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We modeled the mobility of grain boundary dislocations~GBD’s! during the untwisting of the@001# twist
boundaries. Instead of assuming two semi-infinite crystals in calculating the grain boundary energy~i.e., the
Read-Shockley approach! and therefore the driving force for untwisting, we assume equally spaced GBD’s
moving in the~001! boundary plane with the dislocations closest to the surface being pulled out by the image
force. Experimental results from crystallite rotation in fcc gold were used to investigate the mobility of the
GBD’s. Two types of GBD motion were tested: viscous and thermally activated. The observed motions of the
GBD’s during untwisting can be described only as thermally activated. The Hirth-Lothe approach, which
involves a thermally activated process overcoming the Peierls barrier, was applied to describe the mobility of
GBD’s during untwisting into theS5 cusp/minimum~S is the reciprocal of the density of the lattice sites in
coincidence between two lattices at a misorientation! and the mobility of lattice dislocations$100% ^110& during
untwisting into theS1 cusp/minimum. The Peierls barrier for GBD motion confined to the glide plane of the
boundary~001! is significantly higher than that for lattice dislocations glide on$111% planes. From the un-
twisting rates, we estimate the energy barriers for GBD motions as 1.69 eV forS1 and 1.84 eV forS5 @001#
twist boundaries. These results can explain the high yield stress and its sharp temperature dependence during
plastic deformation of nanoparticle compacts of fcc metals. These results can also be used to estimate the
largest size of crystallites that will rotate.@S0163-1829~96!06824-5#

I. INTRODUCTION

Grain boundary dislocations~GBD’s! play an important
role in the behavior of polycrystalline solids, particularly in
superplasticity, grain boundary sliding, and migration. Geo-
metrical properties of these GBD’s have been investigated
widely1,2 and their elastic properties have been described, in
a manner similar to that for lattice dislocations, within the
framework of the theory of elasticity. The study of geometri-
cal properties of lattice dislocations was followed by a period
of experimental and theoretical investigations of their mobil-
ity, relating the acting forces and the velocities of these dis-
locations. Since then many studies have yielded data on lat-
tice dislocation mobility in their normal glide planes, while
few have dealt with either the mobility of lattice dislocations
in other planes or the mobility of GBD’s in the grain bound-
ary planes. The situation concerning the mobility of grain
boundary dislocations is different because of the difficulties
of the observation of GBD’s under controlled external loads.
The usual experimental methods employed in studying the
mobility of lattice dislocations simply do not apply for the
GBD’s.

Here we formulate a mathematical model that relates the
GBD mobility observed by transmission electron microscopy
~TEM! of crystallite rotations3 with the forces acting on the
GBD’s. We also will consider the pure gliding of GBD’s in
a cooperative motion that causes the untwisting of pure twist
boundaries. It is interesting to note that this approach can be
applied not only to GBD’s in high angle twist boundaries,
but also to GBD’s in low angle twist boundaries. When a
crystallite of fcc structure untwists into theS1 misorienta-
tion, this untwisting involves GBD’s having the characteris-

tics of pure screw lattice dislocations with Burgers vector
b5(a/2)̂ 110&. Therefore, we can measure by this method
the mobility of these lattice dislocations in~001! planes that
are not the usual glide planes in the fcc crystal, a mobility
difficult to measure by other methods.

II. PREVIOUS INVESTIGATION

In Chan and Balluffi’s experiment3,4 small gold crystal-
lites ~50–80 mm dia! were welded onto a~001! single-crystal
gold thin film. After the welding, pure@001# twist boundaries
existed in the welded neck regions, which could be observed
directly by transmission electron microscopy at normal inci-
dence. Upon annealing, the crystallites rotated about@001#
into S1 andS5 misorientations~S is the reciprocal of the
density of the lattice sites in coincidence between two lat-
tices at a misorientation!, indicating the existence of GBD-
related cusps/minima on the boundary energy versus twist
angle u curve at these misorientations. The rotations oc-
curred by the conservative motion of screw GBD’s, which
was observed directly by TEM in certain regions ofu. Origi-
nal data of misorientation angleu versus timet at 600 K for
three crystallites rotating intoS1 are shown in Fig. 1.

