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A microscopic approach for the computation of semiconductor quantum well laser power spectra is pre-
sented. The theory is based on nonequilibrium Green’s function techniques that allow for a consistent descrip-
tion of the coupled photon and carrier system fully quantum mechanically. Many-body effects are included
through vertex corrections beyond the random-phase approximation. Band structure engineering is incorpo-
rated in the theory as dictated by the coupled band solutions of the Luttinger Hamiltonian. The influence of the
detailed cavity-mode structure is accounted for by the photon Green’s function. The theory describes the
interplay among the various many-body, quantum-confinement, and band structure effects in the gain medium
and its action as a laser cavity. Numerical results for the recombination rates, optical response, and laser output
power spectra are presented for strained-layer and lattice-matched III-V systems at quasiequilibrium with
variable design and material parameters and under different excitation conditions. Active optical switching is
demonstrated in specially designed structures.@S0163-1829~96!01123-X#

I. INTRODUCTION

Semiconductor quantum wells provide an interesting op-
portunity to manipulate complex nonlinear phenomena and
to create high-performance lasers.1 Advanced theoretical
techniques are required to keep up with recent progress on
the design and fabrication of quantum well~QW! lasers, to
understand the wealth of experimental data available, and to
predict the effects that will be exploited in future devices.

Regardless of the effective dimensionality of the system
and the microscopic mechanisms that give rise to optical
gain, the semiconductor must be consistently treated as both
a resonator and gain medium. A realistic description of the
excited medium, as given in Ref. 2, requires the combination
of band structure and many-body effects. The influence of
different material parameters, confinement potentials, strain
and well widths has been analyzed recently and the last two
combined play a major role in the effective curvature of the
bands which, in turn, strongly affect the many-body
corrections.3 The approach was based on the steady-state so-
lutions of generalized semiconductor Bloch equations
~SBE’s!, and has two major limitations. First, it can only
describe the active medium in the presence of a macroscopic
coherent interband polarization. So, if the medium is inco-
herently excited by carrier injection or if phase-destroying
processes like carrier-carrier and carrier-phonon scattering
give rise to a fast decay of the interband polarization created,
e.g., by a coherent optical pulse, the SBE’s cannot be used.
Second, from the SBE’s, we can directly compute absorption
and gain, but not laser emission. On the other hand, nonequi-
librium Green’s function techniques are able to treat both
interacting carriers and photons under the same quantum me-
chanical footing4 and give rise to a consistent description of
laser emission.5

Fully quantum mechanical treatments have been already
applied to bulk systems.5–8 However, the one-dimensional
approach used for light propagation has the serious short-
coming that transverse losses in the carrier kinetics cannot be
accounted for in a straightforward way. Moreover, the output

spectrum has been related ‘‘by hand’’ to the field-field cor-
relation functionD,, which is introduced here in Sec. II.
From a first principles analysis, the laser output is derived
directly from the Poynting vector. A fully consistent treat-
ment of the problem, i.e., a three-dimensional description of
light propagation and the calculation of the output power
directly from the Poynting vector has been already given in
Ref. 9, and can be generalized to arbitrary geometries.10

In this paper, we restrict the analysis to those output in-
tensities, such that spectral hole burning in the gain does not
come into play. Therefore, quasiequilibrium can be assumed
in the carrier system. This way, any optical losses in the
carrier kinetics~including transverse ones! are negligible. A
reduction from the three-dimensional problem to a one-
dimensional cavity is then possible. Our nonequilibrium
Green’s function approach incorporates the most relevant
band structure and many-body effects and provides a frame-
work for analyzing nonequilibrium configurations.4 It in-
cludes vertex corrections beyond the random-phase approxi-
mation~RPA! that extend previous bulk-system approaches7

to the quasi-two-dimensional coupled band quantum well
case.

In the high density regime in which semiconductor lasers
operate, and which is described in this paper, the many-body
effects manifest as Pauli-blocking, screening, Coulomb en-
hancement, and band gap renormalization. For screening, we
use an extended static single-plasmon-pole model.3

The paper is organized as follows. In Sec. II, we summa-
rize the main steps in the derivation of the Green’s functions
expressions. We start from the basic Hamiltonian for the
system, introduce the Green’s functions and their Dyson
equations. We discuss the quantum well case in detail and
present a procedure to reduce the multilayer, spatially depen-
dent polarization functions to averaged quantities, consis-
tently with the electric dipole approximation. We give a step
by step derivation of the dielectric tensor and show explicitly
the relation between the retarded polarization function and
the macroscopic optical response of the medium found typi-
cally in semiclassical approaches involving Maxwell’s equa-
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tions. In Sec. III, we give the connection between the photon
Green’s function and the output power of a QW laser cavity.
We reduce the three-dimensional propagation problem to a
quasi-one-dimensional resonator cavity, for which we give
expressions for the laser output. In Sec. IV, we present nu-
merical results for different quantum well media and cavity
resonator designs. We start analyzing the influence of band
coupling on the energy levels and transition matrix elements
that appear explicitly in our many-body expressions. We
then study the combined influence of strain, quantum con-
finement, band structure, and many-body effects on the gain
spectrum and recombination rates of the active medium. Fi-
nally, we discuss how the cavity geometry, combined with
the many-body and band structure effects, changes the com-
puted output spectra, and further analyze the possibility of
active optical switching in specially engineered structures.
We summarize our results briefly in Sec. V.

II. DERIVATION OF THE GREEN’S FUNCTION
EXPRESSIONS

In this section, we outline the derivation of the Green’s-
function expressions describing the active QW medium
coupled to photons. The general formalism11 has been ap-
plied to semiconductors in Ref. 4 and is used here to include
the influence of quantum-confinement and multiple subband
coupling,3 as well as vertex corrections beyond RPA~Ref. 7!
in the polarization function, which is related to carrier gen-
eration and recombination rates and optical gain.

A. Hamiltonian and basic definitions

The total Hamiltonian of the system can be decomposed
in electronic ~el!, electron-light-field interaction (I ), free-
field (F) and external~ext! terms,

H5Hel1HI1HF1Hext, ~1a!

