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Bond-order potential and cluster recursion for the description of chemical bonds:
Efficient real-space methods for tight-binding molecular dynamics
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The tight-binding model is presented as a successful theory for describing cohesion. It allows for rapid, but
accurate, evaluation of electronic properties, total energies, and forces, while being simple enough to allow
insight into the nature of bonding. The problem of applying this model to very large systems by diagonalizing
the Hamiltonian matrix is discussed. Moments methods provide an efficient way to evaluate energies and
forces from the Hamiltonian, even for large systems. However, for systems with sharp features in a broad
density of states, many moments are required to achieve convergence. By reference to a momenf{shaethod
bond-order potentialBOP)] and a cluster-based methpduster recursiofCR)], the origin of the need for
many moments is explained. In particular, it is found that the inclusion aéxaetdescription of the first-
neighbor shell is important for obtaining accurate forces. For strongly covalent systems it also improves the
energy convergence. Whereas CR gives rapid convergence with respect to number of levels, BOP is found to
give more rapid convergence with respect to CPU time.

I. INTRODUCTION vides a good general theory of cohesion for computer mod-
eling, though it cannot yet claim to be universal in its appli-
Widespread interest in the atomistic modeling of materialscability.
properties is being shown at the moment, with many meth- The appropriate numerical technique for implementing
ods presently available, different ones being applicable t@B when only a small number of atoms is being considered
different problems. There is considerable effort being madés direct diagonalization of the Hamiltonian matrix. How-
to find new methods that are applicable to a wide range oéver, for this method, the time per molecular dynanii®)
materials but which are also computationally efficidde-  step scales as the third power of the number of atoms in the
ally a single methodor a set of compatible methods that can unit cell. This scaling is disastrous for simulations of large
be used together in a systematic w#lyat can be applied to numbers of atoms: it sets a practical limit of order 100 atoms
all systems will be found since many interesting problemsor MD. Thus it is necessary to find methods that can extract
(such as catalysisnvolve several materials with quite dif- the useful information from the Hamiltonian mati(such as
ferent properties. At present no such complete scheme existihe total band-structure energy and the contribution of the
though considerable progress towards it has been made. band-structure energy to the forces on the ajomih a
To reach this goal, we need a single general underlyingnuch better scaling, ideally linear scalif@(N) methods.
theory of cohesion, and one or more appropriate numerical SeveralO(N) methods suitable for TB have been pro-
technigues to implement the theory. To be general, the unposed recently. In this paper we are interested imtbenents
derlying theory has to be based on a quantum mechanichlased methodd =2 We focus on these methods since they
description of electron motion, since the differences in matave been successful for describing electronic structure, and
terials properties lie in the differences in the electronic strucfor molecular dynamic¢MD), and often allow insight into
ture for the materials. For instance, metallic systems havéhe nature of bonding. Traditionally these methods have been
wave functions that must be viewed as long ranged, whereatesigned to be used with only a few momefip to about
strongly covalent systems can be characterized by shorttl). However, it has been found that for MD for certain
ranged wave functionfeading to the concept of the chemi- systems many moments are necessary in order to reach con-
cal bond. vergence. In this paper we aim to shed light on the origin of
There are a number of quantum mechanical methods thahis need, and to spell out the correct way to handle the many
are routinely used ranging from very accurate many-electromoments. We do this by comparingne moments-based
ab initio methods such as quantum Monte Carlo, throughmethod (the bond-order potenti@t?) with a cluster-based
slightly less accurate single electrab initio methods such method, which is explained below. However, the conclusions
as the local-density approximatiofLDA) to density- apply to moments methods in general.
functional theory, down to the semiempirical methods such  In the remainder of this paper we outline the TB model,
as tight binding TB).23 It is now becoming apparent that TB with some details about the density matrix and Green’s func-
schemes can offer sufficient accuracy for many materials atons. The central ideas behind moments methods are given,
well as great simplicity in computation and analysis of re-together with details of the bond-order potential. The cluster
sults. They have been applied successfully to metallienethod is then described, and results for energies and forces
systemg,~® semiconducting systenfs!#including the liquid  from the two approaches are compared for a variety of sys-
phase®*8and strongly covalent systeni$?° Thus TB pro-  tems.
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Il. TIGHT BINDING Here\ is an atomic coordinate, arfel = — dE n/IN.