The crystallite rotation experiment by Chan and Balluffi3,4

was the first to observe the crystallite rotation in response to
grain boundary structure and the corresponding GBD mo-
tions. In the untwisting of@001# twist boundaries,3 their main
purpose was to find out~a! if the crystallite rotation is sen-
sitive to boundary energy variation with misorientation by
observing the process particularly in real time and real space
as compared to past observations with x-ray diffraction5

where boundary dissociation and migration cannot be de-
tected,~b! the GBD arrangements during untwisting, and~c!
if any high angleS misorientations have deep enough energy
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minima to trap the untwisting crystallites. There was no
attempt3 to model the kinetics of the untwisting process al-
though the evidence of a thermally activated process was
mentioned.

This untwisting process merits a more detailed descrip-
tion. Crystallite rotations have been modeled by Shewmon6

as a result of climb of GBD’s for untilting and proposed by
Pond and Smith7 as a result of GBD’s gliding for untwisting,
though a correct formula for untwisting rate was not given.

A few years ago, Cahn8 reexamined untwisting as a pro-
cess initiated by the surface attraction of the nearest bound-
ary dislocations. He assumed a simple geometry, half the
space occupied by a semi-infinite vacuum and the other half
by two crystals with an array of dislocations between them.
He also showed that the untwisting rate slows down as the
misorientation vanishes with no assumption about the retard-
ing mechanism of the dislocation motions. This result is dif-
ferent from the rotation rate derived from a driving force
based on the Read-Shockley equation of the boundary en-
ergy, where two semi-infinite crystals are assumed ignoring
image forces associated with finite boundary areas. Such a
simple approach is widespread in the literature. For example,
both Li9 and Erb and Gleiter10 have taken the Read-Shockley
equation and applied it to rotations of finite crystals. How-
ever, this approach gives an unrealistic infinite rotation rate
as the spacings of GBD’s become large.

It should be noticed that Chan and Balluffi,3,4 conscious
of the effect of the finite boundary area in their experiments,
never applied the Read-Shockley equation in the modeling of
untwisting but only in the untilting case when dislocation
spacings were very small compared to the neck size of the
boundary. Realizing the increasing influence of the image
forces on the remaining GBD’s, they did not apply the for-
mulation in later stages when GBD spacings were large.

Later, King and Balasubramanian11 used the Monte Carlo
method to study untilting by a random variation of disloca-
tion spacings. They found the rotation rate decreased with
Monte Carlo time steps similar to Cahn’s estimate.8 They

assumed a tilt boundary in a plate, but like Cahn8 they did
not take into account any of the diffusion mechanisms that
are necessary for untilting. Neither of the two models8,11

gives an exact kinetic mechanism or a rotation rate that can
be compared directly to the measured rotation rates.

III. COMPUTATIONAL PROCEDURE

Here, we re-examine the situation with a detailed analysis
of the untwisting rate based on the disappearance of the dis-
locations nearest to the boundary perimeter in the untwisting
of @001# twist boundaries. Our modeling geometry consists
of a twist boundary connecting the two surfaces of a plate.
Inside this boundary, we have two parallel arrays of equally
spaced right-hand screw dislocations with one array perpen-
dicular to the other. We also assume no new surface created
from the dislocation motions, which is consistent with the
ball-on-plate experiment.3 We have inevitably assumed that
the rotation of GBD’s by~Du/2! to accommodate the crys-
tallite untwisting ofDu is not an important kinetic step, a
point which will be discussed later in this paper.

Let us consider the conservative untwisting of a low angle
twist boundary due to the movement of screw dislocations
towards the free surfaces and their escape from the boundary
to the free surfaces. We will use the relationship between the
velocity v as well as the acting force observed in experimen-
tal observation of dislocation mobility and will take into ac-
count that the process takes place in a bounded medium. In
our model @Fig. 2~a!#, we consider an infinite plate in
vacuum or in air with a uniform thicknessd. Separating the
plate in two equal halves, the boundary runs from one free
surface to the other. Dislocations in boundary are in two
arrays: one is infinite in length and runs parallel to the sur-
faces; the other array runs perpendicular to these surfaces
and is of lengthd. These two arrays practically do not inter-
act with each other except to maintain mutual orthogonality
so we can consider only one of these arrays with the assump-
tion that the behavior of the other array will be the same. The
second array is therefore neglected in the calculation of the
untwisting rate. This geometry which forces the GBD’s to
retain their orientations is shown in Fig. 2~a!, while a sche-
matic representation of the experimental situation is shown
in Fig. 2~b!. We have studied a planar array of equally
spaced screw GBD’s, a configuration found experimentally.
Figure 3 is a transmission electron micrograph showing the
changes of GBD configuration during the final stage of un-
twisting of aS5 boundary.

