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Magnus force on skyrmions in ferromagnets and quantum Hall systems
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The topological solitons, or “skyrmions,” in a planar ferromagnet experience a Magnus force proportional
to the product of their velocity and the surrounding magnetization. It has been suggested that the charged
quasiparticles near filling factar=1 in the GaAs quantum Hall effect are skyrmions. If so, we might expect
this spin-induced Magnus force to act on the quasiparticles in addition to the Lorentz force they experience
because of their charge. We show that this is not the case, and that the Magnus and Lorentz forces are merely
different descriptions of the same physical eff¢&0163-18206)06423-5

I. INTRODUCTION see that the two forces aidentical in both magnitude and
sign. This equality is no coincidence. There is really only

Sondhiet al. have arguetithat the lowest-energy charged oneforce, and its two apparently distinct origins are merely
quasiparticles near filling fraction= 1 in the GaAs quantum differing interpretations of a single geometric phase. Only
Hall effect are topological solitons, or “skyrmions.” The one of the two forces should therefore be taken into account
v=1 ground state is a filled spin-polarized Landau level. Fowhen considering the motion of the skyrmions. The present
noninteracting electrons the elementary excitations consist gfaper is devoted to a discussion of this.
the addition of a single electron with a reversed spin, or the In Sec. I, we review the Lagrangian approach to the dy-
removal of a single electron from the fully polarized Landaunamics of a spin. We then show how the Magnus force ap-
level. The change in spin from the addition or removal of anpears in a conventional ferromagnet composed of neutral
electron is in each cas&S,=—3. skyrmions are different. Spins obeying the Landau-Lifshitz equation. In Sec. Ill, we
They consist of an extended region where the spin directioghow how the Landau-Lifshitz dynamics arises in a simple
gradually twists. This slowly varying spin texture serves tomodel for the Hall effect. We then use a duality transforma-
bind or repel a unit charge, so the skyrmions still havetion to demonstrate that the Lorentz force is merely the Mag-
chargeq= *e, but their total spin is much larger than  nus force in disguise. Section IV provides a simple physical
They are not perturbatively related to the single-particle el€xplanation of why there is only one force.
ementary excitations. skyrmions will be energetically fa-
vored over theS,=3 quasiparticles whenever sharply local- Il. FERROMAGNETS
ized charge fluctuations require more energy than . . . . .
overturning a number of spins—i.e., when the gyromagnetic To estaphsh our notation, we start V\.”th a brief review of
ratio g is small® the dynamics of a single spin, whose direction we denote by

The skyrmion picture has received strong support fromf€ Unit vectom. The classical action for a spin in a mag-
recent measurements by Barrettal2 These authors see a netic fieldB is a functional of the spin trajectory, or history,

precipitous fall in the spin polarization of the electron gas on(t) and is given b$®

both sides ofv=1. This clearly indicates that many spins are

being overturned by the addition or removal of a single elec- S= _Jf h~A(n)dt+,uJ B-n dt. (2.2
tron.

By looking for motional narrowing effects it is possible The second term in this expression is simply/H dt,
that the NMR methods used in Ref. 2 could probe the MOwhereH = —uB-n is the Hamiltonian for a Spin of moment
bility of the quasiparticles. Before attempting to calculate the,n in the fieldB. The first term is more complicated. Here
mobility by taking into account dissipative effects and quan-a(n) denotes the gauge potential of a ufilux =4)
tum diffusion, it is, however, necessary to have a thoroughmagnetic” monopole located at the center of the unit
understanding of the quasiclassical forces acting on a Mo\spheres? on which n lies. For open trajectories this term
ing skyrmion. Now the skyrmion configurations in a CONVen-genends on the particular gauge chosenfpbut when the
tional ferromagnet experience a “Magnus” force propor- mation of then vector is required to be periodic, as for

tional to the product of their velocity and the local gxample when computing partition functions, we can rewrite
magnetizatiori. This force prevents the skyrmion from mov- (2.1) in a manifestly gauge invariant mannef as