Hel5E C†~RW !H0C~RW !dRW 1
1

2E C†~RW !C†~R8W !

3V~RW 2R8W !C~R8W !C~RW !dRW dR8W , ~1b!

HI52
e

m0c
E C†~RW !pW ~RW !•AW ~RW !C~RW !dRW

52
1

cE JW~RW !•AW ~RW !dRW , ~1c!

HF5(
l,qW

\vqdl,qW
†
dl,qW , ~1d!

Hext5E Frext~RW !F~RW !2
1

c
JWext~RW !•AW ~RW !dRW G . ~1e!

Here, C(RW ) is the electron field operator,V(RW 2R8W )
5e2/e0uRW 2R8W u is the instantaneous bare Coulomb interac-
tion between the electrons in the system, anddl,qW denotes
the photon annihilation operator in terms of which the elec-
tromagnetic field vector potentialAW is expanded,

AW ~RW !5(
l,qW
A2p\c2

Vvq
eiq

W
•rW@dlqW

†
1dl2qW #eWlqW , ~2!

where we have used the Coulomb gauge andeWlqW denotes the
standard unitary polarization vector. The particle and current
densities are given, respectively, by

r~RW !5C†~RW !C~RW !,

JW~RW !5
2 ie\

2m0
$C†~RW !¹C~RW !2@¹C†~RW !#C~RW !%, ~3!

and the scalar potential is the solution of Poisson’s equation,

F~RW !5E r tot~R8W !V~ uRW 2R8W u!dR8W , ~4!

where the total particle density readsr tot5r1rext. The
analysis is restricted to one-photon processes within the elec-
tric dipole approximation. Hence, only linear terms on the
vector potential appear inHI andHext. The details of the
band structure are included in the formalism through the one-
particle QW HamiltonianH0 . As usual in problems dealing
with superlattices and quantum wells, details of the superpe-
riodic potential are averaged and described by effective
masses, Luttinger parameters, and a piecewise constant po-
tential giving rise to quantum-confinement effects.12

The Green’s functions considered in our description of the
QW laser problem areG(1I2I ), DJ (1I2I ), andW(1I2I ), which
describe, respectively, the carriers, photons, and the screened
Coulomb interaction. The one-particle carrier Green’s func-
tion is given by

G~1I2I !52 i /\^C~1I !C†~2I !&

[2 i /\
^r0TC@C~1I !C†~2I !#SC&

^r0SC&
,

SC5TCexpS i /\E
C
Hext~ tI !dtI D . ~5!

Here, 1I 5RW 1 ,t1I . We use the real-time formalism for non-
equilibrium first introduced by Keldysh,11 in which, through
the ordering operatorTC , time runs over a contourC from
2` to 1` on a positive branch (t1I5t1

1) and then

back from1` to 2` on a negative branch (t1I5t1
2).

The transverse photon Green’s function4 and screened po-
tential are defined through functional derivatives. They are
given, respectively, by

DJ ~1I2I !52
c

4p

dAW eff~1I !

dJWext~2I !
,

W~1I2I !5
dFeff~1I !

drext~2I !
, ~6!

where AW eff(1I )5^AW (1I )&, and Feff(1I )5^F(1I )&. The time
evolution of the Green’s functions can be cast in compact
form as Dyson equations~sum over repeated arguments is
assumed!

16 486 53M. F. PERIERA, JR. AND K. HENNEBERGER



@G0
21~1I3I !2S~1I3I !#G~3I2I !5d~1I2I !, ~7a!

@DJ 0
21~1I3I !2PJ ~1I3I !#DJ ~3I2I !5dJ~1I2I !, ~7b!

@W0
21~1I3I !2p~1I3I !#W~3I2I !5d~1I2I !, ~7c!

whereS, PJ , andp are, respectively, the carrier self-energy,
the transverse polarization function, and the longitudinal po-

larization function, whiledJ is the transversed function.4 The
free propagators that appear in Eq.~7! read

G0
21~1I2I !5F i\ ]

] tI1
2h eff~1I !Gd~1I2I !, ~8a!

W0
21~1I2I !52

e0
4pe2

n1d~1I2I !, ~8b!

D0
21~1I2I !5@n121/c2]2/] tI1

2#d~1I2I !, ~8c!

wheree0 denotes the static dielectric function, and the effec-
tive one-particle Hamiltonian in the equation for the free-
carrier propagator is

h eff~1I !5H0~1I !1
ei\

cmo
AW eff~1I !•¹~1I !1Feff~1I !. ~9!

B. Vertex corrections

Functional derivative techniques can be used to cast for-
mal solutions to the Dyson equations in a compact form by
means of an iterative scheme. We start by defining longitu-
dinal, g and transverse,G vertex functions,

g~1I2I3I !5
dG21~1I2I !

dF eff~3I !
,GW ~1I2I3I !52

4p

c

dG21~1I2I !

dAW eff~3I !
,

~10!

in terms of which the carrier self-energy and polarization
functions read,

S~1I2I !52 i\G~1I3I !W~4I1I !g~3I2I4I !

2 i\PW ~1I1I 8!G~1I3I !DJ ~4I1I 8!GW ~3I2I4I !u1I 51I 8,

~11a!

p~1I2I !5 i\G~1I3I !G~4I1I !g~3I4I2I !, ~11b!

PJ ~1I2I !5 i\ePW ~1I1I 8!G~1I4I !GW ~4I5I2I !G~5I1I 8!u1I 51I 8.
~11c!

Substitution into the Dyson equations then give rise to ex-
pressions for the vertices,

g~1I2I3I !52d~1I3I !d~1I2I !1
dS~1I2I !

dG~4I5I !
G~4I6I !G~7I5I !g~6I7I3I !,

~12a!

