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The scattering approach to quantum transport through a disordered quasi-one-dimensional conductor in the
insulating regime is discussed in terms of its transfer matrixT. A model ofN one-dimensional wires which are
coupled by random hopping matrix elements is compared with the transfer matrix model of Mello and Tomso-
vic. We derive and discuss the complete Fokker-Planck equation which describes the evolution of the prob-
ability distribution ofTT† with system length in the insulating regime. It is demonstrated that the eigenvalues
of lnTT† have a multivariate Gaussian limiting probability distribution. The parameters of the distribution are
expressed in terms of averages over the stationary distribution of the eigenvectors ofTT†. We compare the
general form of the limiting distribution with results of random matrix theory and the Dorokhov-Mello
Pereyra-Kumar equation.@S0163-1829~96!04424-4#

I. INTRODUCTION

The statistical properties of phase coherent quantum
transport in mesoscopic systems have received increasing at-
tention during the past few years.1 A variety of low tempera-
ture transport quantities of conductors which are coupled to
ideal leads can be expressed in terms of their scattering
properties.2–4 Hence, their statistics may be studied in terms
of the probability distribution of the scattering matrix. Sev-
eral distinct approaches, including random matrix theory
~RMT!,5–8 Fokker-Planck~FP! equations,9–13 supersymme-
try methods,14–16 and diagrammatic techniques17,18 have
been employed. This led to considerable progress in the un-
derstanding of quasi-one-dimensional wires19–23 whose
width is of the order of the mean free path, which implies a
structureless cross-section since no transverse diffusion takes
place. The mean and the variance of the conductance of
quasi-one-dimensional wires are now known for all length
scales from the metallic to the localized regime.24–26 The
generalization of these results beyond the quasi-one-
dimensional regime is of considerable interest and has been
the subject of some recent work.27–30 Having this goal in
mind, we focus on wires in the localized regime which are
still quasi-one-dimensional in the sense that they are much
longer than wide but which are not structureless in the trans-
verse direction. In this regime the FP description simplifies
considerably and progress is possible.

This paper, which is the first of a series of two, deals
mainly with the technical aspects of the problem and com-
pares the general result which is obtained with previous re-
sults from random-matrix theory and the Dorokhov-Mello
Pereyra-Kumar~DMPK! ~Refs. 31 and 10! equation. It has
some overlap with the pioneering work of Dorokhov32 but
goes beyond it by generalizing the derivation of the transfer
matrix limiting distribution for the one-dimensional wire by
Kree and Schmid33 to the quasi-one-dimensional case. A pre-
liminary account of the results that are presented here has
been given in Ref. 34. In the second paper35 we will inves-
tigate a model in which forward scattering is much stronger

than backward scattering. We use the ratio of backward to
forward scattering strength as a small expansion parameter
and calculate the limiting distribution in the lowest two or-
ders.

The transfer matrix transforms the amplitudes of the
propagating wave modes~open channels! at the Fermi en-
ergy in the left lead into the amplitudes of the right lead. A
convenient parametrization for conductors with time-reversal
invariance and with no spin-orbit scattering is the polar
decomposition32,36

T5S u 0

0 u* D S A11l Al

Al A11l
D S v 0

0 v* D , ~1!

whereu, v are unitaryN3N matrices andl is diagonal with
real and positive diagonal elementsl i . The two-terminal
conductance in units of e2/h is g5( iTi , where
Ti51/(11l i) are the transmission eigenvalues oftt† and
t5u(1/A11l)v is the transmission matrix.

The transfer matrix of two samples that are joined to-
gether is the product of the transfer matrices of the individual
samples. Building up a long wire by combining short
samples thus leads to a transfer matrix which is a product
of a large number of random matrices. The eigenvalues
of ln(TT†)/2L come in pairs @am(L),2am(L)# where
112lm[cosh(2amL)[coshGm and L is the system length.
The corresponding eigenvectors are (uWm

T ,uWm*
T)T/A2 and

(uWm
T ,2uWm*

T)T/A2, where uWm is the mth column vector
of u.

From Oseledec’s theorem37 for random matrix products it
is known that theam(L) are self-averaging and distinct if
L goes to infinity. The limiting valuesam

`[ limL→`am(L)
are the Lyapunov exponents. They characterize the rate of
exponential growth of thelm with system length. Further-
more there are central limit theorems38,39 which show that
u andv have stationary distributions and that the quantities
(Gm22am

`L)/AL have Gaussian limiting distributions ifL
goes to infinity. Oseledec’s theorem implies that theGm can
be ordered as 1!G1!G2•••!GN if 2a1

`L@1. In this re-
gime g5(m2/(21coshGm)'4exp(2G1)54exp(22a1L) and
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the sample is strongly insulating. The decay length
j51/2a1

` of the typical conductance is usually identified
with the localization length. Johnston and Kunz40 applied the
central limit theorems to the Anderson model. We derive the
Gaussian limiting distribution within a FP approach, which
will establish a link between the parameters of the limiting
distribution and the stationary distribution ofu.

The determination of the Lyapunov exponents of random
matrix products is a problem which arises often in the con-
text of disordered systems. At present there is no powerful
method to calculate them analytically. Only special cases
like sparse random matrices have been solved.41 The weak
disorder expansions which have been developed cannot be
successfully applied to quasi-one-dimensional conductors
because of the problem of degenerate eigenvalues.42–45 The
full limiting distribution has been mainly studied in numeri-
cal simulations.46,47Apart from the numerical data, there are
only two analytical approaches which make quantitative pre-
dictions, RMT ~Refs. 5,6, and 48! and the DMPK
equation.22,23

The RMT ensemble maximizes the information entropy
of the transfer matrix probability distribution subject to the
constraint of a given densitŷr(G)&[^(md(G2Gm)&. As a
consequence,G and the unitary matrices are stochastically
independent. The unitary matrices are isotropically distrib-
uted and the probability distribution ofG has the form

p~G!5N21exp$2bH~G!%, ~2!

where

H~G!52 (
m,n

lnucoshGm2coshGnu 2
1

b(
m

ln~sinhGm!

1(
m

V~Gm! ~3!

andN is a normalization factor. The parameterb is deter-
mined by the symmetry of the transfer matrix ensemble. The
orthogonal (b51), unitary (b52), and symplectic
(b54) ensembles correpond to conductors with time rever-
sal symmetry, broken time reversal symmetry, and strong
spin-orbit scattering, respectively. The potentialV(l) has to
be determined from̂r(G)&. RMT is known to be a good but
not exact description of quasi-one-dimensional conductors
without transverse structure.7 For such conductors and large
N, ^r(G)&'Nl/2L if 0<G,2L/ l and ^r(G)&'0 if
G.2L/ l , wherel is the mean free path. The resulting poten-
tial is quadraticV(G)'NlG2/4L.49 In the insulating regime
where 1!G1!G2•••!GN the Hamiltonian~3! simplifies,
since ln(sinhGm)'Gm and lnucoshGm2coshGnu'Gn if m,n.
This leads to the Gaussian probability distribution

p~G!5 )
m51

N
1

A2ps2
expH 2

~Gm2^Gm&!2

2s2 J , ~4!

where ^Gm&5(m2111/b)2L/( lN) and s252L/(b lN).
Note that any potential must have the form
V(G)'aG1bG2 if L@j andG@1 in order to be consistent
with the Gaussian limiting distribution. This implies always
equidistant mean valuesGm and equal variances for the fluc-
tuations around them. Numerical simulations of conductors

with transverse structure show that this is in general not
true.50,46,47Therefore RMT cannot describe such conductors.

