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The topological solitons, or ‘‘skyrmions,’’ in a planar ferromagnet experience a Magnus force proportional
to the product of their velocity and the surrounding magnetization. It has been suggested that the charged
quasiparticles near filling factorn51 in the GaAs quantum Hall effect are skyrmions. If so, we might expect
this spin-induced Magnus force to act on the quasiparticles in addition to the Lorentz force they experience
because of their charge. We show that this is not the case, and that the Magnus and Lorentz forces are merely
different descriptions of the same physical effect.@S0163-1829~96!06423-5#

I. INTRODUCTION

Sondhiet al.have argued1 that the lowest-energy charged
quasiparticles near filling fractionn51 in the GaAs quantum
Hall effect are topological solitons, or ‘‘skyrmions.’’ The
n51 ground state is a filled spin-polarized Landau level. For
noninteracting electrons the elementary excitations consist of
the addition of a single electron with a reversed spin, or the
removal of a single electron from the fully polarized Landau
level. The change in spin from the addition or removal of an
electron is in each caseDSz52 1

2. skyrmions are different.
They consist of an extended region where the spin direction
gradually twists. This slowly varying spin texture serves to
bind or repel a unit charge, so the skyrmions still have
chargeq56e, but their total spin is much larger than12.
They are not perturbatively related to the single-particle el-
ementary excitations. skyrmions will be energetically fa-
vored over theSz5

1
2 quasiparticles whenever sharply local-

ized charge fluctuations require more energy than
overturning a number of spins—i.e., when the gyromagnetic
ratio g is small.1

The skyrmion picture has received strong support from
recent measurements by Barrettet al.2 These authors see a
precipitous fall in the spin polarization of the electron gas on
both sides ofn51. This clearly indicates that many spins are
being overturned by the addition or removal of a single elec-
tron.

By looking for motional narrowing effects it is possible
that the NMR methods used in Ref. 2 could probe the mo-
bility of the quasiparticles. Before attempting to calculate the
mobility by taking into account dissipative effects and quan-
tum diffusion, it is, however, necessary to have a thorough
understanding of the quasiclassical forces acting on a mov-
ing skyrmion. Now the skyrmion configurations in a conven-
tional ferromagnet experience a ‘‘Magnus’’ force propor-
tional to the product of their velocity and the local
magnetization.3 This force prevents the skyrmion from mov-
ing with respect to the spin background. Because the skyr-
mion quasiparticles in the quantum Hall effect are electri-
cally charged, we would expect them to experience a Lorentz
force in addition to the Magnus force. This Lorentz force is
of the same magnitude as the Magnus force, and one might
hope that the two forces would cancel, allowing the skyrmi-
ons to move freely. Sadly this does not happen. It is easy to

see that the two forces areidentical in both magnitude and
sign. This equality is no coincidence. There is really only
one force, and its two apparently distinct origins are merely
differing interpretations of a single geometric phase. Only
one of the two forces should therefore be taken into account
when considering the motion of the skyrmions. The present
paper is devoted to a discussion of this.

In Sec. II, we review the Lagrangian approach to the dy-
namics of a spin. We then show how the Magnus force ap-
pears in a conventional ferromagnet composed of neutral
spins obeying the Landau-Lifshitz equation. In Sec. III, we
show how the Landau-Lifshitz dynamics arises in a simple
model for the Hall effect. We then use a duality transforma-
tion to demonstrate that the Lorentz force is merely the Mag-
nus force in disguise. Section IV provides a simple physical
explanation of why there is only one force.

II. FERROMAGNETS

To establish our notation, we start with a brief review of
the dynamics of a single spin, whose direction we denote by
the unit vectorn. The classical action for a spin in a mag-
netic fieldB is a functional of the spin trajectory, or history,
n(t) and is given by4,5

S52JE ṅ•A~n!dt1mE B•n dt. ~2.1!

The second term in this expression is simply2*H dt,
whereH52mB•n is the Hamiltonian for a spin of moment
mn in the fieldB. The first term is more complicated. Here
A(n) denotes the gauge potential of a unit~flux 54p)
‘‘magnetic’’ monopole located at the center of the unit
sphereS2 on which n lies. For open trajectories this term
depends on the particular gauge chosen forA, but when the
motion of then vector is required to be periodic, as for
example when computing partition functions, we can rewrite
~2.1! in a manifestly gauge invariant manner as6

S52JE E n•~]tn3] tn!dt dt1m R B•n dt. ~2.2!