GW ~1I2I3I !52
4pe

c2
PW ~1I1I 8!d~1I3I !d~1I2I !u1I 51I 8

1
dS~1I2I !

dG~4I5I !
G~4I6I !GW ~6I7I3I !G~7I5I !, ~12b!

leading to a closed set of equations, that gives rise to sys-
tematic approximations by successive iteration on the self-
energy. In our approach, band coupling appears expli-
citly in the equations through the energy levels and
matrix elements of the velocity operatorPW (1I2I )
5@PW (1I )1PW * (1I )#/25\@¹(1)2¹(2)#/2im0 . Note that, in
the absence of transverse corrections, our iteration scheme
reduces to that of Ref. 13. The RPA equations are obtained
in the first iteration of Eqs.~11! and ~12!, with S50
and consequently g(1I2I3I )52d(1I3I )d(1I2I ), GW (1I2I3I )5
2 4pe/c2PW (1I1I )d(1I3I )d(1I2I ). Substitution of the first order
approximation gives the first step beyond RPA for the trans-
verse polarization function,

PJ ~1I2I !52
4p i\e2

c2
PW ~1I18I !@G~1I2I !PW ~2I !G~2I18I !

1 i\G~1I3I !G~3I2I !W~4I3I !PW ~2I !G~4I18I !G~2I4I !#1518.

~13!

Specifying the branches along the Keldysh contour and in-
troducing the Green’s function components in the usual
way,14 the compact Dyson Eq.~7b! splits into an equation for
the retarded photon Green’s function,

@DJ 0
21~13!2PJ r~13!#DJ r~32!5dJ~12!, ~14!

and one for the propagators,

@DJ 0
21~13!2PJ r~1,3!#DJ ~32!2PJ"~13!DI a~32!50, ~15!

where the carrier recombination rate reads,

PJ,~12!52
4p i\e2

c2
PW ~118!„G,~12!PW ~2!G.~218!

1 i\W~43!$G,~32!PW ~2!G.~24!

3@Gr~13!Ga~418!1Gr~13!G.~418!

1G,~13!Ga~418!#2G,~13!G.~418!

3@Ga~32!PW ~2!Gr~24!2Ga~32!PW ~2!G.~24!

2G,~32!PW ~2!Gr~24!#%…1518, ~16a!

and the carrier generation rate is given by

PJ.~12!52
4p i\e2

c2
PW ~118!„G.~12!PW ~2!G,~218!

1 i\W~43!$G.~13!G,~418!

3@Ga~32!PW ~2!Gr~24!1Ga~32!PW ~2!G,~24!

1G.~32!PW ~2!Gr~24!#2G.~32!PW ~2!G,~24!

3@Gr~13!Ga~418!2Gr~13!G,~418!

2G.~13!Ga~418!#%…1518. ~16b!

Note that there is no summation over the variables that ap-
pear on the left-hand side of Eq.~16!.
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C. The quantum well case

The details of the band structure and quantum confine-
ment are included in the formalism through the solutions of
the one-particle QW HamiltonianH0 . As a matter of fact,
the field operators in Eq.~5! should, in general, be expanded
in terms of solutions for the Hartree problem, or in other
words from the self-consistent solution of the Schro¨dinger
equation for the one-electron HamiltonianH0 and the Pois-
son equation. However, in this paper, we restrict to type-I
systems in which the electrons and holes are concentrated in
the confining region of the QW layers, with negligible bar-
rier penetration. In this case, the electrostatic band profile
deformations give rise to negligible corrections for the opti-
cal properties relevant for laser operation and can be
disregarded.15 We can thus use an expansion in terms of
operators that create (an,kW

† ) or destruct (an,kW) eigenstates of
H0 ,

C~RW !5(
n,kW

fn,kW~RW !an,kW . ~17!

The free-particle term in the electronic Hamiltonian of Eq.
~1! has two components,H05Hc1Hv . For the materials
considered in this paper, the band gap is sufficiently large,
such that the conduction band electrons can be described by
uncoupled parabolic dispersion relations throughHc . Each
subband can thus be labeled by themJ561/2 projection of
the electron spins, a quantization labelj5c1c2 . . . , and the
in-plane momentumkW . In other words, the simplen label of
Eq. ~17! is a short abbreviation forn5$s j %, and will be used
whenever possible to simplify the notation. The coupled va-
lence bands are described by the Luttinger Hamiltonian
Hv . Each subband is in a mixed state that has heavy
mJ563/2 and light-hole componentsmJ561/2. The di-
agonalization method combines a matrix diagonalization
technique16 with a unitary transformation that reduces the
Luttinger Hamiltonian operator matrix to two blocks, which
are degenerate for the symmetric QW cases considered here
for laser structures.17 Each of these blocks, up and down, is
characterized, respectively, by the labelp and thus
n5$p j%, j5v1v2 . . . , p5$U,D%. In some cases, where
compressive strain gives rise to negligible overlap between
the heavy- and and light-hole states, the dispersion relations
become parabolic andp reduces to a single spin labels.
See, for example, the solid lines of Fig. 1, which is explained
in more detail in Sec. IV. The eigenstatesfn , are given by

fs jkW~RW !5
1

S1/2
eik

W
•rWgj~z!ws j , ~18a!

fp jkW~RW !5
1

S1/2
eik

W
•rW@jHp jkW~z!wHp1jLp jkW~z!wLp#. ~18b!

The position vector is separated into in-plane and growth
direction components,RW 5(rW,z), and the subscriptsH, L de-
note, respectively, the contributions that reduce to heavy-
and light-hole terms atkW50, where there is no band cou-
pling. The envelope functionsjLp jkW(z), jHp jkW(z), and
gj (z) are obtained in the diagonalization ofH0 . The lattice-
periodic partswHp , wLp , andws j vary on an atomic scale.

S is the sample surface and the eigenvalues for the conduc-
tion and valence bands are given, respectively, by\ek j

e 5

\e j
e 1 (\2k2/2me* ! and \ek j

v . Now that our notation has
been introduced, we substitute the expansion in Eq.~17! into
Eq. ~5!. Using homogeneity in the plane of the layers, assum-
ing stationary conditions, and considering the Fourier trans-
form upon the relative time differencet12t2 , we obtain

G~RW 1 ,RW 2 ,v!5 (
n1 ,n2 ,k

W
fn1 ,k

W~RW 1!fn2 ,k
W* ~RW 2!Gn1n2

~kW ,v!.

~19!