It is convenient at this point to note some key conceptsf The ogerator expression for the sipgle-particle Green's
connected with the TB model of cohesi#h? It will be as-  1unction(G(2)) is (Z—H)G(Z) = 1. Matrix elements of the
sumed that the basis set is an orthonormal set of atomiclikg(—}ree’wS funcUon can be t'akeAn, to yvh|ch we give .the follow-
orbitals |ia) wherei is a site index, andr is an orbital 'NY notatlon:Gia’iB(Z)=(|_a|(_3(Z)|JB>. The matrix equa-
index. The Hamiltonian can then be represented by the md!o" for the Green'’s function is then
trix Hi, j3=(ia|H|jB). The on-site elements of the matrix
are given the symbolss;,=H,,,. The cohesive energy, > (Z8 k8a,y—Hiwky) Cky,ig(Z) = 8 [Sup- ®)
assuming that the electrons are at a finite temperafturie ky

g\r/lgeenn:rsgitgg sum of bond, promotion, entropic, and repUI_The density matrix is obtained from the Green’s function

through the following equation:
Ecoh: Ebond+ Eprom+ Erep+ Eent

1
pia,jﬁ=—;Im[jdEGia,jﬁ(EJri0+)f[(E—,u)/kBT] ,
=22, | (E-eia)nia(B)[(E-p)/keT]dE 4)

1 where 0" stands for a positive infinitesimal. A robust scheme

+ 2 eia(Nig= N2+ 52 o(ry)) for carrying out integrals over energy of the product of the

fa 2{7) Fermi function and a function of energy that is analytic off
the real axis is given in Appendix A.

—2kgTY, | o[(E—w)/kgTIni(E)dE, (1) A very stable, and rapidly convergent, method for calcu-

T lating the diagonal elements of the Green’s-function matrix

heren (E) is the density of states proiected onto orbital is the recursion method. This is based on the Lanczos
w io(E) | 1y proj al algorithm?8 which is an efficient way of tridiagonalizing a

“a),. N;, and Nioa are the number qf electrons in orbi.tal matrix. The central equation is
lia) in the condensed and free atomic systems, respectively,
and ¢(r;;) is a repulsive pair potential. The function " _

f(x)=1/[]1+expé<)] is the Fermi function, and HIUn) = an|Un) +bo|Un-1) +Bns alUns1)- ®
a(x)=—{f)In(f(x))+[1—f(x)]In[1—f(x)]} is the en- The statesU,) are orthonormal(U,|U )= &, ), and tridi-
tropy density. The bond energy is the attractive contributioragonalize the Hamiltonian:

that leads to cohesion. The promotion energy is a repulsive

energy due to the excitation of electrons from their free a, if m=n,

atomic ground state as atoms are brought together. The en-

. . T b, if m=n-1,
tropic term is the contribution to the free energy from the (U ||:||U )= ) ©)
entropy due to the thermal excitation of electrons into empty m n Pnyr  ifm=n+1,
states. The repulsive energy is the term that accounts for the 0 otherwise.

repulsion of the ionic cores at short range. It has contribu-

tions from electrostatics, and from the repulsion of overlap- . ) .
ping orbitals due to Pauli's principle. The matrix element of the Green's functio®yyZ)

=(U,|G(2)|U,) is obtained from the recursion coefficients

. ) i a, andb, as a continued fraction:
The density matrix and Green’s functions

Both the bond-order potential and the cluster method can 1
be implemented by means of Green’s functions, and both God2) = bi : @)
make use of the density matrix, so these are now described. Z—ag— b2
The Lanczos algorithm and auxiliary space are useful math- Z-a, 2
ematical tools for developing the formalisiand for numeri- b§

cal implementationso are also described here. Z-ay— o
The band energy and forces can be written in terms of the
density matrixp;, ; 5 (the off-diagonal components of which To obtain the diagonal Green's-function matrix element
are also called bond orders Gi..io(Z) then, it is merely necessary to begin the recursion
process withUq) =i @), and then use Eq$6) and (7). For
o 1 an infinite system, there could be an infinite number of levels
Econ=2 2, HiaigPigia— 2 EiaNpet 52 &(rij) in the continued fraction. It is often the case, however, that
llp '“ 7 the exact values can be replaced by estimated values after a
certain number of levels, without reducing the accuracy sig-
—2kgTY, | of (E—u)/kgTIn;(E)dE, nificantly. The simplest approximation is to take
'“ a,=a.,b,=b, for n>N, whereN is the number of exact
levels, anda,, andb,, are constants defining the band center
F=—23 MHiajp EE I (Tij) (2 and bandwidtlf® The constant terms can be summed exactly

