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A microscopic approach for the computation of semiconductor quantum well laser power spectra is pre-
sented. The theory is based on nonequilibrium Green’s function techniques that allow for a consistent descrip-
tion of the coupled photon and carrier system fully quantum mechanically. Many-body effects are included
through vertex corrections beyond the random-phase approximation. Band structure engineering is incorpo-
rated in the theory as dictated by the coupled band solutions of the Luttinger Hamiltonian. The influence of the
detailed cavity-mode structure is accounted for by the photon Green’s function. The theory describes the
interplay among the various many-body, quantum-confinement, and band structure effects in the gain medium
and its action as a laser cavity. Numerical results for the recombination rates, optical response, and laser output
power spectra are presented for strained-layer and lattice-matched IlI-V systems at quasiequilibrium with
variable design and material parameters and under different excitation conditions. Active optical switching is
demonstrated in specially designed structuf86163-18206)01123-X]

[. INTRODUCTION spectrum has been related “by hand” to the field-field cor-
relation functionD<, which is introduced here in Sec. II.

Semiconductor quantum wells provide an interesting opfrom a first principles analysis, the laser output is derived
portunity to manipulate complex nonlinear phenomena andlirectly from the Poynting vector. A fully consistent treat-
to create high-performance lasérsAdvanced theoretical ment of the problem, i.e., a three-dimensional description of
technigues are required to keep up with recent progress dight propagation and the calculation of the output power
the design and fabrication of quantum weDW) lasers, to  directly from the Poynting vector has been already given in
understand the wealth of experimental data available, and tBef. 9, and can be generalized to arbitrary geometfies.
predict the effects that will be exploited in future devices. In this paper, we restrict the analysis to those output in-

Regardless of the effective dimensionality of the systentensities, such that spectral hole burning in the gain does not
and the microscopic mechanisms that give rise to opticatome into play. Therefore, quasiequilibrium can be assumed
gain, the semiconductor must be consistently treated as both the carrier system. This way, any optical losses in the
a resonator and gain medium. A realistic description of thecarrier kinetics(including transverse ongare negligible. A
excited medium, as given in Ref. 2, requires the combinatiomeduction from the three-dimensional problem to a one-
of band structure and many-body effects. The influence oflimensional cavity is then possible. Our nonequilibrium
different material parameters, confinement potentials, straireen’s function approach incorporates the most relevant
and well widths has been analyzed recently and the last twband structure and many-body effects and provides a frame-
combined play a major role in the effective curvature of thework for analyzing nonequilibrium configuratiofislt in-
bands which, in turn, strongly affect the many-body cludes vertex corrections beyond the random-phase approxi-
corrections’ The approach was based on the steady-state sonation(RPA) that extend previous bulk-system approaé¢hes
lutions of generalized semiconductor Bloch equationgo the quasi-two-dimensional coupled band quantum well
(SBE’s), and has two major limitations. First, it can only case.
describe the active medium in the presence of a macroscopic In the high density regime in which semiconductor lasers
coherent interband polarization. So, if the medium is inco-operate, and which is described in this paper, the many-body
herently excited by carrier injection or if phase-destroyingeffects manifest as Pauli-blocking, screening, Coulomb en-
processes like carrier-carrier and carrier-phonon scatteringancement, and band gap renormalization. For screening, we
give rise to a fast decay of the interband polarization createdjse an extended static single-plasmon-pole mbdel.
e.g., by a coherent optical pulse, the SBE’s cannot be used. The paper is organized as follows. In Sec. Il, we summa-
Second, from the SBE’s, we can directly compute absorptiomize the main steps in the derivation of the Green'’s functions
and gain, but not laser emission. On the other hand, nonequéxpressions. We start from the basic Hamiltonian for the
librium Green’s function techniques are able to treat bothsystem, introduce the Green’'s functions and their Dyson
interacting carriers and photons under the same quantum meguations. We discuss the quantum well case in detail and
chanical footing and give rise to a consistent description of present a procedure to reduce the multilayer, spatially depen-
laser emission. dent polarization functions to averaged quantities, consis-

Fully quantum mechanical treatments have been alreadigntly with the electric dipole approximation. We give a step
applied to bulk systens:® However, the one-dimensional by step derivation of the dielectric tensor and show explicitly
approach used for light propagation has the serious shorthe relation between the retarded polarization function and
coming that transverse losses in the carrier kinetics cannot dbe macroscopic optical response of the medium found typi-
accounted for in a straightforward way. Moreover, the outpuically in semiclassical approaches involving Maxwell's equa-
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tions. In Sec. 1, we give the connection between the photon . 27he? - - .
Green'’s function and the output power of a QW laser cavity. A(R)= E We““'r[dkaﬂt dy—gleng. (2
We reduce the three-dimensional propagation problem to a A q

guasi-one-dimensional resonator cavity, for which we giveWhere we have used the Coulomb gauge é)(addenotes the

expressions for the _Iaser output. In Sec. IV, we present NUgandard unitary polarization vector. The particle and current
merical results for different quantum well media and Cav'ty(aensities are given, respectively, by

resonator designs. We start analyzing the influence of ban
coupling on the energy levels and transition matrix elements

that appear explicitly in our many-body expressions. We

then study the combined influence of strain, quantum con- _ieh
finement, band structure, and many-body effects on the gain  j(R)= ——{¥T(R)V¥(R) - [V¥T(R)]¥(R)}, (3)
spectrum and recombination rates of the active medium. Fi- 2mg

nally, we discuss how the cavity geometry, combined withynq the scalar potential is the solution of Poisson’s equation,
the many-body and band structure effects, changes the com-

puted output spectra, and further analyze the possibility of . _ o

active optical switching in specially engineered structures. q’(R):f P R)HV(IR=R'))dR’, 4