The coordinatest and 0<t<1 parametrize the interior of
the regionG,S2 bounded by the curven(t) on which
t51. We have extended the definition of the functionn(t) to
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a functionn(t,t): G→S2 such thatn(t,1)5n(t). The nu-
merical value of the actionS is independent of the choice of
extension. Geometrically, the first term in~2.2! is simply the
oriented area of the regionG.

The classical equation of motion is found by varying
n(t) in ~2.2!. The variation of the first term is most easily
obtained from its geometric interpretation. We evaluate the
change in the area ofG due to the variation in its boundary,
and so find

dS52J R @n•~dn3ṅ!#dt1m R B•dn dt. ~2.3!

In order to respect the constraint on the length ofn, we can
write dn5n3dw, from which

dS5 R dw•@Jṅ2m~n3B!#dt. ~2.4!

The action principle therefore tells us that

Jṅ2m~n3B!50. ~2.5!

We see that the spin undergoes the desired Larmor preces-
sion about the direction of theB field.

The role of the ‘‘monopole’’ is made clear by acting on
~2.5! with n3 to obtain

J~ ṅ3n!1m@B2~B•n!n#50. ~2.6!

The first term in~2.6! can now be interpreted as the ‘‘Lor-
entz’’ force on a particle of ‘‘charge’’J constrained to move
onS2 in the field of the monopole. The other term, the com-
ponent ofmB tangent to the sphere, is the force attempting to
align the spin along the direction ofB. The particle is mass-
less, so the two forces acting on it must add to zero.

When the system is quantized by placing the classical
action in the exponent of a path integralZ5*d@n#exp(iS),
the ambiguity in the region~‘‘inside’’ vs ‘‘outside’’ !
bounded byn(t) requiresJ to take integer or half-integer
values, giving rise to the familiar quantization of angular
momentum. The quantization of spin by this method is part
of the general theory of group representations via the method
of coadjoint orbits.7

We can immediately extend these ideas to a continuum
model of a ferromagnet withr spins per unit area, each of
magnitudeJ. The only modifications required are to make
n a function of position as well as time, and to replace the
externalB field by a spin-stiffness term. We therefore take

S52JrE ṅ•A~n!dt d2x2 1
2KE ~¹n!2dt d2x, ~2.7!

or equivalently, for periodic histories,

S52JrE @n•~]tn3] tn!#dt dt d2x2 1
2KE ~¹n!2dt d2x.

~2.8!

The corresponding equation of motion

Jrṅ2Kn3¹2n50 ~2.9!

is the Landau-Lifshitz equation8 describing the precession of
eachn in the field of its neighbors.

The equation¹2n50 has topological soliton solutions, or
skyrmions, where the mappingn(r ):R2→S2 covers the

sphere once as the pointr5(x1,x2) covers the plane. Using
spherical polar coordinatesu andf to parametrizeS2, these
solutions can be written

eifcotu/25
a

z
, ~2.10!

where z5x11 ix2. For anti-skyrmions we replacez by its
conjugate. The spins in~2.10! point up at the origin and
gradually tilt down as one moves outwards. They point
straight down at infinity.

It is fairly easy to show9 that a multi-skyrmion solution to
¹2n50 is given by

eifcotu/25 f ~z!, ~2.11!

where f (z) is any rational function ofz. The number of
skyrmions—i.e., the degree or winding number of the map
R2→S2—is given by the number of poles~equivalently by
the number of zeros! of f (z). For the simple stiffness term in
~2.6! the strain energy of these multi-skyrmion solutions is
independent of the parameters in the rational function. In
particular, single skyrmions of different scalea are all de-
generate in energy. The skyrmions in the quantum Hall ef-
fect have a definite size determined by a competition be-
tween Coulomb repulsion and the Zeeman energy.1 They are
more compact than the solutions given by~2.10!.

