electron gas which is the main
subject here, it can be assumed that {(T)=~ep in the
whole temperature interval (0<7 <800 K) usual for
transport measurements. In this case, only the electrons
with energies from a narrow sheet near €5 contribute to
the scattering. It means in terms of the parameter z that
one can use asymptotic expressions (z— o« ) for the trial
currents, the scattering matrix elements, and the final
transport coefficients. In particular, the asymptotic ex-
pression for Py; (within the accuracy of a temperature-
independent factor) yields then the Bloch-Griineisen for-
mula for the electrical resistivity. The asymptotic formu-
la for TEP, which will be derived in the next section, is in
fact the counterpart of this standard expression.

Some numerical estimation has shown that this asymp-
totic approximation yields reliable results for an electron
gas of moderate effective mass for €z 2 0.5 eV.

IV. TEMPERATURE DEPENDENCE OF THE SEEBECK
COEFFICIENT IN THE CASE OF A HIGHLY
DEGENERATE ELECTRON GAS

In order to find expressions describing the Seebeck
coefficient in the case of a highly degenerate electron gas
or, in other words, in the metallic-limit case, we shall use
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the asymptotic (z— oo ) forms for the trial currents and
the scattering matrix elements. The asymptotic forms of
the functions describing the trial functions follow simply
from the asymptotic expressions for the Fermi-Dirac in-
tegrals (Appendix A41 in Ref. 14; see also Ref. 15). More

precise recent consideration?*?> confirms them, yielding
also
Lo(z)=~z3% L,(z)=(7?/2)z'"?,
4.1)
L,(z)=(7*/3)z%"
for z— oo.

The metallic-limit expressions for the quantities
describing the scattering due to phonons, such as in the
relaxation-time approximation, are usually considered
under the assumption of the Debye cutoff. It is obvious
from our consideration of the previous section that the
assumption of the Debye cutoff in the whole (0<e< o)
electron energy range is equivalent to assuming that the
energy €,, of (3.9) is sufficiently small (e, <<ep). The
latter requirement is fulfilled as seen in Table I. Thus
having taken the Debye cutoff for granted we find
metallic-limit expressions for the scattering matrix ele-
ments P;;. The mathematical details are described in Ap-
pendix B. One can also find there a short description of
the mathematical procedures leading to less general
metallic-limit expressions for P;; as applied in Refs. 11
and 17.

We stress at the beginning that the mathematical treat-
ment such as in Appendix B is valid only under the as-
sumption of inelastic collisions, i.e., €’7¢€. The conse-
quences from € =€ before taking the metallic limit
(z— o) are described in the previous section.

The metallic-limit expressions for the first matrix ele-
ments are

P =Py(kyT)" 1 720P;(1) , (4.2a)
where
Pu()=FLAe),
Pia(1)Py(1)=1FP1) (4.2b)
Py(t)=FP(t)—P_(t),
with
P_(t)=— |1B1)— —Fp (1) 4.2¢) .

kT |2 kT
and t =T /Tp. The generalized (n=5,6,7) Bloch(-Griin-
seisen) functions

FB) ()= fo“' ( dayy”"

e?—1)(1—e™?)

with the material constants T, €, and € are sufficient
for the description of the scattering. With the trial
currents expressed by (4.1) and the scattering matrix ele-
ments by (4.2) the final metallic-limit form of (3.4) can be
represented as in Refs. 11 and 17:

(4.3)

S=8y(t)+S,(¢) R
€p

(4.4)
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where
_ | kg | Pilt)
Sol=5 1% | 2,00 7
2 (% 2 P (1) (4.5)
__ |k || Pl
Sit)==7 T3P0 |

The high- and low-temperature expression for (4.4) can
also be represented as in Refs. 11 and 17. They are

kg | kgT
—_ 2| B B
Sasym = T Y ‘g;‘ (4.6)
for t — o0, and
k 2 kgT 72 (kgT)* Pp(0)
S~ |2 |{- T 24T 2 =B @7
e 2 €p 3 epe;, Pyy(0)

for t—0. The linear term in (4.7) exactly corresponds to
that found by Klemens.?® ?,,(0) and ?;,(0) are linear
combinations of the Rieman functions {(n—1) with
n=4,5,6. The numerical value of P,(0)/?,,(0) for the
integrals (4.3) representing #;; in the present paper is
2.94355. The corresponding value for the approximation
of Ref. 11 is 3.43400. For completeness, we repeat the
value 4.49247 corresponding to the approximation of
Ref. 17.