ing with respect to the spin background. Because the skyr-

mion quasiparticles in the quantum Hall effect are electri-

cally charged, we would expect them to experience a Lorentz ~ S= —Jj f n-(d,nXagn)dr dt+u é B-ndt. (2.2
force in addition to the Magnus force. This Lorentz force is

of the same magnitude as the Magnus force, and one migHAthe coordinates and O<7<1 parametrize the interior of
hope that the two forces would cancel, allowing the skyrmi-the regionI'CS? bounded by the curvea(t) on which
ons to move freely. Sadly this does not happen. It is easy ta=1. We have extended the definition of the functig) to
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a functionn(t,7): I'—S? such thatn(t,1)=n(t). The nu-  sphere once as the point(x*,x?) covers the plane. Using
merical value of the actioB is independent of the choice of spherical polar coordinatesand ¢ to parametrizes?, these
extension. Geometrically, the first term(i2.2) is simply the  solutions can be written
oriented area of the regial. . a

The classical equation of motion is found by varying e'%cotor2= —, (2.10
n(t) in (2.2). The variation of the first term is most easily z
obtained from its geometric interpretation. We evaluate thavhere z=x'+ix2. For anti-skyrmions we replace by its
change in the area df due to the variation in its boundary, conjugate. The spins i2.10 point up at the origin and

and so find gradually tilt down as one moves outwards. They point
_ straight down at infinity.
6S=-1J 3€ [n-(SnXn)]dt+ u é B-ondt. (2.3 It is fairly easy to showthat a multi-skyrmion solution to

V2n=0is given by
In order to respect the constraint on the lengtmpfve can

write Sn=nx éw, from which e'’cotd/2=1(2), (211
. where f(z) is any rational function ofz. The number of
6S= 3€ ow-[In—u(nxB)]dt. (2.4 skyrmions—i.e., the degree or winding number of the map
. o R2—S?>—is given by the number of pole@quivalently by
The action principle therefore tells us that the number of zergf f(z). For the simple stiffness term in
Jn—u(nxB)=0. (2.5  (2.6) the strain energy of these multi-skyrmion solutions is

_ i independent of the parameters in the rational function. In
We see that the spin undergoes the desired Larmor precésaicylar, single skyrmions of different scateare all de-
sion about the direction of thB field. , generate in energy. The skyrmions in the quantum Hall ef-
The role of the “monopole” is made clear by acting on ect have a definite size determined by a competition be-
(2.5 with nX to obtain tween Coulomb repulsion and the Zeeman enérijgey are
- B _ more compact than the solutions given (2y10.
J(nxn)+p[B=(B-n)n]=0. 2.6 Now we investigate the mobility of the skyrmions. Let us
The first term in(2.6) can now be interpreted as the “Lor- denote the spin configuration of a skyrmion centered at the
entz” force on a particle of “charge’d constrained to move origin by ng(r). We introduce a collective coordinate
on $? in the field of the monopole. The other term, the com-R= (R}, R?), so that the spin field of a moving skyrmion can
ponent ofuB tangent to the sphere, is the force attempting tabe written, at least as a first approximation, as
align the spin along the direction &. The particle is mass- n(r,t)=ng[r—R(t)]. We insert this ansatz int(2.8), and
less, so the two forces acting on it must add to zero. see what action it costs to move the skyrmion around a
When the system is quantized by placing the classicatlosed path in the plane. We therefore wish to evaluate
action in the exponent of a path integi@k [d[ n]exp(S),
the ambiguity in the region(“inside” vs “outside”) _ f : . 2
bounded byn(t) requiresJ to take integer or half-integer S==pJd | n(r.O-Adn(r.D)dt o, (212
values, giving rise to the familiar quantization of angular,,;p n(r,t)=ng[r—R(t)]. It is actually more convenient to

momentum. The quantization of spin by this method is parfgnsider the variation d.12 under a small perturbation in
of the general theory of group representations via the methog,o pathR(t). We then use

of coadjoint orbits.
We can immediately extend these ideas to a continuum 5S=—pJf n-(Snx n)dt d2x, (2.13
model of a ferromagnet witlp spins per unit area, each of
magnitudeJ. The only modifications required are to make ,,
n a function of position as well as time, and to replace the

