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Using a scattering theory approach we study the zero-frequency current fluctuations of the normal terminals
of a phase-coherent mesoscopic structure with a superconducting region. We find that for devices where the
potential of the superconducting region is externally fixed~Fig. 1!, the expression for current fluctuations is a
simple generalization of the corresponding expression obtained in Buttiker@Phys Rev. B46, 12 485~1992!# for
purely normal mesoscopic systems. In contrast to purely normal mesoscopic systems, we find that the current
fluctuations between two different contacts can be positive in these devices. We apply this formula to derive a
simple expression for the shot noise in a normal superconducting~NS! junction and study the noise to current
ratio both as a function of the applied bias and a potential barrier at the NS interface. For devices with a
floating superconductor~Fig. 2!, a self-consistent calculation of the current fluctuations is necessary, and here
we derive an approximate formula valid in the small bias limit. We show that two similar devices with identical
average currents can exhibit very different fluctuations depending on whether the superconductor is held at a
fixed potential or is left floating.@S0163-1829~96!00123-3#

I. INTRODUCTION

Recently, there have been many experimental2–5 and
theoretical6–14 studies of mesoscopic devices with supercon-
ducting regions. These experiments typically measure the
conductance as a function of the phase variation of the su-
perconducting region. Some of the interesting effects ob-
served are periodic oscillations of the conductance as a func-
tion of the phase difference between the superconducting
regions in an Andreev interferometer,3 and enhanced con-
ductance oscillations in an Aharanov-Bohm ring with super-
conducting regions.2 Some recent predictions in these struc-
tures include Anderson localization in a normal-
superconducting-normal~NSN! junction due to a variation in
the phase of the order parameter,6 and the doubling of shot
noise in a weakly transmitting NS junction.12

The scattering theory of transport~often referred to as the
Landauer-Buttiker formalism! has been very successful in
explaining normal mesoscopic phenomena.15,16 It should be
noted that, unlike the tunneling Hamiltonian formalism, the
Landauer-Buttiker formalism does not assume weak cou-
pling and can be applied even to ballistic conductors. It has
recently been applied to mesoscopic superconductors by sev-
eral authors.6–8,12,13,17Reference 1 shows that the scattering
theory of transport can be used to calculate not only average
current but also the current fluctuations. The purpose of this
paper is to show with examples, how the results of Ref. 1 can
be extended in a straightforward manner to apply to super-
conducting structures. Although Refs. 12 and 13 have ap-
plied the scattering theory of transport to calculate the noise
in NS junctions, we are not aware of a general formulation of
the type presented here. The expressions we derive can be
used to calculate the current fluctuations in arbitrary multi-
terminal structures and configurations, as long as the super-
conducting regions are all maintained at the same electro-
chemical potential.

There are two distinct experimental configurations in
these structures. In the first configuration there is a supercon-

ducting contact at anexternally fixedpotential12,13 ~Fig. 1!.
In the second configuration, referred to as thefloating

superconductorcase, the superconducting region is floating
~Figs. 2!.3,6 This means that the chemical potential of the
condensate~mS! floats to a value which is determined self-
consistently by the condition that the sum of the steady-state
currents flowing through the various contacts is zero.9 Here
the chemical potential of the superconductor can fluctuate
with time about its steady-state value.

We first consider the configurations in Fig. 1, where there
is a superconducting contact kept at an externally fixed po-
tential. Using scattering theory formalism, we derive an ex-
pression for the current fluctuations. We find that the final
expression for current fluctuations could have been obtained
from the corresponding expression for current fluctuations in
the purely normal case by~i! associating an additional index
representing electron (e) and hole (h) channels with every
contact (j ) index, i.e., j→( je) and (jh); and ~ii ! correctly
accounting for the sign of the electron and hole currents. To
the best of our knowledge, the general expression@Eq. ~38!#
for current fluctuations presented here has not appeared in
the literature before.

Next we consider the case of a floating superconductor
~Fig. 2!. Here the chemical potential of the condensate~mS!
is determined self-consistently from the condition that the
sum of all currents flowing in the contacts is zero,S i I i50.9

As a result of this requirement, fluctuations in current cause
the chemical potential of the condensate to fluctuate. This in
turn affects the current fluctuations. We derive an expression
for the current fluctuations in the floating superconductor
case by properly accounting for the fluctuations in the chemi-
cal potential of the condensate. Our discussion in this case is
valid only at small biases because it is based on the method
of Langevin forces.