g O\ Pipia™ 2{Fj O\ to form the square root terminator:
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1 This equation reveals a correspondence betweepttheno-
t(Z)= b2 ment and a process of hopping around the lattice along
* 5 closed paths of length. Thus the first moment corresponds
bz, to a hop on a single site, the second to hops to nearest neigh-
b2 bors and back, and so on. Therefore, increasing the order of
Z—a,— the moments bytwo corresponds to obtaining information
' aboutoneextra shell of atoms since you have to hop out and
back. This direct correspondence between electronic struc-
(8) ture and the positions of atoms can give immediate insight
into the nature of cohesion provided not too many moments
The other matrix e|ementBGnm(Z)=<Un|é(Z)|Um>] are are needed for an adequate description of the density of
obtained from another recurrence relationship which followsstates.
directly from the definition of the Green’s function and the

stateg U,,): A. The bond-order potential

(Z—a,)Gnm(Z) —bnGn-1m(Z) —bni1Gns1m(Z) = 6y m- By direct evaluation of the first few recursion coefficients
’ ' "(9) using Eq.(5), with the condition that|ug)=|ia), it is
straightforward to show that
Both of the methods to be described below can be formu-

lated most easily if an auxiliary space is first introduced. Let wl =1, ul=ay, wu?=ai+b?,
vectors in this space be represented by the following sym-
bols: [e,). The inner product between two vectors will be pd =aj+2agbi+a;b?,

given the symbol
A =(elen) 10 wlh =aj+3a3bl+2asa,bi+ajbi+bibs+b7. (13
Operators that operate on the Hilbert space, auxiliary spacéhus increasing the number of recursion levels corresponds
and both spaces will be indicated by a Iietg.,H for the  directly to increasing the number of moments. The recursion
Hamiltonian, a bar(e.g., a, for a cluster recursion coeffi- Method can then be understood as an optimal way of obtain-
cieny, and a tilde(e.g., f’n for a cluster recursion state N9 the density of states from moments of t_he Ham|ltpn|an,
respectively. and as such allows for a straightforward interpretation of
cohesion in terms olbcal arrangements of atoms.

Although the diagonal elements of the Green’s-function
matrix are sufficient for the evaluation of cohesive energy

A convenient way to describe the density of states is irsee Eq(1)], off-diagonal elements are needed for the evalu-
terms of itsmomentswhere thepth moment @P,) of the  ation of forcesee Eqs(2) and(4)]. The bond-order poten-
projected density of statesn;(E) is given by tialisaway of extending the above ideas to allow the evalu-
uP = [EPn, (E)dE. The first moment /(Lila) defines the ation of the off-diagonal elements of the Green's-function

middle of the band, the second momep£y) its width, the matrix which retains the moment description of bonding.

third moment 3 ) g}ives a measure of how skewed the band The first step is to create a new set of state vectors that

. te 2 . .. belong to the product space formed from the Hilbert and

is, the fourth momentg;,) determines whether the den3|ty auxiliary spaces. In particular consider the state

of states is unimodal or bimodal, and so on. For a smooth

density of states, using only the first fexactmoments it is

possible to make a good estimate of its shape. In fact the first |W6\}: 2 le)lia). (14

and second moments alorfgzhich do not even define a ia

shape, but only a band center and wjdtan give a good i . .

approximation for the band energi¥s. The expectation value of the Green’s-function operator with
There is a useful identi®y which is that thepth moment ~ F€SPect to this state is then

of the density of states projected onto orbitg) (n,(E))

Ill. MOMENTS-BASED METHODS

equals thepth moment of the Hamiltonian projected onto the Ao {W5|G(2)|Ws?
same orbital: Goo(2)= TWAWE
u?ﬁf EPn,(E)dE=(y|HP|y). (12) S isieleldG2)lepliB)

This allows us to evaluate the moments of the projected den- E,a,1ﬁ<|fv|(e,a|e,,3)|1 A)
sity of states from the Hamiltonian matrix. Substituting the Siasia|G(2)]] B)(&inl€jp)
Hamiltonian matrix for the operator in E¢l1), and putting T s (aliB)(ele s
|y =|ia), we obtain lp Al

_ 2ia,ifCiajp(L) Nia,jp (15)
uP. = > Hi,i gHig ig...H ig- Zialiaia |
@ j1B1 - Jp-1Bp-1 BB lops Jp-1fp-1:1

(12  and hence




IGod 2)

Ciait @)= 8,

+Gof(2) 8 [Sap (16)

where we have now taken; A, i,=1. The Green’s func-
tion GQO(Z) is evaluated using Eq(7), but the recursion
coefficients are obtained from the following modified version
of Eq. (5):

HIWAL=al WAL+ DA WA 140 WA, 1}, (17)

with the condition

{W{H\Nﬁw} =Omyn - (18
Thus we have the following expression for tb#-diagonal
elements of the Green'’s function:

[’ o

N IGly(z) oad IGoy(Z) by
o = — + T A
Ia,lﬁ() n=o0 da, 0Aia,jﬁ n-1  dby aAia,iB

L A
a
_ A A n
_ngo GOn(Z)GnO(Z)—aAia’jﬁ
o A
A A n
Jrznzl Goin-1,(2)Gno(2) 73— (19
Combining Egs(4) and(19) we obtain
® A ® A
a, aby,
Piajp= _LEO Xgn,nom+2;l Xé\(nfl),nom ,
(20)
where
A 1 A N tYeA Nt
XOm,nO:; Im dEGOm(E+|0 )GHO(E+ |0 )
Xf[(E—u)/kgT]}. (21

The details of how the derivatives of the recursion coeffi-

cients are evaluated can be found in Appendix B.

In many TB simulations, local charge neutralityCN) is
imposed as the simplest form of self-consistehwyithin the
BOP scheme, this can be applied very efficiently since wi
know the response functions. If the excess charge on &te
Q;, then a good estimate of the shift that should be applie
to the on-site energies is

Ai=—Qi/X;, (22

where X;=—23 X000 SINCE —2x50 0= IN"/dad, and

a3=sia. Using this prescription, usually no more than three

or four iterations are needed to achieve convergence.
As a first test of the quality of the BOP forces, we per-
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FIG. 1. The potential, kinetic, and total energy as a function of
time for a molecular-dynamics simulation of silicon in the diamond
structure. The time step is 1.0 fs.

B. The scaling of CPU time with number of moments

The calculation of moments is most efficiently done with
the use of EQ.(12) rewritten asuP,=(uP1uP2), where
u'=H'ia), p1=[p/2], andp,=p—p;. It is easy to esti-
mate number of operations needed to calculate the vectors
|u"y. Each multiplication byH propagates the wave function
from the origin and involves:i® sites afteri hops to nearest
neighbors. At the next step, to evaluatéu') we have to
perform~ vi® multiplications, wherev is equal to the num-
ber of nearest neighborg, times the number of orbitals per
atom,n,. The total number of operations to get the fipst
moments is thus given approximately byN,,
~3P2zn,i%~zny(p/2)*. This expression definitelgveresti-
matesthe required number of operations. This is because
many paths contributing ta, wind about the origin, making
the effective size of cluster growi®? as in the case of a
random walk. In this case the required number of iterations
would be~z(p/2)%2. As a result, the true number of opera-
tions must lie in the intervatn(p/2)2<N,,<zny(p/2)*.

We have performed the calculations for 2i=4) and Ti

éz=12) and found that the cluster size and the CPU time

grow marginally faster than the third power of the number of

&noments(Fig. 2. These calculations confirm also that the

number of operations grows linearly with humber of neigh-
bors.

IV. CLUSTER RECURSION

The moments-based methods are usually expected to
achieve convergence only with the use of many moments for
some strongly covalent systems where high resolution of the

formed a constant energy molecular-dynamics simulation opeaks in the density of states is required. Based on the ob-
silicon in the diamond structure at 500 K using a time step ofservation much used in chemistry that bonds can be treated
1.0 fs. Five recursion levels were used with the square roan a completely local manner, one would expect convergence
terminator. In Fig. 1 is shown the energy as a function ofto improve considerably by partitioning the system into
time. It is clearly well conserved, indicating that the forcessmall clusters containing the first-neighbor shell of atoms,
are of good quality. solving the clusters exactly and thescurring on the clus-
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evaluate the energy and forces on the central atom are cal-
culated simultaneously; the first-neighbor shell cluster is
treated exactly in the absence of any other at@ubsequent
shells act as a perturbing mediynthe two expressions for
the bond energyEgs. (1) and (2)] are guaranteed to give
identical answers. The first point follows from E@7), the
second from Eq(26) with b; set to zerathe Green'’s func-
tion is then exact for the cluster, sinag is the Hamiltonian

Time/Atom (s)
~
Cluster Size

~n
Y
.,

/ ] / for the clustey, and the third from the fact that the same
Green'’s function is used both for the local density of states
and the density matrix.

As with BOP, we take only a finite number of exact lev-
els, and then estimate the remaining levels. In this work we
use a square root terminator, formulated in the following
way. Consider the innermost level in E@6). We write this
as[ZI—gN—blT(Z)bx]. Here T(Z) is the terminator. To

FIG. 2. CPU time in seconds and exact cluster size needed for gbtain a closed form for the terminator that retains the svm-
single evaluation of force in Scoordination numbez=4, number y

of orbitals per siten,=4) and Ti =12 andn,=5) versus the metry properties of the Green's function, we geompare

number of recursion levels. The calculations were carried out on HrW'th Eq. (8)]
Apollo 9000/735 workstations.

