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The tight-binding model is presented as a successful theory for describing cohesion. It allows for rapid, but
accurate, evaluation of electronic properties, total energies, and forces, while being simple enough to allow
insight into the nature of bonding. The problem of applying this model to very large systems by diagonalizing
the Hamiltonian matrix is discussed. Moments methods provide an efficient way to evaluate energies and
forces from the Hamiltonian, even for large systems. However, for systems with sharp features in a broad
density of states, many moments are required to achieve convergence. By reference to a moments method@the
bond-order potential~BOP!# and a cluster-based method@cluster recursion~CR!#, the origin of the need for
many moments is explained. In particular, it is found that the inclusion of anexactdescription of the first-
neighbor shell is important for obtaining accurate forces. For strongly covalent systems it also improves the
energy convergence. Whereas CR gives rapid convergence with respect to number of levels, BOP is found to
give more rapid convergence with respect to CPU time.

I. INTRODUCTION

Widespread interest in the atomistic modeling of materials
properties is being shown at the moment, with many meth-
ods presently available, different ones being applicable to
different problems. There is considerable effort being made
to find new methods that are applicable to a wide range of
materials but which are also computationally efficient.Ide-
ally a single method~or a set of compatible methods that can
be used together in a systematic way! that can be applied to
all systems will be found since many interesting problems
~such as catalysis! involve several materials with quite dif-
ferent properties. At present no such complete scheme exists,
though considerable progress towards it has been made.

To reach this goal, we need a single general underlying
theory of cohesion, and one or more appropriate numerical
techniques to implement the theory. To be general, the un-
derlying theory has to be based on a quantum mechanical
description of electron motion, since the differences in ma-
terials properties lie in the differences in the electronic struc-
ture for the materials. For instance, metallic systems have
wave functions that must be viewed as long ranged, whereas
strongly covalent systems can be characterized by short-
ranged wave functions~leading to the concept of the chemi-
cal bond!.

There are a number of quantum mechanical methods that
are routinely used ranging from very accurate many-electron
ab initio methods such as quantum Monte Carlo, through
slightly less accurate single electronab initio methods such
as the local-density approximation~LDA ! to density-
functional theory,1 down to the semiempirical methods such
as tight binding~TB!.2,3 It is now becoming apparent that TB
schemes can offer sufficient accuracy for many materials as
well as great simplicity in computation and analysis of re-
sults. They have been applied successfully to metallic
systems,4–6 semiconducting systems,7–14 including the liquid
phase,15–18and strongly covalent systems.19,20Thus TB pro-

vides a good general theory of cohesion for computer mod-
eling, though it cannot yet claim to be universal in its appli-
cability.

The appropriate numerical technique for implementing
TB when only a small number of atoms is being considered
is direct diagonalization of the Hamiltonian matrix. How-
ever, for this method, the time per molecular dynamics~MD!
step scales as the third power of the number of atoms in the
unit cell. This scaling is disastrous for simulations of large
numbers of atoms: it sets a practical limit of order 100 atoms
for MD. Thus it is necessary to find methods that can extract
the useful information from the Hamiltonian matrix~such as
the total band-structure energy and the contribution of the
band-structure energy to the forces on the atoms! with a
much better scaling, ideally linear scaling@O(N) methods#.

SeveralO(N) methods suitable for TB have been pro-
posed recently. In this paper we are interested in themoments
based methods.21–26We focus on these methods since they
have been successful for describing electronic structure, and
for molecular dynamics~MD!, and often allow insight into
the nature of bonding. Traditionally these methods have been
designed to be used with only a few moments~up to about
11!. However, it has been found that for MD for certain
systems many moments are necessary in order to reach con-
vergence. In this paper we aim to shed light on the origin of
this need, and to spell out the correct way to handle the many
moments. We do this by comparingone moments-based
method ~the bond-order potential23,24! with a cluster-based
method, which is explained below. However, the conclusions
apply to moments methods in general.

In the remainder of this paper we outline the TB model,
with some details about the density matrix and Green’s func-
tions. The central ideas behind moments methods are given,
together with details of the bond-order potential. The cluster
method is then described, and results for energies and forces
from the two approaches are compared for a variety of sys-
tems.
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II. TIGHT BINDING

It is convenient at this point to note some key concepts
connected with the TB model of cohesion.27,3 It will be as-
sumed that the basis set is an orthonormal set of atomiclike
orbitals u ia& where i is a site index, anda is an orbital
index. The Hamiltonian can then be represented by the ma-
trix Hia, jb5^ iauĤu jb&. The on-site elements of the matrix
are given the symbols:« ia5Hia,ia . The cohesive energy,
assuming that the electrons are at a finite temperatureT, is
written as the sum of bond, promotion, entropic, and repul-
sive energies:

Ecoh5Ebond1Eprom1Erep1Eent

52(
ia

E ~E2« ia!nia~E! f @~E2m!/kBT#dE

1(
ia

« ia~Nia2Nia
0 !1

1

2(iÞ j
f~r i j !