The DMPK equation

]p~L;G!

]L
5

2

lg (
m51

N
]

]Gm
S ]p

]Gm
1bp

]V~G!

]Gm
D , ~5!

where

V~G!52(m,nlnu~coshGm2coshGn!/2u21/b(mlnusinhGmu

and g5bN122b, constitutes an exact description of
quasi-one-dimensional wires without transverse structure. Its
solution

p~G!} )
m,n

ucoshGm2coshGnub/2uGm
2 2Gn

2u

3)
m

@exp~2gGm
2 l /8L !Gm~sinhGm!1/2# ~6!

in the insulating regime22,23 can be as well approximated by
a Gaussian distribution of the form ~4! if
1!G1!G2•••!GN , where ^Gm&5@11b(m21)#2L/
@ l (bN122b)# ands254L/@ l (bN122b)#. Note that the
mean values of RMT and of the DMPK equation coincide
for largeN whereas the variances differ by a factor of 2.

The content of the paper is organized as follows. In Sec.
II a Hamiltonian model ofN one-dimensional wires which
are coupled by random hopping matrix elements is compared
to the transfer matrix model of Mello and Tomsovic.27,28 In
Sec. III we derive the FP equation, which describes the evo-
lution of the probability distribution ofG andu with system
length in the localized regime. In Sec. IV we generalize the
derivation for the transfer matrix limiting distribution of a
one-dimensional wire by Kree and Schmid33 to the quasi-
one-dimensional wire. A first application of this approach is
presented in Sec. V, where we investigate the equivalent
channel model~ECM! of Mello and Tomsovic. The joint
probability distributionp(L;G) of this model is known to be
identical to the distribution of the DMPK equation for
b51. We recover the Gaussian distribution~4! and show
that the stationary distribution ofu is isotropic.

There are four appendixes. The derivation of the FP equa-
tion in Sec. III is based on a simplified version of the general
Langevin equations forG andu, which are obtained in Ap-
pendix A. The coefficients of the FP operator are derived in
Appendix B. In Appendix C we show that a measure for the
unitary group which has been introduced in the text is the
invariant measure. An alternative derivation of the FP equa-
tion is presented in Appendix D. The summation convention
is used throughout the whole paper.

II. HAMILTONIAN VERSUS TRANSFER MATRIX
MODELS

The FP approach to disordered conductors has been pio-
neered by Dorokhov.32 He started from a microscopic model
of disordered coupled chains which led to a quite compli-
cated FP equation. Similar models were also studied by other
techniques.51–55 Recently Mello and Tomsovic proposed a
class of models which was formulated on the level of the
transfer matrix.27,28 On the one hand, these models lead to
simpler FP equations, but on the other hand, the underlying
Hamiltonian is not known. In this section we propose a mi-
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croscopic model, which is simpler than the one that has been
used by Dorokhov, and compare it to the model class of
Mello and Tomsovic.

Consider the scattering of electrons at a quasi-1D disor-
dered conductor with a (d21)-dimensional cross section
which is connected to perfectly ordered leads. The conductor
consists ofN 1D-wires which are only coupled by random
hopping matrix elements. It is described by the Hamiltonian

Hnn852dnn8
\2

2m0
]x
21Vnn8~x!, ~7!

where Vnn8(x) is real and symmetric in its indices and
n51, . . . ,N. The potentialVnn8(x) is zero in the leads and
stochastic in the disordered system of lengthL. It describes
on-wire disorder forn5n8 and random hopping between the
wires for nÞn8. The independent matrix elements ofV(x)
are chosen to be uncorrelated and Gaussian distributed with
zero average

^Vnn8~x!&50,

^Vnn8~x!Vmm8~x8!&5Unn8d~x2x8!~dnmdn8m81dnm8dn8m!,
~8!

whereUnn85Un8n . The special caseUnn85U/N can be in-
terpreted as a continuous one-dimensionalN-orbital model,56

which is connected to ideal leads with no exponential decay-
ing modes.

The solutionC(xn;E) of the scattering problem with the
incoming waves

C in~xn;E!5Am0

\k
~an

l exp$ ikx%1bn
r exp$2 ikx%! ~9!

is an eigenfunction of the Schro¨dinger equation with energy
E5\2k2/2m0 . Its form in the left and the right lead, respec-
tively, is

C l /r~xn;E!5Am0

\k
~an

l /rexp$ ikx%1bn
l /rexp$2 ikx%!,

~10!

where the amplitudesan
l /r andbn

l /r have been normalized in
such a way that the probability current in thex-direction is
j x5(nuanu22ubnu2. TheS-matrix transforms the amplitudes
of the incident waves into the amplitudes of the scattered
waves

S blar D 5 SS albr D , S 5 S r t8

t r8
D . ~11!

Current conservation and time reversal invariance imply that
S is unitary and symmetric, respectively. The transfer matrix
by contrast transforms the amplitudes in the left lead into the
amplitudes in the right lead,

S arbr D 5 TS albl D , T5S t2r8t821r r 8t821

2t821r t821 D .
~12!

Here, current conservation and time reversal invariance leads
to the form

T5S a b

b* a* D , ~13!

whereaa†2bb†51.9,10 Apart from the polar decomposi-
tion ~1! there is another useful parametrization of the transfer
matrix which has been introduced by Mello and Tomsovic28

and has the form

T5S expq 0

0 expq* D S A11hh* h

h* A11h*h
D , ~14!

whereq andh are complexN3N matrices andq†52q
andhT5h. The wave amplitudesal /r andbl /r fix the values
of C(x,n;E) and ]xC(x,n;E) at the edges of the sample.
This implies that the transfer matrix of two samples which
are matched continuously together is

T~L1L8,0!5T~L8,L !T~L,0!. ~15!

Hence, the transfer matrix of a sample of lengthL can be
obtained by dividing it into short segments of lengthdL and
multiplying the transfer matrices of the segments. The evo-
lution of the transfer matrix with the system length is a mul-
tiplicative stochastic process. It can be described by a Lange-
vin equation since the model is continuous in the scattering
direction. The Langevin equation has the form

dT~x,0!

dx
5S g11~x! g12~x!

g21~x! g22~x!
DT~x,0! ~16!

with the noiseg i j (x). The symmetries

g225g11* ,

g215g12* , ~17!

and

g11 †52g11,

g12T5g12, ~18!

which will be derived below ensure time reversal invariance
and flux conservation. Iterative integration of the Langevin
equation yields

T~x01dL,x0!511S «11 «12

«21 «22
D , ~19!

where

«i j5E
x0

x01dL
dxgi j ~x!1E

x0

x01dL
dxE

x0

x

dx8gik~x!gk j~x8!

1•••. ~20!