Now we investigate the mobility of the skyrmions. Let us
denote the spin configuration of a skyrmion centered at the
origin by n0(r ). We introduce a collective coordinate
R5(R1,R2), so that the spin field of a moving skyrmion can
be written, at least as a first approximation, as
n(r ,t)5n0@r2R(t)#. We insert this ansatz into~2.8!, and
see what action it costs to move the skyrmion around a
closed path in the plane. We therefore wish to evaluate

S52rJE ṅ~r ,t !•A„n~r ,t !…dt d2x, ~2.12!

with n(r ,t)5n0@r2R(t)#. It is actually more convenient to
consider the variation of~2.12! under a small perturbation in
the pathR(t). We then use

dS52rJE n•~dn3ṅ!dt d2x, ~2.13!

with

ṅ52
]

]xi
n0~r2R!Ṙi ~2.14!

and

dn52
]

]xi
n0~r2R!dRi . ~2.15!

Thus

dS52rJE n0~r2R!•@] in0~r2R!

3] jn0~r2R!#dRiṘjdt d2x

52rJE dRiṘj H E n0~r2R!•@] in0~r2R!

3] jn0~r2R!#d2xJ dt. ~2.16!
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The factor in braces in~2.16! is independent ofR, and is
equal to 4pNe i j , where N is the degree of the map
n:R2→S2, i.e., the skyrmion number. We therefore have that

dS524pNrJ R ~dR1Ṙ22dR2Ṙ1!dt. ~2.17!

This is the variation of

S522pNrJ R ~R1Ṙ22R2Ṙ1!dt. ~2.18!

When used in the path integralZ5*d@n#exp(iS), ~2.18!
means that the skyrmion accumulates a phase of 2p for ev-
ery spin-12 it encircles. The physical consequence of this
phase may be recognized by noting that the right-hand side
of ~2.18! is the same term that occurs in the action for a
particle of chargeN moving in a uniform magnetic field of
strength 2prJ. Like the charged particle therefore, the skyr-
mion must experience a transverse Lorentz or Magnus force
proportional to its velocity. We will use the latter designation
because the force is proportional to the surrounding spin den-
sity.

The Magnus force pins the skyrmion in place just as an
electron in the lowest Landau level is pinned in place by the
quenching of its kinetic energy. The addition to the Lagrang-
ian of an inertial term proportional touṅu2 would induce a
mass for the skyrmion, and permit it to make cyclotron or-
bits, but in the absence of scattering its wandering would still
be strongly restricted. A gradient in an additional Zeeman
term will, however, lead to the skyrmion drifting along the
skyrmion’s Zeeman-energy contours at such a speed that the
Magnus force balances the Zeeman-energy gradient.

At first sight it is surprising that we accumulate a phase
proportional to the area encircled by the skyrmion. The
phase comes from a term involving the space integral ofṅ,
and far from the skyrmion the spins do not move. Naively
this would lead us to expect a phase proportional to at most
the lengthof the skyrmion trajectory, and not to thearea it
encloses. The incipient paradox is resolved by keeping track
of the motion of any particular spin due to a family of skyr-
mion trajectories. Assume that the skyrmion first passes our
chosen spin on its right, but then the trajectories gradually
sweep across the spin so that the skyrmion eventually passes
the spin on its left. We see that the corresponding family of
spin paths onS2 start with a small loop near the south pole,
then, as the skyrmion passes closer to the spin, the loop in
S2 grows in area, circling the equator of the sphere when the
center of the skyrmion goes exactly through the spin. As the
skyrmion passes further to the left the loop begins to shrink
toward the south pole again, but the area enclosed by the
loop continues to grow, reaching 4p, or the entire sphere,
when the skyrmion passes far to the left. Thus, although the
spins far to the left of the skyrmion’s trajectory hardly move,
they must be counted as contributing 4p to rṅ•A dt.

III. QUANTUM HALL EFFECT

We now wish to examine the dynamics of skyrmions in
the quantum Hall effect. We will describe this system by
means of the Zhang-Hansson-Kivelson~ZHK! model,10 as
modified by Lee and Kane,11 to take into account the effects

of spin. This is one of the models that was used by Sondhi
et al.1

As a Lagrangian for this system we will take

L5 if†@]02 i ~a01eA0!#f2
1

2m*
u@] i2 i ~ai1eAi !#fu2

2
l

2
~ ufu22r0!