We summarize our results briefly in Sec. V.

p(R)=VT(R)¥(R),

where the total particle density reagdg,=p+pex- The
Il DERIVATION OF THE GREEN'S EUNCTION analy§is is restrictgd to one-photon processes within the elec-
EXPRESSIONS tric dipole approximation. Hence, only linear terms on the
vector potential appear i, and H.,. The details of the
In this section, we outline the derivation of the Green’s-band structure are included in the formalism through the one-
function expressions describing the active QW mediumparticle QW HamiltoniarH,. As usual in problems dealing
coupled to photons. The general formalidrhas been ap- with superlattices and quantum wells, details of the superpe-
plied to semiconductors in Ref. 4 and is used here to includeiodic potential are averaged and described by effective
the influence of quantum-confinement and multiple subbanehasses, Luttinger parameters, and a piecewise constant po-
coupling? as well as vertex corrections beyond RERef. 7 tential giving rise to quantum-confinement effets.
in the polarization function, which is related to carrier gen- The Green’s functions considered in our description of the

eration and recombination rates and optical gain. QW laser problem ar&(12), D(12), andW(12), which
describe, respectively, the carriers, photons, and the screened
A. Hamiltonian and basic definitions Coulomb interaction. The one-particle carrier Green’s func-

The total Hamiltonian of the system can be decompose&On is given by
in electronic (el), electron-light-field interactionl{, free- G(12)= —i/(¥(1)P'(2))
field (F) and externalext) terms, o B B

_ iy TV OV @)]80)
H=Hg+H,+Hr+Hgy, (1a =- {poSc) -
B By L Ryt BT .
He= | WI(RH(RIdR+ 5 | WIRWI(R) Se=Teoxd /4 | Hadtidt]. )
C
XV(R—R)¥(R)¥(R)dRIR, (1b)  Here, 1= R;.t;. We use the real-time formalism for non-
equilibrium first introduced by KeldysH, in which, through
e 2NEBY . AD ST he ordering operatof ¢, time runs over a contou€ from
H=—— | ¥I(R)p(R)-A(R)W(R)dR t g op c
! moC (RIP(R)-ARF(R) —o to +% on a positive branch t_(=tf) and then
17. . . . . back from+2 to —c on a negative brancht{=t,).
== Ef J(R)-A(R)dR, (10 The transverse photon Green'’s funcfiamd screened po-

tential are defined through functional derivatives. They are
given, respectively, by

HFZZ ﬁwqdl id)\:ﬂ’l' (19 A
2 , - C SAen(1)
D(12)=— 71—
. A7 5Je(2)
Heoy= f Ped R)P(R) — Je(R)-A(RIR]. (18 0P 1)
» o W(12)= =0, ©
Here, W(R) is the electron field operatory(R—R’) ot ?

=e’/e|R—R| is the instantaneous bare Coulomb interac-where A .4(1)=(A(1)), and ®er(1)=(P(1)). The time
tion between the electrons in the system, ahd; denotes  eyolution of the Green’s functions can be cast in compact
the photon annihilation operator in terms of which the elecform as Dyson equationgsum over repeated arguments is
tromagnetic field vector potentiaﬂ is expanded, assumeypl
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[061(13)—2(13)](3(32): 5(12), (7a) leading to a closed set of equations, that gives rise to sys-
tematic approximations by successive iteration on the self-
[551(13)_5(13)]5(32):3(12), (7b) energy. In our approach, band coupling appears expli-
citly in the equations through the energy levels and
[W, 1(13)—p(13)1W(32)=6(12), (7o ~ matrix elements of the velocity operatodl(12)

- , , =[II(1)+1I*(1)]/2=A[V(1)—V(2)]/2im,. Note that, in
where,, P, andp are, r_especnvgly, the carrier sglf—e_nergy’ the absence of transverse corrections, our iteration scheme
the transverse polarization function, and the longitudinal poyequces to that of Ref. 13. The RPA equations are obtained
larization function, while3 is the transversé function? The  in the first iteration of Egs.(11) and (12), with 3=0

free propagators that appear in Ed@) read and consequently y(123)=— 8(13)8(12), T(123)=
P - 477e/021:[(11) 8(13) 6(12). Substitution of the first order
Ggl(;g): ihﬁ—h ei(1) [6(12), (8a) approximation gives the first step beyond RPA for the trans-
=1 verse polarization function,
Wy H(12)= — —2, A,5(12) 8 Amihe® -
0 =% 4e? - P(12)= - —7—1l(11)[G(12)1(2)G(21’)
-1 _ 242 2 -
Do (12)=[A,—1/e%F/ati]a(12), &9 +i7.G(13)G(32)W(43)11(2)G(41')G(24)]; -1 .
wheree, denotes the static dielectric function, and the effec- (13
tive one-particle Hamiltonian in the equation for the free-
carrier propagator is Specifying the branches along the Keldysh contour and in-

troducing the Green’s function components in the usual
way 4 the compact Dyson E7b) splits into an equation for

ein .
he(1)=Ho(1)+ EAeﬁ(l)'V(lHqDeﬁ(l)' ©  the retarded photon Green'’s function,

B. Vertex corrections [D, (13— P"(1310(32) = 5(12), (149

Functional derivative techniques can be used to cast forand one for the propagators,
mal solutions to the Dyson equations in a compact form by
means of an iterative scheme. We start by defining longitu-  [5,%(13)—P'(1,3]D(32) — P=(13)D%32)=0, (15
dinal, y and transversd, vertex functions,
where the carrier recombination rate reads,