In the geometry of our boundary~Fig. 2! the dislocations
nearest to the two surfaces escape from the crystal in the
same way, so we can suppose that the behavior of the array
is symmetric about the mid-plane of the plate. Here, we con-
sider an array of screw dislocations in a plate with the ge-
ometry as shown in Fig. 2~a!. TheX axis is perpendicular to
the free surfaces of the plate. The medium runs fromx50 to
x5d, whered is the thickness of the plate. TheY axis is
normal to the boundary on the ‘‘left’’ surface. TheZ axis lies
on the boundary and is parallel to the dislocation lines point-
ing out of the paper. If the coordinates of the first dislocation
are~x0,0!, and of another are~x,0!, then the interaction force

FIG. 1. The experimental data of angle-time dependence@u(t)#
of small particle rotation toS1 misorientation:m, crystallite 1~57
nm dia!, j, crystallite 2~75 nm dia!, l, crystallite 3~55 nm dia!.
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per unit length between these two screw dislocations can be
written12 as

F5
mb2

4pd

sin~px/d!

cos~px/d!2cos~px0 /d!
, ~1!

whereb is the Burgers vector andm is the shear modulus.
Suppose thatx0 is the distance from the dislocation nearest to
the ‘‘left’’ surface, and the dislocation spacing in the array
equalsL. As the first dislocation moves to the surface,x0
decreases due to the image force and the interaction with all
other dislocations in the array. We suppose, in accordance
with experimental observations, that~a! these dislocations
followed the first one while maintaining equal distances (L)
between all dislocations in the array, and~b! all them dis-
locations in the intervalx0<x<(d/2) move to the left sur-
face and symmetrically allm dislocations at the interval (d/
2)<x<d move to the right surface. The collective forceF int
acting on the first dislocation~x0,0! as the result of interac-
tion with the other~2m21! dislocations is

F int5
mb2

4pd
f int , ~2!

where f int , the dimensionless force, is given by

f int5S (
k51

m21
sin$p@~x0 /d!1~k/2m!#%

cos$p~x0/d!1~k/2m!#2cos~px0 /d!

1 (
k50

m21
sin$p@12~x0 /d!2~k/2m!#%

cos$p@12~x0 /d!2~k/2m!#%2cos~px0 /d!D .
~3!

The stresses acting on a dislocation as the result of image
forces can be obtained,13 where the interaction of screw dis-
locations with two interfaces in a heterophase medium was
considered. The heterophase medium was constructed as an
isotropic plate between two elastic half-spaces. If we sup-
pose that the elastic moduli of the two half-spaces go to zero,
the image forceF im acting on a screw dislocation located at
~x,0! in a plate is13

F im52
mb2

2p E
0

` sinhp~d22x!

sinhpd
dp, ~4!

or after integration in a simpler expression,

f im52p tanFp2 S 12
2x

d D G ,
F im52

mb2

4pd
f im , ~5!

where f im is the dimensionless image force.
This expression describes the image force acting on a dis-

location located at the pointx in a plate. Indeed, whenx→0
we obtain F im;2(mb2/4px); if x→d we obtain
F im;(mb2/4p)(1/d2x) and, lastly, whenx5(d/2) we ob-
tain F im50. Therefore, the resulting stress acting on the first
dislocation from its own image as well as the stress of inter-
action with the other dislocations and their images in array
can be expressed as

ssum5
mb

4pd
f sum, f sum5 f im1 f int . ~6!

The interval of timet0 during which this dislocation es-
capes the solid medium can be written similar to Cahn’s
expression:8

FIG. 2. The approach to the surface by an array of screw dislo-
cation that causes the untwisting:~a! schematic representing the
computational model~see text for details!; ~b! schematic represent-
ing the experimental situation.BB denotes the place of boundary
location ~the dislocation content of the boundary is shown sche-
matically!. @001# axis is perpendicular to the boundaries in both~a!
and ~b!.