Figure 1(a) illustrates the temperature dependence of S
following from (4.4) and (4.5) with the functions 7;;(z)
given by (4.2b) and (4.2¢). For illustration the results of
the approximations used in Refs. 11 and 17 are also
marked. The bump of S at moderate temperatures and
the small minimum at very low temperatures are
confirmed by the present, best approximation. In Fig.
1(b) we present the corresponding temperature depen-
dence of the reduced resistivity and pay attention that the
approximation of Ref. 17 should be used with caution
since it yields a qualitatively improper dependence of S at
moderate temperatures for the electrical resistivity.

In Fig. 2 we show the dependence of S in the represen-
tation in which Tp, and €p are kept constant and €; is
treated as a parameter. The corresponding values of oth-
er material constants, which change with the magnitude
of €5, are compiled in Table I. Notice that a decrease of
€, at a given value of T means an increase of g5, and €p.

The latter quantity is a measure of the maximal pho-
non energy gained and lost during the scattering. The
bump -at moderate temperatures increases with an in-
crease of this energy. It is also obvious from (4.7) that
the value of €, influences the temperature behavior of S.
Thus, one can expect that the structure of S(T) at low
and moderate temperatures is caused by energy exchange
between the energy-dependent electron and phonon sys-
tems. To show explicitly this conjecture we shall consid-
er TEP in the elastic scattering approximation.

We shall first pay attention that the formulas (4.2b),
(4.2¢), and (4.3) are invalid in the elastic scattering limit.
This is obvious from the considerations of Appendix B
One can also conclude on the ground of Appendix C 1n
Ref. 18 that the form of 7;; in the approximations used 1n
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Ref. 11 and 17 is invalid in the elastic approximation. In
order to consider the elastic approximation in the metal-
lic limit we have to start from (3.13). In the limit z— o
the matrix element P{Y vanishes since 1,,(0)=0 for
m=13,...,(2n+1) [see (A7)] and with the accuracy to
linear terms in 1/z we obtain for the Seebeck coefficient
in the elastic approximation

(E) — ’
S§H= asym * . (4.8)

V. CONCLUSIONS

As a conclusion, it is best (i) to observe the differences
in content between our previous work in Ref. 17 and the
above, and (ii) recall the findings in the three temperature
regions of interest, i.e., to put them in the proper perspec-
tive.

The differences between Ref. 17 and the above are as
follows.

C = B
< S B
7 N
20 2
0.2k
0.1 10
0 ke h)
S\
~
-0k Sl
-02 L
0 200

1
07 TIT,

FIG. 1. (a) The metallic-limit dependence S(T') in k, /e units
following from various approximations: (i) from Ref. 11; (ii)
from Ref. 17; (iii) from the present work Eq. (4.4) with a Bloch-
Griineisen approximation (see Appendix II). The dashed line is
the Mott-Jones asymptotic value (4.6). The dotted line corre-
sponds to the linear term of (4.7). The inset shows the corre-
sponding low-temperature behavior. In all cases T, =200 K,
€r=1.5 eV, and the Debye cutoff g, =5.0 nm~!. (b) The tem-
perature dependence of P, (reduced resistivity) in the same ap-
proximation as in (a). All three curves approach an asymptotic
(dashed) line.

Slkgle)
15
03
3.0
02k
6.0

FIG. 2. The temperature dependence of S in a Bloch-
Griineisen approximation for T, =200 K, €x=1.5 eV, and vari-
ous indicated values of €, for an order of magnitude correspond-
ing to the free-electron mass and the sound velocity of solids
(see Table I). The bump growing with increasing €, (or decreas-
ing €, ) implies an effect of energy exchange between the electron
and phonon systems. Other approximations lead to the indicat-
ed curves: Mott-Jones high-temperature limit [Eq. (4.6)] and
the low-temperature limit of Eq. (4.7) for any value of the pa-
rameter £,. Notice that TEP is always negative for €, >ca. 48
K.