(123) 6G~1(12) F(123) 47 6G™H(12)
Yleo)= ey L leo)=—— ——=—"—, 4mihe? -
0D (3 C o T N ,
ef(3) OAei(3) 10 (12 =~ ——11(11)(G~(1211(2)G™(21)
in terms of which the carrier self-energy and polarization +ikW(43){G=(3211(2)G™(24)

functions read,
X[G'(13)G?(41 )+ G"(13)G™(41")

3(12)= —ifG(13)W(41) ¥(324) + G (19.GA 1] (13641

—isTl(11')G(13)D(41)[(324)],-y/, N -
A GUDELITE2),-, X[GA(32)11(2)G'(24) - G}(32)11(2)G™ (24)

(11a
—~G=(321(2)G"(2 Yy
P(12)=iAG(13)G(41) 7(342), (11 G EAMRC N (163
and the carrier generation rate is given by
P(12)=i%ell(11')G(14)T(452)G(51")|,—y - _
o (110) 5> 47T|ﬁe2 T ’ > T < '
P~(12)=— —II(11')(G~(12)11(2)G~(21")
Substitution into the Dyson equations then give rise to ex- ¢
pressions for the vertices, +HiEW(43){G” (13)G=(41")
¥(123)= - 5(13)6(12) + gﬁ; G(46)G(75) 7(673), X[G*(32)T1(2)G'(24)+ GY3ATL(2)G™(24
- (123 +G~(32)[1(2)G'(24)]- G™(32)11(2)G=(24)
X[G'(13)G*(41')—G"(13)G=(41')

) Ame.
r(;gg)z—Cifn(;y)a(lc_s)a(;g)h:l/ —G(13G3(41)]}) (16b)
1=1/-

6%(12) - Note that there is no summation over the variables that ap-
* 6G(45) G(46)I'(673)G(75), (120 pear on the left-hand side of E(L6).
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C. The quantum well case

The details of the band structure and quantum confine- ~
ment are included in the formalism through the solutions of
the one-particle QW Hamiltoniakhl,. As a matter of fact,
the field operators in Ed5) should, in general, be expanded
in terms of solutions for the Hartree problem, or in other
words from the self-consistent solution of the Salinger
equation for the one-electron Hamiltoni&hy and the Pois-
son equation. However, in this paper, we restrict to type-I N
systems in which the electrons and holes are concentrated in 09 N \ 0.9
the confining region of the QW layers, with negligible bar- ! \ e .
rier penetration. In this case, the electrostatic band profile = N N =
deformations give rise to negligible corrections for the opti- N S~
cal properties relevant for laser operation and can be 07 - 07
disregarded® We can thus use an expansion in terms of

operators that createal ¢) or destruct &, ) eigenstates of 0.5 1.5 0.5 1.5
Ho ' Wave number (r1/w)Wave number (7/w)

-20

Energy {meV

-60

red
-~

FIG. 1. Free-carrier dispersion relations for the top valence band
\p(ﬁ) = E & il ﬁ)an K. (17) (@ and velocity matrix elemeritl .4 between the top valence and
nk ' lowest conduction band for the TE-mode polarizati@n of

. . . . . w=50 A, In,Ga,_,As— Al,Ga,_,As quantum wells aT =300 K.
The free-particle term in the electronic Hamiltonian of Eq. -, Compgrizionx with a{arzierywelﬁwidth we take=100 A in

(1) has two componentsi,=H.+H,. For the materials (¢),(d). In all plots, the compositions of well and barrier layers in

considered in this paper, the band gap is sufficiently largeye sojig, short-dashed, and long-dashed curves correspond, respec-
such that the conduction band electrons can be described Byely, to x=0.15y=0:x=0.15y=0.3:x=0y=0.3. The origin of

uncoupled parabolic dispersion relations throdgih. Each  energies is taken &=0.
subband can thus be labeled by the= *+1/2 projection of

the electron spir, a quantization labgl=c,c; ..., andthe g s the sample surface and the eigenvalues for the conduc-
in-plane momentunk. In other words, the SimpIB label of tion and valence bands are given, respective|yﬁh§j =
Eq.(17) is a short abbreviation far={oj}, and willbe used 7 ¢® 1 (#2k2/2m¥) and #ie};. Now that our notation has
whenever possible to simplify the notation. The coupled vapeen introduced, we substitute the expansion in(Eg. into
lence bands are degcrlped by. the Luttinger HamlltonlarEq_(5)_ Using homogeneity in the plane of the layers, assum-
H,. Each subband is in a mixed state that has heavy,g stationary conditions, and considering the Fourier trans-

m;=+3/2 and light-hole components);=+1/2. The di-  form upon the relative time differendg—t,, we obtain
agonalization method combines a matrix diagonalization

techniqué® with a unitary transformation that reduces the
Luttinger Hamiltonian operator matrix to two blocks, which  G(R; ,R,,w)= 2, &, (R ®* g(ﬁz)Gn 0 (K w)
e - 1 ny, [ AR

are degenerate for the symmetric QW cases considered here ny.ny K

for laser structure$’ Each of these blocks, up and down, is (19
characterized, respectively, by the label and thus

n={pj}, j=vqw,..., p={U,D}. In some cases, where The interband components of the carrier Green’s functions

compressive strain gives rise to negligible overlap betweerre left out, since they are proportional to the average field,

the heavy- and and light-hole states, the dispersion relationmsamely, G.,(w)~(A), and within the approach used

become parabolic ang reduces to a single spin label. here~°the mean field is zero. Moreover, nondiagonal intra-

See, for example, the solid lines of Fig. 1, which is explainethgnd terms are neglected, ie. Gnlnz(ﬁ,w)

in more detail in Sec. IV. The eigenstatég, are given by “Gnlnl(E,w) . consistently with the approximations