FIG. 3. Transmission electron micrographs showing grid ofS5
secondary screw GBD’s in the neck region of a crystallite as it is
rotated progressively fromu.36.9° in~a! towards theS5, u536.9°
in ~b! and ~c!.
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t05E
xs

x0 dx0
v~ssum,T!

, ~7!

wheret0 is the time for the first dislocation disappearance. It
was shown by computer simulation14 that a dislocation core
approaching a free surface loses stability at a distancexs
from the surface equal to a few Burgers vectors~0.1–1 nm!.
Hence, the lower integration limit of~7! is xs instead of zero.

Let us discuss the functional dependence of the disloca-
tion gliding velocityv as a function of applied stresss and
temperatureT: v5v(s,T) for GBD’s. Nadgornyi15 noted
that from all experimental results the velocity of lattice dis-
locations can be expressed either in terms of an Arrhenius
law in the thermally activated region or asv5(bs/B) in the
viscous region, whereB5B(T) is the drag coefficient of
dislocations. A twin boundary is a special high-angle bound-
ary with a smallS, so a twinning dislocation can be consid-
ered as an example of a GBD. The investigation of the mo-
bility of twinning dislocations demonstrated~see Ref. 16 for
details! that they basically have two modes of motion: con-
tinuous viscous flow and intermittent thermally activated
motion. Based on this information, we consider the process
of untwisting under two cases:~a! when the viscous motion
of GBD’s occurs, and~b! when the motion of GBD’s is
thermally activated. Under each case, the untwisting rate
(du/dt) can be calculated throught0 according to Eq.~7!.
Here (du/dt);2(2b/dt0), and 2 tan~u/2!5(b/L), whereL
is the dislocation spacing andu is the angle of misorienta-
tion. The relationship has a minus sign because the angle
decreases with time. The calculated rates were compared
with the measured rotation rates to delineate between viscous
flow or thermally activated GBD motion as well as to obtain
data on the mobility of GBD’s.

Naturally, our model cannot take into consideration all
circumstances of the experiment. For example, we suppose
that the dislocation array is located within a plate of two
parallel smooth surfaces of the solid. In reality the region of
surface that defines the perimeter of the boundary has a com-
plicated configuration@see Fig. 2~b!#. An exact calculation of
the elastic field of a dislocation near the surfaces cannot be
carried out. We suppose also that all dislocations have infi-
nite length and are parallel to each other. It is obvious that all
the dislocations have a finite length. This outer surface of the
neck region is not flat but of a cylindrical symmetry similar
in geometry to the neck connecting a door knob to a door. As
a result, the ends of the dislocation are bent near the surface
so as to intersect the surface at right angles@see Fig. 2~b!#.
Nevertheless, when the curved parts of the dislocation are
very short compared to the straight segment of the disloca-
tion, the present approach is valid. Figures 3~a!, 3~b!, and
3~c! show an extreme case when the untwisting approached a
final stage when the end effect of dislocation can be impor-
tant. Because of the large dislocation spacings in Figs. 3~a!,
3~b! and 3~c!, the GBD arrangements during untwisting are
clearly shown. Therefore, present untwisting data for mobil-
ity calculation are taken when the straight segment of the
dislocation is much longer than the curved parts.

IV. RESULTS AND DISCUSSIONS

We are now ready to compare the experimental and com-
putational results. In the viscous case we obtain, by substi-

tuting v5~bssum/B! into Eq. ~7!,

t05
4pBd2

mb2 E
~xs /d!

~1/2m! dj0
f sum

, where j05
x0
d
. ~8!

We calculatet0 for the first pair of dislocations to escape,
then for the second pair withm replaced bym21, and so on.
We can then compare the interval of time and the angle of
rotation and obtain the dependence ofu on t, which will be
compared with the experimental untwisting rates.