The scattering matrices are here represented by the
generalized Bloch-Griineisen functions, which—as
claimed in Appendix B—is a better approximation than
both used previously in Ref. 17.

Holes as current carriers are considered in Ref. 17 but
are not used here in order to avoid confusion and limit
the number of indices in presenting the mathematical
treatment.

The main goal of this paper was to present explicitly
the mathematical treatment which was not done in Ref.
17.

Furthermore, we show in Appendix A that we explicit-
ly take the inelastic collisions into account while in Sec.
III and Appendix B we emphasize that the “metallic lim-
it” should be used very carefully. As a comment to the
latest statement we stress that one cannot interchange the
“metallic limit” (z— o) with the “elastic limit” (¢'—¢).
This is the reason for presenting z-dependent expressions
here for the trial currents (3.7) and the scattering ma-
trices (3.10), expressions which were not presented in Ref.
17.

This being set we can consider the various temperature
ranges of interest. At high temperature, the behavior of
TEP is given by (4.6) and (4.8). This is a well-known re-
sult, generally well accepted, and easily found as a conse-
quence of the often used Mott-Jones formula.>*1°

At low temperature, ie., T—0, the temperature
behavior has long been unclear till Klemens?® corrected
Bethe finding?’ (a T behavior) and showed on the basis
of a Boltzmann equation approach, but without making
use of the relaxation-time notion or any variational
method, that the low-TEP behavior is linear in T and is
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given with the coefficient written in (4.7). Klemens, how-
ever, did not have the second term of (4.7). This
(—m%/2) coefficient has been recently confirmed by a
linear-response-theory approach.’

The next interesting region is the intermediate temper-
ature range, where “intermediate” can nevertheless refer
to quite low temperature. Along the variational method
approach, invented by Kohler,”® Sondheimer® derived
expressions for the electrical resistivity and thermal con-
ductivity, but failed to find a concise expression for TEP.
He had only obtained the following expression:*°

€F
N FP(1)+(ept?/2mep [ 2 FP (1) +1FP (1))
FLA)+(ept?/2mep)[ (22 /3)FP(2) + LFP(1)]

il

3

kg

e

S:_._

(5.1

within a relaxation-time approximation following the
solution of the Boltzmann equation in successive approxi-
mations for a relaxation time as investigated by Wilson.>!
The above expression is written in our notation. A con-
stant (D in the original expression) was found by Mar-
ison.”? It can be shown that it is equal to €p /(27*) when
the volume of the first Brillouin zone of a simple cubic
lattice is assimilated to a sphere. In so doing the
coefficient of the low-temperature expression is found to
be (—m%/3), as also presented by Wilson.!* The tempera-
ture behavior of such a Sondheimer result is shown in
Fig. 3 for three different values of €,,. In this figure it is
worth comparing the Mott-Jones expression sometimes
extrapolated to low temperature with the Sondheimer re-
sult and ours.

“For most metals, the thermoelectric phenomena at
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FIG. 3. Thermoelectric power or Seebeck coefficient .S in
kp /e units for different approximations: from Sondheimer (Ref.
30) (Si), i.e., Eq. (5.1), from this work (DAJ), i.e., Eq. (4.4), and
the asymptotic (AS) value Eq. (4.6), with extrapolation to low
temperature. The parameter values correspond to Table I for
€p=0.575¢€V (1); 0.144 eV (2); and 0.0359 eV (3); i =1,2,3.
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low temperatures are very complicated, and sign rever-
sals occur which cannot be explained by a model based
upon free or nearly free electrons,” writes Wilson.!* As
shown through the above work when the inelasticity of
the scattering of quasifree electrons by phonons can be
taken into account the intermediate- (but still low) tem-
perature features can be recovered. This is essentially
due to the flexibility of the variational method, even when
limited to two trial functions of the form (3.1) only. It is
as accurate as the methods in the elastic scattering re-
gime. Thus one can believe that the method leads to at
least qualitatively correct results in the inelastic cases.
The origin of the features at intermediate temperature
can thus receive a simple interpretation consistent with
the recalled “vertical scattering processes” and the in-
herent distortion of the carrier distribution function near
the Fermi level in a temperature gradient. More ela-
borate models can thus receive some attention in such a
framework.