22kBT(
ia

E s@~E2m!/kBT#nia~E!dE, ~1!

wherenia(E) is the density of states projected onto orbital
u ia&, Nia and Nia

0 are the number of electrons in orbital
u ia& in the condensed and free atomic systems, respectively,
and f(r i j ) is a repulsive pair potential. The function
f (x)51/@11exp(x)# is the Fermi function, and
s(x)52$ f „x)ln„f (x)…1@12 f (x)# ln@12f(x)#% is the en-
tropy density. The bond energy is the attractive contribution
that leads to cohesion. The promotion energy is a repulsive
energy due to the excitation of electrons from their free
atomic ground state as atoms are brought together. The en-
tropic term is the contribution to the free energy from the
entropy due to the thermal excitation of electrons into empty
states. The repulsive energy is the term that accounts for the
repulsion of the ionic cores at short range. It has contribu-
tions from electrostatics, and from the repulsion of overlap-
ping orbitals due to Pauli’s principle.

The density matrix and Green’s functions

Both the bond-order potential and the cluster method can
be implemented by means of Green’s functions, and both
make use of the density matrix, so these are now described.
The Lanczos algorithm and auxiliary space are useful math-
ematical tools for developing the formalism~and for numeri-
cal implementation! so are also described here.

The band energy and forces can be written in terms of the
density matrixr ia, jb ~the off-diagonal components of which
are also called bond orders!:

Ecoh52 (
ia, jb

Hia, jbr jb,ia2(
ia

« iaNia
0 1

1

2(iÞ j
f~r i j !

22kBT(
ia

E s@~E2m!/kBT#nia~E!dE,

Fl522 (
ia, jb

]Hia, jb

]l
r jb,ia2

1

2(iÞ j

]f~r i j !

]l
. ~2!

Herel is an atomic coordinate, andFl52]Ecoh /]l.
The operator expression for the single-particle Green’s

function „Ĝ(Z)… is (Z2Ĥ)Ĝ(Z)51̂. Matrix elements of the
Green’s function can be taken, to which we give the follow-
ing notation:Gia, jb(Z)5^ iauĜ(Z)u jb&. The matrix equa-
tion for the Green’s function is then

(
kg

~Zd i ,kda,g2Hia,kg!Gkg, jb~Z!5d i , jda,b . ~3!

The density matrix is obtained from the Green’s function
through the following equation:

r ia, jb52
1

p
ImH E dEGia, jb~E1 i01! f @~E2m!/kBT#J ,

~4!

where 01 stands for a positive infinitesimal. A robust scheme
for carrying out integrals over energy of the product of the
Fermi function and a function of energy that is analytic off
the real axis is given in Appendix A.

A very stable, and rapidly convergent, method for calcu-
lating the diagonal elements of the Green’s-function matrix
is the recursion method.22 This is based on the Lanczos
algorithm,28 which is an efficient way of tridiagonalizing a
matrix. The central equation is

ĤuUn&5anuUn&1bnuUn21&1bn11uUn11&. ~5!

The statesuUn& are orthonormal (̂UnuUm&5dn,m), and tridi-
agonalize the Hamiltonian:

^UmuĤuUn&55
an if m5n,

bn if m5n21,

bn11 if m5n11,

0 otherwise.

~6!

The matrix element of the Green’s functionG00(Z)
5^U0uĜ(Z)uU0& is obtained from the recursion coefficients
an andbn as a continued fraction:

G00~Z!5
1

Z2a02
b1
2

Z2a12
b2
2

Z2a22
b3
2

�

. ~7!

To obtain the diagonal Green’s-function matrix element
Gia,ia(Z) then, it is merely necessary to begin the recursion
process withuU0&5u ia&, and then use Eqs.~6! and~7!. For
an infinite system, there could be an infinite number of levels
in the continued fraction. It is often the case, however, that
the exact values can be replaced by estimated values after a
certain number of levels, without reducing the accuracy sig-
nificantly. The simplest approximation is to take
an5a` ,bn5b` for n.N, whereN is the number of exact
levels, anda` andb` are constants defining the band center
and bandwidth.29 The constant terms can be summed exactly
to form the square root terminator:
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t~Z!5
1

Z2a`2
b`
2

Z2a`2
b`
2

Z2a`2
b`
2

�

5
1

b`
F S Z2a`

2b`
D 2 iA12S Z2a`

2b`
D 2G . ~8!

The other matrix elements@Gnm(Z)5^UnuĜ(Z)uUm&# are
obtained from another recurrence relationship which follows
directly from the definition of the Green’s function and the
statesuUn&:

~Z2an!Gnm~Z!2bnGn21,m~Z!2bn11Gn11,m~Z!5dn,m .
~9!

Both of the methods to be described below can be formu-
lated most easily if an auxiliary space is first introduced. Let
vectors in this space be represented by the following sym-
bols: uen). The inner product between two vectors will be
given the symbol

Ln,n85~enuen8!. ~10!