We first consider the untwisting ofS1 boundaries, with
~001! as the boundary plane and~a/2!^110& as the Burgers
vectors~Fig. 1!. We taked;55 nm~the diameter of the neck
in the experiment was 55–75 nm!, b;0.3 nm,m;331010

N/m2, B;1024 N s/m2 ~experimental values forB for fcc
metals were given by Nadgornyi:15 5731026 N s/m2 for Al
and 20.331026 N s/m2 for Cu!. The graph ofu(t) for these
values of parameters is shown in Fig. 4. Comparing this
graph with the experimental data shown in Fig. 1, we see that
the time scale is off by ten orders of magnitude, which shows
that expression~8! is completely unable to describe the ex-
perimental data. We conclude that viscous motion of screw
GBD’s was not operative in the experiments of Chan and
Balluffi.3

Now we consider the case of thermally activated motion.
The experimental observations of Chan and Balluffi3 show
that a thermal activation is required for untwisting of pure
twist boundaries. Earlier observations3 indicate that local
‘‘barriers of some kind must be present which inhibit the
otherwise glissile motion of the screw GBD’s, but the de-
tailed nature of these barriers is unknown.’’ Nadgornyi15 no-
ticed that, in pure fcc metals, in the case of crystal lattice
dislocations the resistance to their motion was extremely low
on their usual slip plane, and, as a result, there is a widely
held opinion that dislocation motion is viscous in most fcc
metals. The motion of lattice dislocations in fcc metals for
$111% glide planes will not experience Peierls barriers at the
temperature range in question. When the same lattice dislo-

FIG. 4. Graph of theu(t) for viscous motion of dislocations.
Note that the time scale is in picoseconds.
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cations glide on$100% planes, it is expected that there is a
larger Peierls force,17 but, of course, there are few data bear-
ing the point.

We cannot at present consider all circumstances defining
the height of Peierls barrier for the observed GBD’s. A con-
sideration of the Peierls barrier for lattice dislocations ac-
cording to Ref. 18 gives the expression:

sP}
m

12n
expS 2

h

b
A 2

12n D ,
whereh is the planar spacing of the glide planes, andn is the
Poisson ratio. Therefore, the Peierls barrier depends both on
the glide plane and the Burgers vector. A low angle@001#
twist boundary must untwist on~001! and so the Peierls bar-
rier will be a larger than that of a lattice dislocation with the
same b5~a/2!^110& gliding on the wider spaced$111%
planes. From this argument we can see that GBD’s on high
angle @001# twist boundaries ought to have a larger Peierls
barrier. We must take into account also the fact that point
defects can give additional contribution to the drag of
GBD’s, given that the density of point defects is usually
greater at the grain boundaries than inside the crystal.

Such estimates compel us to consider the thermally acti-
vated motion of dislocations with high Peierls barriers by
kink formation and propagation for dislocations gliding dur-
ing untwistingS1 andS5. Following the approach described
by Hirth and Lothe17 we can write the expression for velocity
of a dislocation in the form

v5v0ssumexpS 2
E

kTD . ~9!

Hirth and Lothe17 considered two possibilities:~a! a situation
of low stresses and strong obstacles for kinks propagation,
i.e., a pair of kinks can propagate only on a limited segment
of dislocation; and~b! a situation of high stresses and no
obstacles, where there is no limitation on kinks propagation
and kinks can propagate along dislocation until annihilation.
Accordingly, in situation~a! v05(b3sv

2nDd/ss
2kT), where

nD is the Debye frequency,ss is the distance between the
stable position of a kink along the dislocation line, andsv is
the distance between adjacent Peierls valleys; andE52Fk ,
whereFk is the energy of kink formation~we suppose that
limited segment of dislocation;d!. In situation~b!, corre-
spondingly, v05(2b3sv

2nD/sskT) and E5Fk . When this
approach17 is used for consideration of lattice dislocation
motion in covalent semiconductors with high Peierls barriers
~see, for example, Refs. 19–21! it is supposed that a migrat-
ing kink feels a large potential variation~the secondary
Peierls potential! along dislocation. Therefore the activation
energy for kink migrationEm should also be taken into ac-
count. ThenE52Fk1Em in case~a! andE5Fk1Em in case
~b!. Since we are considering a situation of high stress and
small volume, we will use case~b! for explaining our experi-
mental data. Combining Eqs.~9! and ~8! we obtain

t05Fv0 mb

4pd2
expS 2

E

kTD G
21E

~xs /d!

~1/2m! dj0
f sum

. ~10!