Finally, we consider two applications of the expressions
for current fluctuations. In the first example, we derive an
expression for shot noise in a NS junction valid at arbitrary
applied voltages. Using this expression, we verify that a bal-
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listic NS junction has a nonzero shot noise at voltages larger
than the superconducting gap. This result was predicted in
Ref. 18 using a more complicated Keldysh Green’s-function
theory. Another related study predicts the doubling of noise
to current ratio in the small voltage limit in weakly conduct-
ing NS junctions.12 Using the expression for shot noise de-
rived here, we extend this study to finite biases and arbitrary

reflection coefficients due to ad-function potential barrier at
the NS interface. We find that a NS junction with a small
normal reflection coefficient exhibits a peak in the noise/
current ratio at a voltage larger thanD @Fig. 3~a!#. For junc-
tions with a large reflection coefficient, the noise/current ra-
tio has a value four times the electronic charge at small
applied voltages as predicted in Ref. 12, and the noise/
current ratio decreases to the value of two times the elec-
tronic charge at voltages much larger than that of the super-
conducting gap@Fig. 3~b!#. This behavior is intuitively
expected because at energies smaller than the superconduct-
ing gap an electron incident from the normal region is re-
flected as a hole at the NS interface, resulting in the flow a
Cooper pair with charge 2e in the superconductor. At ener-
gies much larger than the superconducting gap, an electron
incident from the normal region is transmitted as an electron-
like quasiparticle in the superconductor. Reference 13 re-
cently calculated the distribution function for the shot noise
in a NS junction using the scattering theory approach. We do
not address this issue in this paper.

The second example we consider is illustrated in Fig. 4.
The purpose of this example is to illustrate the differences in
the current fluctuations between the case of a superconductor
kept at a fixed external potential and the case of a floating
superconductor. The devices in Fig. 4 consist of a normal
ballistic region connected to two normal contacts~N1 and
N2!, and has two superconducting boundaries maintained at
phasesf1 and f2. The device in Fig. 4~a! ~device A! is
connected to a single superconductor whose potential floats
to a value which is determined by the currents flowing in the
normal terminals. The device in Fig. 4~b! ~deviceB! is simi-
lar to deviceA, except that the superconductor is maintained
at an externally fixed potential. This potential is chosen to be
equal to the potential the superconductor floats to in device
A. Both the average current and current fluctuations are cal-
culated at the normal terminals as a function of the phase
difference~f12f2!. We find that, while the average current
is the same in the two devices, the current fluctuations are
very different~Fig. 5!.

Approximations

The basic approximation we make is to neglect the cur-
rent fluctuations in the pair potentialD~r !. In the
Bogoliubov–de Gennes equations@Eq. ~6!#, the order param-
eterD~r ! is calculated self-consistently. As a result there are
fluctuations inD~r ! due both to the stochastic nature of the
occupancy factors for electrons and holes@the factorsf n in
Eq. ~8!#, and to the stochastic nature of the transmission co-
efficients. These fluctuations inD~r ! are neglected in this
paper. It is not clear to us if these fluctuations can be in-
cluded in the context of a scattering theory approach. Ne-
glecting fluctuations inD~r ! is similar to neglecting the effect
of fluctuations in the effective potential seen by an electron
due to all other electrons in purely normal mesoscopic sys-
tems. Most of the calculations of current fluctuations in
purely normal mesoscopic systems in the literature are in this
limit.

At low temperatures we expect the fluctuations inD~r ! to
be insignificant for the structures in Figs. 1~a! and 2~b!. This
is because the current density flowing in the contact is so
small that it plays an insignificant role in determining the

FIG. 1. A multiterminal mesoscopic device with one supercon-
ducting contact. Two of the normal contacts and the superconduct-
ing contact are at an externally fixed potential. The third normal
contact is not kept at an externally fixed potential, i.e., it is floating.
The exact position of the NS interface can be as in~a!, where only
the contact is superconducting, or~b!, where the superconducting
region extends continuously from the contact into the device.
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self-consistent value ofD~r !. Thus fluctuations in the current
will not contribute significantly to fluctuations inD~r !. On
the other hand, the superconducting regions inside the de-
vices in Figs. 1~b!, 2~b!, and 2~c! are smaller and can have an
appreciable current density flowing in them. Thus self-
consistency inD~r ! is very important because fluctuations in
the current could lead to significant fluctuations inD~r !.

Outline

The remainder of the paper is arranged as follows. We
begin Sec. II with a brief description of the Bogoliubov–de
Gennes equations, and the picture adopted in this paper~Sec.
II A !. In Sec. II C, we derive an expression@Eq. ~38!# for the
current fluctuations in the case of a superconductor at an
externally fixed potential. In Sec. II D, we discuss the sign of
the current fluctuations. We discuss the floating supercon-
ductor case in Sec. III. In Sec. IV, we discuss two examples:
~i! a NS junction and~ii ! the device in Fig. 4. We present our
conclusions in Sec. V.