Operators that operate on the Hilbert space, auxiliary space,
and both spaces will be indicated by a hat~e.g., Ĥ for the
Hamiltonian!, a bar~e.g., ān for a cluster recursion coeffi-
cient!, and a tilde~e.g., P̃n for a cluster recursion state!,
respectively.

III. MOMENTS-BASED METHODS

A convenient way to describe the density of states is in
terms of itsmoments, where thepth moment (m ia

p ) of the
projected density of statesnia(E) is given by
m ia
p 5*Epnia(E)dE. The first moment (m ia

1 ) defines the
middle of the band, the second moment (m ia

2 ) its width, the
third moment (m ia

3 ) gives a measure of how skewed the band
is, the fourth moment (m ia

4 ) determines whether the density
of states is unimodal or bimodal, and so on. For a smooth
density of states, using only the first fewexactmoments it is
possible to make a good estimate of its shape. In fact the first
and second moments alone~which do not even define a
shape, but only a band center and width! can give a good
approximation for the band energies.30

There is a useful identity21 which is that thepth moment
of the density of states projected onto orbitaluc& „nc(E)…
equals thepth moment of the Hamiltonian projected onto the
same orbital:

mc
p5E Epnc~E!dE5^cuĤpuc&. ~11!

This allows us to evaluate the moments of the projected den-
sity of states from the Hamiltonian matrix. Substituting the
Hamiltonian matrix for the operator in Eq.~11!, and putting
uc&5u ia&, we obtain

m ia
p 5 (

j 1b1 . . . j p21bp21

Hia, j 1b1
Hj 1b1 , j 2b2

. . .Hjp21bp21 , jb
.

~12!

This equation reveals a correspondence between thepth mo-
ment and a process of hopping around the lattice along
closed paths of lengthp. Thus the first moment corresponds
to a hop on a single site, the second to hops to nearest neigh-
bors and back, and so on. Therefore, increasing the order of
the moments bytwo corresponds to obtaining information
aboutoneextra shell of atoms since you have to hop out and
back. This direct correspondence between electronic struc-
ture and the positions of atoms can give immediate insight
into the nature of cohesion provided not too many moments
are needed for an adequate description of the density of
states.

A. The bond-order potential

By direct evaluation of the first few recursion coefficients
using Eq. ~5!, with the condition thatuu0&5u ia&, it is
straightforward to show that

m ia
0 51, m ia

1 5a0 , m ia
2 5a0

21b1
2 ,

m ia
3 5a0

312a0b1
21a1b1

2 ,

m ia
4 5a0

413a0
2b1

212a0a1b1
21a1

2b1
21b1

2b2
21b1

4 . ~13!

Thus increasing the number of recursion levels corresponds
directly to increasing the number of moments. The recursion
method can then be understood as an optimal way of obtain-
ing the density of states from moments of the Hamiltonian,
and as such allows for a straightforward interpretation of
cohesion in terms oflocal arrangements of atoms.

Although the diagonal elements of the Green’s-function
matrix are sufficient for the evaluation of cohesive energy
@see Eq.~1!#, off-diagonal elements are needed for the evalu-
ation of forces@see Eqs.~2! and~4!#. The bond-order poten-
tial is a way of extending the above ideas to allow the evalu-
ation of the off-diagonal elements of the Green’s-function
matrix which retains the moment description of bonding.

The first step is to create a new set of state vectors that
belong to the product space formed from the Hilbert and
auxiliary spaces. In particular consider the state

uW0
L%5(

ia
ueia)u ia&. ~14!

The expectation value of the Green’s-function operator with
respect to this state is then

G00
L ~Z!5

$W0
LuĜ~Z!uW0

L%

$W0
LuW0

L%

5
( ia, jb^ ia z„eiauĜ~Z!uejb…zjb&

( ia, jb^ ia z~eiauejb!zjb&

5
( ia, jb^ iauĜ~Z!u jb&~eiauejb!

( ia, jb^ iau jb&~eiauejb!

5
( ia, jbGia, jb~Z!L ia, jb

( iaL ia,ia
, ~15!

and hence
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Gia, jb~Z!5
]G00

L ~Z!

]L ia, jb
1G00

L ~Z!d i , jda,b , ~16!

where we have now taken( iaL ia,ia51. The Green’s func-
tion G00

L (Z) is evaluated using Eq.~7!, but the recursion
coefficients are obtained from the following modified version
of Eq. ~5!:

ĤuWn
L%5an

LuWn
L%1bn

LuWn21
L %1bn11

L uWn11
L %, ~17!

with the condition

$Wn
LuWm

L%5dm,n . ~18!

Thus we have the following expression for theoff-diagonal
elements of the Green’s function:

Gia, jb~Z!5 (
n50

` ]G00
L ~Z!

]an
L

]an
L

]L ia, jb
1 (

n51

` ]G00
L ~Z!

]bn
L

]bn
L

]L ia, jb

5 (
n50

`

G0n
L ~Z!Gn0

L ~Z!
]an

L

]L ia, jb

12(
n51

`

G0~n21!
L ~Z!Gn0

L ~Z!
]bn

L

]L ia, jb
. ~19!