- 1 -- used in the computation of Coulomb matrix elemehthe

doik(R) = g/ze'k'rgj(z)ng, (183 first term in Eq.(16) (RPA polarization is obtained by ex-
panding the Green’'s functions in eigenstates of the QW
states as in Eq(19). The contribution from a single QW

- 1 -
d’ij(R): g{?elk'r[ngjIZ(z)WHp"'prjIZ(Z)WLp]- (18b) reads

The position vector is separated into in-plane and growth

direction component$}=(r,z), and the subscriptd, L de-
note, respectively, the contributions that reduce to heavy-

eos 41re? < - -
IPQW(]-Z):? Z Gnlnl(kltltZ)ann2

nynzkgy,

and light-hole terms ak=0, where there is no band cou- X i (ﬁl)ﬁ(§1)¢* -

pling. The envelope functions pi(z), &npjk(2), and o N2l

gj(2) are obtained in the diagonalization ldf,. The lattice- (RS - (BB B

periodic partsw,,, w,,, andw,; vary on an atomic scale. (Ry) ¢y, (RIL(R) b, (Re)- - (20)
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The polarization function above has a complicated space de- Are?/c?
pendence that can lead to interesting effects when inserted in 1P Qwj(®@)= > Gnlnl(klw)
the Dyson equation and solved for different structures. How- ninzky
ever, in our first attempt to analyze the problem, we use the s

’ o . . ’ XG k k)II, ks
averaged polarization function, or in other words, we treat non (K1), (k)T (k)
each quantum well as a homogeneous medium, (22

We are particularly interested in the diagonal component,

o 47e?/c?
< 1 > N > > e 5 > IPEW,jj(w):TQE |chvop,j|2'&cu(k)
P5M12)255(R1_R2)f dRsdR4Pow(R3R4tats).  (21) kevop
fe (k)

| | | “a-rora-rhan) @
The spatially local optical response of E&1) is a conse-
quence of the electric dipole approximation, as in bulkWhered., (k) is the spectral broadening factor,
systems 8 It is valid whenever the photon momentum is
much smaller than the typical carrier momentum. The ap- B Al ¢, (K)
proximation would break down in the case of coherently Fep(K)= (oo, (K) P+ A2T o (k)2 (24

coupled multiple quantum well@ViQW'’s) within a shallow o h o
confining potential, allowing for tunneling between adjacentf,c(k) and f, (k) are the electrop and hole distribution func-
QW's with a large superlattice period,=L,,+L;, on the t'or_ﬁ; ancdl“clv(k)bls the dt(_aphast;ng ra(tje.th RPA | 6
order of a(ultrashort wavelength. In this paper, we restrict € Louompb corrections beyon N in E#6)
the analysis to isolated MQW systems and optical to nea{ |th|n the dipole approximation have the following struc-
infrared wavelengths, where the approximation holds.

After a Fourier transform in timéstationary systemsand o 4me’c’— _
keeping only resonant terms for positive frequendiesat- Pow(tita) =—5— E Prowltita), (29
ing wave approximation the RPA components of the polar-
ization function are where the componenﬁf ow have the general form,

Py oultity) = f dR,dR,dRyd R,dtydt,A(13) 1 (R,)B(41)C(32)I1(R,)D(24)W(43)

, N1N2N3N3 , ,
= 2 nlnz(k)Hn4n3(k )W IZR’WP f dtsdt4Anlnl(kt1t3)annz(kt4tl)cn3n3(k tBtZ)Dn4n4(k t2':4)-

NiNoNgng
Kk’

(26)
The matrix elements of the screened potential are maximizedsfem;,n,=n,,>,
n1n2n3n4 n->nqin
( R ) f ARsdR, by o Ro) b (R W(RaRY) oo (Re) by (R ~WETE26, 1 610, (27)

and again, as in the derivation of E@3), by Fourier transforming with respect to the relative time t, , and keeping only
resonant terms, we obtain

8me?/c? -, fe(k) (k) . .
IPQW( w)= WT 2 kevop [1—f§(k)][1—f2(k)] ﬂCU(k)[HkCUUp+Ykao‘p(w)]l (28)

kcvop
where the Coulomb enhancement factor is given by

vooc [ho—heq(k)—he,(K)[1-fS(k)— (k)]
Vicoplo 2 wooo o W o hieg(K) — e, (K) ]2+ 7T oy (K)2

O'

(29
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The matrix elements for both bare and screened potentidNe thus obtain for the retarded polarization function,
here are simplified by means of the average effective-mass

approximation, in which effective dispersion relations giving 5 (12) 41 63 ng(1) A X (12) (34
rise to one average mass per band approximate the band T2 5Aeﬁ(2) T Tatat,

coupling effects. Screening is accounted for through a mul-
tisubband extension of the single-plasmon-pole approximaghare we have used the fact that in our appro&g}F 0. At
tion, in which all relevantly populated subbands contribute.steady state, and using E@1), we obtain

In a simple two-band model, the self-energy corrections ' ’

compensate the change in the chemical potentials that char- _ w?_
acterize the quasi-equilibrium distributions. However, in the P'(X1,0)=—47m—x (X1,0), (35
. . . . (of
multisubband case considered here, the chemical potentials
and self-energies must be computed self-consisténtly. or equivalently in terms of the dielectric tens8r
The scheme summarized in the preceding paragraph for
screening and self-energies has been applied to the compu- - w? . .
tation of nonlinear absorption specifain good agreement P'(X1,0)= Zll-e(xp0)]. (36)

with experimental resultS The results above account for
the local response of a single QW. However, we are inter-
ested in MQW systems, constituting the active medium in a ll. LASER POWER SPECTRUM
laser cavity. As a concrete example, we consider an edge
emitter configuration with the MQW growth axis along the
z direction and a one-dimensional light propagation an
emission along the axis. In a first approximation, we can 1
replace the actual polarization components by the product of DiT(12)= ——(AI(DA;(2)),

a stepwise constant periodic function znrepresenting the 4mif

carrier confinement inside the QW layers, and a rectangle 1

function alongx to characterize the one-dimensional optical < _ , '

cavity of lengthL, i.e., Djj (12) Amih (A(2)A(L)), (87

At this point, we can establish a connection between the
ield-field correlation functions,

o = 2 o and the power spectrum of a semiconductor QW laser.
B(R1Ry0) = (X1~ X2) 8(Y1—Y2) 0(LI2 |4 P @) power sp Q