For uncorrelated noise the first term of this expansion is of
order (dL)1/2 and the second term is of orderdL. For the
derivation of the symmetries~17! and ~18!, however, it is
convenient to start with a finite correlation length of the
noise. Takingdx<dL anddL to be smaller than this corre-
lation length one may expandgij(x01dx)5gij(x0)
1]xg

i j (x0)dx1O„(dx)2…, which leads to

«i j5gi j ~x0!dL1O„~dL !2…. ~21!
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Equation ~13! enforces the symmetriesg225g11* and
g215g12* . Comparing the expansion~21! with the param-
etrization~14! of the transfer matrix one finds

q~x01dL,x0!5g11~x0!dL1O~dL2!,

h~x01dL,x0!5g12~x0!dL1O~dL2!, ~22!

which impliesg11 †52g11 and g12T5g12. These symme-
tries remain valid in the limit of zero correlation length.

In the sequel we deriveg11(x0) and g12(x0) for the
Hamiltonian model~7!. The stationary solution of the scat-
tering problem obeys the Lippmann-Schwinger equation

C~xn;E!5C in~xn;E!1E dx1 (
n1 ,n18

G0
1~xn,x1n1 ;E!

3Vn1n18
~x!C~x1 ,n18 ;E!, ~23!

where

G0
1~xn,x8n8;E!5

2 im0dnn8
\2k~E!

exp$ ik~E!ux2x8u% ~24!

is the free retarded Green’s function. Iteration of the
Lippmann-Schwinger yields the Born series

C~xn;E!5C in~xn;E!1E
x0

x01dL
dx1 (

n1 ,n18
G0

1~xn,x1n1 ;E!

3Vn1n18
~x1!C

in~x1 ,n18 ;E!1••• ~25!

which can be translated into series for the transmission and
reflection matrices by Eq.~9! and Eq.~11!. Thenth orders of
these series are at least of the order (dL)n since they contain
n integrations fromx0 to x01dL. Thus, only the first orders
can contribute to the terms of orderdL of the expansions
t511t1dL1•••, r5r1dL1•••, t8511t81dL1•••,
r85r81dL1•••. Inserting these contributions into the rela-
tions g115t1 andg125r8 1 which follow from Eq. ~12! and
Eq. ~21! yields

gnn8
11

~x0!5
2 im0

\2k
Vnn8~x0!

gnn8
12

~x0!5
2 im0exp~2 i2kx0!

\2k
Vnn8~x0!. ~26!

The phase exp(2i2kx0), which appears ing12(x0), is a con-
sequence of the transformation rule

T~L1x0 ,x0!5S e2 ikx01 0

0 eikx01DT~L,0!S eikx01 0

0 e2 ikx01D ,
~27!

which accounts for a shift of the disordered region byx0 .
Now we are in the position to compare the Hamiltonian

model ~8! with the transfer matrix model of Mello and
Tomsovic.27,28 They divided a sample of lengthL into
n5L/dL uncorrelated scattering units with identical statisti-
cal properties. Specifying the first two moments ofqmn and
hmn for one scatterer

^qmn&dL5^hmn&dL50,

^qmnqm8n8&dL5kmn,m8n8
11,11 ,

^qmnqm8n8
* &dL5kmn,m8n8

11,22 ,

^hmnhm8n8&dL5kmn,m8n8
12,12 ,

^hmnhm8n8
* &dL5kmn,m8n8

12,21 ,

^qmnhm8n8&dL5kmn,m8n8
11,12 ,

^qmnhm8n8
* &dL5kmn,m8n8

11,21 , ~28!

and taking the continuum limit of a high number of weak
scattering units such that

lim
dL→0

1

dL
kmn,m8n8
i j ,i 8 j 8 5smn,m8n8

i j ,i 8 j 8 ~29!

and that 1/dL times higher moments gives zero in the same
limit determined completely the stochastic evolution of the
transfer matrix. As a consequence one finds

@«mn
11 #5~smk,kn

11,11 1smk,kn
12,21 !/2,

@«mn
12 #5smk,kn

11,12 ,

@«mn
i j «m8n8

i 8 j 8 #5smn,m8n8
i j ,i 8 j 8 , ~30!

where @•••#[ limdL→0^•••&dL /dL. The same limit for
higher moments of«mn

i j is zero. Mello and Tomsovic have
chosen the following simple model for one scattering unit.
Assume that the independent matrix elements ofq andh are
uncorrelated and that their phases are randomly distributed.
Averaging over the arbitrary distribution of their modulus
then leads to

@«mn
i j #5d i jdmnS 1l b 2

1

l f D ,
@«mn

11 «m8n8
11

#52dmn8dnm8

1

l mn
f ,

@«mn
11 «m8n8

22
#5dmm8dnn8

1

l mn
f ,

@«mn
12 «m8n8

21
#5

dmm8dnn81dmn8dnm8
11dmn

1

l mn
b ,

@«mn
11 «m8n8

12
#50,

@«mn
11 «m8n8

21
#50,

@«mn
12 «m8n8

12
#50, ~31!

where l mn
f and l mn

b are the mean free paths for forward and
backward scattering from channelm into channeln and
1/l f /b5(n1/l mn

f /b are the total inverse mean free paths. The
inverse mean free paths 1/l mn

f and 1/l mn
b are defined by the
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probabilities per length@ utmn2dmnu2# and@ urmnu2# for a for-
ward and a backward scattering process, respectively. By Eq.
~12! and Eq. ~19! @ utmn2dmnu2#5@ u«mn

11 u2# and @ urmnu2#
5@ u«mn

12 u2#, which leads to the above identification of the
model parameters with the mean free paths.

Now we calculate@«mn
i j # and @«mn

i j «m8n8
i 8 j 8 # for the Hamil-

tonian model~8!. Insertingg11(x0) and g12(x0) from Eq.
~26! into Eq. ~20! and averaging over the Gaussian white
noise yields

@«mn
i j #50,

@«mn
i j «m8n8

i 8 j 8 #5
c~ i j ,i 8 j 8!

l mn

dmm8dnn81dmn8dnm8
11dmn

, ~32!

where 1/l mn[1/l mn
f 51/l mn

b 5„m0 /(\
2k)…2Umn(11dmn) and

1/l[(m1/l mn . Note thatl mn
f and l mn

b are not independent as
in Eq. ~31!. The coefficientsc( i j ,i 8 j 8), which are not related
through the symmetries of gij(x0), are c(11,11)
52c(11,22)52c(12,21)521, c(11,21)52c(11,12)*
52exp(i2kx0), c(12,12)52exp(2i4kx0). Hence, the mo-

ments@«mn
i j «m8n8

i 8 j 8 # which vanish in model~31! oscillate with
x0 in Eq. ~32!. This will cause the coefficients of the FP
equation~39! for the probability distribution ofTT† to oscil-
late with the system length. In the limit of weak disorder
(kl@1) these oscillations are very fast on the scale of the
mean free pathl , which is the characteristic length over
which the probability distribution changes. Then, it is justi-
fied to average over the oscillations, which amounts to re-
place the oscillating moments in Eq.~32! by zero. The re-
sulting model is very similar to the model~31! if l mn

f 5 l mn
b

but not equivalent. It would be equivalent if the phases of
hmn were not random but had been chosen to take the values
exp(ip/2) and exp(2ip/2) with equal probability. For stron-
ger disorder it is no longer justified to average over the os-
cillations.