Combining Eqs.~4! and ~19! we obtain

r ia, jb52F (
n50

`

x0n,n0
L

]an
L

]L ia, jb
12(

n51

`

x0~n21!,n0
L

]bn
L

]L ia, jb
G ,

~20!

where

x0m,n0
L 5

1

p
ImH E dEG0m

L ~E1 i01!Gn0
L ~E1 i01!

3 f @~E2m!/kBT#J . ~21!

The details of how the derivatives of the recursion coeffi-
cients are evaluated can be found in Appendix B.

In many TB simulations, local charge neutrality~LCN! is
imposed as the simplest form of self-consistency.3 Within the
BOP scheme, this can be applied very efficiently since we
know the response functions. If the excess charge on sitei is
Qi , then a good estimate of the shift that should be applied
to the on-site energies is

D i52Qi /Xi , ~22!

where Xi522(ax00,00
L , since 22x00,00

L 5]NL/]a0
L , and

a0
L5« ia . Using this prescription, usually no more than three
or four iterations are needed to achieve convergence.

As a first test of the quality of the BOP forces, we per-
formed a constant energy molecular-dynamics simulation of
silicon in the diamond structure at 500 K using a time step of
1.0 fs. Five recursion levels were used with the square root
terminator. In Fig. 1 is shown the energy as a function of
time. It is clearly well conserved, indicating that the forces
are of good quality.

B. The scaling of CPU time with number of moments

The calculation of moments is most efficiently done with
the use of Eq.~12! rewritten asm ia

p 5^up1uup2&, where
ur5Hr u ia&, p15@p/2#, and p25p2p1 . It is easy to esti-
mate number of operations needed to calculate the vectors
uur&. Each multiplication byH propagates the wave function
from the origin and involves} i 3 sites afteri hops to nearest
neighbors. At the next step, to evaluateHuui& we have to
perform;n i 3 multiplications, wheren is equal to the num-
ber of nearest neighbors,z, times the number of orbitals per
atom,no . The total number of operations to get the firstp
moments is thus given approximately byNop

;( i
p/2znoi

3;zno(p/2)
4. This expression definitelyoveresti-

mates the required number of operations. This is because
many paths contributing tomp wind about the origin, making
the effective size of cluster grow} i 3/2, as in the case of a
random walk. In this case the required number of iterations
would be;z(p/2)5/2. As a result, the true number of opera-
tions must lie in the intervalzno(p/2)

5/2,Nop,zno(p/2)
4.

We have performed the calculations for Si (z54! and Ti
(z512! and found that the cluster size and the CPU time
grow marginally faster than the third power of the number of
moments~Fig. 2!. These calculations confirm also that the
number of operations grows linearly with number of neigh-
bors.

IV. CLUSTER RECURSION

The moments-based methods are usually expected to
achieve convergence only with the use of many moments for
some strongly covalent systems where high resolution of the
peaks in the density of states is required. Based on the ob-
servation much used in chemistry that bonds can be treated
in a completely local manner, one would expect convergence
to improve considerably by partitioning the system into
small clusters containing the first-neighbor shell of atoms,
solving the clusters exactly and thenrecurring on the clus-

FIG. 1. The potential, kinetic, and total energy as a function of
time for a molecular-dynamics simulation of silicon in the diamond
structure. The time step is 1.0 fs.
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ters. If longer-ranged effects are less important, the rest of
the system can be viewed as a perturbation on this. This is
achieved by cluster recursion~CR!,31 which is very similar to
matrix recursion.32–34

First we reexpress the central results in terms of an aux-
iliary space to show the similarities and differences between
this formalism, and that of BOP, then we describe some char-
acteristics of the method, and finally give some details con-
cerning its implementation.

Consider the projection operators

P̃n5(
ia

un; ia&~eiau ~23!

that operate both in the Hilbert and auxiliary spaces, where
u0;ia&5u ia&. They satisfy the following recursion relation:

Ĥ P̃n5 P̃nān1 P̃n21b̄n1 P̃n11b̄n11 . ~24!

Provided the auxiliary space vectors are orthonormal, we
have the following identities:

Ī5(
ia

ueia)~eiau, P̃n
†P̃m5dnmĪ ,

ān5 P̃n
†Ĥ P̃n , b̄n5 P̃n21

† Ĥ P̃n . ~25!

The Green’s functionḠ00(Z) is given by@compare with Eq.
~7!#

Ḡ00~Z!5@ZĪ2ā02b̄1
†@ZĪ2ā12b̄2

†@ . . . #21b̄2#
21b̄1#

21.
~26!

From this we get

Gia, jb~Z!5„iauḠ00~Z!u jb…. ~27!