The interband components of the carrier Green’s functions
are left out, since they are proportional to the average field,
namely, Gcv(v);^A&, and within the approach used
here5–10 the mean field is zero. Moreover, nondiagonal intra-
band terms are neglected, i.e. Gn1n2

(kW ,v)

;Gn1n1
(kW ,v)dn1n2, consistently with the approximations

used in the computation of Coulomb matrix elements.3 The
first term in Eq.~16! ~RPA polarization! is obtained by ex-
panding the Green’s functions in eigenstates of the QW
states as in Eq.~19!. The contribution from a single QW
reads

iPJQW
" ~12!5

4pe2

c2 (
n1n2k

¢
1k¢ 2

Gn1n1
" ~k¢1t1t2!Gn2n2

:

3fn1k
¢
1
~RW 1!PW ~RW 1!fn2k

W
2

*

3~RW 1!fn2k
W
2

* ~RW 2!PW ~RW 2!fn1k1
W ~RW 2!. ~20!

FIG. 1. Free-carrier dispersion relations for the top valence band
~a! and velocity matrix elementP red between the top valence and
lowest conduction band for the TE-mode polarization~b! of
w550 Å, InxGa12xAs2 Al yGa12yAs quantum wells atT5300 K.
For a comparison with a larger well width, we takew5100 Å in
~c!,~d!. In all plots, the compositions of well and barrier layers in
the solid, short-dashed, and long-dashed curves correspond, respec-
tively, to x50.15,y50;x50.15,y50.3;x50,y50.3. The origin of
energies is taken atk50.
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The polarization function above has a complicated space de-
pendence that can lead to interesting effects when inserted in
the Dyson equation and solved for different structures. How-
ever, in our first attempt to analyze the problem, we use the
averaged polarization function, or in other words, we treat
each quantum well as a homogeneous medium,

PJQW
" ~12!5

1

V
d~RW 12RW 2!* dRW 3dRW 4PJ QW

" ~RW 3RW 4t1t2!. ~21!

The spatially local optical response of Eq.~21! is a conse-
quence of the electric dipole approximation, as in bulk
systems.5–8 It is valid whenever the photon momentum is
much smaller than the typical carrier momentum. The ap-
proximation would break down in the case of coherently
coupled multiple quantum wells~MQW’s! within a shallow
confining potential, allowing for tunneling between adjacent
QW’s with a large superlattice periodLp5Lw1Lb on the
order of a~ultrashort! wavelength. In this paper, we restrict
the analysis to isolated MQW systems and optical to near
infrared wavelengths, where the approximation holds.

After a Fourier transform in time~stationary systems! and
keeping only resonant terms for positive frequencies~rotat-
ing wave approximation!, the RPA components of the polar-
ization function are

iP QW,i j
" ~v!5

4pe2/c2

V (
n1n2k1

W
Gn1n1

" ~k1Wv!

3Gn2n2
" ~k1Wv!Pn1n2 ,i

* ~k1W !Pn1n2 , j
~k1W !.

~22!

We are particularly interested in the diagonal component,

iP QW,jj
" ~v!5

4pe2/c2

V (
kWcvsp

uPkcvsp, j u2qcv~k!

3S f c
e~k! f v

h~k!

@12 f c
e~k!#@12 f v

h~k!# D , ~23!

whereqcv(k) is the spectral broadening factor,

qcv~k!5
\Gcv~k!

@\v2\ecv~k!#21\2Gcv~k!2
, ~24!

f c
e(k) and f v

h(k) are the electron and hole distribution func-
tions, andGcv(k) is the dephasing rate.

The Coulomb corrections beyond the RPA in Eq.~16!
within the dipole approximation have the following struc-
ture:

PJQW
" ~ t1t2!5

4pe2c2

V (
l

PJl,QW
" ~ t1t2!, ~25!

where the componentsPJl, QW
" have the general form,

PJl,QW
" ~ t1t2!5E dRW 1dRW 2dRW 3dRW 4dt3dt4A~13!PW ~RW 1!B~41!C~32!PW ~RW 2!D~24!W~43!

5 (
n1n2n3n4

kWk8W

PW n1n2
* ~k!PW n4n3

~k8!WS n1n2n3n3kWkWk8W k8W D E dt3dt4An1n1
~kt1t3!Bn2n2

~kt4t1!Cn3n3
~k8t3t2!Dn4n4

~k8t2t4!.

~26!

The matrix elements of the screened potential are maximized forn35n1 ,n25n4,
3,

WS n1n2n3n4kWkWk8W k8W D 5E dRW 3dRW 4fn1k
W* ~RW 3!fn2k

W~RW 4!W~RW 3RW 4!fn3k8
W ~RW 3!fn4k8

W
* ~RW 4!'W

kW2k8W
n1n2n1n2

dn1n3dn2n4, ~27!

and again, as in the derivation of Eq.~23!, by Fourier transforming with respect to the relative timet12t2 , and keeping only
resonant terms, we obtain

iPJQW
" ~v!5

8pe2/c2

V (
kWcvsp

PW kcvsp* F f c
e~k! f v

h~k!

@12 f c
e~k!#@12 f v

h~k!#Gqcv~k!@PW kcvsp1YW kcvsp~v!#, ~28!

where the Coulomb enhancement factor is given by

YW kcvsp~v!5 (
k8Ws8p8

PW k8cvs8p8WkW2k8W
vcvc @\v2\ec~k!2\ev~k!#@12 f c

e~k!2 f v
h~k!#

@\v2\ec~k!2\ev~k!#21\2Gcv~k!2
. ~29!
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The matrix elements for both bare and screened potential
here are simplified by means of the average effective-mass
approximation, in which effective dispersion relations giving
rise to one average mass per band approximate the band
coupling effects. Screening is accounted for through a mul-
tisubband extension of the single-plasmon-pole approxima-
tion, in which all relevantly populated subbands contribute.
In a simple two-band model, the self-energy corrections
compensate the change in the chemical potentials that char-
acterize the quasi-equilibrium distributions. However, in the
multisubband case considered here, the chemical potentials
and self-energies must be computed self-consistently.3

The scheme summarized in the preceding paragraph for
screening and self-energies has been applied to the compu-
tation of nonlinear absorption spectra,18 in good agreement
with experimental results.19 The results above account for
the local response of a single QW. However, we are inter-
ested in MQW systems, constituting the active medium in a
laser cavity. As a concrete example, we consider an edge
emitter configuration with the MQW growth axis along the
z direction and a one-dimensional light propagation and
emission along thex axis. In a first approximation, we can
replace the actual polarization components by the product of
a stepwise constant periodic function inz representing the
carrier confinement inside the QW layers, and a rectangle
function alongx to characterize the one-dimensional optical
cavity of lengthL, i.e.,

PJ ~RW 1RW 2v!5d~x12x2!d~y12y2!u~L/22ux1u!PJQW
" ~v!