As an alternative to the continuum limit of Mello and
Tomsovic one may specify directly the statistics ofgmn

i j (x).
Choosing Gaussian white noise such that

^gmn
i j ~x!&50,

^gmn
i j ~x!gm8n8

i 8 j 8 ~x8!&5smn,m8n8
i j ,i 8 j 8 ~x!d~x2x8!, ~33!

leads to

@«mn
i j ~x0!#5sml,ln

ik,k j ~x0!/2,

@«mn
i j ~x0!«m8n8

i 8 j 8 ~x0!#5smn,m8n8
i j ,i 8 j 8 ~x0!. ~34!

The Hamiltonian model~8! and the model~31! are special
cases of this class of models. Note, however, that
@«mn

i j (x0)# differs in general from the result~30! of the con-
tinuum limit.

III. LANGEVIN AND FOKKER-PLANCK EQUATIONS

The evolution of the transfer matrix with the system
length is a stochastic process which can be described by
Langevin and FP equations. Dorokhov32 recognized that the
stochastic equations for the matrix

M5TT†5S u 0

0 u* D S coshG sinhG

sinhG coshGD S u† 0

0 uTD ~35!

are closed, which allows us to eliminate the degrees of free-
dom ofv. We follow Dorokhov and start from his Langevin
equations~A10! for G andu, which are derived in Appendix
A for the sake of completeness. Due to the self-averaging of
the am one expects that in the insulating regime where
L@j51/(2a1

`) the Gm can be ordered: 1!G1!•••!GN .
This ordering justifies the neglect of exponentially small
contributions to the terms

cothG j511O„exp~22G j !…,

sinhGn

coshGn2coshG j
5H 01O„exp~Gn2G j !… n, j

11O„exp~G j2Gn!… n. j ,
~36!

of the general Langevin equations~A10!, which leads to the
considerable simplification

dGm

dL
5Emm1Emm* ,

du

dL
5g11u1uP. ~37!

The matrix elements of P are Pmn5u(n2m)Emn

2u(m2n)Em2n* , where

u~n!5H 1, n.0

1

2
, n50

0, n,0

~38!

andE5u†g12u* . The symmetriesg†52g andP†52P im-
ply thatd(uu†)/dLuuu†5150. Thus, the simplified Langevin
equations~37! still conserve the unitarity ofu. The stochas-
tic process described by them leads to a limiting distribution
for (Gm22am

`L)/AL which is independent of the initial con-
ditions. Hence, this limiting distribution must be identical to
the one which is produced by the original Langevin equa-
tions ~87! as long as 1!G1!•••!GN . Therefore, it is pos-
sible to use the simplified Langevin equations together with
convenient initial conditions to determine the form of the
limiting distribution in this parameter range.

Due to the neglect of exponential small terms in~36!,
Gm can become negative and it is natural to extend the range
of Gm to 2`, which is justified because the probability to
find a negative value ofGm will turn out to be exponentially
small. For similar reasons we relax the strict ordering of the
Gm . A parametrization ofu by a set ofN2 independent pa-
rameters seems to be rather complicated. Instead, we extend
the range of the matrix elementsumn5xmn1 iymn to arbi-
trary complex numbers thereby obtaining a stochastic pro-
cess on a higher dimensional Cartesian space. The standard
derivation technique57 for the FP equation of such a process
yields
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]p~L;G,u,u* !

]L
5~]Gm

]Gn
Âmn1]Gm

B̂m1Ĉ!p~L;G,u,u* !,

~39!

where)mdGm)m8n8dxm8n8dym8n8 is the measure of the Car-
tesian space. The operatorsÂmn , B̂m , andĈ are

Âmn5
1

2
@DGmDGn#,

B̂m52@DGm#1]um8n8
@DGmDum8n8#1]u

m8n8
* @DGmDum8n8

* #,

Ĉ52]umn
@Dumn#2]u

mn*
@Dumn* #1]umn

]u
m8n8
* @DumnDum8n8

* #

1
1

2
]umn

]um8n8
@DumnDum8n8#

1
1

2
]u

mn*
]u

m8n8
* @Dumn* Dum8n8

* #, ~40!

where DGm5Gm(L1dL)2Gm(L) and Dumn5umn(L
1dL) 2umn(L). The brackets@•••# define the coefficients
of the FP operator and stand for limdL→0^•••&dL /dL, where
^•••&dL is the average over the disorder in the region be-
tweenL andL1dL. The explicit form of the coefficients is
derived in Appendix B.

The multiplication of a probability distribution on the
Cartesian space by thed function

d~1,uu†!5 )
m51

N

dS 12(
n

umnumn* D
3 )

m8,n8
dS (

n
Re~um8nun8n

* ! D
3dS (

n
Im~um8nun8n

* ! D ~41!

restricts it to the unitary group. Since the Langevin equations
~37! conserve unitarity, one expects that the FP operator
commutes with thed-function. In fact, the operatorsÂmn,
B̂m, and Ĉ commute with every function of the type
f (uu†) for arbitrary complex matricesu. A lengthy but
straightforward calculation with the coefficients~B2! which
exploits the symmetries~18! proves that this is true. Thus,
the restriction to the unitary group may be incorporated into
the new measure )mdGmdm(u), where dm(u)
5V21(N)d(1,uu†))m8n8dxm8n8dym8n8 andV(N) is the vol-
ume of the unitary group. It is shown in Appendix C that
dm(u) is the invariant measure ofU(N). We note that an
integral of the type*dm(u)X̂g(u,u* ) (X̂5Âmn, B̂m, or Ĉ)
with respect to the invariant measure is evaluated in two
steps. First, thed-function is commuted withX̂. Second, the
integrations are carried out yielding only contributions for
terms which do not have derivatives with respect toumn or
umn* in front of them.

It is worth emphasizing that the operatorsÂmn, B̂m, and
Ĉ do not depend onG. This is the great simplification which
has been achieved by the neglect of the exponential small
terms in~36!. However, they can still depend on the system

lengthL as is the case for the Hamiltonian model~8!. There,
the factor exp(2ikx0) of g12(x0) in Eq. ~26! leads to terms
which oscillate with the system length. For weak disorder
(kl@1) the oscillations are fast on the scale of the mean free
path l which justifies replacing the oscillating terms by their
averages. For stronger disorder the oscillations can be ab-
sorbed into the new variableũmn5umnexp(ikL). The trans-
formation of the FP equation to this variable leads to the
additional term2 ik(ũ] ũmn2ũ* ]m̃mn* ) in the FP operator.
The resulting FP equation is very similar to the FP equation
of Kree and Schmid.33 It is the generalization fromN51 to
arbitrary channel numbers.

IV. THE LIMITING DISTRIBUTION
OF THE TRANSFER MATRIX

Kree and Schmid discussed thoroughly the asymptotic
probability distribution for the Landauer conductance
g5utu2 of a long one-dimensional wire.33 The transmission
and reflection amplitude for incident waves from the right
are t5u„2/(11coshG)…1/2v and r5u2„(coshG21…/
(coshG11)…1/2, where u and v are simply phases. They
showed that (G22a`L)/AL has a Gaussian limiting distri-
bution if L→`, which implies a log-normal distribution for
the conductance. The parameters of the Gaussian distribution
were expressed in terms of averages over the stationary dis-
tribution of u. Similarly we expect that the corresponding
quantity (G22a`L)/AL for the quasi-one-dimensional wire
has a multivariate Gaussian limiting distribution whose pa-
rameters can be expressed in terms of averages over the sta-
tionary distribution ofu.