The CR method works with a cluster, which is defined by
the list of orbitalsu ia& appearing in the sum in Eq.~23!. In
this work we take the first-neighbor shell of atoms about a
site. This results in the following: all the elements of the
Green’s function~and hence the density matrix! needed to

evaluate the energy and forces on the central atom are cal-
culated simultaneously; the first-neighbor shell cluster is
treated exactly in the absence of any other atoms~subsequent
shells act as a perturbing medium!; the two expressions for
the bond energy@Eqs. ~1! and ~2!# are guaranteed to give
identical answers. The first point follows from Eq.~27!, the
second from Eq.~26! with b̄1 set to zero~the Green’s func-
tion is then exact for the cluster, sinceā0 is the Hamiltonian
for the cluster!, and the third from the fact that the same
Green’s function is used both for the local density of states
and the density matrix.

As with BOP, we take only a finite number of exact lev-
els, and then estimate the remaining levels. In this work we
use a square root terminator, formulated in the following
way. Consider the innermost level in Eq.~26!. We write this
as @ZĪ2āN2b̄`

† T̄(Z)b̄`#. Here T̄(Z) is the terminator. To
obtain a closed form for the terminator that retains the sym-
metry properties of the Green’s function, we set@compare
with Eq. ~8!#

T̄~Z!5@ZĪ2āN2b̄`
† T̄~Z!b̄`#21. ~28!

This is still a difficult set of equations to solve, so to simplify
matters we assume thatb̄` and T̄(Z) commute with āN .
Thus, if we diagonalizeāN , to give āN5(lul)el(lu, we
can also writeb̄`5(lul)bl(lu and T̄(Z)5(lul)tl(Z)(lu.
Hence we can reexpress Eq.~28! as

tl~Z!5@Z2el2bltl~Z!bl#21

5
1

bl
F S Z2el

2bl
D 2 iA12S Z2el

2bl
D 2G . ~29!

Thus we see that the effect of the terminator is to smear out
the sharp states with energiesel into semielliptical bands.
The degree of smearing is given bybl . These are taken to
be of all the same value, given by the average of the diagonal
elements ofb̄N .

Again, LCN can be imposed very efficiently by
means of Eq. ~22!, where now Xi
52(2/p)Im$(a*dE@Gia,ia(E1 i01)#2f @(E2m)/kBT#%.

V. COMPARISON OF CONVERGENCE PROPERTIES

We are now in a position to compare the two methods,
and so acquire some insight into the properties of moments
methods. We have performed a series of comparisons, look-
ing at the convergence of energy and forces as a function of
number of recursion levels, and also the time to calculate the
energy and forces once for one atom. These comparisons
have been carried out on a metal~titanium!, a semiconductor
~silicon!, and a covalent molecule~benzene!.

First we consider rate of convergencewith respect to
number of levels. From Fig. 3, we note that for titanium the
bulk cohesive energy converges at about the same rate for
the two methods, which follows from the fact that the density
of states is smooth. However, the force on an atom at the
~100! surface converges more rapidly and more smoothly
with CR than with BOP. From Fig. 4, we see that CR gives
slightly better energy convergence than BOP for bulk silicon,
somewhat better convergence for the vacancy formation en-
ergy, and much better convergence for the force on an atom

FIG. 2. CPU time in seconds and exact cluster size needed for a
single evaluation of force in Si~coordination numberz54, number
of orbitals per siteno54) and Ti (z512 andno55) versus the
number of recursion levels. The calculations were carried out on HP
Apollo 9000/735 workstations.
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at the~100! surface. It is clear that neither CR nor BOP are
converging very rapidly to the correct vacancy formation en-
ergy at a moderate number of moments. This is because there
are midgap states that are best modeled using ak-space ap-
proach. From Fig. 5, we see that for benzene, both the cohe-
sive energy and the force on a hydrogen atom converge im-
mediately with CR, but rather slowly with BOP.

There are two general observations that can be drawn
from the above: for systems with smooth densities of states
both methods give comparable rates of convergence with re-
spect to number of levels for the energy, but for systems with
structured densities of states corresponding to localized
bonding, CR gives better convergence for the same number
of moments; CR gives better force convergence.

From these observations we can conclude that forces are
dominated by the short-range contributions to cohesion, and
that the errors observed in calculations for covalent systems
made with moments-based methods follow from the incom-
plete description of the local atomic environment. The way
around this problem is to take many levels on a cluster of
small size. The major criticism of this approach is that the
clusters have free surfaces, so that the density of states may
acquire spurious peaks due to surface states.

Despite this objection, we have tried this approach from
within the BOP formalism~but without any terminator!. We
used 30 levels, and varied the cluster size. The size of the

cluster is determined by the number of hops it takes to reach
the outside from the center~this is equal to the number of
exact levels that can be obtained from the cluster!. We are
thus interested in the rate of convergencewith respect to
cluster size. From Fig. 5 it is clear that convergence is
achieved with a very small cluster~two levels! for benzene,
as expected given the rapid convergence of CR. From Fig. 4
it is clear that the cohesive energy, force, and vacancy for-
mation energy for silicon converge rapidly using this ap-
proach. The insensitivity of the results to cluster size beyond
a critical size follows from the finite range of the density
matrix.