3(
i

u~z11zi ,L!u~zi ,U2z1!, ~30!

where the lower and upper limits of thei th QW along the
z direction are denoted, respectively, byzi ,L andzi ,U . Fur-
ther, averaging over the growth direction leads to a descrip-
tion of homogeneous excitation inside the sample, i.e.,

PJ"~RW 1RW 2v!5d~RW 12RW 2!PJ
"~x1v!, ~31a!

PJ"~x11v!5u~L/22ux1u!S Lw
Lw1Lb

DPJQW
" ~v!, ~31b!

whereLw andLb denote, respectively, the well and barrier

lengths. Note thatPJ r(x1v) can be computed in two steps.
The imaginary part follows directly from the relation
2i ImPJ r(x1v)5PJ.(x1v)2PJ,(x1v), and a Kramers-
Kronig transformation then yields RePJ r(x1v). The polariza-
tion PW that appears in Maxwell’s equations is related to the
induced current by

JW ind~1!5
]PW ~1!

]t1
, ~32!

and can be expressed as a function of the average electric
field EW521/c]AW eff(1)/]t1 , using the nonlinear optical sus-
ceptibility tensorxJ,

PW ~1!5E xJ r~13;EW!EW~3!d3. ~33!

We thus obtain for the retarded polarization function,

PJ r~12!52
4p

c2
dJ ind~1!

dAW eff~2!
52

4p

c2
]2xJ r~12!

]t1]t2
, ~34!

where we have used the fact that in our approachAW eff50. At
steady state, and using Eq.~31!, we obtain

PJ r~x1 ,v!524p
v2

c2
xJ r~x1 ,v!, ~35!

or equivalently in terms of the dielectric tensoreJ,

PJ r~x1 ,v!5
v2

c2
@1J2 eJ~x1 ,v!#. ~36!

III. LASER POWER SPECTRUM

At this point, we can establish a connection between the
field-field correlation functions,

Di j
.~12!5

1

4p i\
^Ai~1!Aj~2!&,

Di j
,~12!5

1

4p i\
^Aj~2!Ai~1!&, ~37!

and the power spectrum of a semiconductor QW laser.

A. The one-dimensional resonator

We refer to a concrete device geometry and assume light
propagation in thex direction, within an edge emitter con-
figuration for the laser, with TE polarization along they axis.
In other words,Di j

"(12)5d iyd jyD
"(12). Now we proceed

to establish a clear connection between the three-dimensional
expressions used so far and the one-dimensional treatment
that follows. We consider spatial homogeneity in the trans-
verse plane. More details for this case can be found in Ref. 9.
Denoting the transverse coordinate and momentum, respec-
tively, by rW andqW' , we have

D,~RW 1RW 2v!5D,~x1x2 ,rW 1rW 2 ,v!

5
1

~2p!2
E dqW'D

,~x1x2 ,qW' ,v!eiq
W
'•~rW12rW2!,

~38!

and consequently,

D,~RW 1RW 2v! urW15rW2
5D,~x1x2 ,v!

5
1

~2p!2
E dqW'D

,~x1x2 ,qW' ,v!.

~39!

For each frequency, we select those wave numbers that de-
scribe propagation along thex direction with a small opening
angleu, i.e., q'5qxtanu. Furthermore, outside the cavity,
the optical field is free and thenqx5v/c. Therefore,
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D,~x1x2 ,v!'
1

4p S v

c
tanu D 2D,~x1x2 ,qW'50,v!, ~40!

Now from the Dyson equations for the photon Green’s func-
tions, Eqs.~14! and ~15!, and expressing the retarded polar-
ization function in terms of the dielectric tensor of Eq.~36!,
two equations follow:

FD1
v2

c2
eyy~x,v!GDr~RW 1RW 2v!5dT,yy~RW 12RW 2!,

~41a!

FD1
v2

c2
eyy~x,v!GD,~RW 1RW 2v!5P,~x1v!Da~RW 1RW 2v!.

~41b!

Consistently with the discussion above, we consider homo-
geneity in the transverse direction and keep only theqW'50
component after Fourier transforming with respect to the
relative transverse coordinaterW 12rW 2 . Using the relation
dT,yy(x12x2 ,q'50)5d(x12x2), and dropping the, by now
unnecessary, argumentq'50, we obtain the one-
dimensional Dyson equations,

FD1
v2

c2
n2~v,x!GDr~x1x2v!5d~x12x2!, ~42!

for the retarded photon Green’s function and accordingly for
the propagator,

FD1
v2

c2
n2~v,x!GD,~x1x2v!5P,~x1v!Da~x1x2v!,

~43!

where we have introduced the refractive index function
n2(x1 ,v)5eyy(x1 ,v). Combining Eqs.~42! and ~43!, the
photon propagator reads,

D,~x1x2v!5E Dr~x1x3v!P,~x3v!Da~x3x2v!dx3 ,

~44!

and for the homogeneous excitation inside the sample de-
scribed by Eq.~31!, we get

D,~x1x2v!5P,~v!E
2L/2

L/2

Dr~x1x3v!Dr~x2x3v!* dx3 ,

~45!

where we have used the relationDa(x3x2v)
5Dr(x2x3v)* . We need now an explicit expression for the
retarded photon Green’s function. Following Ref. 9, we start
from the homogeneous equation,

FD1
v2

c2
n2~v,x!GF~x!50. ~46!