) L7 ) d .
externalB field by a spin-stiffness term. We therefore take A= — a—rno(f— R)RI (2.14

S= —pr n-A(n)dt dzx—gKf (Vn)?dt d), (2.7 gnd

. T . J )
or equivalently, for periodic histories, Sn=— a—r“o(r— R)SR'. (2.15

X
S=—pr [n-(9,nxan)]dr dt d? —%Kf (Vn)2dt d?x. Thus
(2.9 5S= —pJf No(r —R)-[ding(r —R)
The corresponding equation of motion ]
. . _ ipj 2
Jph—Knx V2n=0 2.9 X djng(r—R)J6R R'dt d“x

is the Landau-Lifshitz equatiriescribing the precession of _ _p\]f SR Rj{ f No(r —R)-[dino(r —R)
eachn in the field of its neighbors. '

The equatiorV?n=0 has topological soliton solutions, or
skyrmions, where the mapping(r):R?—S? covers the X d;no(r — R)]dzx]dt. (2.16
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The factor in braces if2.16 is independent oR, and is  of spin. This is one of the models that was used by Sondhi
equal to 47rNe;, where NV is the degree of the map et all
n:R?>—S?, i.e., the skyrmion number. We therefore have that As a Lagrangian for this system we will take

. . 1
8S=—4mwNpJd jE (6R'R?>- 6R?RY)dt.  (2.17 L=ig'[dy—i(ag+eAy)]d— W|[ai—i(ai+eAi)]¢>|2

This is the variation of N ) ) 1
— — — MVO
2(|¢| pO) + 4@ € auavaa" (31)

- _ 1p2_ p2pl
S=—2mNpJ fﬁ (RIR*-RR7)dt. 218 Here p=(¢1,¢,) is a two-component complex scalar field.

. . _ The quantity® is the statistics parameter which must take
When used in the path integra=/d[n]exp(S), (2.19 one of the value® = (2n+ 1) in order that the boson field

means that the skyrmion accumulates a phasenofa ev- ¢ represents a fermiorA, is the external electromagnetic

ery spin3 it encircles.. The phys_ical consequence of thi.sfield andm* is the effective mass of the electron. Repeated
phase may be recognized by noting that the right-hand S'dFOman indices imply sums over the spatial directionsl

of (_2.|18) ]ics :]he Seilfme t"?‘rm _that 09}?”3 in the a_lct:c_or;dfo:c 4and 2, while repeated greek indices imply sums over both
particle of chargeV moving in a uniform magnetic field o space and time directions=0, 1, and 2.

strength 2rpJ. Like the charged particle therefore, the skyr- We should also include Coulomb and Zeeman interac-

mion must experience a transverse Lorentz or Mag_nus f_orcffons. These are essential for determining the energy and size
proportional to its velocity. We will use the latter designation of the skyrmions, but they are not important ingredients in

because the force is proportional to the surrounding spin deqhe topological effects we are studying here. We will there-

Sity. . L . fore omit them from our expressions so as not to unduly
The Magnus force pins the skyrmion in place just as arutter our formulas

electron in the lowest Landau level is pinned in place by the | " J.der to find a solution with uniform density

uenching of its kinetic energy. The addition to the Lagrang- _ 2 2y _ m ; —
icém of anginertial term propc?r);ional tm|2 would inducg a gp:(|¢l(|j.+|¢2r|] )=po at f_||||r:cg Iféait'o';”_lllimr“’ \a’e
mass for the skyrmion, and permit it to make cyclotron or—ml_;:zszt 2a®1ust v:[/it(; tﬁ:g%er;“gf@le:é;j_ll):gﬁoslénsso ;sa:o
bits, but in the absence of scattering its wandering would stil po.