The graph of the functionu(t) based on Eq.~10! for the case
of the thermally activated motion of dislocations is shown on

the Fig. 5. We taked555 nm,b50.3 nm,m5331010 N/m2,
ss'b, sv'b, nD'1012 s21, T5600 K, E'2.71310219 J
~i.e., 1.69 eV!.

It is interesting to compare these data with that obtained
by measuring the Bordoni peak with the internal friction
method. This peak, as well known,17 is attributable to
double-kink formation along dislocations. The activation en-
ergy for the process in the case of gold has a value of 0.16
eV.22 This activation energy is substantially smaller than our
result, but in their case the lattice dislocations glide on$111%
planes.

Now we consider the untwisting by GBD motion into the
misorientation ofS5. Here, the Burgers vectors of GBD’s
are ~a/10!@310# and ~a/10!@13̄0#. The graph of the function
u(t) based on Eq.~10! for the case of the thermally activated
motion of GBD’s is shown in Fig. 6. We taked5100 nm,
b50.1289 nm,m'331010 N/m2, ss'10b, sv'5b, T5723
K, nD'1012 s21, E'2.95310219 J ~1.84 eV!. If we compare
the computational and experimental results in Figs. 5 and 6,
there is satisfactory agreement when we use the above-
mentioned values of parameters. We estimate that, in theS5
case, the Peierls stress is a little greater than that in the case
of S1 where the screw GBD’s have the same Burgers vector
b5~a/2!^110& as lattice dislocations. We can suggest some
explanation for this result. Computer simulation23 has re-
vealed structural units at the GBD core in fcc metals. Peri-
odic entrance of these units in the core of moving GBD’s
would result in the appearance of additional ‘‘grain boundary
Peierls force.’’ The higher Peierls stress reflects the more
complicated rearrangement of atoms as the GBD’s propagate
in theS5 boundary versus that in theS1.

Thus, the GBD mobility based on experimental results
shows that Peierls stresses are very high. Perhaps a high
Peierls stress is not that uncommon, since lattice dislocations
in semiconductors with diamond lattice have very large
Peierls barrier.15 For example, the experimental velocity
for high-purity Si can be described24 phenomenologically

FIG. 5. Graph of the functionu(t) for thermally activated mo-
tion of $100%^110& lattice dislocations. Superimposed is the experi-
mental data from Fig. 1 for untwisting ofS1 @001# twist boundaries.
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v5v0s expS 2
DH

kT D , ~11!

wherev0 is constant,s is external stress, andDH is activa-
tion enthalpy and equal to 2.35 eV for screw dislocations in
silicon.24 In the region of low stresses and low dislocation
velocity, the authors of Ref. 24 can safely assume thatDH is
stress independent. The 2.35-eV value is close to our data
with E51.84 eV for GBD’s onS5 boundaries. Thus, we
arrive at the conclusion that GBD’s can have Peierls barriers
as large as do lattice dislocations in diamond lattice. When
we use expression~9! with reasonable values of correspond-
ing parameters and calculate the above values ofv0,ssum as
well as corresponding values ofE, the calculated graphsu(t)
are close to experimental data~see Figs. 5 and 6, where these
values are used!.

At the same time we note that the present approach is
valid for stresses normally much smaller than the elastic
modulus~i.e.,!0.01m!. The present stresses acting on dislo-
cations are very high, and apparently the energy barrier could
not be separated into individual kink energies and migration
energy. In this case, calculation of kink formation and mo-
tion should include the elastic energy and the potential en-
ergy of the Peierls barrier.17 Since the critical kink configu-
ration is of the order of a few dislocation core radii, atomistic
calculations are needed. Based upon the results of atomistic
calculations of the Peierls barrier of twinning dislocations
~see, for details Ref. 16! we can expect that the contours of
Peierls energy relief for GBD’s has a complicated shape with
narrow and deep minima. Therefore, a consistent consider-
ation of the situation is very difficult and beyond the scope of
this article. We can expect that when high stress acts on a
dislocation, the dislocation’s velocity becomes a nonlinear
function of stress. It would be reasonable to use an expres-
sion similar to~9! with a high power function dependence of
stress with exponent as a phenomenological parameter. Gen-

erally, even in the stress range much smaller than the Peierls
stress for the various kinds of semiconductors, the velocity
of a lattice dislocations is generally expressed empirically
similar to the following nonlinear function of the stress~see,
for example, Refs. 19, 25, and 26!:

v5v0ssum
n expS 2

E

kTD , ~12!