: N
3 5 7 9
Number of Levels

Number of Levels

T(Z)=[ZI-ay—blT(Z)b.] L. (28)

ters If longer-ranged effects are less important, the rest ofrhjs is still a difficult set of equations to solve, so to simplify
the system can be viewed as a perturbation on this. This ig,atters we assume that, and T(Z) commute withay.
achieved by cluster recursi¢@R),3! which is very similar to Thus, if we diagonalizeay, to give ay=3,|A)e (|, we
. . 2-34 1 bt L] ~_ 1
matrix recursiort’ . can also writeh,.= =, |\)b, (A| and T(Z) = =, |\t (Z) (A ].
First we reexpress the central results in terms of an aUXHance we can reexpress HAB) as
iliary space to show the similarities and differences between
this formalism, and that of BOP, then we describe some char-

t\(2)=[Z— e, —b\t,(2)b, ]!
acteristics of the method, and finally give some details con- n(2)=1 A D)D)

cerning its implementation. 1((Z—¢\ . Z— €, 2
Consider the projection operators o, 20, | 1- b, (29)
P _2 Injia)(e 23 Thus we see that the effect of the terminator is to smear out
noe 1 AN the sharp states with energies into semielliptical bands.

The degree of smearing is given by . These are taken to

that operate both in the Hilbert and auxiliary spaces, whergg of a1l the same value, given by the average of the diagonal
|0;ia)=|i@). They satisfy the following recursion relation: elements OEN

S DT LD Rab R Again, LCN can be imposed very efficiently by
HPn=Pnant Pn-1bnt P abnss. @Y eans o Eq. (22, where now X
Provided the auxiliary space vectors are orthonormal, we=—(2/7)Im{S,[dE[G;,(E+i0")]*[(E— u)/kgT]}.
have the following identities:
B 3 V. COMPARISON OF CONVERGENCE PROPERTIES
_ ptn
"% i) (€ial,  PrPm=dnnl. We are now in a position to compare the two methods,
and so acquire some insight into the properties of moments
methods. We have performed a series of comparisons, look-
_ ing at the convergence of energy and forces as a function of
The Green’s functiorsyi(Z) is given by[compare with Eq. number of recursion levels, and also the time to calculate the
(7] energy and forces once for one atom. These comparisons
_ - - - — — have been carried out on a mettianium), a semiconductor
GooZ)=[ZI—ay—bi[ZI—-a,—b][...17*b,] *b,] ™. (silicon), and a covalent moleculdenzeng
(26) First we consider rate of convergeneéth respect to
From this we get number of levelsFrom Fig. 3, we note that for titanium the
bulk cohesive energy converges at about the same rate for
Giap(2)=(alGod2)]j B). (277 the two methods, which follows from the fact that the density
of states is smooth. However, the force on an atom at the
The CR method works with a cluster, which is defined by(100 surface converges more rapidly and more smoothly
the list of orbitals|i ) appearing in the sum in E§23). In  with CR than with BOP. From Fig. 4, we see that CR gives
this work we take the first-neighbor shell of atoms about aslightly better energy convergence than BOP for bulk silicon,
site. This results in the following: all the elements of the somewhat better convergence for the vacancy formation en-
Green’s function(and hence the density matrineeded to ergy, and much better convergence for the force on an atom

a,=P!AP,, b,=Pl_,AP,. (25)
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. o FIG. 4. The cohesive energy for bulk silicg¢a), the unrelaxed

FIG. 3. The cohesive energy for bulk titaniu@ and the_ force vacancy formation energgb), and the force on an atom at the
on an atom at the unrelaxgd00 surface(b) as a function of | relaxed(100) surface(c) as a function of number of recursion
number of recursion levels for the bond-order potential and clustefyyes for the bond-order potential and cluster recursion. The curves
recursion. with filled circles are for BOP with 30 levels, but with the cluster

size (defined as the number of exact levels that can be calculated
at the (100 surface. It is clear that neither CR nor BOP arewithin the cluster varied.
converging very rapidly to the correct vacancy formation en-
ergy at a moderate number of moments. This is because theetuster is determined by the number of hops it takes to reach
are midgap states that are best modeled usikgspace ap- the outside from the centdthis is equal to the number of
proach. From Fig. 5, we see that for benzene, both the coh@xact levels that can be obtained from the clystéfe are
sive energy and the force on a hydrogen atom converge inthus interested in the rate of convergengith respect to
mediately with CR, but rather slowly with BOP. cluster size From Fig. 5 it is clear that convergence is

There are two general observations that can be drawachieved with a very small clustétwo levelg for benzene,
from the above: for systems with smooth densities of stateas expected given the rapid convergence of CR. From Fig. 4
both methods give comparable rates of convergence with reét is clear that the cohesive energy, force, and vacancy for-
spect to number of levels for the energy, but for systems withmation energy for silicon converge rapidly using this ap-
structured densities of states corresponding to localizegroach. The insensitivity of the results to cluster size beyond
bonding, CR gives better convergence for the same numbex critical size follows from the finite range of the density
of moments; CR gives better force convergence. matrix.

