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Fokker-Planck description of the transfer-matrix limiting distribution in the scattering approach
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The scattering approach to quantum transport through a disordered quasi-one-dimensional conductor in the
insulating regime is discussed in terms of its transfer matriA model of N one-dimensional wires which are
coupled by random hopping matrix elements is compared with the transfer matrix model of Mello and Tomso-
vic. We derive and discuss the complete Fokker-Planck equation which describes the evolution of the prob-
ability distribution of TTT with system length in the insulating regime. It is demonstrated that the eigenvalues
of INTT' have a multivariate Gaussian limiting probability distribution. The parameters of the distribution are
expressed in terms of averages over the stationary distribution of the eigenveciors. ave compare the
general form of the limiting distribution with results of random matrix theory and the Dorokhov-Mello
Pereyra-Kumar equatiohS0163-182@6)04424-4

[. INTRODUCTION than backward scattering. We use the ratio of backward to
forward scattering strength as a small expansion parameter
The statistical properties of phase coherent quanturﬁnd calculate the Iimiting distribution in the lowest two or-
transport in mesoscopic systems have received increasing aters. ) )
tention during the past few yeats variety of low tempera- The transfer matrix transforms the amplitudes of the

ture transport quantities of conductors which are coupled t(g)ropa_\gating wave mpde(sapen channe}sat the Eermi en-
ideal Ieadps ca?n be expressed in terms of their scgtterinergy In the left lead into the amplitudes of the right lead. A

oA . . T Sonvenient parametrization for conductors with time-reversal
properties™* Hence, their statistics may be studied in terms

cee BT _ ; invariance and with no spin-orbit scattering is the polar
of the probability distribution of the scattering matrix. Sev- decompositiof?-3°

eral distinct approaches, including random matrix theory

(RMT),>~8 Fokker-Planck(FP) equations, '3 supersymme- [u O} [VItA W\ (v 0
try methods;*'® and diagrammatic techniqués® have o u/\ \x  JIEn/\0 v @

been employed. This led to considerable progress in the un- , . . .
derstanding of quasi-one-dimensional wi&&® whose Whereu, v are unitanyNx N matrices and is diagonal with
width is of the order of the mean free path, which implies areal and positive diagonal elements. The two-terminal

structureless cross-section since no transverse diffusion takconductance in units ofe/h is g=3,7, where
>=1/(1+\,;) are the transmission eigenvalues tof and

place_. The mean and the variance of the conductance ?Lu(ll\/mw is the transmission matrix.
guasi-one-dimensional wires are now known for all length The transfer matrix of two samples that are joined to-

scales from the metallic to the localized regifie’® The gether is the product of the transfer matrices of the individual
generalization of these results beyond the quasi-onészmples. Building up a long wire by combining short
dimensional regime is of cons@erggle interest and has beefymples thus leads to a transfer matrix which is a product
the subject of some recent wafk:* Having this goal in  of a large number of random matrices. The eigenvalues
mind, we focus on wires in the localized regime which areof |n(TT")/2L come in pairs[ay(L),— am(L)] where
still quasi-one-dimensional in the sense that they are much + 2)\  =cosh(2y,L)=cosH, and L is the system length.
longer t_han ywde but yvhlch_are not structurel_es_s in t_he transy 4 corresponding eigenvectors aré;(G;T)T/\/E and
verse direction. In this regime the FP description simplifies, - TN T .
considerably and progress is possible. (Up.—un/V2, where Uy is the mth column vector
This paper, which is the first of a series of two, deals®f U- _ _
mainly with the technical aspects of the problem and com- From Oseledec’s theoréfffor random matrix products it
pares the general result which is obtained with previous reiS known that theay,(L) are self-averaging and distinct if
sults from random-matrix theory and the Dorokhov-Mello L goes to infinity. The limiting valuesr,,=lim _..am(L)
Pereyra-KumafDMPK) (Refs. 31 and 10equation. It has are the Lyapunov exponents. They characterize the rate of
some overlap with the pioneering work of Dorokfidwut ~ €xponential growth of the.,, with system length. Further-
goes beyond it by generalizing the derivation of the transfemore there are central limit theorefs® which show that
matrix limiting distribution for the one-dimensional wire by U andv have stationary distributions and that the quantities
Kree and Schmitf to the quasi-one-dimensional case. A pre-(Fm—Zaﬁ.L)/\/E have Gaussian limiting distributions if
liminary account of the results that are presented here hagoes to infinity. Oseledec’s theorem implies that thgcan
been given in Ref. 34. In the second papeve will inves-  be ordered as «I';<TI",---<T'y if 2a7L>1. In this re-
tigate a model in which forward scattering is much strongergime g= = ,2/(2+ cosH )~4exp(T';)=4exp(2a,L) and
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16 556 DIRK ENDESFELDER 53
the sample is strongly insulating. The decay lengthwith transverse structure show that this is in general not
£=1/2a5 of the typical conductance is usually identified true>**®*'Therefore RMT cannot describe such conductors.

with the localization length. Johnston and K@fhapplied the The DMPK equation

central limit theorems to the Anderson model. We derive the . N

Gaussian limiting distribution within a FP approach, which M: 3 i(8_p+ p(?Q(F) ' (5)
will establish a link between the parameters of the limiting aL lym=1 oL\ ', '
distribution and the stationary distribution of where

The determination of the Lyapunov exponents of random _
matrix products is a problem which arises often in the con-Q(I')=—Z - nIn|(cosH,— cosH,)/2| —1/BZ In[sinkl |

text of disordered systems. At present there is no powerfuj,q y=pBN+2— 3, constitutes an exact description of

method to calculate them analytically. Only special casegyasi-one-dimensional wires without transverse structure. Its
like sparse random matrices have been sofVethe weak  sojution

disorder expansions which have been developed cannot be

successfully applied to quasi-one-dimensional conductors _ B2\ 12 _ 12
because of the problem of degenerate eigenvdftié3The p(r)“rﬂn |cost—cosy| Ty, ~ Iy
full limiting distribution has been mainly studied in numeri-
cal simulationg®#’ Apart from the numerical data, there are 2 - 12
: . o X —yIral/8uL)r hrC
only two analytical approaches which make quantitative pre- 1;[ Lexp(= YLl /BL)En(Sinflm) 51 (6)

dictions, RMT (Refs. 56, and 48 and the DMPK ;4 insulating reginfé?* can be as well approximated by

(022,23
equatiort. . . . a Gaussian distribution of the form (4) if
The RMT ensemble maximizes the information entropy1<rl<rz‘ -.<Ty where (T')=[1+ B(m—1)]2L/