The interesting point in this work and Ref. 17 is the
main source of physical-feature differences with respect
to other theories. The source stems in our opinion from
the fact that we treat the electron and phonon energy
spectra on the same footing while others do not do so.
This is probably essential for TEP considerations in
which energy dispersion has some subtle influence. In
general, in all previous calculations dealing with metals,
only the electron energy sheets close to the Fermi energy
€r were considered to be important. Since the greatest
energy of the phonon system is considerably less than €,
the phonon energy was usually neglected or was treated
as an expansion parameter with respect to €z. These re-
marks certainly hold true for, e.g., important theoretical
papers recently published and using sophisticated
theoretical methods.»® Moreover, within the standard
relaxation-time approximation one usually uses the relax-
ation time derived strictly for elastic collisions [see, e.g.,
(3.1.1) in Ref. 1]. That means that one neglects the
transfer of phonon energy to and from the conduction-
electron systems and destroys the effects found here
above for TEP.

In semiconductors the scattering can be considered
elastic or velocity randomizing. The scattering effects
have thus less influence on the final temperature depen-
dence of TEP than those related to the number of various
carriers in particular bands or on discrete levels. We
stress that this is not the case in metallic systems.

Our analysis shows that there are quite fine correla-
tions between the electric and heat currents in metallic
systems. These correlations seem thus to be responsible
for the enhancement of TEP at intermediate tempera-
tures but do vanish when the phonon energy transfer goes
to zero. This is seen from our present considerations and
was also stressed in Ref. 17.

From a purely phenomenological point of view, it is
the matrix element P,,=P,, which is responsible for
these subtle effects. The element describes the lowest-
order coupling between the electric and thermal currents
and in fact vanishes in case of elastic collisions. Some-
times, that scattering matrix element does not appear in
theoretical work, and in our opinion it is the reason why
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the structure of TEP in metals has often been erroneously
predicted or misunderstood. The matrix element P,,,
however, appears in the original Ziman considerations
(see Chap. 9, paragraph 12, in Ref. 7) but has not been
carefully examined by numerical methods. Therefore its
role has gone unnoticed.

Finally, in addition to theoretical considerations of the
role played by approximations it is of interest to check
whether experimental features agree with the theoretical
prediction. Of course, it should be realized that we put
the emphasis here on analytical work, thus using quite
approximate band structure and simplified phonon and
interaction models, whence only qualitative results can be
discussed. In magnetic rare-earth metallic compounds a
flat bump of TEP vs temperature at intermediate temper-
atures is seen.!"!2 The effect was, and thus still is, attri-
buted to electron-phonon scattering origin, rather than to
electron-impurity or electron-spin scattering as could be
at first expected. The bump magnitude has the order of
magnitude of the theoretical one. The observed bump in
the normal-state TEP of high-temperature superconduc-
tors is also of the order of magnitude of that theoretically
predicted here.>* This bump in TEP is often attributed
to a phonon drag mechanism even though the tempera-
ture region might not be right at all. We therefore con-
clude that experimental findings and our theory have
some common features at intermediate temperature.

It seems that one important argument in favor of our
remarks and work is the usual existence of a minimum in
TEP at very low temperatures (followed by the bump at
intermediate ones). This implies a double change of sign
of TEP which does not seem to be easily predicted by
simple considerations—except if one introduces multi-
band considerations. Not arguing that this should be un-
realistic, we point out that the origin or these features
might arise not only from the change in carrier concen-
tration, but also could pertain to a scattering mechanism
by phonons. Such a double-extremum behavior was
found in many experimental investigations in metals (see,
e.g., Ref. 35) and its origin was debated upon.*®* More-
over, the quoted results show that TEP was not linear
even at rather high temperatures. This can be explained
in our present work, and was already hinted at in a previ-
ous paper of our group.’’
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APPENDIX A

In order to find the form of the scattering matrix ele-
ments (3.2) in which they can be easily computed or
represented in terms of the standard integrals we shall
first consider P,;. As is obvious from (3.2) and (3.8) this
matrix element is represented by the double inverse
volume integral of the single term of u,;. If we neglect
effects of the crystal periodicity such as the umklapp
scattering we have

= +—ﬁ2—(2k- +q?) (A1)

=T qTq

for k'=k+q (we keep here our notation that € and k are
energy and the wave vector before scattering and €’ and
k' after the scattering). It is now convenient to perform
the integration in P, with respect to k,q instead of k,k’.
The trial function difference is simply (q-a) and in cubic
crystals one can assume a=(0,0,1), (0,1,0), or (1,0,0)
without any loss of generality.