A. The one-dimensional resonator
X2 0(z+2;)0(z y—21), (30 . .
[ We refer to a concrete device geometry and assume light
- . propagation in thex direction, within an edge emitter con-
where the lower and upper limits of tiéh QW along the figuration for the laser, with TE polarization along theauxis.

z direction are denoted, respectively, by, andz . Fur- In other words,Dﬁ(lZ): 5iy5ij§(12)- Now we proceed

t_her, averaging over the QfOYVth Q|r(_act|on leads to a descnpt-o establish a clear connection between the three-dimensional
tion of homogeneous excitation inside the sample, i.e.,

expressions used so far and the one-dimensional treatment
that follows. We consider spatial homogeneity in the trans-

P=(RiR2w) = 8(R1— Rp) P= (xy), (318 yerse plane. More details for this case can be found in Ref. 9.
L Denoting Ehe treinsverse coordinate and momentum, respec-
P=(x11w)= 0(LI2—|x4]) LWTWLb Pow(w), (31p  tively, by p andq, , we have
whereL,, andL, denote, respectively, the well and barrier D (RiRe@)=D~(X1X2,p1p2,)
Iengths. N_ote thaPH’(xlw) can bg computed in two steps. 1 - . i (i)
The Imaginary part follclws directly from the relation = (ZT)ZI da, D= (X1Xz,q, ,w)e P e2,
2ilmP" (X w) = P>(x1w)—P<(xlw),H and a Kramers- (38)
Kronig transformation then yields R&(x;w). The polariza-
tion P that appears in Maxwell's equations is related to theand consequently,
induced current by L.
R D<(R1R2w)|l;1:’;2=D<(X1X2,w)
- IP(1)
Jind(1) = oty (32 1 . -
—Wf dg, D™ (X1Xz,0, o).
and can be expressed as a function of the average electric 39

field = — 1/c&,&eﬁ(1)/c7t1, using the nonlinear optical sus-
ceptibility tensory, For each frequency, we select those wave numbers that de-
scribe propagation along thxedirection with a small opening
angle 6, i.e., q, =q.tand. Furthermore, outside the cavity,

R PV
P(l)_f X (13:£)£(3)d3. (33 the optical field is free and them,= w/c. Therefore,
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D( o 2D<( 1. =0,0) (40) FretiiFe W XLl
X1Xp,w)=~ —| —tan X1X2,q, =0,0), . _

172 A7\ ¢ 1X2,0. F(X)=B(—X)= f+e|qx+f_e7|qx' |X|<L/2
Now from the Dyson equations for the photon Green'’s func- G, e, X>L/2.
tions, Eqs.(14) and(15), and expressing the retarded polar- (47)

ization function in terms of the dielectric tensor of Eg§6),

two equations follow: The general solution to Ed46) is constructed from the so-

lutions of the homogeneous equation,
2

A+ %Eyy(x,w) D' (RyRo0) = 67,,y(R;—Ry), D"(xx' @)= 0(x—x")F(X)B(Xx') + 8(x’ —X)F(x")B(X).

(413 48

The coefficients are determined through the usual boundary
2= o S conditions on the homogeneous equation and by the condi-
D™(RiRy0) =P~ (x10)D*(R1Ry0). tion imposed due to the the inhomogeneity, namely,
(41  F'(x)B(x)—B'(x)F(x)=1,

Consistently with the discussion above, we consider homo- \/17
P = 2iq

2
o o ~ —r-q+q
geneity in the transverse direction and keep onlydhe-0 > °
component after Fourier transforming with respect to the Yo

relative transverse coordinatél—ﬁz. Using the relation ; n
01 yy(X1—X2,0, =0)=6(x;—Xy), and dropping the, by now F_ =1 / — 4 qO(eiqL_e—iqL)e—i(q+qo>L/z’
unnecessary, argument;, =0, we obtain the one- (1-r%)(2iq) 2qo

dimensional Dyson equations, (49b)

wz
A+ ? Eyy(X, )

e—i(q—qo)L/Z’ (493

2

w 2 r
A+ Ez-n (a),X)

D'(X1Xow)=8(X1—Xp), (42 fl=—— (490

V1=r3)(2iq)’
for the retarded photon Green'’s function and accordingly for
the propagator, 1
fi=——— (499

Ja-r?)(2iq)’

2

w
A+ Ez—nz(w,x) D= (X1 Xp0) =P = (X10)D3(X Xo0),

(43 G, = 12 2% gt (40
where we have introduced the refractive index function V(1-r%)(2ig) 9F do

N?(X;,®) = €yy(X;,w). Combining Eqs.(42) and (43), the

photon propagator reads where the parameters g, andq, are

q—do . w
D<(X1X2w)=f D" (X1X3w) P=(X3w)D?(X3X,w)dXs, r=me'qL, q=0d:+ig;=qgon(w), Qo=7-
(44) (50
and for the homogeneous excitation inside the sample de- _
scribed by Eq(31), we get B. The Poynting vector

The light intensity at a given point in space is given by the

Li2 guantum-statistical average of the Poynting vector,

D"(X1X30)D"(XoXz3w)* dXs,
2
(45)

where we have used the relationD?(X3x,w)

i N S .