1 m,

of the transfer matrix probability distribution subject to the [1(BN+2=B)] ando?=4L/[I(BN+2— B)]. Note that the
constraint of a given densip(I'))=(Z(I'=I'n)). ASa  mean values of RMT and of the DMPK equation coincide
consequencel’ and the unitary matrices are stochasticallyfor |arge N whereas the variances differ by a factor of 2.
independent. The unitary matrices are isotropically distrib- The content of the paper is organized as follows. In Sec.

uted and the probability distribution df has the form Il a Hamiltonian model ofN one-dimensional wires which
- are coupled by random hopping matrix elements is compared
p(I)=N"exg{ - BH(I")}, (2 to the transfer matrix model of Mello and Tomso@ic? In
where Sec. Il we derive the FP equation, which describes the evo-

lution of the probability distribution oI’ andu with system
1 length in the localized regime. In Sec. IV we generalize the
H(I)=— Z In|cosH™,—cosH™,| ——2 In(sinhl" ;) derivation for the transfer matrix limiting distribution of a
m<n B one-dimensional wire by Kree and Schrifido the quasi-
one-dimensional wire. A first application of this approach is
+> V(T (3) presented in Sec. V, where we investigate the equivalent
m channel modelECM) of Mello and Tomsovic. The joint

and V' is a normalization factor. The parametgris deter-  Probability distributionp(L;I') of this model is known to be
mined by the symmetry of the transfer matrix ensemble. Thédentical to the distribution of the DMPK equation for
orthogonal B=1), unitary (8=2), and symplectic A=1. We recover the Gaussian distributiof) and show
(8=4) ensembles correpond to conductors with time reverthat the stationary distribution af is isotropic.

sal symmetry, broken time reversal symmetry, and stronc% There are four appendixes. The derivation of the FP equa-
spin-orbit scattering, respectively. The potentigh) has to ~ tonin Sec. lllis based on a 3|mpllf|ed version pf thg general
be determined fromjp(I")). RMT is known to be a good but Langevin equations foF andu, which are obtained in Ap-
not exact description of quasi-one-dimensional conductor@endix A. The coefficients of the FP operator are derived in
without transverse structufeFor such conductors and large APPendix B. In Appendix C we show that a measure for the
N, (p(T))=NI/2L if 0<I'<2L/l and (p(I))~0 if  unitary group which has been introduced in the text is the
I'>2L/I, wherel is the mean free path. The resulting poten_invariant measure. An alternative derivation of the FP equa-
tial is quadraticV(I')~NIT'2/4L.% In the insulating regime tion is presented in Appendix D. The summation convention

where 1<T',<T,--- <[y the Hamiltonian(3) simplifies, IS Used throughout the whole paper.
since In(sinfi’,)~T", and IrjcosH ,—cosH |~T, if m<n.
This leads to the Gaussian probability distribution

(Tm— (T ))? The FP approach to disordered conductors has been pio-
58P ~— 5.2z [+ ) neered by Dorokhot? He started from a microscopic model
of disordered coupled chains which led to a quite compli-
where (I'))=(m—1+1/8)2L/(IN) and o?=2L/(BIN). cated FP equation. Similar models were also studied by other
Note that any potential must have the form techniques!° Recently Mello and Tomsovic proposed a
V(I')~al'+bI'? if L>¢ andI'>1 in order to be consistent class of models which was formulated on the level of the
with the Gaussian limiting distribution. This implies always transfer matriX’?® On the one hand, these models lead to
equidistant mean valudg,, and equal variances for the fluc- simpler FP equations, but on the other hand, the underlying
tuations around them. Numerical simulations of conductorddamiltonian is not known. In this section we propose a mi-

Il. HAMILTONIAN VERSUS TRANSFER MATRIX
MODELS
N

p)=]]

m=1 mo




53 FOKKER-PLANCK DESCRIPTION OF THE TRANSFER-MATRIX ... 16 557

croscopic model, which is simpler than the one that has been a B
used by Dorokhov, and compare it to the model class of :(ﬂ* *), (13
Mello and Tomsovic. @

Consider the scattering of electrons at a quasi-1D disorwhere aa'— B8"=1.%1° Apart from the polar decomposi-
dered conductor with ad—1)-dimensional cross section tion (1) there is another useful parametrization of the transfer
which is connected to perfectly ordered leads. The conductamatrix which has been introduced by Mello and Toms#ic
consists ofN 1D-wires which are only coupled by random and has the form
hopping matrix elements. It is described by the Hamiltonian

, ( expd O ) Vi+ py* ] 10
f T= , (14
Ham = = 8 505+ Vi (X), @ 0 expd /iy ltu'y

where 9 and » are complexN XN matrices andd'= —
where Vy,(x) is real and symmetric in its indices and and "= 7. The wave amplitudes,, andby, fix the values
n=1,... N. The potentiaV . (X) is zero in the leads and of ¥ (x,n;E) and 4, ¥(x,n;E) at the edges of the sample.
stochastic in the disordered system of lengthit describes  This implies that the transfer matrix of two samples which
on-wire disorder fon=n" and random hopping between the are matched continuously together is
wires forn#n’. The independent matrix elements \6fx)
are chosen to be uncorrelated and Gaussian distributed with T(L+L",00=T(L",L)T(L,0). (15

Z€ro average Hence, the transfer matrix of a sample of lengttcan be

_ obtained by dividing it into short segments of lengih and
<Vnn’(x)>_ov ; : :
multiplying the transfer matrices of the segments. The evo-
(Vo )V (X)) =U oy 8X= X" ) SnBrr e + Sy Snvm) lution of the transfer matrix with the system length is a mul-
nn’ mm’ —%“nn’ nm&n’'m’ nm’ “n’'m/»

®) tiplicative stochastic process. It can be described by a Lange-
vin equation since the model is continuous in the scattering
whereU,,,,=U,/,. The special cas¥,,,=U/N can be in-  direction. The Langevin equation has the form
terpreted as a continuous one-dimensidarbital modef®

which is connected to ideal leads with no exponential decay- dT(x,00 Y YHEX)
ing modes. Tax LA 720 T(x,0) (16)
The solution¥ (xn;E) of the scattering problem with the - )
incoming waves with the noisey' (x). The symmetries
2_ JAlx
Win(xn;E)= \/@(a' expl{ikx}+b'exp{ —ikx}) (9) e
, hk " " ”21: '}’12* ) (17)
is an eigenfunction of the Schdimger equation with energy and
E=%2%k?/2m,. Its form in the left and the right lead, respec-
tively, is yi=—1,
72T= 18

m
W (xn;E) = \/ (@ explikx} + b exp{ —ikx}),
rk i i i i i i
which will be derived below ensure time reversal invariance
(10) and flux conservation. Iterative integration of the Langevin

where the amplitudea’” andb!/" have been normalized in €duation yields
such a way that the probability current in thedirection is