There are two regions to be considered, namely, inside and
outside the resonator, characterized, respectively, by
uxu,L/2 anduxu.L/2, and two independent plane wave so-
lutions, namely, the forward waveF(x), which strikes the
resonator from left to right and the backward wave
B(x)5F(2x) that strikes the resonator from right to left,

F~x!5B~2x!5H F1e
iq0x1F2e

2 iq0x, x,2L/2

f1e
iqx1 f2e

2 iqx, uxu,L/2

G1e
iq0x, x.L/2.

~47!

The general solution to Eq.~46! is constructed from the so-
lutions of the homogeneous equation,

Dr~xx8v!5u~x2x8!F~x!B~x8!1u~x82x!F~x8!B~x!.
~48!

The coefficients are determined through the usual boundary
conditions on the homogeneous equation and by the condi-
tion imposed due to the the inhomogeneity, namely,
F8(x)B(x)2B8(x)F(x)51,

F15A12r 2

2iq

q1q0
2q0

e2 i ~q2q0!L/2, ~49a!

F25A r

~12r 2!~2iq !

q1q0
2q0

~eiqL2e2 iqL!e2 i ~q1q0!L/2,

~49b!

f25
r

A~12r 2!~2iq !
, ~49c!

f15
1

A~12r 2!~2iq !
, ~49d!

G15
1

A~12r 2!~2iq !

2q0
q1q0

ei ~q2q0!L/2, ~49e!

where the parametersr , q, andq0 are

r5
q2q0
q1q0

eiqL, q5q11 iq25q0n~v!, q05
v

c
.

~50!

B. The Poynting vector

The light intensity at a given point in space is given by the
quantum-statistical average of the Poynting vector,

^SW ~1!&5
c

8p
^EW ~1!3BW ~2!2BW ~2!3EW ~1!&152 . ~51!

Using the relations between the vector potential
AW and the electromagnetic fields,BW 5¹3AW and
EW (1)521/c]AW (1)/]t1 , together with Eq.~37!, the compo-
nents of the Poynting vector read,

^Si~1!&5
i\

2

]

]t1
(
jÞ i

$¹ j~2!@Dji
.~12!1Dji

,~12!#

2¹ i~2!@Dj j
.~12!1Di j

,~12!#%152 . ~52!

For the linearly polarized light considered here, the expres-
sion above reduces to

53 16 491GREEN’S FUNCTION THEORY FOR SEMICONDUCTOR- . . .



^Sx~R1!&52
1

4pE2`

`

dv \v
]

]x1
$D,~RW 1RW 2v!

1D.~RW 2RW 1v!% u152
, ~53!

where we have assumed steady-state conditions and Fourier
transformed with respect to the relative timet12t2 . Using
the relations,D"(RW 1RW 22v)5D:(RW 2RW 1v), we can equiva-
lently write,

^Sx~RW 1!&5E
0

`

dv I ~v!, ~54!

and the output power spectrum reads,

I ~v!5
\v

4p

]

]x1
$2@D,~RW 1RW 2v!2D,~RW 2RW 1v!#

1D̂~RW 1RW 2v!2D̂~RW 2RW 1v!% uRW 15RW 2
, ~55!

where we have introducedD̂(RW 1RW 2v)5D.(RW 1RW 2v)
2D,(RW 1RW 2v). In the one-dimensional propagation approxi-
mation, we use Eqs.~39! and ~40! to obtain

I ~v!5
\v3

16c2p2 tan
2u

]

]x1
$2@D,~x1x2v!2D,~x2x1v!#

1D̂~x1x2v!2D̂~x2x1v!% ux15x2
. ~56!

However, using Eq.~48! and D̂52i ImDr , it follows that
D̂(x1x2v)5D̂(x2x1v) and we see that the power spectrum
depends only onD,,

I ~v!5
\v3

8c2p2 tan
2u

]

]x1
$D,~x1x2v!2D,~x2x1v!% ux15x2

.

~57!

We are interested in the emitted intensity outside the cavity,
and thus takex15x25L1/2. Using Eq.~45!, we obtain

I ~v!5
\v3

4p2c2
tan2u iP,~v!ImF E

2L/2

L/2

dx3
]Dr~x1x3v!

]x1

3„Dr~x2x3v!…* G
x15x25L1/2

.

(58)

The integral in Eq.~58! is easily evaluated, since

FIG. 2. Recombination rateP rec(v) and optical response spectra ImPr(v) normalized to inverse Bohr radius squared for
In0.15Ga0.85As2GaAs quantum wells atT5300 K, as a function of detuning from the free-carrier band gap in 3d Rydbergs. The dashed
lines are for RPA, while the solid curves have vertex corrections.~a! ImPr(v) for a 50 Å quantum well with carrier densities from top to
bottom given byN56,4,231018 carriers/cm3. ~b! The carrier density is fixed atN5431018 carriers/cm3, and from top to bottom the well
widths arew550,100,150 Å.~c,d! P rec(v) corresponding, respectively, to~a,b!.
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F]Dr~x1x3v!

]x1
„Dr~x2x3v!…* G

x15x25L1/2

5F8~L/2!F* ~L/2!uB~x3!u2. ~59!

By substitution of the expressions forF andB, we finally
obtain for the power spectrum

I ~v!5
\v4

4p2c3
tan2u iP,~v!LFL~v!, ~60!

where the mode structure is described by the cavity function,

FL~v!5
1

u12r 2u2
1

un~v!u2
1

un~v!11u2
e2v/cn2~v!LJL~q!,

~61!

and the form factorJL(q), is a slowly varying function of
the cavity length,

JL~q!5~11ur u2!
sinh~q2L !

q2L
1~r *1r !

sin~q1L !

q1L
. ~62!