From these observations we can conclude that forces are Having established the physical principles governing con-
dominated by the short-range contributions to cohesion, andergence for covalent systems, we now address the practi-
that the errors observed in calculations for covalent systemealities of computer simulations. What matters in this case is
made with moments-based methods follow from the incomthe rate of convergencsith respect to computer tim@he
plete description of the local atomic environment. The waytimings for the test calculations described above were all
around this problem is to take many levels on a cluster otarried out on HP Apollo 9000/735 workstations. When
small size. The major criticism of this approach is that theworking with exactlevels, we see from Figs. 6, 7, and 8 that
clusters have free surfaces, so that the density of states méye time scales with number of levels in the same way for the
acquire spurious peaks due to surface states. two methods, but that CR is slower than BOP by a constant

Despite this objection, we have tried this approach fromfactor for a given system and number of levels. This factor is
within the BOP formalism(but without any terminatgr We  proportional to the cube of the number of orbitals in the CR
used 30 levels, and varied the cluster size. The size of theluster, thus it becomesgery slow for close packed systems
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with filled circles are for BOP with 30 levels, but with the cluster
size (defined as the number of exact levels that can be calculated
within the clustey varied.
with large numbers of orbitals per atom, though rather less so 1
for low-coordination structures with few orbitals per atom.
For covalent systems we have established that BOP should
be used with many levels taken within a small cluster. In this
case we see from Fig. 8 that BOP is about a factor of 3 times
faster than CR for benzene. From Fig. 7, we find that for
silicon the two methods are comparable in speed for the clus-
ter sizes needed for stable forces. However, it may be the =
case that fewer than 30 levels can be used, in which case
BOP will be faster than CR. The general conclusion then is
that BOP converges faster with respect to CPU time than CR.
CR could be used with a fixed cluster size within which
many levels are taken. This would create two time savings:
the recursion is performed for smaller clusters, thus is faster
to perform; the integrals can be performed exactly by diago-
nalizing the block tridiagonal Hamiltonian thus avoiding the 0 y . 4 L - 4 - 4
i ; . d o 1 2 3 4 5 6 7 8 9
need to perform multiple inversions of complex matrices. Number of Levels
This has been investigated briefly, and it was discovered that, £, 7. The time to carry out the energy and force evaluation for
for extended systems, the benefits of the terminator outyne atom as a function of number of levels for the bond-order
weighed the benefits of diagonalizing the block-diagonalyotential and the cluster recursion in bulk silicon. The calculations
Hamiltonian. While it is still possible to use a fixed cluster were carried out on HP Apollo 9000/735 workstations. Note the
with a terminator, and thus introduce some time savingslogarithmic time scale. The curve with filled circles is for BOP with
these will be small as most time is spent inverting matrice0 levels, but with the cluster sizéefined as the number of exact
that are independent of cluster size, until very large clustertevels that can be calculated within the clustearied.

Time/Atom)/MD Step (s)
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1.000 ——————————————1——T BOP, CR, andk space, using a single point. Diagonaliza-
tion is most efficient up to about 200 atoms, after which the

0—© Bond Order Potential A
Cluster Recursion O(N) methods become more efficient.

&—= Bond Order Potential (30 levels)

VI. CONCLUSIONS

For an atomistic modeling method to be useful it must
provide good estimates of cohesive energies and atomic
forces with a minimum of computational effort, and in such
a way as to allow straightforward interpretation of results.
The TB model of cohesion is presented as a successful
theory for describing cohesion in a wide range of materials
which often allows considerable insight into bonding to be
obtained.

0.010 | E The problem of evaluating atomic forces and cohesive

energy in large systems using TB is discussed, and two meth-
ods (BOP and CR which overcome this problem are pre-

sented. BOP is taken as a particularly appropriate moments-

based method for atomistic simulations, whereas CR is

considered as it treats first-neighbor contributions to bonds

exactly.