Having established the physical principles governing con-
vergence for covalent systems, we now address the practi-
calities of computer simulations. What matters in this case is
the rate of convergencewith respect to computer time. The
timings for the test calculations described above were all
carried out on HP Apollo 9000/735 workstations. When
working with exactlevels, we see from Figs. 6, 7, and 8 that
the time scales with number of levels in the same way for the
two methods, but that CR is slower than BOP by a constant
factor for a given system and number of levels. This factor is
proportional to the cube of the number of orbitals in the CR
cluster, thus it becomesvery slow for close packed systems

FIG. 3. The cohesive energy for bulk titanium~a! and the force
on an atom at the unrelaxed~100! surface~b! as a function of
number of recursion levels for the bond-order potential and cluster
recursion.

FIG. 4. The cohesive energy for bulk silicon~a!, the unrelaxed
vacancy formation energy~b!, and the force on an atom at the
unrelaxed~100! surface~c! as a function of number of recursion
levels for the bond-order potential and cluster recursion. The curves
with filled circles are for BOP with 30 levels, but with the cluster
size ~defined as the number of exact levels that can be calculated
within the cluster! varied.
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with large numbers of orbitals per atom, though rather less so
for low-coordination structures with few orbitals per atom.
For covalent systems we have established that BOP should
be used with many levels taken within a small cluster. In this
case we see from Fig. 8 that BOP is about a factor of 3 times
faster than CR for benzene. From Fig. 7, we find that for
silicon the two methods are comparable in speed for the clus-
ter sizes needed for stable forces. However, it may be the
case that fewer than 30 levels can be used, in which case
BOP will be faster than CR. The general conclusion then is
that BOP converges faster with respect to CPU time than CR.

CR could be used with a fixed cluster size within which
many levels are taken. This would create two time savings:
the recursion is performed for smaller clusters, thus is faster
to perform; the integrals can be performed exactly by diago-
nalizing the block tridiagonal Hamiltonian thus avoiding the
need to perform multiple inversions of complex matrices.
This has been investigated briefly, and it was discovered that,
for extended systems, the benefits of the terminator out-
weighed the benefits of diagonalizing the block-diagonal
Hamiltonian. While it is still possible to use a fixed cluster
with a terminator, and thus introduce some time savings,
these will be small as most time is spent inverting matrices
that are independent of cluster size, until very large clusters

FIG. 5. The cohesive energy for a benzene molecule~a!, and the
force on a hydrogen atom~b! as a function of number of recursion
levels for the bond-order potential and cluster recursion. The curves
with filled circles are for BOP with 30 levels, but with the cluster
size ~defined as the number of exact levels that can be calculated
within the cluster! varied.

FIG. 6. The time to carry out the energy and force evaluation for
one atom as a function of number of levels for the bond-order
potential and the cluster recursion in bulk titanium. The calculations
were carried out on HP Apollo 9000/735 workstations. Note the
logarithmic time scale.

FIG. 7. The time to carry out the energy and force evaluation for
one atom as a function of number of levels for the bond-order
potential and the cluster recursion in bulk silicon. The calculations
were carried out on HP Apollo 9000/735 workstations. Note the
logarithmic time scale. The curve with filled circles is for BOP with
30 levels, but with the cluster size~defined as the number of exact
levels that can be calculated within the cluster! varied.
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are formed. Thus the fixed cluster approach is only likely to
be useful for molecules.

It is useful to compare the timings of the above methods
with the corresponding times for direct diagonalization of the
Hamiltonian. This tells us when it is more efficient to use an
O(N) method. In Fig. 9 is shown the time to evaluate the
energy and forces for a cell containing silicon in the diamond
structure as a function of the number of atoms in the cell, for

BOP, CR, andk space, using a singlek point. Diagonaliza-
tion is most efficient up to about 200 atoms, after which the
O(N) methods become more efficient.

VI. CONCLUSIONS

For an atomistic modeling method to be useful it must
provide good estimates of cohesive energies and atomic
forces with a minimum of computational effort, and in such
a way as to allow straightforward interpretation of results.
The TB model of cohesion is presented as a successful
theory for describing cohesion in a wide range of materials
which often allows considerable insight into bonding to be
obtained.

The problem of evaluating atomic forces and cohesive
energy in large systems using TB is discussed, and two meth-
ods ~BOP and CR! which overcome this problem are pre-
sented. BOP is taken as a particularly appropriate moments-
based method for atomistic simulations, whereas CR is
considered as it treats first-neighbor contributions to bonds
exactly.

Both methods allow straightforward interpretations of
bonding in terms of local atomic structure, provided they
converge at a few levels. Furthermore, they both provide
linear scaling of computer time with system size, and are
naturally parallel methods.