11 12

jx==nlan|?—bs|% The S-matrix transforms the amplitudes T(xo+ 8L, %) = 1+ 821 822), (19
of the incident waves into the amplitudes of the scattered LN
waves where

bl al rot X+ oL X+ oL X

ar) = S b S = (t rr)‘ 1y Eij=f ° dX’))j(X)'i‘f ° de dX,'))k(X)'))(j(XI)

Xo Xo Xo

Current conservation and time reversal invariance imply that +o (20)

Sis unitary and symmetric, respectively. The transfer matrix
by contrast transforms the amplitudes in the left lead into thé-or uncorrelated noise the first term of this expansion is of

amplitudes in the right lead, order (5L)Y? and the second term is of ordét.. For the
derivation of the symmetrie€l7) and (18), however, it is
a a t—r't’ " ol convenient to start with a finite correlation length of the
bl T b/ T= ¢y -l 12 noise. Takingox< oL anddL to be smaller than this corre-
lation length one may expandy’(xq+ 6x)=7"(Xq)
+ 9, ¥ (X) Ox+ O((6%)?), which leads to
Here, current conservation and time reversal invariance leads o
to the form £ =91 (xy) 6L+ 0O((5L)?). (21)
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Equation (13) enforces the symmetries??=y** and (Fmrd o= Dmrd 5. =
Y*1=12*_ Comparing the expansiof21) with the param-
etrization(14) of the transfer matrix one finds (OO mrns) oL = i]lﬁlr#n/ ,
I(Xo+ 6L, %) = ¥(x0) SL+O(SL?), 11,22
( 0 0) ')’1( O) ( ) <ﬁmnﬂ:1’n’>5|-:’<mn,m’n”
7(Xo+ 6L, Xo) = ¥*4(Xo) SL + O(S5L?), (22 _ 1212
<nmnnm'n/>5L_Kmn’m’n’ ’
which implies y* '= — 9!* and 9'2T= 92, These symme-
tries remain valid in the limit of zero correlation length. (DnTy Y oL = Krlnzr;znl],n, ,
In the sequel we derivey*'(xo) and ¥'%(x,) for the '
Hamiltonian modek7). The stationary solution of the scat- (O mnTmn ) oL = Klmlﬁlnzw/n’ ,
tering problem obeys the Lippmann-Schwinger equation ’
11,21
<ﬁf““’7:cr1’n’>5L:Kmn,m’n’ ! (28

W (xmE) =" (xn; EHJ dx, 2 Gg (xn,xyny;E) and taking the continuum limit of a high number of weak

Ny scattering units such that
anlni(x)‘lf(xl,ni;E), (23 1 o
lim —w! ) =gl (29)
where SL0 SL mnm’n mn,m’n
—iMgSpy and that 18L times higher moments gives zero in the same

Gg (xn,x'n";E)= exp{ik(E)|x—x"[} (24  limit determined completely the stochastic evolution of the

S
A7K(E) transfer matrix. As a consequence one finds

is the free retarded Green’'s function. Iteration of the

1q_ 1111 1221
Lippmann-Schwinger yields the Born series [&mn]= (Trmiknt Tmkkn) /2,
_ Xo+ 6L [e12]=glt12
\If(xn;E):\If'”(xn;E)+f ° dxlz Gg (xNn,x.Nq;E) mn mickn
) ”1*"'1 I] I,j’
. [smnsm v = T mnes (30
n I ..
X Vign; (x) W (X101 B) + (25) where [---]=lims o --)s5./6L. The same limit for

. . . . - i i

which can be translated into series for the transmission angigher moments o, is zero. Mello and Tomsovic have
reflection matrices by Eq9) and Eq.(11). Thenth orders of chosen the foIIov_vmg simple mode_l for one scattering unit.
these series are at least of the ordélr " since they contain ASSume that the independent matrix elementd aind 7 are

n integrations fromx, to xo+ 6L. Thus, only the first orders uncorrelated and that their phases are randomly distributed.

can contribute to the terms of ordét of the expansions Averaging over the arbitrary distribution of their modulus

t=1+t'oL+---, r=rlol+..., t'=1+tlsL+..., thenleadsto

r'=r'1sL+ ... Inserting these contributions into the rela- 1 1
tions ¥'!=t! and y*?=r’ ! which follow from Eq.(12) and (el 1= 6 Sl 5 — o1
Eq. (21) yields ! >

11 11 _
[Smnsm'nr]_ ~ Omn Onnv |f )

—im
’}/nn’(XO) _2k_v nn’ (XO) mn

—imgexp(—i2kxg) 11 22
¥ (xg) = —— 2 Vo (X0).  (26) Leimn 1= Ot S 7
The phase expti2kxy), which appears in%(x,), is a con- I St Ot + Oy Oy 1
sequence of the transformation rule [emmEmn = B
1+ 6mn [
e—ikxol eikxol 0 1 1
T(L+X0,Xo)=( 0 eikxol)T(L’O)( 0 e_ikxol)' [8mn3m/nr]:0,
(27) [811 21 /] 0
which accounts for a shift of the disordered regionxgy
Now we are in the position to compare the Hamiltonian [S#Zr]grln%n,]:o, (32)

model (8) with the transfer matrix model of Mello and . )
Tomsovic?”® They divided a sample of length into ~ Wherely, andl;,, are the mean free paths for forward and

n=L/4&L uncorrelated scattering units with identical statisti- backward scattering from channet into channeln and
cal properties. Specifying the first two momentsthf, and  117°=3 117" are the total inverse mean free paths. The
7mn fOr one scatterer inverse mean free pathsl ,f],A and 1!mn are defined by the
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probabilities per length|tyn— Smnl?] @nd[|rmnl?] for a for-

ward and a backward scattering process, respectively. By Eq. M =TTT:(

(12) and Eq. (19 [|tmn_ 5mn|2]:[|8$11n 2] and [lrmn|2]

=[lemnl?], which leads to the above identification of the are closed, which allows us to eliminate the degrees of free-

model parameters with the mean free paths. dom ofv. We follow Dorokhov and start from his Langevin
Now we calculatg el) ] and[e! ¢! | /] for the Hamil-  equationgA10) for I' andu, which are derived in Appendix

tonian model(8). Inserting ¥(x,) and y*3(x,) from Eq. A for the sake of completeness. Due to the self-averaging of