wheren is the stress exponent. The magnitude ofn is mea-
sured to be between 1 and 2~for Si, n'1!. In the range of
high stresses magnitude ofn should be increased. But there
is no generally established view on this problem and it would
bring complications~additional fitting parameter, for ex-
ample!, unwarranted at this stage of the work, when we want
to show, principally, a possibility for applying our method to
study GBD mobility. Here, we will show by a simple esti-
mate that the motion of GBD’s in our experiments is char-
acterized by high energetic barriers. Let us rewrite expres-
sion ~9! in the form

v5v0F~ssum!expS 2
E

kTD , ~13!

whereF~ssum! is a function of applied stress and could have
the most common form. Then we can expect that
t0}exp(E/kT) anddu/dt;2(2b/dt0)}2exp~2E/kT!. We
will use our experimental data~see Fig. 6! when there are
similar initial misorientations for different temperatures~723
and 673 K!. Therefore we can suppose that the number of
dislocations, and thus function’s values ofF~ssum!, are simi-
lar in both these cases. Using the correspondence experimen-
tal data we can estimate the initial angular velocities of the
particles’ rotation. Taking their ratio, we can estimate that
the energy barrier for the GBD motion is on the order of eV.
Therefore, we can conclude that the motion of GBD’s in
gold during the untwisting intoS1 andS5 misorientations is
thermally activated with high-energy barriers while the
Hirth-Lothe approach17 can be applied to describe the GBD
motion. If we estimateFk according to Ref. 17 as
~0.120.2!mb2sv , we can obtain from the above values of
activation energiesE’s the formation energy of double kinks
Fk50.51–1.02 eV, the migration energy of the kinks
Em51.18–0.67 eV forS1, and, similarly, forS5 screw GBD
motion Fk50.2–0.4 eV,Em51.64–1.44 eV. The kink mi-
gration energies in Si and Ge are both high and take an
essential part of the apparent activation energy for the lattice
dislocation motion.27 Accordingly to earlier analysis,28 the
major contribution to the activation energy~1.3 eV! comes
mainly from the kink migration energy for the glide of screw
GBD’s in aS9 twist boundary in Si. It appears that a similar
situation is realized in the two considered cases of GBD
motion in gold.

An additional small detail: the rotation of the GBD’s
themselves by~Du/2! to accommodate the crystallite untwist-
ing of Du probably proceeds against the same high Peierls
stress that, overall, decreases the untwisting rate and gives
rise to a higher apparent Peierls barrier that we have just
calculated by assuming pure glide without GBD rotation.
There is an additional circumstance in our experimental situ-
ation that can increase the energetic barrier for dislocation

FIG. 6. Experimental data points and computational curveu(t)
calculated from the thermally activated model for the case of crys-
tallite rotation intoS5 misorientation:m, sample 1~T5623 K!; j,
sample 2~T5673 K!; d, sample 3~T5723 K!.
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motion. There are two sets of screw dislocations at right
angles to each other. These two sets do not interact elasti-
cally, but they could be dragged by the contact interaction of
dislocation cores. If there were an energy barrier for the
translation of the overlapping cores of the two parallel dis-
location arrays, the dislocations would not be straight but
drag behind at each intersection. Since straight dislocations
were observed, we can suppose that the translation of such
overlapping cores has no appreciable energy barrier.

Finally, we estimate the thickness of the layer nearest to
the surface that will not have dislocations, and the maximal
size of crystallite that can be rotated. Near the surface, the
layer free from dislocations can be determined from the con-
dition F im(x0).S0b, whereS0b is the force of dry or static
friction. This force includes the Peierls force~for a given
temperature! and the force needed to overcome barriers cre-
ated by other lattice defects on the path of the considered
dislocation~for details see Ref. 16!. It is easy to show, using
relationship~5!, that inequalityF im (x0).S0b is satisfied for
all locations of dislocation near the free surface withx0,x0s,
where

x0s5
d

2 F12
2

p
tan21S 4S0dmb D G . ~14!

x0 is the thickness of the layer next to the surface that will
not contain dislocations.