Convergence with respect to three different quantities is
considered: number of levels, cluster size at fixed large num-
ber of levels, and CPU time. For convergencewith respect to
number of levelsit is found that: for titanium~a metal!, both
cohesive energy and atomic forces converge rapidly for BOP
or CR; for silicon ~a semiconductor! the bulk cohesive en-
ergy converges rapidly for both BOP and CR, though CR
gives much more rapid force convergence, and both give
poor convergence for the isolated vacancy formation energy;
for benzene~a molecule! BOP gives slow energy and force
convergence whereas CR gives rapid force convergence.
From these observations we can conclude that forces are
dominated by the short-range contributions to cohesion, and
that the errors observed in calculations for covalent systems
made with moments-based methods follow from the incom-
plete description of the local atomic environment. The way
around this problem is to take many levels on a cluster of
small size. If BOP is now used with many levels~30 in this
work!, but the cluster in which the levels are taken is allowed
to vary, it is found that BOP gives rapid convergencewith
respect to cluster sizefor energies and forces for benzene and
silicon, even for the vacancy formation energy. BOP gives
better convergencewith respect to CPU timethan CR in all
cases.
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FIG. 8. The time to carry out the energy and force evaluation for
one atom as a function of number of levels for the bond-order
potential and the cluster recursion in benzene. The calculations
were carried out on HP Apollo 9000/735 workstations. Note the
logarithmic time scale. The curve with filled circles is for BOP with
30 levels, but with the cluster size~defined as the number of exact
levels that can be calculated within the cluster! varied.

FIG. 9. The time to carry out the energy and force evaluation for
silicon as a function of number of atoms in the computational cell
for the bond-order potential, cluster recursion, andK space. The
calculations were carried out on HP Apollo 9000/735 workstations.
Note the logarithmic time scale. The crossover point at which the
O(N) methods become favorable is about 200 atoms.
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APPENDIX A

The calculation of energies and response functions at fi-
nite electron temperature requires integrations with the Fermi
function. This is customarily carried out in the complex
plane by summing up an infinite series over the Matsubara
poles.35 The convergence of this series is, however,very
slow. A much more efficient scheme is now described.

It is possible to accelerate considerably the Matsubara
summation by using the following approximant for the ex-
ponential function:

exp~Z!'S 11
Z

nD n ~A1!

which becomesexactas n tends to infinity. This gives the
following very useful representation for the Fermi function:

f ~E!5
1

exp„b~E2m!…11
'

1

S 11
b~E2m!

2M D 2M11

,

~A2!

whereb51/KBT, andm is the chemical potential. This ap-
proximation~which becomes exact in the limit of largeM !
has 2M simple poles (Ep) located on a circle in the complex
plane off the real axis

Ep5m1
2M

b
~zp21!, zp5exp„ip~2p11!/2M …,

p50,1, . . . ,2M21 ~A3!

with residuesRp52zp /b.
Now we can write the equation for the bond energy of

individual sites@see Eq.~1!# in the following simple form:

Ebond
ia 5

4

b
Re (

p50

M21

zp~Ep2e ia!Gia,ia~Ep!, ~A4!

whereG00
ia(Z)5^ iau(Z2Ĥ)21u ia&. Analogously, we obtain

the following expressions for the response functions@see Eq.
~21!# and the number of electrons:

x0m,n0
ia 52

2

b
Re (

p50

M21

zpG0m
ia ~Ep!Gn0

ia ~Ep!

Nia5
4

b
Re(

p50

M21

zpG00
ia~Ep!, ~A5!

with G0m
ia (z) determined from Eq.~9!. We find that typically

30 to 50 complex poles are enough to achieve convergence
within about 12 digits. The calculation ofG00

ia is most effi-
ciently performed by using the continuous fraction represen-
tation of Eq. ~7! for the Green’s function. The present
method is found to be much more stable than analytical
integration.36 Moreover, the method is very general and may
be used with any terminator, such as that which describes
band gaps.37

APPENDIX B

Let us define the orthogonal polynomialsPn
L(x):

xPn
L~x!5bn

LPn21
L ~x!1an

LPn
L~x!1bn11

L Pn11
L ~x!, ~B1!

with P21
L (x)50 andP0

L(x)51. The recursion vectors in the
product space can be written as

uWn
L%5Pn

L~Ĥ !uW0
L%5(

ia
Pn

L~Ĥ !u ia&ueia). ~B2!

Hence the recursion coefficients and orthonormality condi-
tion can be written as

dm,n5$Wm
LuWn

L%5 (
ia, jb

^ iauPm
L~Ĥ !Pn

L~Ĥ !u jb&L ia, jb ,

an
L5$Wn

LuĤuWn
L%5 (

ia, jb
^ iauPn

L~Ĥ !ĤPn
L~Ĥ !u jb&L ia, jb ,

bn
L5$Wn21

L uĤuWn
L%

5 (
ia, jb

^ iauPn21
L ~Ĥ !ĤPn

L~Ĥ !u jb&L ia, jb . ~B3!

If we now define theO matrix, which is given by

Oia, jb
L,m,n5^ iauPm

L~Ĥ !Pn
L~Ĥ !u jb&, ~B4!

then we can write the derivatives of Eqs.~B3! as

05Oia, jb
L,m,n1HW0

LU]Pm
L~Ĥ !

]L ia, jb
Pn

L~Ĥ !UW0
LJ

1HW0
LUPm

L~Ĥ !
]Pn

L~Ĥ !