Our task is to perform an analytical integration with
respect to angles of the scattering under the constraint of
energy and momentum conservation, which is expressed
by the & function in (2.3) and (Al). The task is simp-
lified if we rotate the coordinate frame [with change
of components (k,,k,,k,)—(K,,K,,K,), (gy,4,,9,)
—(Q,,0,,0,)] in such a way that the scalar product k-q
can be simply written K,Q, (or Q,K, or Q K ) with
K =|k| and Q,=q cos¥.

The angle ¥ is, of course, between k and q but after the
rotation also between the transfer wave vector q and an
axis of the new coordinate frame which can be chosen as
the polar axis of the spherical coordinates. The three
transformation matrices which satisfy our conditions
(k-q—K,Q,, K,Q,, or K,Q,) are given in Ref. 33. An
inverse transformation with K, as the polar axis implies
the following change of variables:

|k k. k, ki
qx - kl Qx klk Q k Qz b
=+ |-= Kyks K (A2)
L I L RN
k, k,
9= 7 Qy + _k- ]Qz

The final integration in P,; is performed with respect to

(A3)

where 6 and ¢ are polar angles of k, while ¢ and ¢ are their counterparts in Q=(Q,,Q,,Q,). We assume the maximum
value of ¢ =|g|=|Q| to be equal to g, as we stated at the beginning of Sec. IIL.
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After inserting (A2) into the expression for P,; and integrating with respect to ¢, ¢, and 6 we obtain

p q5W

P,,=P; fowdee

where Py is a constant, g, =(2m /#)v,, and

'—e)= B

Wie,e [1+ePeD][1te (e Dye Ae—a]

The form of this function follows from the factor f(¢e)[1

—f(e)]in C(k,k’).

), (A4)

(AS)

It should be noted that W depends, in

fact, on g and & due to (A1). Now the final expression for P, can be easily found if one notices that

q T . qs
fo Pdq fo d 9 sindF(g,cos?)8(2k cosd+q—qq, )= fo dq F(q,w){©y(2k —q+q,)+0,2k+q—q,)} , (A6)
where w=(g; —q)/2k. Fis an arbitrary function, and ©y stands for the Heaviside step function. P, reads
(t)
max dq q4
_POB 2 f de f (1) Bﬁvsq (A7)

The limits of the inner integral are
qrril)n =0, qmax __min{qD’zk +Qs } ’
lqs —2k if g, >2k
)
q min

= o if g, <2k , (A3)
g% =q,
and
VE% 2m ¢ _
P0= oM -h‘z— o l. (A9)

The i =1 integral in (A7) describes the scattering with
—m/2<9=m/2 and yields the leading contribution.
The second one with 7 /2 < <37 /2—as our estimations
show—can be neglected since its contribution is smaller
by a few orders of magnitude. It will not be considered
any further. The contribution of both terms of u,, and
the three first terms of u,, in (3. 8) can be calculated in ex-
actly the same way; the factors (e —¢&)™ and (€' —¢€)” can
be easily taken into account. Only the contribution of the
factor (k-a)(¢'—e)? under the integrals (3.2) for cubic
crystals can be written as (k*/3)(#iv,q)*=¢,eq>/3 with

=2mvl.

In the reduced variables used in (3.12) this term is
represented by the integral

fw x dx f"max dpp
kB 0 1+e*~? (eP—1)(1+e *+z7p)’

(A10)

which after letting x =(x —z)+z is finally represented as
a sum of two integrals defined by (3.10), i.e., G4,(z,T)
and G, o(z,T).