(26) into Eq. (20) and averaging over the Gaussian whitethe ay one expects that in the insulating regime where

u 0

(cosff‘ sinhI‘)(u’r 0
0 u*

sini cosH'/\ 0 uT> 39

noise yields L>¢=1/(2a7) theT',, can be ordered: 4I';<---<TI'y.
-~ This ordering justifies the neglect of exponentially small
[emnl=0, contributions to the terms
[S%nsirir’]zc(ij,i'j/) 5mm’5nn’+5mn’5nm’, (32) Coth'[‘J:l_f_O(qu_ZFJ))'
mn lmn l+ 5mn
where W, =117 =112 =(my/(#%k))?Umn(1+ Smp) and sinhly, [0+ O(expl’,—I'))) n<j
IN=3,1N . Note thatl|,, andly,, are not independent as ~ cosH',—cosi’; | 1+O(exp(I'j—T',)) n>j,
in Eq. (31). The coefficient(ij,i’j’), which are not related (36)

through the symmetries of y/(x,), are c¢(11,11) _ _ _
=—c(11,22)=—c(12,21)=—1, c¢(11,21)= —c(11,12} of the general Langevin equatiof10), which leads to the

= —exp(2kx), c(12,12)= —exp(—idkx). Hence, the mo- considerable simplification
ments[sHms'n;l;,] which vanish in mode(31) oscillate with

Xo in EQ. (32). This will cause the coefficients of the FP dr—szmm+ Erims

equation(39) for the probability distribution off T' to oscil- dL

late with the system length. In the limit of weak disorder

(kI>1) these oscillations are very fast on the scale of the du

mean free patH, which is the characteristic length over EZVHUJFUP' (37)

which the probability distribution changes. Then, it is justi-

fied to average over the oscillations, which amounts to reThe matrix elements of P are P,,=6(n—m)E.,
place the oscillating moments in E(B2) by zero. The re- —6(m—n)EX__, where

sulting model is very similar to the modés1) if I =12,

but not equivalent. It would be equivalent if the phases of 1, n>0

7mn Were not random but had been chosen to take the values

exp(/2) and exptin/2) with equal probability. For stron- o(n)= } n=0 (38)
ger disorder it is no longer justified to average over the os- 2’

cillations. 0, n<0

As an alternative to the continuum limit of Mello and
Tomsovic one may specify directly the statisticsy,(x). andE=u'y*u*. The symmetrieg’=— y andP'=—P im-

Choosing Gaussian white noise such that ply thatd(uu®)/dL|,ut—,=0. Thus, the simplified Langevin
i _ equationg37) still conserve the unitarity ofi. The stochas-
(¥mn(X))=0, tic process described by them leads to a limiting distribution

N - L for (Fm—2a°,;L)/\/fwhich is independent of the initial con-
(Y)Y (X D) =0 1 (X)8(x=x"), (33 ditions. Hence, this limiting distribution must be identical to
the one which is produced by the original Langevin equa-
tions (87) as long as kI'y<- - - <I'y. Therefore, it is pos-
[ethn(X0) 1= opifih(%0)/2, sible to use the simplified Langevin equations together with
’ convenient initial conditions to determine the form of the
. i UL limiting distribution in this parameter range.
[emn(X0)& ' (X0) 1= Ty e (Xo)- (34) Due to the neglect of exponential small terms(86),
The Hamiltonian mode(8) and the mode[31) are special I'm can become negative and it is natural to extend the range
cases of this class of models. Note, however, thaff 'm0 —o, which is justified because the probability to

tinuum limit. small. For similar reasons we relax the strict ordering of the

I'.,. A parametrization ofi by a set ofN? independent pa-
rameters seems to be rather complicated. Instead, we extend
the range of the matrix elements,,=Xmntiymn to arbi-

The evolution of the transfer matrix with the system trary complex numbers thereby obtaining a stochastic pro-
length is a stochastic process which can be described bgess on a higher dimensional Cartesian space. The standard
Langevin and FP equations. DorokR®vecognized that the ~derivation techniqu¥ for the FP equation of such a process
stochastic equations for the matrix yields

leads to

I1l. LANGEVIN AND FOKKER-PLANCK EQUATIONS
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ap(L;T,u,u*) . . . lengthL as is the case for the Hamiltonian mod@). There,
— 0~ (0, dr Anntdr Bt C)p(L;Tu,u®), the factor expfikxy) of ¥*%(x,) in Eq. (26) leads to terms
(39) which oscillate with the system length. For weak disorder

_ (kI>1) the oscillations are fast on the scale of the mean free
wherell ,dI" [Ty A Xy Y e is the measure of the Car- pathl which justifies replacing the oscillating terms by their

tesian space. The operatdks,,, B,,, andC are averages. For stronger disorder the oscillations can be ab-
sorbed into the new variable,,=Uy,expkL). The trans-
- 1 formation of the FP equation to this variable leads to the

Ann=5[AT AT ], o N
mn 2[ mATh] additional term—ik(Udu,,—U* duy,) in the FP operator.

R The resulting FP equation is very similar to the FP equation
Bm=—[ATn]+dy_, [ATmAUmn ]+dyx, [ATpAuy, ], of Kree and Schmid® It is the generalization frolN=1 to
e arbitrary channel numbers.

C= _aumn[Aumn]_5ufnn[Au:1n]+aumnau;,n,[AumnAu;’n']
IV. THE LIMITING DISTRIBUTION

1 OF THE TRANSFER MATRIX
+=dy dy

2 Umn ,[AumnAum’n’]

m'n Kree and Schmid discussed thoroughly the asymptotic
1 probability distribution for the Landauer conductance
+ Eau* Ay [Au;nAu;,n,], (40 g=|t|? of a long one-dimensional wir&. The transmission

mn o’ and reflection amplitude for incident waves from the right
where AT, =T (L+6L)~Tn(l) and Aup=upn(L 2are t=u(@/(l+cos))*» and r=u?((cosH’-1)/
+6L) —Umn(L). The bracket§ - - -] define the coefficients (cosiT'+1))*% whereu and v are simply phases. They
of the FP operator and stand for BDLO<' . '>5L/5L! where showed that [ — 2a°°L)/\/E has a Gaussian limiting distri-

(---)s is the average over the disorder in the region pbebution if L—o, which implies a log-normal distribution for
tweenL andL+ SL. The explicit form of the coefficients is the conductance. The parameters of the Gaussian distribution

derived in Appendix B. were expressed in terms of averages over the stationary dis-
The multiplication of a probability distribution on the tribution of u. Similarly we expect that the corresponding
Cartesian space by th#&function guantity (F—2a°°L)/\/E for the quasi-one-dimensional wire

has a multivariate Gaussian limiting distribution whose pa-
N rameters can be expressed in terms of averages over the sta-
s(Luuh =[] 5( 1-> Uanﬁm) tionary distribution ofu.
m-t " It is useful to look at the first momentd™,,), in some
detail before deriving the general form of the limiting distri-
x 1 5(2 Rdum’nuz/n)> bution. Integrating Eq(39) with respect toI' leads to the
m'<n” AN closed FP equation