It is useful to look at the first momentŝGm&L in some
detail before deriving the general form of the limiting distri-
bution. Integrating Eq.~39! with respect toG leads to the
closed FP equation

]q~L;u,u* !

]L
5Ĉq~L;u,u* ! ~42!

for u. We expect that the stationary distribution ofu is the
unique stationary solutionqstat(u,u* ) of this equation.
Hence, the spectrum ofĈ should consist of one eigenvalue
n0 which is zero and othersn i with negative real parts. The
smallest absolute value of these real parts is henceforth
calledn. In the sequel it will be assumed that the eigenfunc-
tions qi(u,u* ) of Ĉ form a complete system where
q0(u,u* )5qstat(u,u* ). Then, any probability distribution
may be expanded into( iciqi(u,u* ), where conservation of
probability implies *dm(u)qi(u,u* )50 for iÞ0 and
c051. Multiplying Eq. ~39! with Gm and integration by parts
yields

]^Gm&L
]L

52E dm~u!B̂mq~L;u,u* !

5E dm~u!@DGm#q~L;u,u* !. ~43!

Expanding the initial distribution into eigenfunctions
q(0;u,u* )5qstat(u,u* )1( iÞ0ciqi(u,u* ) gives q(L;u,u* )

16 560 53DIRK ENDESFELDER



5qstat(u,u* )1( iÞ0ciexp(niL)qi(u,u* ). This leads to the
large length asymptotic behavior

^Gm&L2^Gm&0'LE dm~u!@DGm#qstat~u,u* !1@const

1O~exp$2nL%!#, ~44!

where the terms in brackets result from the crossover of the
initial into the stationary distribution ofu. The self-
averaging am

`[ limL→`am(L)5 limL→`^am(L)&L of the
Lyapunov exponents impliesam

`5 limL→`^Gm&L/2L, which
leads to

am
`5

1

2E dm~u!@DGm#qstat~u,u* !. ~45!

This relation has been first derived by Dorokhov.32 Using
Eq. ~B2! to calculate@DGm# for the model~31! yields

am
`5

u~m2k3!

2l k1k2
b ~11dk1k2!

E dm~u!~uk1muk2k3uk1k3
* uk2m

*

1uk1m
* uk2k3

* uk1k3uk2m

12uk1muk2k3uk1m
* uk2k3

* !qstat~u,u* !. ~46!

The same formula has been obtained by Chalker and
Bernhardt29 for the special case that there is only back-
scattering into the same channel. They discussed also the
consequences of this relation in the context of the Anderson
transition.

In the sequel we will go beyond the first moment^Gm&L
and derive the general form of the limiting distribution of
(G22a`L)/AL. For the sake of simplicity we choose the
initial distribution

p~0;G,u,u* !5 )
m51

N

d~Gm!qstat~u,u* !, ~47!

which implies that̂ Gm&L52am
`L @see Eq.~44!#. The formal-

ism that will be developed below could be used to show that
a different initial condition would not change the form of the
limiting distribution but only the way it is approached. It is
convenient to introduce Dirac notation

~0uĈ50, Ĉu0!50,

P̂5u0)~0u, Q̂512P̂1, ~48!

where qstat(u,u* )5(u,u* u0) and (0uu,u* )5(0u0)51 so
that the average*dm(u) X̂qstat(u,u* ) may be simply ex-
pressed as (0uX̂u0).

The central quantity which will be used below to derive
the limiting distribution is the generating function

P~L;t,u,u* !5E )
m8

dGm8expH i(
m

tm~Gm2^Gm&L!J
3p~L;G,u,u* ! ~49!

for the central moments

CL~m1r 1 , . . . ,mkr k!

5k~Gm1
2^Gm1

&L!r1•••~Gmk
2^Gmk

&L!r klL

5E dm~u!~2 i ]tm1
!r1•••~ i ]tmk

!r kP~L;t,u,u* !ut50 .

~50!

The Fourier transform of the generating function gives back
the probability distribution

p~L;G,u,u* !5
1

~2p!N
E )

m51

N

dtmP~L;t,u,u* !

3expH 2 i(
n51

N

~Gn2^Gn&L!tnJ . ~51!

This implies the evolution equation

]P~L;t,u,u* !

]L
5~2tmtnÂmn2 i tmB̂m

0 1Ĉ!P~L;t,u,u* !,

~52!

where

B̂m
0 5B̂m1

d^Gm&L
dL

5B̂m2~0uB̂mu0! ~53!

and P(0;t,u,u* )5qstat(u,u* ). The formal solution of Eq.
~52! is

P~L;t,u,u!5exp$~2tmtnÂmn2 i tmB̂m
0 1Ĉ!L%qstat~u,u* !.

~54!
We follow Kree and Schmid and reexpress it in terms of
the operator generalization of the Cauchy formula exp~bL!
51/~2pi !Rdzexp(i zL)/(z1 ib),

P~L;t,u,u* !5
1

2p i R dzexp$ i zL%R̂~t,z!qstat~u,u* !,

~55!

where

R̂~t,z!5@z1 i ~2tmtnÂmn2 i tmB̂m
0 1Ĉ!#21 ~56!

is the resolvent operator and the integration contour encircles
all the eigenvalues of2 i (2tmtnÂmn2 i tmB̂m

0 1Ĉ) counter-
clockwise. Equation~50! for the moments of (Gm2^Gm&L)
only requires the resolvent operator for infinitesimal values
of t. The spectrum of2 i (2tmtnÂmn2 i tmB̂m

0 1Ĉ) then lies
in the neighborhood of the spectrum of2 iĈ, which consists
of one zero eigenvalue and other eigenvalues in the upper
half plane. Hence one can choose the integration to run just
below the real line from minus to plus infinity and close the
contour in the upper half plane.

We do not reconstruct the limiting distribution from the
momentsCL(m1r 1 , . . . ,mkr k) but proceed indirectly. First
consider the linear combinationV[cmVm[cm(Gm
2^Gm&L) with arbitrary coefficientscm and study its mo-
ments which are given by
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^V r&5E dm~u!~2 i ]t!
rP~L;tc,u,u* !ut50

5
1

2p i R dzexp$ i zL%~2 i ]t!
r~0uR̂~tc,z!u0!ut50 .

~57!

Since

R̂~tc,z!5@z1 i ~2t2cmcnÂmn2 i tcmB̂m
0 1Ĉ#21 ~58!

is similar to the resolvent operator of a one-dimensional wire
one can employ the technique of Kree and Schmid to calcu-
late the moments. ExpandingR̂(tc,z) into powers of t
yields

R̂~tc,z!5R̂0~z!(
k50

`

@~ i t2cmcnÂmn2tcmB̂m
0 !R̂0~z!#k,

~59!

where R̂0(z)5(z1 iĈ)21 may be decomposed into a part
which is singular atz50 and a nonsingular part

R̂05R̂0s1R̂0n5
P̂
z

1
Q̂

z1 iĈ
. ~60!