. . > o nsurepy>0. At this magic value the Chern-Simons field
be strongly restricted. A gradient in an additional ZeemanCancels the effect of the external magnetic field dnWe
term will, however, lead to the skyrmion drifting along the

. assume that this adjustment has been made, and that the so-
skyrmion’s Zeeman-energy contours at such a speed that ﬂf&tion selected by the Zeeman term hag=1pg and
Magnus force balances the Zeeman-energy gradient. y Po

At first sight it is surprising that we accumulate a phase¢2:0' We now examine the dynamics of the fluctuations

proportional to the area encircled by the skyrmion. Theabout this uniform solution under the conditions that the den-

phase comes from a term involving the space integrai,of §ity varies suffigiently slowly th_at derivatives gf can be
: ignored. (Including the derivatives ofp merely adds a

and far from the skyrmion the spins do not move. Nalvely“quantum pressure” of the kind familiar from the Gross-

this would lead us to expect a phase proportional to at mo%itaevski model of a quantum fieJdWe therefore replace

the length of the skyrmion trajectory, and not to tlagea it . I 1 .
encloses. The incipient paradox is resolved by keeping trach‘?’éi)”:ga?;‘?gzgf]ffn reminiscent of #&P" version of the

of the motion of any particular spin due to a family of skyr-
mion trajectories. Assume that the skyrmion first passes our

chosen spin on its right, but then the trajectories gradually | =jpz'[g9,—i(ay+eAy)]z— L*l[ai—i(aﬁeAi)]zF
sweep across the spin so that the skyrmion eventually passes 2m

the spin on its left. We see that the corresponding family of 1

spin paths or8? start with a small loop near the south pole, — = (p—po)’+ 1o €77a,d,a,. (3.2
then, as the skyrmion passes closer to the spin, the loop in 2 40

S* grows in area, circling the equator of the sphere when theyere is a two-component complex field with the constraint
center of the skyrmion goes exactly through the spin. AS thgt;_ 7,124 |z,]2=1. We can now partially decouple the

skyrmion passes further to the left the loop begins to shrinkin gynamics from the charge transport by using the identity
toward the south pole again, but the area enclosed by the

loop continues to grow, reachingm4 or the entire sphere, p _ p m*
when the skyrmion passes far to the left. Thus, although the ﬁ|[&i_|(ai+eAi)]Z|2:8m* (Vn)2+ 2—J2. 3.9
spins far to the left of the skyrmion’s trajectory hardly move, P
they must be counted as contributingr 40 $n- A dt. whereJ=(J1,J%), with
- p .
I1l. QUANTUM HALL EFFECT JI:m*i [ZTﬁiZ—I(ai-l—eA-)] (3.9

We now wish to examine the dynamics of skyrmions in
the quantum Hall effect. We will describe this system bythe number currenty®=z"o3z the local spin direction, and
means of the Zhang-Hansson-Kivels&#HK) modell® as  Vn=(d;n,d,n).
modified by Lee and Kan¥,to take into account the effects Our Lagrangian now looks like
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* _ T o rot s i
L=ip[zTaoz—i(ao+er)]—8p*(Vn)z— r;—au..., L=lplz g0zl (@0t @A) [+l Z gz i@+ eA) )
m P 3 m* o, A 2. L e P 2
(3.5 +ZJ —E(p—po) +I96lu auayaa—W(Vn) .
where the dots represent the potential and Chern-Simons
terms that are temporarily uninteresting. (3.10

We next demonstrate the8.5) represents the action for a |htegrating over the (1) phase degree of freedom inen-

ferromagnet of the kind considered i:‘ Sec. Il. We alreadyorces the current conservation law as a constraint, so we can
have a spin stiffness term wii=p/4m™, and we will now  yrite the current/density three vectop£J°,J%,J2) as the
show that the time derivatives afprovide then-A(n) term. .yl of a three-dimensional vector field. We set