X6

; Im(um/nu:,n)) (41) aq(Liuu) -
TZCQ(L;U,U*) (42
restricts it to the unitary group. Since the Langevin equations

(37) conserve unitarity, one expects that the FP operatofor y, We expect that the stationary distribution wis the
commutes with thes-function. In fact, the operator8,, unique stationary solutiongg,(u,u*) of this equation.
Bm and C commute with every function of the type Hence, the spectrum & should consist of one eigenvalue
f(uu™) for arbitrary complex matricesu. A lengthy but 5, which is zero and others; with negative real parts. The
straightforward calculation with the coefficien®2) which  smallest absolute value of these real parts is henceforth
exploits the symmetriegl8) proves that this is true. Thus, calledv. In the sequel it will be assumed that the eigenfunc-
the restriction to the unitary group may be incorporated intg;jgns qi(u,u*) of C form a complete system where
the_l new —measure Iydlydu(u),  where du(u)  go(u,u*)=qgu(u,u*). Then, any probability distribution
=V (N) 8(L,uu) My X dYmens @ndW(N) s the vol- - ay pe expanded intd;c;qg;(u,u*), where conservation of
ume of' the u_mtary group. It is shown in Appendix C that probability implies fdu(u)g;(u,u*)=0 for i#0 and
du(u) is the invariant measure d§(N). We note that an ¢ — 1 Multiplying Eq. (39) with T, and integration by parts
integral of the typefdu(u)Xg(u,u*) (X=Am, Bm, or C) yields

with respect to the invariant measure is evaluated in two

steps. First, the-function is commuted wittX. Second, the HT o)L R

integrations are carried out yielding only contributions for Tz—f du(u)Byag(L;u,u*)

terms which do not have derivatives with respectg, or
uk ., in front of them.

_ It is worth emphasizing that the operatdks,, B, and :f du(W[AT R]g(L;u,u*). (43

C do not depend obr. This is the great simplification which

has been achieved by the neglect of the exponential smalixpanding the initial distribution into eigenfunctions
terms in(36). However, they can still depend on the systemq(0;u,u* ) = qg{U,U*) + = .0Ciq; (u,u*) gives q(L;u,u*)
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=Qsiaf U, U*) + 2, . oCiexpL)qi(u,u*). This leads to the C (myrq, ... ,Mry)
large length asymptotic behavior
(i, = (T )"+ (Do = (Crn )00

<Fm>L_<Fm>O%LJ‘ du(U)[AT 10t U,u*) +[const
- [ dut=ia, -G, 0PLm0] o

(50)
where the terms in brackets result from the crossover of the ) . . .
initial into the stationary distribution ofu. The self- The Fourier transform of the generating function gives back

averaging a’=lim, _..am(L)=lim,__.(amn(L)), of the the probability distribution

+O(exp[—vL})], (44

Lyapunov exponents impliea,,=lim__,..(T' ) /2L, which 1 N
leads to p(L;F,u,u*)z(ZT)Nf nl_z[l d7,P(L;7u,u*)
1J’ N
am=7 | du(W[AT p]qse(u,u™). (45)
m2 ms X ex —in§_‘,1 (Ca=(T o)) T - (51)
This relation has been first derived by DorokHéwWsing o ) .
Eq. (B2) to calculate AT ;] for the model(31) yields This implies the evolution equation
o(m JP(Limuu*) A oA _ N
al Wj d,U«(U)(UklmUk K3uk k3uk2 —(9L —( TanAmn ITmBm+C)P(L,T.U.U ):
ik (52)
Ui mUi e Uk kg Ukym where
+2uk1muk2k3u:1mu:2k3)QSta(uvU*)- (46) éo—é + d<rm>L

m m

The same formula has been obtained by Chalker and dL
Bernha}rd%g_for the special case that there is only back- =B,,—(0|B,y|0) (53)
scattering into the same channel. They discussed also the
consequences of this relation in the context of the AndersoAnd P(0;7,u,u*) =(qg{(u,u*). The formal solution of Eg.
transition. (52 is

In the sequel we will go beyond the first momet,,), R PR
and derive the general form of the limiting distribution of P(L;7,u,u)=exp{(— 7n7pAmn—1 7Bpm+ C)L}dsiaf U, U¥).
(I'—-2a”L)/\L. For the sake of simplicity we choose the (54)

initial distribution We follow Kree and Schmid and reexpress it in terms of
N the operator generalization of the Cauchy formula(bxp

PO = T oM masa(uu),  (ap  ~HEMHAE@ILIETD).

1 R
which implies that(T',), = 2a’’L [see Eq(44)]. The formal- P(Limuu")=5— fﬁ dZexpli {LIR(7,£)Astal U, U"),
ism that will be developed below could be used to show that (55)
a different initial condition would not change the form of the
limiting distribution but only the way it is approached. It is
convenient to introduce Dirac notation

where

R(%O=[{+i(— rnTrAmn—i TiBL+C)]7L  (56)

(0|c=0, C|0)=0, is the resolvent operator and the integration contour encircles
- . - all the eigenvalues of-i(— TanAmn |7-mBO + C) counter-
P=[0)(0], Q=1-7P, (48 clockwise. Equatior(50) for the moments of [ — (I')1)
only requires the resolvent operator for infinitesimal values

where gga(u,u*)=(u,u*|0) and (Qu,u*)=(0[0)=1 so
that the averaggdu(u) Xdsa{u,u*) may be simply ex-
pressed as (X|0).

The central quantity which will be used below to derive
the limiting distribution is the generating function

of 7. The spectrum of-i(— 7,7Amn ITmB +C) then lies

in the neighborhood of the spectrum oiC, which consists

of one zero eigenvalue and other eigenvalues in the upper
half plane. Hence one can choose the integration to run just
below the real line from minus to plus infinity and close the

contour in the upper half plane.
P(L;T,U,U*):J’ I1 dFm,exp(iE Tn(Tmn—(Tm)0) We do not reconstruct the limiting distribution from the
m’ m momentsC, (myrq, ... ,mcr,) but proceed indirectly. First
X p(L:T,u,u*) (49) consider the linear combinationQ=c,Q,=c (T,

—(I",w) with arbitrary coefficientsc,, and study its mo-
for the central moments ments which are given by
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<Qf>=f dus(u)(—i9,) P(L;7e,u,u%)] g

1 ~
" 2m § diexpi{L}(=id,)"(0|R(7¢,{)[0)]—o-
(57)

Since

IA?( 7C,{)=[{+i(— TZCanAmn_ i TCmégﬁ‘ é]_l (58)

is similar to the resolvent operator of a one-dimensional wire

DIRK ENDESFELDER

(2n )

(M= ——(wL)"+O(L"" ),

<QZH+1>ZO(Ln (65)

For details of the proof we refer to Ref. 33. The form of the
moments implies thaf)=0/L has the Gaussian limiting
distribution

S.(Q)= expl — 02/ (4w)}.