000 T T s 6 7 5 s 10 Both methods allow straightforward interpretations of
Number of Levels bonding in terms of local atomic structure, provided they

converge at a few levels. Furthermore, they both provide

FIG. 8. The time to carry out the energy and force evaluation fonjnear Sca“ng of computer time with system size, and are
one atom as a function of number of levels for the bond-ordernatura"y parallel methods.
potential and the cluster recursion in benzene. The calculations Convergence with respect to three different quantities is
were carried out on HP Apollo 9000/735 workstations. Note theconsidered: number of levels, cluster size at fixed large num-
logarithmic time scale. The curve with filled circles is for BOP with ber of levels, and CPU time. For convergeméh respect to
30 levels, but with the cluster sjz(qlefined as the_ number of exact number of leveldt is found that: for titanium(a metaJ, both
levels that can be calculated within the clustearied. cohesive energy and atomic forces converge rapidly for BOP

or CR; for silicon(a semiconductgrthe bulk cohesive en-
are formed. Thus the fixed cluster approach is only likely toergy converges rapidly for both BOP and CR, though CR
be useful for molecules. gives much more rapid force convergence, and both give

It is useful to compare the timings of the above methodspoor convergence for the isolated vacancy formation energy;
with the corresponding times for direct diagonalization of thefor benzenga molecul@ BOP gives slow energy and force
Hamiltonian. This tells us when it is more efficient to use anconvergence whereas CR gives rapid force convergence.
O(N) method. In Fig. 9 is shown the time to evaluate theFrom these observations we can conclude that forces are
energy and forces for a cell containing silicon in the diamonddominated by the short-range contributions to cohesion, and
structure as a function of the number of atoms in the cell, fothat the errors observed in calculations for covalent systems
made with moments-based methods follow from the incom-

0.100

:

(Time/Atom)/MD Step (s)

10° . . plete description of the local atomic environment. The way
1year around this problem is to take many levels on a cluster of
\ L R vaeste, S tevel cluster) 1 month small size. If BOP is now used with many levéB0 in this
T —— Kk-space 1 1 week work), but the cluster in which the levels are taken is allowed
& 1day to vary, it is found that BOP gives rapid convergeneih
g 3 1 hour respect to cluster sizer energies and forces for benzene and
‘é silicon, even for the vacancy formation enerdgyOP gives
g 10 1 1 minute better convergenceith respect to CPU tim¢han CR in all
= cases.
10° 4 1second
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APPENDIX A APPENDIX B

The calculation of energies and response functions at fi- Let us define the orthogonal polynomid®s (x):
nite electron temperature requires integrations with the Fermi
function. This is customarily carried out in the complex XPa(X)=bAPA_1(x)+ayPa(x)+bh, 1 Ph (%), (B1)
plane by summing up an infinite series over the Matsubara
poles®® The convergence of this series is, howewesry
slow. A much more efficient scheme is now described.
It is possible to accelerate considerably the Matsubara
summation by using the following approximant for the ex- |wiy=pA H)|W 1= E PA(H)||a>|e,a) (B2
ponential function:

With P 1(x)=0 andPO(x) 1. The recursion vectors in the
product space can be written as

Hence the recursion coefficients and orthonormality condi-

n tion can be written as

exp(Z)~ (A1)

A A o
which becomesxactas n tends to infinity. This gives the S ={ Wil Wn'} = E (ialPn (H)P”(H)“BM'“"'B’

following very useful representation for the Fermi function:
1 1 an ={WalHWp}= 2 (ialPa(F)HPA(R)II B Ai g
expBE-p)+1 [ BE-w|™ A
STV 1 by ={Wn_,|H[Wy}
(A2)

f(E)=

_ A
where 8=1/KgT, and u is the chemical potential. This ap- .; (ialPy_y(H)HP (H)|Jﬁ>A'“JB B3

proximation (which becomes exact in the limit of lardé)
has 2V simple poles E,) located on a circle in the complex

plane off the real axis OIAaTBn <|a|P (H PA(H)|JB> (B4)

then we can write the derivatives of EqB3) as

If we now define theD matrix, which is given by

2M
Ep=n+ 7(2,)—1), zy=expim(2p+1)/2M),

IPMH) .
0=0, T+ [WA Mm< Pﬁ(H)WoA]
p=0,1,...,M—1 (A3) ijp
An
with residuesR,= -z, /. _ +[wg o i) Pa () wg] |
Now we can write the equation for the bond energy of INiajp

individual sites[see Eq.(1)] in the following simple form:

gal
4 Mo e B—<IalPA (H)HPA(H)IiB)
ia,j
Ebond Re 2 Zp(Ep_eia)Gia,ia(Ep)l (A4) ~
B o aPAH)
_ . +2{w§ N HPA(H) WA],
whereGy(Z) =(ia|(Z—H) !lia). Analogously, we obtain ia.jp

the following expressions for the response functimee Eq. A
(21)] and the number of electrons:

=(ia|PA_,(H)HPA(H)|jB)

aAla,B
M-1 N
. . . A
X :—EReE 2.GL% (E.)GI%(E,) A PPn-a(H) oy~
mno g g TPTOm TR En0R R +1 Wo T_ﬁHPn(H)WO
ia,j
Nia—4RM§ Gin e A +[w0 (A PPr(H )WO] (BS)
_E ep:() Z,Goo(Ep), (A5) INinijp

. ) ' _ _ SinceaPQ(x)/aAiaJ—B is a polynomial of order less than or
with Ggp(2z) determined from Eq(9). We find that typically  equal tom, it can be expressed as a linear combination of

30 to 50 complex poles are enough to achieve convergenggolynomialsP?(x), with r <m. Consequently, the orthonor-

within about 12 digits. The calculation (Gio‘é is most effi-  mality condition given in(B3) implies
ciently performed by using the continuous fraction represen-
tation of Eq. (7) for the Green’s function. The present [ aPﬁ(H

aA,a,ﬁ

method is found to be much more stable than analytical
integration® Moreover, the method is very general and may
be used with any terminator, such as that which describessing Eq.(B1) to eliminateH in Eqg. (B5), and then substi-
band gaps’ tuting in Egs.(B4) and (B6), we get

PAH) ‘WA] 0 (if m<n). (B6)
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gal The third sum rule relates the derivatives of the recursion
A n+1n AAA,nn—1 . . .
A =b), 0 5 —bro A coefficients to one another:
ia,jB
ﬁbA A A,n,n A,n—-1n-1 N A
2(9A|11’J,3 b (OlaJB OI(Z]B (B7) aa AN+1,N

n=0 0"A|ajﬁ bN+1 e
From the following identity:

(ia|PA_(H)(HPA(A))i B)

N2 obd
(PR L(FORYPAR] 2 ox ~O%L)5 —Olls. (812
=<|a’|(Pm_1(H)H)Pn(H)|jﬂ>, (B8) n= &AIaJ,B
we obtain the following recursive relation for ti@ matrix:
bAOAMN LA  QAm-ingpd  QAm-2n These sum rules are used to truncate the expansion for the
lajfp - Im-1 B Oiaip density matrix[Eq. (20)]. Only a finite number of exact re-
=b} ;0% M af O T M by O T cursion coefficients and their derivatives are ever calculated

(B9) in practice. However, an infinite number of estimated recur-
sion coefficients(the terminator are added, and thus some
To apply this recursion relation, we need a set of Startlng/vay of introducing the corresponding estimated derivatives
matrices. The most natural choice |sO,aJB is neededthe truncator. We assume that a square root ter-
=(ejpl(ialW}}. However, to generaté),Aa’],Q, we need minator is being used throughout. The right-hand sides of the
starting matrices up t@,azjnﬁ This means that extra vectors first two sum rules[Egs. (B10) and (B11)] are zero for
|WAY must be generated. This can be done using(E@, n=N-+1 for the derivatives of , and forn=N+2 for the
but with arbitrary values of andbj, for m>n, since the derivatives ofb’ . Thus the simplest assumption is that the
values of the derivatives of the recursion coefficients are inderivatives of the recursion coefficients are zero under these
dependent of these values. conditions, which makes the sums in Eg0) finite. Thus we

There are three sum rules that follow from EB7), and  need only find expressions fomaﬁ/(mm]ﬁ and

which are important. The first two ensure that the two ex-, bA+1/07A.a,3 If we assume that bottoﬁz’]'gl’\‘ and

pressions for the bond energfqgs. (1) and (2)] give the OMNFINTT g linear maaO/ﬁA,a 5. then we obtain the
same results. The first sum rule is iajp j

following expressions by requiring that E48.10) and(B11)
oal bl be satisfied:
A Niajg=0 3 A =0,
576 iajp 7 i%ﬁ Iigjp P (B10)
B10 A A\ 2 A
Th d lei ﬂ_ b, o —blOANN-1
e second sum rule is INinis b_1K E i@, jB
oal
—(hA V2 (pA\2
ia,jB.ky aAiakyAialjﬁHk%jﬁ_(bn_Fl) _(bn) '
: 2abﬁ+l s s +b£(a§—a§) gay
n AraA_ A INigjg @b (b})? INiaip
2 25— NiajpHiy = balan —an-4 ]
ia,] B,Ky ia,ky (Bll) _bAO{\aTﬁN (813)
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