21
1

4Q
emnsam]nas . ~3.1!

Heref5(f1 ,f2) is a two-component complex scalar field.
The quantityQ is the statistics parameter which must take
one of the valuesQ5(2n11)p in order that the boson field
f represents a fermion.Am is the external electromagnetic
field andm* is the effective mass of the electron. Repeated
roman indices imply sums over the spatial directionsi51
and 2, while repeated greek indices imply sums over both
space and time directionsm50, 1, and 2.

We should also include Coulomb and Zeeman interac-
tions. These are essential for determining the energy and size
of the skyrmions, but they are not important ingredients in
the topological effects we are studying here. We will there-
fore omit them from our expressions so as not to unduly
clutter our formulas.

In order to find a solution with uniform density
r[(uf1u21uf2u2)5r0 at filling fraction n51/u2n11u, we
must adjust the magnetic fieldBz5]1A22]2A1 , so that
eBz52Qr0 , with the sign ofQ5(2n11)p chosen so as to
ensurer0.0. At this magic value the Chern-Simons field
cancels the effect of the external magnetic field onf. We
assume that this adjustment has been made, and that the so-
lution selected by the Zeeman term hasf15Ar0 and
f250. We now examine the dynamics of the fluctuations
about this uniform solution under the conditions that the den-
sity varies sufficiently slowly that derivatives ofr can be
ignored. ~Including the derivatives ofr merely adds a
‘‘quantum pressure’’ of the kind familiar from the Gross-
Pitaevski model of a quantum field.! We therefore replace
~3.1! by a Lagrangian reminiscent of theCP1 version of the
nonlinears model,11

L5 irz†@]02 i ~a01eA0!#z2
r

2m*
u@] i2 i ~ai1eAi !#zu2

2
l

2
~r2r0!

21
1

4Q
emnsam]nas . ~3.2!

Herez is a two-component complex field with the constraint
z†z5uz1u21uz2u251. We can now partially decouple the
spin dynamics from the charge transport by using the identity

r

2m*
u@] i2 i ~ai1eAi !#zu25

r

8m*
~¹n!21

m*

2r
J2, ~3.3!

whereJ[(J1,J2), with

Ji5
r

m* i
@z†] iz2 i ~ai1eAi !# ~3.4!

the number current,na5z†saz the local spin direction, and
¹n[(]1n,]2n).

Our Lagrangian now looks like
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L5 ir@z†]0z2 i ~a01eA0!#2
r

8m*
~¹n!22

m*

2r
J21•••,

~3.5!

where the dots represent the potential and Chern-Simons
terms that are temporarily uninteresting.

We next demonstrate that~3.5! represents the action for a
ferromagnet of the kind considered in Sec. II. We already
have a spin stiffness term withK5r/4m* , and we will now
show that the time derivatives ofz provide theṅ•A(n) term.

The expression appearing as part of the currents in the
kinetic term,Km[z†]mz, is essentially the Berry connection
on S2. It is no surprise, then, thatKm satisfies

]mKn2]nKm5
i

2
n•~]mn3]nn!. ~3.6!

We can use this equation to find the variations ofKm under a
variation of the directionn. Replacing one of the partial
derivatives byd gives us

dKm5
i

2
n•~dn3]mn!1]mL, ~3.7!

whereL5z†dz. To be rather more concrete, we could write
z5Uz0 , wherez05(0

1) andUPSU~2!. We make a variation
in U so thatdUU215 idw•s/2, and find that

dn5n3dw,

dKm52
i

2
dw•]mn1

i

2
]m~n•dw!. ~3.8!

However we make the variation, the second term indKm is a
pure gauge transformation, and so has no effect on the La-
grangian provided the number conservation equation
ṙ1¹•J is satisfied. Substituting the variation from~3.8! into
~3.5! ~and again ignoring gradients ofr) gives us

r

2
~] t1v•¹!n5

r

4m*
n3~¹2n!, ~3.9!

wherev5J/r is the local electron-fluid velocity.
We see that~3.9! is the Landau-Lifshitz equation for a

densityr of spin-12 particles—except that the time derivative
has been replaced by a convective derivative.@The (v•¹)n
term comes from the variation ofJ2 in ~3.5!.# This modifi-
cation is to be expected because the Galilean invariance im-
plicit in ~3.1! requires the spin waves to be carried along
with the local flow.