(66)

1
Ny 10

one can employ the technique of Kree and Schmid to CalcuNow we discard the finite length corrections to the limiting

late the moments. ExpandinB(7c,{) into powers of v
yields

R(rc,{)= ﬁeo<§>k§0 [(i CmCrAmn— TCmBLRo(O1¥,
(59

where Iio(g):(gﬂé)‘l may be decomposed into a part
which is singular at=0 and a nonsingular part

-~ . . P Q
R0:R05+ ROn:Z+ §+|é .

(60)

Only the terms of order" of the expansioif59) contribute to
therth moment of(). The first moment

1 ~ A A
<9>L=ﬁ § dzexpli 2L} OlRo(DicBIR(2)[0)

o2 0183/0) § ar T2 SXpILL)

is zero because of E@53) as it should be. Collecting the
terms which contribute to the second moment yields

(61)

1 , e
(QY=5— 35 dZexp{i ZLH(—26,Cn) (0]iRoAmdRo
+ RoBOR,BOR,|0)

1 :
=5 jg dZexp{iZL}

—2CnyCh Q
X 0|iAp,+B% ——=B?
? meTmetic

O) . (62

The residues of the pole of second order &t0
are mcn(0|Amn|0)L and —2c,c, (0/B%C'BL
+BOC~2B0|0) for the first and the second term, respec-

distribution and keep only the universal par§22"){
=(wL)"(2n)!/n! and (Q2"*1H'=0 of the momenty65).
The corresponding universal part of the generating function
S(L;n)=fdu(u)P(L;7u,u*) is denoted by S'(L;7).
Since (Q")/'=(-id,)"S"(L;7c)|,—o we find S‘(L;7c)
=exp{—720manan} which implies

SU(L;7)=exp— TmTnAmnL}- (67

The Fourier transfom(51) of SY(L;7) yields the universal
part of the probability distribution

1
S(ED= (4mL)N2\/det{ Amn)
X EXp{( - 1—‘m_ <Fm>L)-Ar:1r%(Fn_<Fn>L)/4L}v
(68)

where (I' ), =2a”L. Hence, the limiting distribution of
Q=(I'-2a”L)/\L is

expl — QA n/4}.
(69)

— 1
ooQ =
B PN =y

Note that the form of the correlator

1
=2 (—10,)(~10,)S(Li7) =

<(am_ a;)(a{n_

1
:I(Amn_" Anm) (70)
implies that thea,,=T", /2L are self-averaging and that the
fluctuations around thelr limiting values are in general cor-
related. Such correlations are not predicted by RMT or the
DMPK equation but are consistent with numerical
simulations*®4’

The variance of the Gaussian distribution ofg4a

t|ver The poles in the upper half plane of the second term-T", +const in the insulating regime which follows from
only give rise to exponential decaying contributions. Hence var(Ing)~ var(I';) and Eq.(63) is

(Q2y=2wL + const- O(exp{ — vL}), (63

where

®=CCn(0|Amn—B2C 1BY0)=CrCnAmn.  (64)

varn(ing)~2A4,,L+0O(1). (72

V. THE EQUIVALENT CHANNEL MODEL
AS A SPECIAL CASE

It can be shown along the same lines as in work of Kree and Mello and Tomosovic have sho#féthat the joint prob-

Schmid that the higher moments have the form

ability distributions(L;I") of the ECM, which is the model
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(31) with backscattering mean free paths of the form where g(uu*)ﬂ is zero if u is unitary. Applying higher
powers of C to the &-function gives CK8(1,uu’)
1 1+46mp 79 =6(LuuMg(uuk.  Hence, the initial distribution
2 T IP(N+1) (72 q(0;u,u*)=V"18(1,uu’) evolves into

obeys the DMPK equation fo8=1. The form(4) of the q(L;u,u*)=v 18(1uuNexpig(uu)L}=v 15(1,uu’),
solution for the DMPK equation in the insulating regime is a (77)
special case of the multivariatg Gaus.sian distribu(ed. which shows that it is the stationary distribution.
Hence, we expect to recover this solution from our approach
if we apply it to the ECM.

Evaluating Eq.(B2) for the coefficientf AT, AT',,] and VI. CONCLUSION
[AT',] with the backscattering mean free paffi®) yields The general forn{68) of the limiting distribution and the
link between its parameters and the stationary distribution of
u are the main results of this paper. This form implies that
the RMT probability distribution2) is not sufficient to de-
scribe quasi-one-dimensional conductors with transverse

[AFmAFn]: I (N+1) (u*kclmui’(czmuklﬂukzn

+ “klm“kzmutlnu:zn)’ structure. The generalization of RMT to such conductors re-
mains a challenging probleffi.Beenakke? has shown that
#(m—Kks) a correct description of quasi-one-dimensional wires without
[ATm]= m(uﬁlmuﬁzksuklksukzm transverse structure requires a modification of the interaction
in the Hamiltonian(3). It is not clear whether a modification
+uklmuk2k3u’,:1k3u’|§2m+ uﬁlmuﬁzksukzksuklm of the interaction is sufficient to describe conductors with
transverse structure or if three and more eigenvalue interac-
+ uklmukzkau’k‘zksu’k‘lm). (73)  tions are needed. Since any generalization must be consistent

with the form (68) it is of considerable interest to have ex-
Since the coefficients have the constant valueglicit results for(T",,) and.A, which go beyond RMT and
[AT AT ]=468,,/[I°P(N+1)] and [AT,,] =2m/[I®(N  the DMPK equation. Numerical simulatidfi$’ showed that
+1)] if uis unitary, one can integrate the evolution equationthe correlations between a pair @f, are rather weak. So it
(52) for the generating functioR(L; =,u,u*) with respectto  might be that the correlations vanish in the thermodynamic

u. The solution of the resulting equation limit leading to a diagonal form a#,,,,. A perturbative cal-
culation of the limiting distribution for strong forward scat-
aS(L; 7) 26mn tering will be published in a subsequent papeit. will shed
L~ IB(N+1) TmTnS(L; 7) (74 some light on these questions.
is S(L;7) =eXp{—22m7r2nL/[|b(N+ 1]}, which leads to the ACKNOWLEDGMENTS
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sLD=11 = 5