The Fabry-Pe´rot-like structures in the output spectrum are
dominated by the poles in the denominator 1/u12r 2u2 of Eq.
~61!. Note that Eq.~60! has been derived through quantum-
statistical averages of quantized operators, see, e.g., Eqs.~1!,
~2!, ~37!, and ~51!. Both stimulated and spontaneous emis-
sion are then automatically accounted for in a fully quantum
electrodynamical approach.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the interplay between the
quantum-confinement, band structure, and many-body ef-
fects on the optical response and recombination rates of the
laser medium and the combination of these effects with the
cavity-mode structure on the output spectrum. The material
parameters used are given in Table I. The band coupling
appears explicitly in the equations through the energy levels
and matrix elements of the velocity operatorPW (1I2I ) 5
\@¹(1)2¹(2)#/2im0 . Within the axial approximation,12

and taking a root mean square value within the same level of
approximation that has been used in Ref. 3 for the electric
dipole moment, we getuPkcvsp, j u25(Pkcvsp)

2, where

Pkcvsp5Eg,0̂ SueyuY&A^gcujHp jk&211/3^gcujLp jk&2,
~63!

for a TE mode withAW 5Aŷ used so far in this paper. Here
Eg,0 is the free-carrier bulk fundamental band gap and
^SueyuY& denotes Kane’s dipole matrix element.

Figure 1 shows the top valence band free-carrier disper-
sion relations and the reduced matrix elements
P red5Pkcvsp /(Eg,0̂ SuexuX&) between the top valence and
lowest conduction band for the TE-mode polarization of
InxGa12xAs AlyGa12yAs quantum wells atT5300 K. The
origin for the energies is taken atk50. In Figs. 1~a! and
1~b!, the well width isw550 Å. For a comparison with a
thicker well, we takew5100 Å in Figs. 1~c! and 1~d!. In all
plots, the solid, short-dashed, and long-dashed curves corre-

FIG. 3. Optical response spectra ImPr(v) ~a! and recombina-
tion rateP rec(v) ~b! with the same conventions of Fig. 1 for 50 Å
In xGa12xAs2Al y Ga12yAs quantum wells atT5300 K and a fixed
carrier density ofN5631018 carriers/cm3. From top to bottom, the
compositions of well and barrier layers are given, respectively, by
x50.15,y50;x50.15,y50.3;x50,y50.3.

TABLE I. Material parameters as discussed in Ref. 2. Linear interpolation is used for the alloys. Defor-
mation potentials in eV, lattice parameters in angstroms, and elastic moduli in 1011 dyn/cm2.

Material mc* g1 g2 g3 e(0) e(`) a b a0 C11 C12

GaAs 0.0665 6.79 1.92 2.9 11.78 10.9 7.1 1.7 5.6533 11.88 5.38
InAs 0.027 17.1 7.08 9.29 15.15 12.25 5.9 1.8 6.0583 8.33 4.53
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spond, respectively, to the following compositions of well
and barrier layers:x50.15,y50;x50.15,y50.3;x50,y
50.3.

There is no band coupling within our model and for the
parameters used here in thex50.15,y50 case. When the
barrier is increased, with the addition of aluminum
(x50.15,y50.3) the valence bands get coupled, and deviate
from parabolicity. Likewise, the reduced velocity matrix el-
ement increases atk50, due to the additional light-hole con-
tributions and experiences a strongk dependence that starts
aroundk50.3. For the thicker well, the distance between the
energy levels is smaller and as such, the band coupling gives
rise to stronger deviation from parabolicity for the energies.
As expected, the strongest coupling is found for the lattice-
matched configurationx50,y50.3.

In all figures below, the dashed lines are for RPA, while
the solid curves have vertex corrections as discussed in Sec.
II. For simplicity, we use a constant dephasing rate,
G5\/T2 , with T25100 fs, and for an easier identification of
the computed quantities presented, we refer to ImPr(v) and
P,(v)5P rec(v), respectively, as the optical response of
the inverted semiconductor medium~related to the optical
gain!, and the~carrier! recombination rate. They are both
given in units of the inverse three-dimensional Bohr radius
squared.

Figure 2 shows results for In0.15Ga0.85As-GaAs quantum
wells atT5300 K. The quantum wells are under compres-
sive strain and for the parameters used, the light-hole levels
are not bound. Figure 2~a! depicts the optical response for a
50 Å quantum well with carrier densities from top to bottom
given byN56,4,231018 carriers/cm3. Figure 2~b!, in which
the carrier density is fixed atN5431018 carriers/cm3, com-
pares the optical response for different well widths, namely,
w550,100,150 Å from top to bottom. For the 50 Å well, the
only relevant transition isE1-HH1. As the width is in-
creased, theE2, HH2 states are also bound and contribute to
the gain spectrum. Note that, for increasing carrier density,
the spectral position of the peak in the optical response, and
consequently of the peak gain, can switch from the lower
energy transitionE1-HH1 to the higher energyE2-HH2.
Furthermore, the peak separation is reduced for thicker wells.

The stronger electron-hole overlap in the thinner well
leads to larger Coulomb interaction and consequently to
more significant vertex corrections. In all plots, the band gap
renormalization shifts the onset of the optical response to the
red. The vertex corrections add to the Pauli blocking and
impart a further blueshift to the peak position. Similar con-
siderations can be drawn for the recombination rate of elec-

FIG. 4. Normalizedgain-lossspectrum~a! for 200 Å In0.15Ga0.85As-GaAs quantum wells separated by 600 Å barriers atT5300 K and
a fixed carrier density ofN51.531018 carriers/cm3. The dashed line marks the gain5loss condition. Each of the solid curves corresponds
to a different resonator lengthL. From bottom to top, the losses decrease by taking, respectively,L560,63,67m, and the corresponding
output power spectra are shown in~b!, ~c!, and ~d!. The curves have been normalized, and the actual ratios between the peaks are
Imax(63m)/Imax(60m)'3 andImax(67m)/Imax(60m)'8238.
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trons and holes in the medium, as shown in Figs. 2~c! and
2~d!, which correspond to Figs. 2~a! and 2~b! within the
same conventions.