=D (xx30)". We nee,d naw an explicit expression for the Using the relations between the vector potential
retarded photon Green's function. Following Ref. 9, we start. . ) - >
from the homogeneous equation, A and the electromagnetic fieldsB=VXA and

E(1)=—1/cdA(1)/t;, together with Eq(37), the compo-
nents of the Poynting vector read,

D= (XyXo) = P~ (o) f

(8(1) = g—(E)XB(2)-B2)XE(D)y—. (5D

0)2 2
A+ ?n (w,X)

F(x)=0. (46)
ih d
There are two regions to be considered, namely, inside and ~ (Si(1))= > IE {Vi(2)[D;(12+D};(12)]
outside the resonator, characterized, respectively, by v
[x|<L/2 and|x|>L/2, and two independent plane wave so- —Vi(Z)[Dﬁ(12)+ D§(12)]}1=z- (52)
lutions, namely, the forward wave(x), which strikes the
resonator from left to right and the backward wave For the linearly polarized light considered here, the expres-
B(x)=F(—x) that strikes the resonator from right to left, sion above reduces to
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1 (= PR
(SX(Rl)F—Eﬁmdw ho o AP (RiRy0)

+D”(RoRy0)}y, (53
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ey = e ra1D< D<
(w)—mta 9(9—)(1{[ (X1X20) — D= (XoX )]

+D (X Xp0) — 6(X2X1w)}\xl=x2‘ (56)

where we have assumed steady-state conditions and Fourigowever, using Eq(48) and D=2i ImD", it follows that

transformed with respect to the relative time-t,. Using
the relationsP=(R;R,— ») =D=(R,R,w), we can equiva-
lently write,

<sx<f<1)>=Jo do 1(), (54)
and the output power spectrum reads,
ho 9 . .
H(w)=7— a_xl{Z[D (RiRy0) =D~ (RyRyw)]
+D(RyRow) — f)“iZﬁlw)}\ﬁl:ézr (55)

where we have introduced (R;R,w) =D (R;R,w)

- D<(I§1I5§2w). In the one-dimensional propagation approxi-

mation, we use Eq$39) and(40) to obtain

D(X1X,w) =D(X,X;@) and we see that the power spectrum
depends only o> <,

fiw® d - -
l(w)= Wtanzea—xl{D (X1 Xow)—D (szlw)}lxlzxz'
(57

We are interested in the emitted intensity outside the cavity,
and thus take;; =x,=L*/2. Using Eq.(45), we obtain

3

hw L/2 ID" (X1 X3w
I(w)=mtarF0iP<(w)lmJ dx3M

X,

—L/2

X (D' (XpX3w))*

X;=X,=L*/2

(58)

The integral in Eq(58) is easily evaluated, since

(10°/a6")

Im P

Pre<: (1 03/002)

(10°/as)

Im P

Prec (103/002)

Detuning (Ryd™)

40.0
Detuning (Ryd™)

FIG. 2. Recombination rateP {w) and optical response spectra Rhiw) normalized to inverse Bohr radius squared for
Ing 15Ga gsAS— GaAs quantum wells af =300 K, as a function of detuning from the free-carrier band gap in 3d Rydbergs. The dashed
lines are for RPA, while the solid curves have vertex correcti@simP'(w) for a 50 A quantum well with carrier densities from top to
bottom given byN=6,4,2< 10 carriers/cni. (b) The carrier density is fixed &l=4x 108 carriers/cni, and from top to bottom the well
widths arew=50,100,150 A(c,d) P .{w) corresponding, respectively, ta,b.
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5103/002)

Im P’
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Detuning (Ryd™)

FIG. 3. Optical response spectraPifw) (a) and recombina-

tion rateP (o) (b) with the same conventions of Fig. 1 for 50 A

In,Ga, _,As—Al, Ga _,As quantum wells af =300 K and a fixed
carrier density oN=6x 10'® carriers/cni. From top to bottom, the

compositions of well and barrier layers are given, respectively, by,

x=0.15y=0;x=0.15y=0.3x=0,y=0.3.

5Dr(X1X3w)

%1

—F'(L/2)F*(L/2)|B(x3)|2.

(D" (Xox3w))*

X1 =X,=LT/2

(59

By substitution of the expressions fér and B, we finally
obtain for the power spectrum
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; ; ho? o
I(w)=mtanzalP (w)LF (w), (60)

where the mode structure is described by the cavity function,

1 1
11172 () n(w) + 12°

fL(w): —w/cnz(w)LjL(q),

(61)

and the form factor7, (q), is a slowly varying function of
the cavity length,

Ju(@)=(1+]|r|?) (r*+r) . (62

sinh(q,L)
q,L * L

sin(q;L)
Q1
The Fabry-Pot-like structures in the output spectrum are
dominated by the poles in the denominatdd/r2|? of Eq.
(61). Note that Eq(60) has been derived through quantum-
statistical averages of quantized operators, see, e.g.(Hgs.
(2), (37), and(51). Both stimulated and spontaneous emis-

sion are then automatically accounted for in a fully quantum
electrodynamical approach.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the interplay between the
guantum-confinement, band structure, and many-body ef-
fects on the optical response and recombination rates of the
laser medium and the combination of these effects with the
cavity-mode structure on the output spectrum. The material
parameters used are given in Table I. The band coupling
appears explicitly in the equations through the energy levels
and matrix elements of the velocity operat]i(lg) =
#[V(1)—V(2)]/2imy. Within the axial approximatiof?
and taking a root mean square value within the same level of
approximation that has been used in Ref. 3 for the electric
dipole moment, we gefilye,qp.il?= (ke 0p) % Where

Hkao’p: Eg,0<s|eYIY> \/<gc| ngjk>2+ 1/3<gc|§ijk>21(63

for a TE mode withA=AY used so far in this paper. Here
Ego is the free-carrier bulk fundamental band gap and
(SleylY) denotes Kane's dipole matrix element.