]L ia, jb
UW0

LJ ,
]an

L

]L ia, jb
5^ iauPn

L~Ĥ !ĤPn
L~Ĥ !u jb&

12HW0
LU]Pn

L~Ĥ !

]L ia, jb
ĤPn

L~Ĥ !UW0
LJ ,

]bn
L

]L ia, jb
5^ iauPn21

L ~Ĥ !ĤPn
L~Ĥ !u jb&

1HW0
LU]Pn21

L ~Ĥ !

]L ia, jb
ĤPn

L~Ĥ !UW0
LJ

1HW0
LUPn21

L ~Ĥ !Ĥ
]Pn

L~Ĥ !

]L ia, jb
UW0

LJ . ~B5!

Since]Pn
L(x)/]L ia, jb is a polynomial of order less than or

equal tom, it can be expressed as a linear combination of
polynomialsPr

L(x), with r<m. Consequently, the orthonor-
mality condition given in~B3! implies

HW0
LU]Pm

L~Ĥ !

]L ia, jb
Pn

L~Ĥ !UW0
LJ 50 ~ if m,n!. ~B6!

Using Eq.~B1! to eliminateĤ in Eq. ~B5!, and then substi-
tuting in Eqs.~B4! and ~B6!, we get
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]an
L

]L ia, jb
5bn11

L Oia, jb
L,n11,n2bn

LOia, jb
L,n,n21 ,

2
]bn

L

]L ia, jb
5bn

L~Oia, jb
L,n,n2Oia, jb

L,n21,n21!. ~B7!

From the following identity:

^ iauPm21
L ~Ĥ !„ĤPn

L~Ĥ !…u jb&

5^ iau„Pm21
L ~Ĥ !Ĥ…Pn

L~Ĥ !u jb&, ~B8!

we obtain the following recursive relation for theO matrix:

bm
LOia, jb

L,m,n1am21
L Oia, jb

L,m21,n1bm21
L Oia, jb

L,m22,n

5bn11
L Oia, jb

L,m21,n111an
LOia, jb

L,m21,n1bn
LOia, jb

L,m21,n21 .

~B9!

To apply this recursion relation, we need a set of starting
matrices. The most natural choice isOia, jb

L,n,0

5(ejbu^ iauWn
L%. However, to generateOia, jb

L,n,n , we need
starting matrices up toOia, jb

L,2n,0 . This means that extra vectors
uWn

L% must be generated. This can be done using Eq.~17!,
but with arbitrary values ofam

L andbm
L for m.n, since the

values of the derivatives of the recursion coefficients are in-
dependent of these values.

There are three sum rules that follow from Eq.~B7!, and
which are important. The first two ensure that the two ex-
pressions for the bond energy@Eqs. ~1! and ~2!# give the
same results. The first sum rule is

(
ia, jb

]an
L

]L ia, jb
L ia, jb50, (

ia, jb

]bn
L

]L ia, jb
L ia, jb50.

~B10!

The second sum rule is

(
ia, jb,kg

]an
L

]L ia,kg
L ia, jbHkg, jb5~bn11

L !22~bn
L!2,

(
ia, jb,kg

2
]bn

L

]L ia,kg
L ia, jbHkg, jb5bn

L@an
L2an21

L #.
~B11!

The third sum rule relates the derivatives of the recursion
coefficients to one another:

(
n50

N ]an
L

]L ia, jb
5bN11

L Oia, jb
L,N11,N ,

(
n51

N
2

bn
L

]bn
L

]L ia, jb
5Oia, jb

L,N,N2Oia, jb
L,0,0 . ~B12!

These sum rules are used to truncate the expansion for the
density matrix@Eq. ~20!#. Only a finite number of exact re-
cursion coefficients and their derivatives are ever calculated
in practice. However, an infinite number of estimated recur-
sion coefficients~the terminator! are added, and thus some
way of introducing the corresponding estimated derivatives
is needed~the truncator!. We assume that a square root ter-
minator is being used throughout. The right-hand sides of the
first two sum rules@Eqs. ~B10! and ~B11!# are zero for
n>N11 for the derivatives ofan

L , and forn>N12 for the
derivatives ofbn

L . Thus the simplest assumption is that the
derivatives of the recursion coefficients are zero under these
conditions, which makes the sums in Eq.~20! finite. Thus we
need only find expressions for]aN

L/]L ia, jb and
]bN11

L /]L ia, jb . If we assume that bothOia, jb
L,N11,N and

Oia, jb
L,N11,N11 are linear in]a0

L/]L ia, jb , then we obtain the
following expressions by requiring that Eqs.~B10! and~B11!
be satisfied:

]aN
L

]L ia, jb
5S b`

L

b1
LD 2 ]a0

L

]L ia, jb
2bN

LOia, jb
L,N,N21 ,

2
]bN11

L

]L ia, jb
5b`

Ld i , jda,b1
b`

L~a`
L2a0

L!

~b1
L!2

]a0
L

]L ia, jb

2b`
LOia, jb

L,N,N . ~B13!
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