The influence of band coupling on ImPr(v) and
Prec(v) can be appreciated, respectively, in Figs. 3~a!
and 3~b!. The systems selected for these plots are 50 Å
In x Ga12xAs-AlyGa12yAs, and the carrier density is fixed at
N5631018 carriers/cm3. From top to bottom the composi-
tions of well and barrier layers are given, respectively, by
x50.15,y50;x50.15,y50.3;x50,y50.3. The top curves
are thus for uncoupled bands, which are more efficiently in-
verted and give rise to larger gain and recombination rates.
Accordingly, the more efficient occupation of the subbands
yields larger band gap shrinkage in excitonic units. As the
barrier height is increased through the addition of aluminum

in the middle curves, a light-hole state is bound leading to
some band coupling and thus to a reduction of the peak gain
and recombination rate values. Finally, the bottom curves are
for strongly band-coupled unstrained systems. The peak val-
ues are further reduced due to poorer inversion and the sec-
ond transition, which is a light-hole state atk50, contributes
significantly. At the density chosen, it actually determines
the peak values of both the recombination rate and gain spec-
tra. Using the results in Sec. III, we can show the connection
between the gain spectra and ImPr . We start by explicitly
decomposing the refractive index in real and imaginary parts,
n5n11 in2 , and use the fact that for semiconductors
n1@n2 , to get the relationn2;2c2/„2v2Ae(`)…ImPr ,
where the background dielectric constante(`) is given in
Table I. The usual condition for laser operation, gain5 loss
can be met only in a limit case in our approach. It corre-
sponds tou12r 2u50 in the denominator of the cavity func-
tion FL(v) of Eq. ~61!. From Eq.~50!, we can introduce a
gain-loss function, G(v,L)52n2v/c21/L lnu(n11)/
(n21)u.

Figure 4 illustrates thegain-loss function for a 200 Å
In0.15Ga0.85As-GaAs quantum well atT5300 K and a carrier
density of N51.531018 carriers/cm3. The dashed line
marks the gain5loss condition. Each of the solid curves cor-
responds to a different resonator lengthL. From bottom to
top, the losses decrease by taking, respectively,
L560,63,67m, and the corresponding output power spectra
are given in~b!, ~c!, and ~d!. The barriers are made three
times thicker than the QW widths. Away from the gain5
loss condition, several modes are allowed to oscillate, as in
Fig. 4~b!. As we get closer to the limiting condition, the
spectrum increases by several orders of magnitude and the
modes closer to the peak gain are favored, as shown in Figs.
4~b! and 4~c!. Note, however, that each of the power spectra
have been normalized to peak value equal to one for easier
visualization. The ratios between the peaks are actually
Imax(63m)/I max(60m)'3 andImax(67m)/Imax(60m)'8238.

In Fig. 5 we illustrate the possibility of active optical
switching. We use the same QW composition of Fig. 4, but
take equal well and barrier widths. The horizontal long-
dashed line in Fig. 5~a! marks thegain5 loss limit for a
35m resonator. The short-dashed and solid curves are,
respectively, for N51.4331018 carriers/cm3 and
N51.4831018 carriers/cm3. The corresponding output spec-
tra are shown in Fig. 5~b!. The small increase in carrier den-
sity switches the peak gain from the lower (EE1-HH1! to
the upper energy transition (EE2-HH2!. The peak output
switches 26 meV to a higher energy position and increases
by a factor of approximately 2136. This clear switching ef-
fect is a consequence of engineering the QW energy levels in
order to have two well-resolved allowed transitions that yield
a camel-back feature in the gain spectrum with two peaks of
approximately the same height.

V. SUMMARY

In summary, we have presented a microscopic approach
for the computation of multiple quantum well laser output
power spectra. The technique is able to describe physical
phenomena that require a fully quantized theory for the in-
teraction of radiation and matter in semiconductors and has

FIG. 5. Normalized gain-loss spectrum ~a! for 200 Å
In0.15Ga0.85As-GaAs quantum wells separated by 200 Å barriers at
T5300 K. The long-dashed line marks the gain5loss condition for
a 35m resonator. The short-dashed and solid curves are, respec-
tively, for N51.4331018 carriers/cm3 and N51.4831018

carriers/cm3 The corresponding normalized power spectra are
shown in~b!. The two curves are normalized, since the peak of the
on state is three orders of magnitude larger then that of the off state.

53 16 495GREEN’S FUNCTION THEORY FOR SEMICONDUCTOR- . . .



the potential for the realistic design and simulation of de-
vices.

We have shown how to formally reduce the three-
dimensional problem of an edge emitter laser to an averaged
homogeneous medium with quasi-one-dimensional light
propagation. Through numerical examples, the optical re-
sponse and recombination rates were shown to be strongly
influenced by a combination of many-body, band coupling,
quantum confinement, and strain effects characteristic of ac-
tual devices. For thin quantum wells, the stronger electron-
hole overlap leads to larger Coulomb interaction and conse-
quently to more significant vertex corrections. Furthermore,
as we engineer the structures in order to decouple the valence
bands, the more efficient inversion gives rise to larger gain
and recombination rates. We have also illustrated how the
formalism can be used to predict the output power under the
influence of effects, due to manipulations in both the mate-
rial parameters and resonant cavity design. As expected in an
operating laser, away from the gain5 loss condition several
modes are allowed to oscillate, and as we get closer to the
limiting condition, the spectrum increases by several orders
of magnitude. Active optical switching has been demon-
strated in a specially designed structure with two well-
resolved allowed transitions that give rise to a camel-back
feature in the gain spectrum with two peaks of approximately
the same height. A small increase in carrier density switches
the peak gain from the lower~off state! to the upper~on
state! energy transition, and the output increases by three
orders of magnitude. In reality the total losses increase with

carrier density, and that leads to a better spectral resolution
of the peak position in the off state. This effect can be auto-
matically included in the formalism by consideration of the
emission losses in the carrier kinetics. As a matter of fact, the
theory presented here carries the necessary backbone struc-
ture for a consistent inclusion of dynamical effects. Depart-
ing from Eqs.~7a! and~7b!, and using, e.g., a quasi-particle
ansatz for the carrier and photon Green’s functions,9 quan-
tum Boltzmann-like equations can be obtained in order to
describe transient and nonequilibrium effects in the coupled
carrier-photon systems. Proper consideration of the interplay
between light emission and carrier-carrier kinetics, as previ-
ously analyzed in bulk systems,20 should be able to describe
kinetic holes in the carriers distribution functions leading to
spectral holes in the gain spectra, and will be the subject of
further investigation. The possibility of tailoring such effects
through band structure engineering may give rise to different
effects and be of importance for the construction of specific
devices. Furthermore, conditions under which spatial inho-
mogeneities play a significant role and our uniform medium
approximation does not hold will also be addressed.
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