Only the terms of ordert r of the expansion~59! contribute to
the r th moment ofV. The first moment

^V&L5
1

2p i R dzexp$ i zL%~0uR̂0~z!icmB̂m
0 R̂0~z!u0!

5
cm
2p

~0uB̂m
0 u0! R dz

exp$ i zL%

z2
~61!

is zero because of Eq.~53! as it should be. Collecting the
terms which contribute to the second moment yields

^V2&5
1

2p i R dzexp$ i zL%~22cmcn!~0u iR̂0ÂmnR̂0

1R̂0B̂m
0 R̂0B̂n

0R̂0u0!

5
1

2p i R dzexp$ i zL%

3
22cmcn

z2 S 0U iÂmn1B̂m
0 Q̂

z1 iĈ
B̂n
0U0D . ~62!

The residues of the pole of second order atz50
are 2cmcn(0uÂmnu0)L and 22cmcn (0uB̂m

0 Ĉ21B̂n
0L

1B̂m
0 Ĉ22B̂n

0u0) for the first and the second term, respec-
tively. The poles in the upper half plane of the second term
only give rise to exponential decaying contributions. Hence

^V2&52vL1const1O~exp$2nL%!, ~63!

where

v5cmcn~0uÂmn2B̂m
0 Ĉ21B̂n

0u0!5cmcnAmn . ~64!

It can be shown along the same lines as in work of Kree and
Schmid that the higher moments have the form

^V2n&5
~2n!!

n!
~vL !n1O~Ln21!,

^V2n11&5O~Ln!. ~65!

For details of the proof we refer to Ref. 33. The form of the
moments implies thatV̄[V/AL has the Gaussian limiting
distribution

s`~V̄!5
1

A4pv
exp$2V̄2/~4v!%. ~66!

Now we discard the finite length corrections to the limiting
distribution and keep only the universal parts^V2n&L

u

5(vL)n(2n)!/n! and ^V2n11&L
u50 of the moments~65!.

The corresponding universal part of the generating function
S(L;t)5*dm(u)P(L;t,u,u* ) is denoted by Su(L;t).
Since ^V r&L

u5(2 i ]t)
rSu(L;tc)ut50 we find Su(L;tc)

5exp$2t2cmcnAmnL% which implies

Su~L;t!5exp$2tmtnAmnL%. ~67!

The Fourier transform~51! of Su(L;t) yields the universal
part of the probability distribution

su~L;G!5
1

~4pL !N/2Adet~$Amn%!

3exp$~2Gm2^Gm&L!Amn
21~Gn2^Gn&L!/4L%,

~68!

where ^Gm&L52a`L. Hence, the limiting distribution of
V̄[(G22a`L)/AL is

s`~V̄!5
1

~4p!N/2Adet~$Amn%!
exp$2V̄mAmn

21V̄n/4%.

~69!

Note that the form of the correlator

^~am2am
` !~an2an

`!&L
u5

1

4L2
~2 i ]tm

!~2 i ]tn
!Su~L;t!ut50

5
1

4L
~Amn1Anm! ~70!

implies that theam[Gm/2L are self-averaging and that the
fluctuations around their limiting values are in general cor-
related. Such correlations are not predicted by RMT or the
DMPK equation but are consistent with numerical
simulations.46,47

The variance of the Gaussian distribution of lng'
2G11const in the insulating regime which follows from
var(lng)' var(G1) and Eq.~63! is

var~ lng!'2A11L1O~1!. ~71!

V. THE EQUIVALENT CHANNEL MODEL
AS A SPECIAL CASE

Mello and Tomosovic have shown27,28 that the joint prob-
ability distributions(L;G) of the ECM, which is the model
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~31! with backscattering mean free paths of the form

1

l mn
b 5

11dmn

l b~N11!
, ~72!

obeys the DMPK equation forb51. The form ~4! of the
solution for the DMPK equation in the insulating regime is a
special case of the multivariate Gaussian distribution~68!.
Hence, we expect to recover this solution from our approach
if we apply it to the ECM.

Evaluating Eq.~B2! for the coefficients@DGmDGn# and
@DGm# with the backscattering mean free paths~72! yields

@DGmDGn#5
2

l b~N11!
~uk1m
* uk2m

* uk1nuk2n

1uk1muk2muk1n
* uk2n

* !,

@DGm#5
u~m2k3!

l b~N11!
~uk1m
* uk2k3

* uk1k3uk2m

1uk1muk2k3uk1k3
* uk2m

* 1uk1m
* uk2k3

* uk2k3uk1m

1uk1muk2k3uk2k3
* uk1m

* !. ~73!

Since the coefficients have the constant values
@DGmDGn#54dmn /@ l

b(N11)# and @DGm# 52m/@ l b(N
11)] if u is unitary, one can integrate the evolution equation
~52! for the generating functionP(L;t,u,u* ) with respect to
u. The solution of the resulting equation

]S~L;t!

]L
52

2dmn

l b~N11!
tmtnS~L;t! ~74!

is S(L;t)5exp$22(mtm
2L/@lb(N11)#%, which leads to the

Gaussian distribution

s~L;G!5 )
m51

N
1

A2ps2
expH 2

~Gm2^Gm&L!2

2s2 J ~75!

with ^Gm&L52mL/@ l b(N11)# and s254L/@ l b(N11)# as
expected.

It is a specific property of ECM’s that the evolution of the
joint distribution s(L;G) decouples fromu. Therefore, the
limiting distribution does not depend on the stationary distri-
bution of u. Still, it is of interest to know the stationary
distribution. Solving the equationĈqstat(u,u* )50 which de-
termines it is in general a difficult problem. We demonstrate
below that due to the simple form of the backscattering
mean free paths the stationary probability measure
qstat(u,u* ))m,ndRe(umn)dIm(umn) can be found to be
V21d(1,uu†))m,ndRe(umn)d Im(umn) which is the invari-
ant measure of the unitary group. Using the form~D10! of
Ĉ in which the derivatives act directly on the distribution and
the property thatĈ commutes with thed-function yields

Ĉd~1,uu†!5d~1,uu†!S 12mn@DGmDGn#2m@DGm# D
5d~1,uu†!g~uu†!, ~76!

where g(uu†) is zero if u is unitary. Applying higher
powers of Ĉ to the d-function gives Ĉkd(1,uu†)
5d(1,uu†)g(uu†)k. Hence, the initial distribution
q(0;u,u* )5V21d(1,uu†) evolves into

q~L;u,u* !5V21d~1,uu†!exp$g~uu†!L%5V21d~1,uu†!,

~77!
which shows that it is the stationary distribution.