Figure 1 shows the top valence band free-carrier disper-
sion relations and the reduced matrix elements
o= Mycyop/ (Eq o Sl€X X)) between the top valence and
lowest conduction band for the TE-mode polarization of
In,Ga _,As Al,Ga, _yAs quantum wells af =300 K. The
origin for the energies is taken &=0. In Figs. 1a) and
1(b), the well width isw=50 A. For a comparison with a
thicker well, we takev=100 A in Figs. 1c) and Xd). In all
plots, the solid, short-dashed, and long-dashed curves corre-

TABLE |. Material parameters as discussed in Ref. 2. Linear interpolation is used for the alloys. Defor-
mation potentials in eV, lattice parameters in angstroms, and elastic modultinlyi@cr?.

Ma’[el’ia| m: Y1 Y2 Y3 E(O) E(OO) a b ao Cll ClZ
GaAs 0.0665 6.79 1.92 2.9 11.78 10.9 7.1 1.7 5.6533 11.88 5.38
InAs 0.027 171 708 9.29 1515 1225 5.9 1.8 6.0583 8.33 4.53
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FIG. 4. Normalizedyain-loss spectrum(a) for 200 A In, 1:Ga, sAs-GaAs quantum wells separated by 600 A barriefE=aB800 K and
a fixed carrier density ofl=1.5x 10'® carriers/cni. The dashed line marks the gailpss condition. Each of the solid curves corresponds
to a different resonator length. From bottom to top, the losses decrease by taking, respectivei$0,63,6 4, and the corresponding
output power spectra are shown (h), (c), and (d). The curves have been normalized, and the actual ratios between the peaks are
I mad 63 ) /1 max{(60m) =3 andl ;o (67um) /1 mad 60u) ~8238.

spond, respectively, to the following compositions of well  Figure 2 shows results for 5 Ga) ggAs-GaAs quantum
and barrier layers:x=0.15y=0;x=0.15y=0.3x=0y  wells atT=300 K. The quantum wells are under compres-
=0.3. ) . sive strain and for the parameters used, the light-hole levels
There is no band coupling within our model and for the are not bound. Figure(d) depicts the optical response for a
parameters used here in the-0.15y=0 case. When the g A quantum well with carrier densities from top to bottom
barrier is increased, with the addition of aluminum . . byN=6,4,2x 108 carriers/cn?. Figure Zb), in which
(x=0.15y=0.3) the valence bands get coupled, and deviate. .~ = deryls’ity is fixed A=4x 1018 carriers/(':rﬁ’, com-

from parabolicity. Likewise, the reduced velocity matrix el- . . .
ement increases &t=0, due to the additional light-hole con- Pares the optical response for different well widths, namely,

tributions and experiences a strokglependence that starts W= 50,100,150 A from top to bottom. For the 50 A well, the

aroundk=0.3. For the thicker well, the distance between theonly relevant transition is£1-HH1. As the width is in-

energy levels is smaller and as such, the band coupling givezeased, th&2, HH2 states are also bound and contribute to

rise to stronger deviation from parabolicity for the energiesthe gain spectrum. Note that, for increasing carrier density,

As expected, the strongest coupling is found for the latticethe spectral position of the peak in the optical response, and

matched configuration=0y=0.3. _ consequently of the peak gain, can switch from the lower
In all figures below, the dashed lines are for RPA, whilegnergy transitionE1-HH1 to the higher energg2-HH2.

':Ihe EOI'd qurvle_s_thave vertex correct|otns ?sdd|s<r:]us_sed n tselgurthermore, the peak separation is reduced for thicker wells.
o or simplici y_ we use a constant dephasing rate, . stronger electron-hole overlap in the thinner well
['=#/T,, with T,= 100 fs, and for an easier identification of 4" larger Coulomb interaction and consequently to

the computed quantities presented, we refer t&'lfw) and 0 ‘arg . d y
more significant vertex corrections. In all plots, the band gap

P<(w)=P ,.{w), respectively, as the optical response of L . -
the(in)verteré&se)micon%uctor ﬁ"nediufrelatepd to the F())ptical renormalization shifts the onset of the optical response to the

gain), and the(carriey recombination rate. They are both red. The vertex corrections add to the Pauli blocking and

given in units of the inverse three-dimensional Bohr radiugmpart a further blueshift to the peak position. Similar con-
squared. siderations can be drawn for the recombination rate of elec-
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in the middle curves, a light-hole state is bound leading to
some band coupling and thus to a reduction of the peak gain
and recombination rate values. Finally, the bottom curves are
for strongly band-coupled unstrained systems. The peak val-
ues are further reduced due to poorer inversion and the sec-
ond transition, which is a light-hole statelat 0, contributes
significantly. At the density chosen, it actually determines
the peak values of both the recombination rate and gain spec-
tra. Using the results in Sec. Ill, we can show the connection
between the gain spectra andPh We start by explicitly
decomposing the refractive index in real and imaginary parts,
n=n;+in,, and use the fact that for semiconductors
n;>n,, to get the relationn,~—c?/(2w?\e(*))ImP",
where the background dielectric constaiito) is given in
Table I. The usual condition for laser operation, gailoss
can be met only in a limit case in our approach. It corre-
sponds td1—r?|=0 in the denominator of the cavity func-
tion 7 () of Eq. (61). From Eq.(50), we can introduce a
gain-loss function, G(w,L)=—n,w/c—1/L In|(n+1)/
(n—1)].
(b) . Figure 4 illustrates thgain-loss function for a 200 A
Ing 1:Ga gsAS-GaAs quantum well af=300 K and a carrier
density of N=1.5x10'8 carriers/cni. The dashed line
marks the gairrloss condition. Each of the solid curves cor-
responds to a different resonator lengith From bottom to
top, the losses decrease by taking, respectively,
L=60,63,6%, and the corresponding output power spectra
are given in(b), (c), and (d). The barriers are made three
times thicker than the QW widths. Away from the gain
i loss condition, several modes are allowed to oscillate, as in
- shar 1 Fig. 4b). As we get closer to the limiting condition, the
! spectrum increases by several orders of magnitude and the
modes closer to the peak gain are favored, as shown in Figs.
4(b) and 4c). Note, however, that each of the power spectra
1.25 1.35 have been normalized to peak value equal to one for easier
Energy (eV) visualization. The ratios between the peaks are actually
I mad 63u)/1 ma(60u) =3 andl 4, 67u)/1 12 60u) ~8238.