Now we consider the condition of crystallite rotation. The
dislocation at the pointx1 in the array begins to move to the
surface only if the condition

u~F im1F int!u.uS0bu ~15!

is satisfied. In order to obtain an estimate of the location of
this dislocation we could use the simplified relationship for
F im andF int . We estimated the interaction between disloca-
tions by considering the case of an infinite medium and as-
suming that the distribution of dislocations in the glide plane
can be described by such a continuous function as the den-
sity of dislocationsr(x). In this case~see, for details, Ref.
17! F int5(mb2/2p)* 0

dr(x)dx/(x12x). The singular integral
in this expression is to be understood in the sense of princi-
pal value, i.e.,

F int5
mb2

2p
lim

Dx→0
F E

0

x12Dx r~x!dx

x12x
1E

x11Dx

d r~x!dx

x12x G .
The distribution of dislocations in the glide plane is uniform:
r(x)5r05const. Therefore we can estimateF int
;2~mb2r0/2p!lnu(d2x1)/x1u, r0;~1/L!. We use a simpli-
fied expression forF im : F im;2(mb2/4p)[(1/x)2(1/d
2x)]. The location of the mentioned dislocation can be es-
timated from condition~15!, in which we can use the above
expressions forF int andF im . Condition ~15! can be written
now in the form

Z b~122j1!

2dj1~12j1!
1
b

L
lnU12j1

j1
UZ.U2pS0

m U, ~16!

where z15(x1/d). The first term in~16! accounts for the
image force; the second term accounts for the interaction
between dislocations in the array. When the considered dis-
location is nearest to a free surface~i.e.,x1&x0!, the particle

would not be rotating at all. Therefore we can estimate the
minimal size of this crystallite that would not rotate from
~16! if we suppose thatj1&(L/d);(1/2m):

d;
mb

S0
m ln~2m!. ~17!

Therefore, if we knew experimental data about maximald
for which particle can rotate we would estimateS0 from
condition ~17! and vice versa. For example, if~m/S0!;102,
m;102 we obtain the reasonable value ofd;53104b for
the minimal particle size that would not have visible rotation
for some interval of time. Exact determination of this inter-
val is needed in a more detailed consideration. When the
temperature rises, the activated kink propagation mechanism
of untwisting will be in effect, so the minimald will in-
crease.

Naturally, we conclude that the used values of thermally
activated motion parameters of GBD’s correspond reason-
ably well to the rotation rates recorded in the experiment. It
is necessary to investigate them in a broader range of tem-
peratures and angles to understand the escape of crystallites
from S13 and S17 cusps/minima misorientations as
observed.3 But the present obtained results forS1 andS5
demonstrate that this thermally activated glide model agrees
with the experiment and provides an opportunity to deter-
mine the type of obstacle hindering the GBD glide in the
~001! plane.

Our results of high Peierls barriers for the glide of GBD’s
in grain boundary planes can explain the high yield stress
observed in nanoparticle compacts of fcc metals.29–31 In
nanoparticle compacts, the motion of dislocations inside par-
ticles requires high shear stress concentrations. A significant
number of boundaries are likely to be off the easy glide
planes of$111% for GBD motions, which is one of the im-
portant deformation processes for nanoparticle compacts.
This suggestion can explain the higher yield stress and the
sharper temperature dependence of yield stress for nanopar-
ticle compacts than for ordinary prepared metal samples, be-
cause deformation in nanoparticle compacts involves ther-
mally activated GBD motion, which has an activation energy
;2 eV.31

V. CONCLUSIONS

An experimental-computational method is applied to
study mobility of GBD’s. It is shown that during the untwist-
ing of twist boundaries, GBD gliding motion is not a viscous
flow, but a thermally activated process, overcoming the
Peierls barriers, i.e, lattice friction in the confined glide plane
~001! of the boundary. The Hirth-Lothe approach for acti-
vated kink propagation can satisfactorily describe the motion
of GBD’s during untwisting into theS5 misorientation. The
situation is the same in the case of lattice dislocations
$100%^110& during the untwisting of theS1 grain boundaries.
The barriers are estimated for the motion of these disloca-
tions on the basis of experimental results. The possibility to
estimate the largest size (d;53104b) of small particle that
can be rotated by GBD motion is also shown.
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