The expression appearing as part of the currents in thgu =(p0,0,0) equal toe**79 A% and
kinetic term,KMEzTa#z, is essentially the Berry connection {0} 0= e
2 . B . .
on S°. It is no surprise, then, tha, satisfies J#_J?o}: 79 A, . (3.11)

i . . . . )
3,K,—d,K,==n-(d,nxa,n). (3.6) At this point we also integrate out the Chern-Simons field
MmNy vy 2 “ v . .
a, . After some further integration by parts and use of the
We can use this equation to find the variation&gfunder a relation 9 po=eB,, we find
variation of the directionn. Replacing one of the partial

*
derivatives bys gives us _ m A 0
¥o g L=27J"A,+ A - 03+ 4, + ZJZ—E(JO—J{O})Z
i
oK, ==n-(nxXd,n)+4d, A, 3.

p=gn (A%, +0, @7 - 8:;* (Vn)2, (3.12
whereA =z 5z. To be rather more concrete, we could write
z=Uz,, wherez,=(}) andU e SU(2). We make a variation Where
in U so thatsUU ~1=iéw- ¢/2, and find that L

Sn=nx éw jﬂ:ﬁeﬂwﬁf‘z_“a”z‘x (313

i i is the skyrmion number current.
oK,=— Eb\/v- ad,n+ Eaﬂ(n SW). (3.8 We can make the physics content(8f12) clearer by first
linearizing by setting = p in the kinetic-energy term. Then,
However we make the variation, the second termakn, isa  for cosmetic reasons, we adjust the units of length and time
pure gauge transformation, and so has no effect on the L#&0 thatc=\\po/m*, the velocity of density waves in the
grangian provided the number conservation equatio@bsence of the magnetic field, becomes unity, and define the
p+V-Jis satisfied. Substituting the variation fra®.8) into  field strength tensafF,,=d,A,—d,.A4,, to be the dual of the

(3.5 (and again ignoring gradients pj gives us electron number current.
With these changes, we have

p p
E(ﬂﬁv'V)n: am nx(V?n), (3.9 A

Fuv= g Fun

L=27J"(A,+ A% - %EWA#
wherev=J/p is the local electron-fluid velocity.
We see thai(3.9) is the Landau-Lifshitz equation for a 1 ’
densityp of spin+ particles—except that the time derivative N ﬁ(vn) ' 3.1
has been replaced by a convective derivatiithe (v-V)n
term comes from the variation df in (3.5).] This modifi-  We see that the skyrmion number current acts as a source for
cation is to be expected because the Galilean invariance in# topologically massive gauge field, ,'* and also sees the
plicit in (3.1 requires the spin waves to be carried alongbackground field4d!®. The curl ofA{%} is equal to bottp,
with the local flow. and eB,/20, so the interaction with the background field
Provided the electron fluid remains stationary, the spins irprovides a phase for each skyrmion world line that can be
the quantum Hall system obey exactly the same equation dsterpreted as producing either the Magnus force on the skyr-
in a conventional ferromagnet. The solitons, although theymion, or, provided that the skyrmion number current and the
are electrically charged, must therefore experience only thelectron number current associated with the skyrmion world
same Magnus force that they feel in the neutral ferromagnetine are proportional with proportionality factd®/, the
Now the skyrmion does carry its charge along with it so aLorentz force. The interaction with the topologically massive
small velocity field is induced by the skyrmion motion—but gauge field provides a phase factor that depends on all skyr-
this does not affect our conclusions, as we will now show bymions present and gives the skyrmion Feffor v=1), or
making a partial duality transformation. anyon (for v=1/|2n+1|) statistics. The topologically mas-
We first promote the curregtto the status of an indepen- sive gauge field also has its own degrees of freedom. These
dent dynamical variable by making a Hubbard-Stratanovictare the gapped magnetophonons or magnetoplasmon density-
transformation. The Lagrangian becomes fluctuation modes.
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If we momentarily freeze out the density-fluctuation in the collective orientational order of the spins and the mo-
modes by ignoring theF,,7*" term in (3.14), the equation tion of the electrons®

of motion from varyingA,, is In Ref. 15 Volovik pointed out that, once a gauge trans-
formation has been applied to align the local spin quantiza-
20 ¢ =0 e F, =20(J*—J5). (3.19 tion frame alongn, the electrons respond to the winding-