m=1 mTo

N p{(rm—wmmz
exp ———————

; — b 2__ b
with (T') . =2mLU/[I1°(N+1)] and e*=4L/[I°(N+1)] as APPENDIX A: DERIVATION

expected.
It is a specific property of ECM’s that the evolution of the OF THE LANGEVIN EQUATIONS
joint distribution s(L;I") decouples fromu. Therefore, the The Langevin equations fdr andu which describe the

limiting distribution does not depend on the stationary distri-stochastic evolution of the matrix
bution of u. Still, it is of interest to know the stationary 11 sal2 T , T
distribution. Solving the equatioBigg,{u,u*)=0 which de- TT =M= ( M M ) :( u(cosHu u(sinhC)u
termines it is in general a difficult problem. We demonstrate M2t M22) | u*(sinil)u’  u* (cosH)u”
below that due to the simple form of the backscattering (A1)
mean free paths the stationary probability measur
Qstaf U, U* )1, ndRe(Uy,)dIm(uy,) can be found to be
V18(1,uuN, ,dReUm)d Im(uy,y) which is the invari-
ant measure of the unitary group. Using the foi@@10) of

C in which the derivatives act directly on the distribution and

the property thaC commutes with the>-function yields M(L+68L)=T(L+6L,L)ML)TH(L+6L,L) (A2)

Svere already given by Dorokhov in his pioneering wdtk.
Since he did not derive them explicitly we derive them in
this appendix. The multiplicative natufé5) of the transfer
matrix implies that

. 1 if a short segment of lengtldL is added to a sample of
Ca(1,uu’)=8(L,uu")| ZmrAT AT ]—m[AT ] length L. The changeAM=M(L+6L)—M(L) of M in-
duces the changesI’ and Au which can be calculated by
=58(1,uu)g(uu™), (76)  perturbation theory. The eigenvalues of the Hermitean ma-
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trix M*=u(cosH")u" are cosh',,. The corresponding eigen- sequent averaging over the disorEl?—:-n.ntegration of the

vector to cosh,, is the mth column vectoru,,of u. The
changeAu may be expanded into these eigenvectors

N
A sz kgj_ kal—jk . (A3)

Nondegenerate first-order perturbation theory then yields

{u'AM™u}
AT p=—————+0O((AM1})? Ad
m S, (( )%) (A4)
and
utfAMty
mn= { b +0((AM1Y2) (A5)

~ cosH,,—cosH,,

for n#m. The expansion coefficiemt,,,, can be calculated
from

AMP?=Au(F+AF)u"+u(F+AF)AuT+uAFu”
+AU(F+AF)AUT, (AB)

where F=sintl. Equation (A3) implies thatu'Au=c'.
Multiplying Eq. (A6) with u' from the left and withu* from
the right thus yields

uTAM?2u* =cT(F+AF)+ (F+AF)c+AF+cT(F+AF)c.
(A7)

Hence
_{uTAM*u*} - cothl {uTAM b g
B sinhl,

+0O((AM*?)?).

mm

(A8)

Inserting the expansio(21) of T(L+ 6L,L) into powers of
SL into Eq. (A2) gives

AMI = (Y*ME+ MK SL+O(8L2).  (A9)
Collecting results and taking the lim#i. — 0 finally leads to
the Langevin equations

Al

L Enmt Ex

mm?

dumn "
= +
dL Ek YmiMkn &

EnSinil 4+ Ef,sinhl
u
cosH',— cosH,, mk

+ (A10)

2

1
_COthrn(Enn_ E:n) ) Umn,

whereE=u"'%*. Note that the symmetrieg!® = — y**
and y*27=9'2 imply that d(uu®)/dL|,-;=0, which en-
sures that unitarity is conserved.

APPENDIX B: THE COEFFICIENTS
OF THE FP OPERATOR

Langevin equation yields

T(X)=T(L) + fodx'{E<x'>+E*<x')}mm.

Umn(X) =Umn(L) + fLXdX,{'J’u(X,)U(X,)"' U(X,)P(X,)}mn-
(B1)

The matrix elements ofi(x’) and u* (x') which appear in

the integrands can again be expressed by the second of Eqs.
(B1). lterating this procedure leads to an increasing number
of terms with polynomials ofy! of increasing degree. For

the Gaussian white noise mode3) only polynomials of
even degree have nonzero disorder averages. The integration
over the 6-functions of the disorder averaged polynomials
then leads to terms of ordéL"2. Hence, only polynomials

of degree 2 contribute to the limit [---]
=limg _o{---)s./6L. Collecting these polynomials leads

to the following result for the coefficients of the FP operator:

L+ 6L L+ 6L
raryl=| [ ax] T axquty 009 o
L L
+ E() 7 (X )+ C.Chm, (B2)
L+ 6L L+ 6L
[AT, AT, ]= fL dfo dx' {#(x)
+%*(x)}mm{;ﬂx'w%*(x')}nn},
L+ 6L L+ 6L
[AT AUy ]= fL deL dx' {#(x)
+%*(x)}mm{'yll(x’)u—{—u_u/)(x’)}m,n,},
_E L+ 6L L+5L, 1 o,
[Aumn]—ZUL deL dx' {7100 7 x )u

+ 29y (X)) uA(x") + uZ(x" ) Z(X) }mn
@ UmjO(n=){u" " T(x") ¥ u*
+uly ) Y (x U + 2N (x) (%)
+e{(x)y/)*(x')},»n—Ej Umnj0(j — 1)

XUl ) U+ uTy () (X u

The coefficients of the FP operator can be calculated by

iterative integration of the Langevin equatiof®) and sub-

+ 21X ) E(X) + &) 7 (XD,
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L+6L L+46L
[AUmPAUp )= J’L deL dx,{')’ll(x)u dM(U):V_l(N)&LUUT)H dXmndYmn» (C2
m,n
+UZ(X)  md VX U+ uy(x/)}m,n,} whereumn=Xmnt1Ymn, Y(N) is the volume of the unitary
group, and the>-function 8(1,uu’) has been defined in Eq.
(41). Since the unitary group is compact, invariance under

[Au, Au*, ]= JL+5LdXJL+5de’{¢1(x)u multiplication from the right implies invariance under multi-

M= mn’ L plication from the left(cf. p. 316 in Ref. 59 Therefore it is
B sufficient to show the right invariance. Let us write

+HUZ00) hnef ¥ (XU u’'=uug. Then

+U*:/)*(X’)}m/nr},
du(u)=V"YN)sLuuH]T dx, . dy.,
m,n

where
Z(x)=u"(L) YA x)u* (L), =V YN)&(Luu’) ‘det‘”(;r;—’;“‘))

Pan(X) = 8(N—M)Epn(X) — (m—n)Er(x)  (BI)

. X .
and integrals of the typg[ " *-dx/Tdx’ §(x—x")f(x’) have ﬂn AXmrdYrmn €3
been replaced by " dx fI*°dx’ s(x—x')f(x")/2.