VI. CONCLUSION

The general form~68! of the limiting distribution and the
link between its parameters and the stationary distribution of
u are the main results of this paper. This form implies that
the RMT probability distribution~2! is not sufficient to de-
scribe quasi-one-dimensional conductors with transverse
structure. The generalization of RMT to such conductors re-
mains a challenging problem.58 Beenakker22 has shown that
a correct description of quasi-one-dimensional wires without
transverse structure requires a modification of the interaction
in the Hamiltonian~3!. It is not clear whether a modification
of the interaction is sufficient to describe conductors with
transverse structure or if three and more eigenvalue interac-
tions are needed. Since any generalization must be consistent
with the form ~68! it is of considerable interest to have ex-
plicit results for^Gm& andAmn which go beyond RMT and
the DMPK equation. Numerical simulations46,47showed that
the correlations between a pair ofam are rather weak. So it
might be that the correlations vanish in the thermodynamic
limit leading to a diagonal form ofAmn . A perturbative cal-
culation of the limiting distribution for strong forward scat-
tering will be published in a subsequent paper.35 It will shed
some light on these questions.
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APPENDIX A: DERIVATION
OF THE LANGEVIN EQUATIONS

The Langevin equations forG andu which describe the
stochastic evolution of the matrix

TT†[M5SM11 M12

M21 M22D 5S u~coshG!u† u~sinhG!uT

u* ~sinhG!u† u* ~coshG!uTD
~A1!

were already given by Dorokhov in his pioneering work.32

Since he did not derive them explicitly we derive them in
this appendix. The multiplicative nature~15! of the transfer
matrix implies that

M~L1dL !5T~L1dL,L !M~L !T†~L1dL,L ! ~A2!

if a short segment of lengthdL is added to a sample of
length L. The changeDM5M(L1dL)2M(L) of M in-
duces the changesDG andDu which can be calculated by
perturbation theory. The eigenvalues of the Hermitean ma-
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trix M115u(coshG)u† are coshGm. The corresponding eigen-
vector to coshGm is the mth column vectoruWmof u. The
changeDu may be expanded into these eigenvectors

DuWm5 (
k51

N

cmkuW k . ~A3!

Nondegenerate first-order perturbation theory then yields

DGm5
$u†DM11u%mm

sinhGm
1O„~DM11!2… ~A4!

and

cmn5
$u†DM11u%nm

coshGm2coshGn
1O„~DM11!2… ~A5!

for nÞm. The expansion coefficientcmm can be calculated
from

DM125Du~F1DF!uT1u~F1DF!DuT1uDFuT

1Du~F1DF!DuT, ~A6!

where F5sinhG. Equation ~A3! implies that u†Du5cT.
Multiplying Eq. ~A6! with u† from the left and withu* from
the right thus yields

u†DM12u*5cT~F1DF!1~F1DF!c1DF1cT~F1DF!c.
~A7!

Hence

cmm5
$u†DM12u* %mm2cothGm$u†DM11u%mm

sinhGm

1O„~DM12!2…. ~A8!

Inserting the expansion~21! of T(L1dL,L) into powers of
dL into Eq. ~A2! gives

DM i j5~gikMk j1M ikgk j†!dL1O~dL2!. ~A9!

Collecting results and taking the limitdL→0 finally leads to
the Langevin equations

dGm

dL
5Emm1Emm* ,

dumn

dL
5(

k
gmk
11ukn1 (

kÞn
SEknsinhGn1Ekn* sinhGk

coshGn2coshGk
Dumk

1S 12cothGn~Enn2Enn* ! Dumn , ~A10!

whereE5u1g12u* . Note that the symmetriesg11 †52g11

and g12T5g12 imply that d(uu†)/dLuuu†5150, which en-
sures that unitarity is conserved.

APPENDIX B: THE COEFFICIENTS
OF THE FP OPERATOR

The coefficients of the FP operator can be calculated by
iterative integration of the Langevin equations~37! and sub-

sequent averaging over the disorder.57 Integration of the
Langevin equation yields

Gm~x!5Gm~L !1E
L

x

dx8$E~x8!1E* ~x8!%mm,

umn~x!5umn~L !1E
L

x

dx8$g11~x8!u~x8!1u~x8!P~x8!%mn .

~B1!

The matrix elements ofu(x8) andu* (x8) which appear in
the integrands can again be expressed by the second of Eqs.
~B1!. Iterating this procedure leads to an increasing number
of terms with polynomials ofgi j of increasing degreer . For
the Gaussian white noise model~33! only polynomials of
even degree have nonzero disorder averages. The integration
over thed-functions of the disorder averaged polynomials
then leads to terms of orderdLr /2. Hence, only polynomials
of degree 2 contribute to the limit @•••#
[ limdL→0^•••&dL /dL. Collecting these polynomials leads
to the following result for the coefficients of the FP operator:

@DGm#5F E
L

L1dL
dxE

L

L1dL
dx8$u†g12~x!g11* ~x8!u*

1E~x!P * ~x8!1c.c.%mmG , ~B2!

@DGmDGn#5F E
L

L1dL
dxE

L

L1dL
dx8$E~x!

1E* ~x!%mm$E~x8!1E* ~x8!%nnG ,
@DGmDum8n8#5F E

L

L1dL
dxE

L

L1dL
dx8$E~x!

1E* ~x!%mm$g11~x8!u1uP ~x8!%m8n8G ,
@Dumn#5

1

2 F E
L

L1dL
dxE

L

L1dL
dx8$g11~x!g11~x8!u

12g11~x!uP ~x8!1uP ~x8!P ~x!%mn

1(
j
um ju~n2 j !$u†g11 †~x8!g12~x!u*

1u†g12~x!g11* ~x8!u*1P †~x8!E~x!

1E~x!P * ~x8!% jn2(
j
um ju~ j2n!

3$u†g11 †~x8!g12~x!u*1u†g12~x!g11* ~x8!u*

1P †~x8!E~x!1E~x!P * ~x8!% jn* G ,
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@DumnDum8n8#5F E
L

L1dL
dxE

L

L1dL
dx8$g11~x!u

1uP ~x!%mn$g11~x8!u1uP ~x8!%m8n8G ,
@DumnDum8n8

* #5F E
L

L1dL
dxE

L

L1dL
dx8$g11~x!u

1uP ~x!%mn$g11* ~x8!u*

1u*P * ~x8!%m8n8G ,
where

E~x!5u†~L !g12~x!u* ~L !,

Pmn~x!5u~n2m!Emn~x!2u~m2n!Emn* ~x! ~B3!

and integrals of the type*L
L1dLdx*L

xdx8d(x2x8) f (x8) have
been replaced by*L

L1dLdx *L
L1dLdx8d(x2x8) f (x8)/2.

APPENDIX C: THE INVARIANT MEASURE
OF THE UNITARY GROUP

The invariant measuredm(u) of the unitary group is in-
variant under multiplication with an arbitrary elementu0 of
the group from the left and the right

dm~u!5dm~u0u!5dm~uu0!. ~C1!

As claimed in Sec. III we show in this appendix that the
invariant measure has the form

dm~u!5V21~N!d~1,uu†!)
m,n

dxmndymn , ~C2!

whereumn5xmn1 iymn , V(N) is the volume of the unitary
group, and thed-function d(1,uu†) has been defined in Eq.
~41!. Since the unitary group is compact, invariance under
multiplication from the right implies invariance under multi-
plication from the left~cf. p. 316 in Ref. 59!. Therefore it is
sufficient to show the right invariance. Let us write
u85uu0 . Then

dm~u8!5V21~N!d~1,u8u8†!)
m,n

dxmn8 dymn8

5V21~N!d~1,uu† ! Udet]~xm8n8,ym8n8!

]~xmn ,ymn!
U

3)
m,n

dxmndymn . ~C3!