Provided the electron fluid remains stationary, the spins in
the quantum Hall system obey exactly the same equation as
in a conventional ferromagnet. The solitons, although they
are electrically charged, must therefore experience only the
same Magnus force that they feel in the neutral ferromagnet.
Now the skyrmion does carry its charge along with it so a
small velocity field is induced by the skyrmion motion—but
this does not affect our conclusions, as we will now show by
making a partial duality transformation.

We first promote the currentJ to the status of an indepen-
dent dynamical variable by making a Hubbard-Stratanovich
transformation. The Lagrangian becomes

L5 ir@z†]0z2 i ~a01eA0!#1 i @z†] iz2 i ~ai1eAi !#J
i

1
m*

2r
J22

l

2
~r2r0!

21
1

4u
emnsam]nas2

r

8m*
~¹n!2.

~3.10!

Integrating over the U~1! phase degree of freedom inz en-
forces the current conservation law as a constraint, so we can
write the current/density three vector (r[J0,J1,J2) as the
curl of a three-dimensional vector field. We set
J$0%

m [(r0,0,0) equal toe
mns]nAs

$0% and

Jm2J$0%
m 5emns]nAs . ~3.11!

At this point we also integrate out the Chern-Simons field
am . After some further integration by parts and use of the
relation 2Qr05eBz , we find

L52pJm~Am1Am
$0%!2QJmAm1

m*

2r
J22

l

2
~J02J$0%

0 !2

2
r

8m*
~¹n!2, ~3.12!

where

Jm5
1

2p i
emns]mz̄a]nza ~3.13!

is the skyrmion number current.
We can make the physics content of~3.12! clearer by first

linearizing by settingr5r0 in the kinetic-energy term. Then,
for cosmetic reasons, we adjust the units of length and time
so thatc[Alr0 /m*, the velocity of density waves in the
absence of the magnetic field, becomes unity, and define the
field strength tensorFmn5]mAn2]nAm to be the dual of the
electron number current.

With these changes, we have

L52pJm~Am1Am
$0%!2

1

2
QemnsAmFmn2

l

4
FmnFmn

2
1

8l
~¹n!2. ~3.14!

We see that the skyrmion number current acts as a source for
a topologically massive gauge fieldAm ,

12 and also sees the
background fieldA$0%. The curl ofA$0% is equal to bothr0
and eBz/2Q, so the interaction with the background field
provides a phase for each skyrmion world line that can be
interpreted as producing either the Magnus force on the skyr-
mion, or, provided that the skyrmion number current and the
electron number current associated with the skyrmion world
line are proportional with proportionality factorQ/p, the
Lorentz force. The interaction with the topologically massive
gauge field provides a phase factor that depends on all skyr-
mions present and gives the skyrmion Fermi~for n51), or
anyon~for n51/u2n11u) statistics. The topologically mas-
sive gauge field also has its own degrees of freedom. These
are the gapped magnetophonons or magnetoplasmon density-
fluctuation modes.

16 576 53MICHAEL STONE



If we momentarily freeze out the density-fluctuation
modes by ignoring theFmnFmn term in ~3.14!, the equation
of motion from varyingAm is

2pJm5QemnsFns52Q~Jm2J0
m!. ~3.15!

This shows that, up to the expected factor that reflects the
skyrmion possessing total charge 1/(2n11), the topological
current density coincides with the electron current density. If
we now reintroduce theFmnFmn term, the two current den-
sities no longer exactly coincide, but, because the extra term
that appears in the equation of motion is a pure divergence,
the total currents flowing along a skyrmion world line are the
same. This confirms that the Magnus force and Lorentz force
on the skyrmion are indeed equal, and that they are merely
different physical interpretations of the same phase factor.