APPENDIX B

In our first considerations on TEP by the Ziman varia-
tional method!! we calculated high-z P-matrix elements
in a standard (but not accurate in the asymptotic regime)
method which consisted in (i) assuming a Debye cutoff of

—1)(ePO+)[1+e

.

Ble—0)—Bhv,g

r
the linear phonon spectrum in the integrals with respect
to g for all electron energies [cf. (3.9)] and (ii) taking into
account only the first nonvanishing term of the Sommer-
feld expansion in the integrals with respect to the elec-
tron energy. The assumption (ii) means that P, is calcu-
lated only up to terms of zero order in £—¢, whereas,
e.g., in Py, there are linear terms coming from the first
term of (3.2) and only zero-order terms for the second
term of (3.2). This is equivalent to picking up terms of
various order in €¢—¢ while finally calculating the in-
tegrals P;; in the metallic limit (z— o0). In order to im-
prove on this inconsistency,!” we calculated the integrals
in the metallic limit up to the second-order terms in e —¢
in Py, P;;=P,;, and P,,. [The second-order term in Py,
for instance, arises from the expansion of C(k,k’) in
powers of e—¢.] In so doing, we obtain additional func-
tions which have not been considered in Ref. 11. It
occurs, however, that, although the zero-order expansion
applied to P,, is qualitatively correct for the resistivity
[see Fig. 1(b)] the next-order term added in Ref. 17
creates some qualitative discrepancy [see Fig. 1(b) in
which the standard Bloch-Griineisen results are shown].
Note, however, that both the approximations describe
TEP qualitatively in the same way. This is obvious from
comparison of the results illustrated in figures in Refs. 11
and 17. Those results are compiled in Fig. 1(a).

In the present paper we supplement them with those
obtained in the approximation yielding the Bloch-
Grlineisen function in case of the resistivity. The approx-
imation consists in (i) and (iii) asymptotic (z— ) es-
timation of the integrals G, ,, without making a Sommer-
feld expansion.

Under the assumption (i) we put p,, =1/¢ in (3.10)
and denote the approximate function Gy, (z,T) by
G,if’,,’,(z, T). The approximation permits us to change the
order of integration and after the substitution y =x —z
and some simple algebra, we get

(D) - e dpp*
Gk,m(z,t) f() (ep-—l) l—e )

gm(p,2) (BD)

where
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1 1
I+e™ 14e 0P

gn(p.2)= [ dyy™ (B2)

The function gy(p,z) in the limit z— oo is elementary,

i.e., 8o(p, © )= —p and therefore we obtain
dppk+l .
G2 (c0,t)= 1/'_7:
k0 fo (eP—1)1—e™P)

For m#0 we can integrate (B2) by parts and find

FEL (1) . (B3)

1 1
m( ,Z):(_l)m+1 m+1 —
Em'P z 1+e? 1+4e*7?
+h,(p,z), (B4)
where
1 o
h — __aym+1
nlpr2) = {fﬁﬂdysv(y)(y p)

—[Tdy eyt (BS)

with @(y)=e”/(1+¢”)%
The above form enables us to represent A, (p,z) in
terms of the functions

bniz)= [ dyymely) (B6)

which in the limit z— c have the values (see, e.g., Ap-
pendix A4 in Ref. 14)

Yol@)=1, ¥(0)=0, P,(c0)=72/3,.... (B7)
Since g,,(p, ©)=h,, (p, o) and
i (p,2) =~ [ 12 —p) = 1(2)]
1 m+lim+1 f
1 kél k D, - (z—u),
(B8)
we get for the lowest-order functions
8olp,@)=—p,
g1(p,)=1p%, (B9)
&2(p, )=~ Tp—ip*
After inserting them into (B1), we get
Gy (o0, t)=—1FB) (1),
(B10)
G5 (w,1)= % FEL () +1FE (1)

with FP(¢) defined by (B3). The functions G2 (z,t)
after putting them into (3.2) in place of Gy, (z,T) lead to
(4.2) and (4.3).

Note that the starting formula (B1) is such that the
value of p is not neglected with respect to x —z. In view
of (i) in our discussion in Sec. III that means that the in-
elastic scattering is well taken into account.
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