gumber density ofn as if it were a magnetic flux. This
observation provides a simple picture of what is happening

current density coincides with the electron current density. ICiGIir’g :r‘] gjgi\:]'qnegngi%):];r%iiﬁslsqhﬂecg;geéd ;ng Isflkvr(rjwln(i)(;n
we now reintroduce the&, ,7*” term, the two current den- P P g y

sities no longer exactly coincide, but, because the extra ter ccglerates the eIectro_ns, producing a spectral f!OW that ef-
that appears in the equation of motion is a pure divergenc ectlvgly transfers a single e[ectron from one side of _the

thetotal currents flowing along a skyrmion world line are the ermi surface to the other. His electrons have thus gained
same. This confirms that the Magnus force and Lorentz forc§'0Mentum &y=2mp.

on th smion are ndeed caual,and that they are merely, L P SIS LeSen O 1 phenerenon s e
different physical interpretations of the same phase factor. y gn gnus ' g
posed of mobile electrons with an ungapped Fermi surface,

the electrons gain both energy and momentum from the mov-
ing skyrmion. A force must be applied to the skyrmion to
The same disappearing_force phenomenon occurs for tH@'OVide this momentum and energy. When the electron gas is
vortexlike charged quasiparticles in the original ZHK model.in & quantum Hall phase, however, no change in occupation
These quasiparticles also look as if they should experience BUmber through spectral flow is possible because there is a
Magnus force, both because of the phase winding in the oidap in the spectrum. The skyrmion is therefore no longer
der parameter and because there is circulation around tHble to excite the system—but the moving “flux” is still
vortex. They should also be acted on by a Lorentz forcettempting to transfer mechanical momentum to the electron
because of their charge. Once again only one forcdluid. The electrons are unable to accelerate in response be-
survives® In this case, however, the effect is not so startling.cause they are locked in place by the external magnetic field.
The circulation vanishes at large distance from the quasiparthe mechanical momentum generated by the changing
ticles and, in any case, they are very much children of theflux” must therefore be transferred to the magnet that cre-
quantum Hall phase and one is less likely to grant thenfites this field. Now exerting a force on the magnet requires
attributes outside it. the electrons to produce r@al magnetic field. Fortunately
Skyrmions] on the other hand, have an independent exisfhe Hall effect itself requires the geometric “flux” to accu-
ence in planar ferromagnets. They experience a Magnudulate extra charge in its vicinity, and the electrons are able
force when neutral, and so would naively be expected td0 generate the necessary field from the current created by
experience an additional Lorentz force when given a chargédragging this charge along with the skyrmion. Since magnets
It requires an intricate conspiracy for the two forces to be-obey Newton’s third law, the magnet then produces an equal
come one. Such intricacies are not unknown in ferromagnet&nd opposite force on the skyrmion. By this sequence of
Identifying the force on a soliton is equivalent to identifying maneuvers the Hall effect electrons have transformed the
the momentum that the force is changing. For the Landauoriginal Magnus force into a Lorentz force.
Lifshitz system this is nontrivial. In the continuum approxi-
mation to a ferromagnet with spins in fixed locations the

momentum operatoP itself is not well defined. Only the  The question addressed in this paper arose in a discussion
translation operatofT,=expfiaP} makes sense, and then with Amir Caldeira. Most of the work was carried out at the
only for translations through a distanaethat takes one past Erwin Schralinger Institute in Vienna, and | would like to

an integer number of =3 spins* When the spins are at- thank the staff and members of the ESI for their hospitality.
tached to mobile electrons, as they are in the Hall effect, thé must also thank Eduardo Fradkin and Frank Gaitan for
system is manifestly translation invariant, and must thereforeliscussions about both the physics and the text. This work
have a well-defined momentum. There is, however, novas supported by the National Science Foundation under
gauge-invariant separation between the momentum residinGrant No. DMR94-24511.

This shows that, up to the expected factor that reflects th
skyrmion possessing total charge Ii(21), the topological

IV. DISCUSSION
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