FIG. 5. Normalized gain-loss spectrum (a) for 200 A In Fig. 5 we illustrate the possibility of active optical
Ing 15Gay gsAS-GaAs quantum wells separated by 200 A barriers atswitching. We use the same QW composition of Fig. 4, but
T=300 K. The long-dashed line marks the galoss condition for  take equal well and barrier widths. The horizontal long-
a 35 resonator. The short-dashed and solid curves are, respegtashed line in Fig. @ marks thegain=Iloss limit for a
tively, for N=1.43<10"® carriers/cni and N=1.48<10® 35, resonator. The short-dashed and solid curves are,
carriers/cni The corresponding normalized power spectra arerespectively, for N=1.43x10"® carriersicni  and
shown in(b). The two curves are normalized, since the peak of they — 1 48x 108 carriers/cn3. The corresponding output spec-
on state is three orders of magnitude larger then that of the off stateEra are shown in Fig. ®). The small increase in carrier den-

sity switches the peak gain from the loweEE1-HH1) to
trons and holes in the medium, as shown in Figge) 2nd  the upper energy transitionEE2-HH2). The peak output
2(d), which correspond to Figs.(® and Zb) within the  switches 26 meV to a higher energy position and increases
same conventions. by a factor of approximately 2136. This clear switching ef-

The influence of band coupling on Rh(w) and fectis a consequence of engineering the QW energy levels in
P..{w) can be appreciated, respectively, in Figda)3 order to have two well-resolved allowed transitions that yield
and 3b). The systems selected for these plots are 50 Aa camel-back feature in the gain spectrum with two peaks of
In, Ga,_,As-Al,Ga _,As, and the carrier density is fixed at approximately the same height.

N=6x 10 carriers/cni. From top to bottom the composi-

tions of well and barrier layers are given, respectively, by V. SUMMARY
x=0.15y=0;x=0.15y=0.3;x=0,y=0.3. The top curves

are thus for uncoupled bands, which are more efficiently in- In summary, we have presented a microscopic approach
verted and give rise to larger gain and recombination ratedor the computation of multiple quantum well laser output
Accordingly, the more efficient occupation of the subbandgower spectra. The technique is able to describe physical
yields larger band gap shrinkage in excitonic units. As thephenomena that require a fully quantized theory for the in-
barrier height is increased through the addition of aluminurteraction of radiation and matter in semiconductors and has

Gain — Loss {(arb. units)

units)

Power Spectrum (arb.

,.
-

~

b

F
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the potential for the realistic design and simulation of de-carrier density, and that leads to a better spectral resolution
vices. of the peak position in the off state. This effect can be auto-
We have shown how to formally reduce the three-matically included in the formalism by consideration of the
dimensional problem of an edge emitter laser to an averageshission losses in the carrier kinetics. As a matter of fact, the
homogeneous medium with quasi-one-dimensional lightheory presented here carries the necessary backbone struc-
propagation. Through numerical examples, the optical retyre for a consistent inclusion of dynamical effects. Depart-
sponse and recombination rates were shown to be strongmg from Eqgs.(7a) and(7b), and using, e.g., a quasi-particle
influenced by a combination of many-body, band coupling.ansatz for the carrier and photon Green’s functibasian-
quantum confinement, and strain effects characteristic of agym Boltzmann-like equations can be obtained in order to
tual devices. For thin quantum wells, the stronger electrongescribe transient and nonequilibrium effects in the coupled
hole overlap leads to larger Coulomb interaction and consecarrier-photon systems. Proper consideration of the interplay
quently to more significant vertex corrections. Furthermorepetween light emission and carrier-carrier kinetics, as previ-
as we engineer the structures in order to decouple the valenggisly analyzed in bulk systemd&should be able to describe
bands, the more efficient inversion gives rise to larger gairkinetic holes in the carriers distribution functions leading to
and recombination rates. We have also illustrated how th%pectral holes in the gain spectra, and will be the subject of
formalism can be used to predict the output power under the,rther investigation. The possibility of tailoring such effects
influence of effects, due to manipulations in both the matethrough band structure engineering may give rise to different
rial parameters and resonant cavity design. As expected in atfects and be of importance for the construction of specific
operating laser, away from the gainloss condition several devices. Furthermore, conditions under which spatial inho-
modes are allowed to oscillate, and as we get closer to thgiogeneities play a significant role and our uniform medium

IImItlng condition, the Spectrum increases by several Orderapproximaﬁon does not hold will also be addressed.
of magnitude. Active optical switching has been demon-

strated in a specially designed structure with two well-

resolveq aIIowe(_j transitions that give rise to a camel-back ACKNOWLEDGMENTS
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