Thusdw(u) is right invariant, if the absolute value of the

Jacobi determinant of the linear transformatiah=uu

equals one. This transformation is equivalent to
APPENDIX C: THE INVARIANT MEASURE

OF THE UNITARY GROUP

X' I®x), —1w@y\ [ X
The invariant measurdw(u) of the unitary group is in- - | = eV 1uax! -
variant under multiplication with an arbitrary elemant of y N®Yo N= 70 y
the group from the left and the right ) &()Z’,)?’) % co
du(u)=dp(uou)=du(uup). (Cy Caxy) \y)
As claimed in Sec. lll we show in this appendix that the
invariant measure has the form whereu=x+iy has been written in the vector form
|
(XT yN=(Xu1 X2 - Xin Xz 0 Xnn Y 0 YN (CH

The multiplication rule A®B)(C®D)=(AC)®(BD) for = was employed by Mello and co-workers to derive the FP
cross products of matrices and the unitarityuwoimply that ~ equation of their isotropic modét®
(7()2, '37)/(9()2’}7) is an orthogonal matrix. Therefore the abso- Assume that the probability distribution bf for a system

lute value of the Jacobi determinant is 1 and the measure &f lengthL isp(L;M). Then add a statistically independent
right invariant. segment of lengtL to the system. The distribution of the

transfer matrix T;, of the segment is denoted by
w(L,dL;Ts). Averaging a functiorf (M) over the disorder

APPENDIX D: ALTERNATIVE DERIVATION of the whole system yields
OF THE FP EQUATION
The FP equatiofi39) can be derived in an alternative way <f(M)>'-+5'-Ef dp(M)p(L+oL;M)T(M)
yielding immediately the form in which the derivatives act
directly on the probability distribution and not on the coeffi- :f J' dp(M")dw(T s )P(L;:M")
cients of the FP operator. This implies useful relations be-

tween these two forms which are difficult to obtain by direct : it

X
differentiation of the coefficients if the result is not known in WL, O To)f(TaM To), (DY)
advance. Therefore we describe the alternative derivation iwhereM=T5LM’T:§L anddw(T), dp(M) are measures on
this appendix. It is a generalization of the technique whichthe matrix spaces of and M. If the measuredp(M) is
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chosen to be invariant under the transformafigiT ) for
any transfer matrixi, one finds

<f(M)>L+b‘L:J de(M)dw(TéL)

XP(L; T M(TE) " Hw(L, 8L; T ) F(M).
(D2)

A similar line of reasoning as in Ref. 10 yields that the
invariant measure has the form

N

dp(M):J(F)m[[1 dl' ndie(u), (D3)

where J(I') =11, ,|cosH",—cosH " |II,sinh,,, and du(u)

is the invariant measure on the unitary group. Comparing Eg.

(D1) with Eqg. (D2) immediately shows that

(Lt oL:M) = f doo (T, B T5M(TL )Y

Xw(L,8L;Ts) (D4)

or equivalently

PL+oLM) =L TM(TH) D)5 (D5)

since the average Eif(L;TngM(T}L) ~1) with the probability
w(L,6L;Ts )dw(Ts) is just the averagé- - -)s over the
disorder of the segment. For a fixed valuelbthe distribu-
tion p(L + 6L;M) may be expanded into the irreducible rep-
resentations of the unitary group. Since the irreducible rep
resentations are polynomials iruy,, and u¥ 6
P(L+ 6L;M) can be analytically continued to arbitrary com-
plex matrix elementsi,,,. This justifies writing Eq(D5) in

the form

P(L+6L;T,u,u*)=(p(L;T+AT,u+Au,u* +Au*)) s ,

(D6)
whereAT’, Au, andAu* are the changes of the parameters
of M which are induced by the transformation
TngM(TEL)*l. A Taylor expansion of the left side in powers
of L and of the right side in powers &T',,,, Au,,, and
Auy  yields

dp (1
L =1 2ATwATJor or +[ATplar
+[AT W AUwn 1dr 0y, AT AU, 100 dg*
+[Aumn]‘9umn+[Au:1n]‘9u;‘nn
+[AumAuy, 10y Au*
1
+5 [AumnAum n’ ](9 U '
1, -
+ S[AURAUT, s dur 1P (D7)
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in the limt &6L—0. The coefficients [---]
=limg _o{---)s./6L could be determined by the calcula-

tion of AT, Aup,,, andAuy,, with perturbation theory and
subsequent averaging over the disorder This would lead to

expressions which involvpemn] and[ &) mn8m 'nr] Where

)

el=¢1T ande™= — £'?7. In order to include all the terms
which contribute to the coefficients one has to go to the
second order of the perturbation theory, which is quite in-
volved. We proceed in a different way instead. For the
Gaussian white noise moded3) one finds

;11 EIZ

T(L+6L,L) t=1+ (D8)

g2t g%

g:'-]nn]:[“g:'#n

U
—i —+]
8mn8m’

|J i/j/
mn“m’n

[ L1=letell .

Hence, the coefficients may be as well evaluated with the
changesAT',,, Auy,,, andAu,,, which are induced by the
transformationT,;,_MTst. These changes can be obtained by
iterative integration of the Langevin equatidi@s) similar to
that described in Appendix B for the simpler case of large
system lengths.

Since ¢(M)/J(I)=I1,dI"' ,du(u) is the same measure
that was used for the probability distribution of the FP
equation (39), one expects that the distribution
J(D)p(L;T,u,u*) obeys this FP equation for large system
lengths. In fact, the transformation of E@p7) to this distri-
bution and the neglect of the exponential small contributions
to terms of the form36) leads to Eq(39), where the opera-
tors Amn, Bm, andC appear in the form

(D9)

1
ngE[AFmAFn]v

Bn=[AT ] = N[ AL AT ]+ [AT pA Um0 1y,

nr](?u A

+[AT AUT,

m’n

L1
C=SMNAT RAT ]~ M AT ]~ M[AT pA Upyy]

Xﬁ —m[AI‘mAU;/n/]au’;,n,+[Aumn]aumn

Un/n’

+ [AUEn]aufnn"_ [AumnAu:ﬂnf]aumné’u;,n,

1
+ E[AumnAum’n’]aumn&um,n,

1
+§[AU:1nAU ](7 * (? *

mn

(D10)

The equivalence with the form oﬁ\mn, ms andC in Eq.
(40) can be shown by a lengthy but straightforward calcula-
tion which exploits only the symmetrieg*! = —4!! and

YR2T= 12
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