Thus dm(u) is right invariant, if the absolute value of the
Jacobi determinant of the linear transformationu85uu0
equals one. This transformation is equivalent to

S x¢8

y¢8
D 5S 1N^x0

T 21N^y0
T

1N^y0
T 1N^x0

T D S x¢
y¢
D

5
]~x¢8,y¢8!

]~x¢,y¢!
S x¢
y¢
D , ~C4!

whereu5x1 iy has been written in the vector form

~x¢T y¢T!5~x11 x12 ••• x1N x21 ••• xNN y11 ••• yNN!. ~C5!

The multiplication rule (A^B)(C^D)5(AC)^ (BD) for
cross products of matrices and the unitarity ofu imply that
](x¢8,y¢8)/](x¢,y¢) is an orthogonal matrix. Therefore the abso-
lute value of the Jacobi determinant is 1 and the measure is
right invariant.

APPENDIX D: ALTERNATIVE DERIVATION
OF THE FP EQUATION

The FP equation~39! can be derived in an alternative way
yielding immediately the form in which the derivatives act
directly on the probability distribution and not on the coeffi-
cients of the FP operator. This implies useful relations be-
tween these two forms which are difficult to obtain by direct
differentiation of the coefficients if the result is not known in
advance. Therefore we describe the alternative derivation in
this appendix. It is a generalization of the technique which

was employed by Mello and co-workers to derive the FP
equation of their isotropic model.60,10

Assume that the probability distribution ofM for a system
of lengthL is p̃(L;M). Then add a statistically independent
segment of lengthdL to the system. The distribution of the
transfer matrix TdL of the segment is denoted by
w(L,dL;TdL). Averaging a functionf (M) over the disorder
of the whole system yields

^ f ~M!&L1dL[E dr~M! p̃~L1dL;M! f ~M!

5E E dr~M8!dv~TdL! p̃~L;M8!

3w~L,dL;TdL! f ~TdLM8TdL
† !, ~D1!

whereM5TdLM8TdL
† and dv(T), dr(M) are measures on

the matrix spaces ofT and M. If the measuredr(M) is
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chosen to be invariant under the transformationT0MT0
† for

any transfer matrixT0 one finds

^ f ~M!&L1dL5E E dr~M!dv~TdL!

3 p̃~L;TdL
21M~TdL

† !21!w~L,dL;TdL! f ~M!.

~D2!

A similar line of reasoning as in Ref. 10 yields that the
invariant measure has the form

dr~M!5J~G! )
m51

N

dGmdm~u!, ~D3!

where J(G)5)m,nucoshGm2coshGnu)msinhGm and dm(u)
is the invariant measure on the unitary group. Comparing Eq.
~D1! with Eq. ~D2! immediately shows that

p̃~L1dL;M!5E dv~TdL! p̃„L;TdL
21M~TdL

† !21
…

3w~L,dL;TdL! ~D4!

or equivalently

p̃~L1dL;M!5^ p̃„L;TdL
21M~TdL

† !21
…&dL ~D5!

since the average ofp̃„L;TdL
21M(TdL

† )21
… with the probability

w(L,dL;TdL)dv(TdL) is just the averagê•••&dL over the
disorder of the segment. For a fixed value ofG the distribu-
tion p̃(L1dL;M) may be expanded into the irreducible rep-
resentations of the unitary group. Since the irreducible rep-
resentations are polynomials inumn and umn* ,61,62

p̃(L1dL;M) can be analytically continued to arbitrary com-
plex matrix elementsumn . This justifies writing Eq.~D5! in
the form

p̃~L1dL;G,u,u* !5^ p̃~L;G1DG,u1Du,u*1Du* !&dL ,

~D6!

whereDG, Du, andDu* are the changes of the parameters
of M which are induced by the transformation
TdL

21M(TdL
† )21. A Taylor expansion of the left side in powers

of dL and of the right side in powers ofDGm , Dumn , and
Dumn* yields

] p̃

]L
5H 12 @DGmDGn#]Gm

]Gn
1@DGm#]Gm

1@DGmDum8n8#]Gm
]um8n8

1@DGmDum8n8
* #]Gm

]u
m8n8
*

1@Dumn#]umn
1@Dumn* #]u

mn*

1@DumnDum8n8
* #]umn

]u
m8n8
*

1
1

2
@DumnDum8n8#]umn

]um8n8

1
1

2
@Dumn* Dum8n8

* #]u
mn*

]u
m8n8
* J p̃ ~D7!

in the limit dL→0. The coefficients @•••#
[ limdL→0^•••&dL /dL could be determined by the calcula-
tion of DGm , Dumn , andDumn* with perturbation theory and
subsequent averaging over the disorder. This would lead to

expressions which involve@ «̄mn
i j # and @ «̄mn

i j «̄m8n8
i 8 j 8 # where

T~L1dL,L !21511S «̄ 11 «̄ 12

«̄ 21 «̄ 22D , ~D8!

«̄115«11 †, and«̄1252«12T. In order to include all the terms
which contribute to the coefficients one has to go to the
second order of the perturbation theory, which is quite in-
volved. We proceed in a different way instead. For the
Gaussian white noise model~33! one finds

@ «̄mn
i j #5@«mn

i j #,

@ «̄mn
i j «̄ m8n8

i 8 j 8 #5@«mn
i j «m8n8

i 8 j 8 #. ~D9!

Hence, the coefficients may be as well evaluated with the
changesDGm , Dumn , andDumn* , which are induced by the
transformationTdLMTdL

† . These changes can be obtained by
iterative integration of the Langevin equations~87! similar to
that described in Appendix B for the simpler case of large
system lengths.

Since dr(M)/J(G)5)mdGmdm(u) is the same measure
that was used for the probability distribution of the FP
equation ~39!, one expects that the distribution
J(G) p̃(L;G,u,u* ) obeys this FP equation for large system
lengths. In fact, the transformation of Eq.~D7! to this distri-
bution and the neglect of the exponential small contributions
to terms of the form~36! leads to Eq.~39!, where the opera-
tors Âmn, B̂m, andĈ appear in the form

Âmn5
1

2
@DGmDGn#,

B̂m5@DGm#2n@DGnDGm#1@DGmDum8n8#]um8n8

1@DGmDum8n8
* #]u

m8n8
* ,

Ĉ5
1

2
mn@DGmDGn#2m@DGm#2m@DGmDum8n8#

3]um8n8
2m@DGmDum8n8

* #]u
m8n8
* 1@Dumn#]umn

1@Dumn* #]u
mn*

1@DumnDum8n8
* #]umn

]u
m8n8
*

1
1

2
@DumnDum8n8#]umn

]um8n8

1
1

2
@Dumn* Dum8n8

* #]u
mn*

]u
m8n8
* . ~D10!

The equivalence with the form ofÂmn, B̂m, and Ĉ in Eq.
~40! can be shown by a lengthy but straightforward calcula-
tion which exploits only the symmetriesg11 †52g11 and
g12T5g12.

16 566 53DIRK ENDESFELDER



1For reviews, seeMesoscopic Phenomena in Solids, edited by B.
L. Altshuler, P. A. Lee, and R. A. Webb~North-Holland, Am-
sterdam, 1991!; and Quantum Coherence in Mesoscopic Sys-
tems, Vol. 254 of NATO Advanced Study Institute Series B:
Physics, edited by B. Kramer~Plenum, New York, 1991!.
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