IV. DISCUSSION

The same disappearing-force phenomenon occurs for the
vortexlike charged quasiparticles in the original ZHK model.
These quasiparticles also look as if they should experience a
Magnus force, both because of the phase winding in the or-
der parameter and because there is circulation around the
vortex. They should also be acted on by a Lorentz force
because of their charge. Once again only one force
survives.13 In this case, however, the effect is not so startling.
The circulation vanishes at large distance from the quasipar-
ticles and, in any case, they are very much children of the
quantum Hall phase and one is less likely to grant them
attributes outside it.

skyrmions, on the other hand, have an independent exist-
ence in planar ferromagnets. They experience a Magnus
force when neutral, and so would naively be expected to
experience an additional Lorentz force when given a charge.
It requires an intricate conspiracy for the two forces to be-
come one. Such intricacies are not unknown in ferromagnets.
Identifying the force on a soliton is equivalent to identifying
the momentum that the force is changing. For the Landau-
Lifshitz system this is nontrivial. In the continuum approxi-
mation to a ferromagnet with spins in fixed locations the
momentum operatorP̂ itself is not well defined. Only the
translation operatorTa5exp$iaP̂% makes sense, and then
only for translations through a distancea that takes one past
an integer number ofJ5 1

2 spins.
14 When the spins are at-

tached to mobile electrons, as they are in the Hall effect, the
system is manifestly translation invariant, and must therefore
have a well-defined momentum. There is, however, no
gauge-invariant separation between the momentum residing

in the collective orientational order of the spins and the mo-
tion of the electrons.15

In Ref. 15 Volovik pointed out that, once a gauge trans-
formation has been applied to align the local spin quantiza-
tion frame alongn, the electrons respond to the winding-
number density ofn as if it were a magnetic flux. This
observation provides a simple picture of what is happening
here. A moving flux produces an electric field and in Volo-
vik’s one-dimensional example the passage of a skyrmion
accelerates the electrons, producing a spectral flow that ef-
fectively transfers a single electron from one side of the
Fermi surface to the other. His electrons have thus gained
momentum 2kf52pr.

A two-dimensional version of this phenomenon is the
physical origin of the Magnus force. For a ferromagnet com-
posed of mobile electrons with an ungapped Fermi surface,
the electrons gain both energy and momentum from the mov-
ing skyrmion. A force must be applied to the skyrmion to
provide this momentum and energy. When the electron gas is
in a quantum Hall phase, however, no change in occupation
number through spectral flow is possible because there is a
gap in the spectrum. The skyrmion is therefore no longer
able to excite the system—but the moving ‘‘flux’’ is still
attempting to transfer mechanical momentum to the electron
fluid. The electrons are unable to accelerate in response be-
cause they are locked in place by the external magnetic field.
The mechanical momentum generated by the changing
‘‘flux’’ must therefore be transferred to the magnet that cre-
ates this field. Now exerting a force on the magnet requires
the electrons to produce areal magnetic field. Fortunately
the Hall effect itself requires the geometric ‘‘flux’’ to accu-
mulate extra charge in its vicinity, and the electrons are able
to generate the necessary field from the current created by
dragging this charge along with the skyrmion. Since magnets
obey Newton’s third law, the magnet then produces an equal
and opposite force on the skyrmion. By this sequence of
maneuvers the Hall effect electrons have transformed the
original Magnus force into a Lorentz force.
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~1935!; W. Döring, Z. Phys.124, 501 ~1947!; C. Herring and
Ch. Kittel, Phys. Rev.81, 869 ~1951!.

9For a review, see R. Rajaraman,Solitons and Instantons~North-
Holland, Amsterdam, 1982!.

10S.-C. Zhang, T. H. Hansson, and S. A. Kivelson, Phys. Rev. Lett.
62, 82 ~1989!.

11D. H. Lee and C. L. Kane, Phys. Rev. Lett.64, 1313
~1990!.

12J. Schonfield, Nucl. Phys.B185, 157~1981!; S. Deser, R. Jackiw,
and S. Templeton, Ann. Phys.~N.Y.! 140, 372 ~1982!.

13M. Stone, Phys. Rev. B42, 212 ~1990!.
14F. D. M. Haldane, Phys. Rev. Lett.57, 1488~1986!.
15G. E. Volovik, J. Phys. C20, L83 ~1987!.

16 578 53MICHAEL STONE