II. CURRENT FLUCTUATIONS: SUPERCONDUCTOR
AT A FIXED EXTERNAL POTENTIAL

A. Bogoliubov–de Gennes equations

Consider a mesoscopic device connected to one supercon-
ducting contact and an arbitrary number of normal contacts
as shown in Fig. 1. Here an up-spin electron incident in
contactj can either be transmitted as an up-spin electron or a
down-spin hole to other contacts. The equation which de-

scribes the motion of quasiparticles under nonequilibrium
conditions when all interactions involving spins are negli-
gible is19

S @H~x!1U~x!2mS# D~x!

D~x!* 2@H~x!*1U~x!2mS#
D S un~x!

vn~x! D
5 ih

]

]t S un~x!

vn~x! D , ~1!

where

H~x!5
1

2m S 2 i\“2e
A~x!

c D 21Vs~x!, ~2!

D~x!51V~x!(
n
vn* ~x!un~x!~122 f n!, ~3!

U~x!52V~x!(
n

uun~x!u2f n1uvn~x!u2~12 f n!. ~4!

Here x[~r ,t!, Vs(x) is the scalar potential~the potential at
equilibrium plus the potential resulting from the applied
bias!, V(x) is the local attractive electron-electron interac-
tion, A(x) is the vector potential, andmS is the chemical
potential of the superconducting region.f n is the occupation
factor for staten. We consider only devices where all super-
conducting regions have the same chemical potentialmS .
The self-consistent potentialsD(x) andU(x) are then time
independent. We also assume thatVs(x) andA(x) are time
independent. Equation~1! can then be written as

FIG. 2. A multiterminal meso-
scopic device where the supercon-
ducting region is not externally
kept at a constant potential; i.e.,
the superconductor is floating. All
normal contacts are at an exter-
nally fixed potential. The struc-
tures can be as in~a!, where the
superconducting region is a con-
tact, ~b!, where the superconduct-
ing region is part of the device, or
~c!, which is a combination of~a!
and ~b!.
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S @H~r !1U~r !2mS# D~r !
D~r !* 2@H~r !*1U~r !2mS#

D S un~x!

vn~x! D5 ih
]

]t S un~x!

vn~x! D
~5!

in the superconducting regions. In the normal regions, the
same equation holds with the self-consistent potentialsU~r !
andD~r ! set equal to zero@sinceV(x)50#. Equation~5! can
now be written in a time-independent form by assuming a
solution of the form un(x)→e2 iEtun~r ! and vn(x)
→e2 iEtvn~r !:

S @H~r !1U~r !2mS# D~r !
D~r !* 2@H~r !*1U~r !2mS#

D S un~r !vn~r !
D5ES un~r !vn~r !

D ,
~6!

where

H~r !5
1

2m S 2 i\“2e
A~r !

c D 21Vs~r !, ~7!

D~r !51V~r !(
n
vn* ~r !un~r !~122 f n!, ~8!

U~r !52V~r !(
n

uun~r !u2f n1uvn~r !u2~12 f n!. ~9!

HereVs~r ! is the scalar potential~the potential at equilibrium
plus the potential resulting from the applied bias!, andA~r !
is the vector potential. Note that while solving Eq.~6!, mS is
a position-independent constant throughout the device. Equa-
tion ~6! explicitly involve diagonal sub-Hamiltonians for an
up-spin electron band and a down-spin hole band. The off-
diagonal termD~r ! known as the order parameter, represents
a coupling between the up-spin electron band and the down-
spin hole band:D~r !50 in the normal regions.

B. Scattering states and occupation factors in the contacts

In the following discussion of scattering states, we as-
sume the Hamiltonian in the contacts to be separable in thex
and (y,z) directions~the Hamiltonian will not be separable
inside the device, which may have an arbitrary shape!. We
further assume for simplification that the vector potential
A~r !50 and that the single-particle potentialVs~r ! has the
following form in the contacts:

Vs~r !5Vi~y,z! in contact i . ~10!

Then the HamiltonianH appearing in Eq.~6! is separable
into x and (y,z) components in contacti as follows:

H~r !5H~x!1H~y,z!, ~11!

where

H~x!52
\2

2m

]2

]x2
~12!

and

H~y,z!52
\2

2m S ]2

]y2
1

]2

]z2D1Vi~y,z!. ~13!

Applying a bias in contacti would change the value ofVi by
an amount equal to the applied bias. The assumption made
regarding the form ofVs~r ! is made only to simplify the
calculation. As in the purely normal case, the final answer for
the average current and current fluctuations does not depend
on the detailed shape of the contacts.1

Normal contacts

We will now discuss Eq.~6! in a normal contact, discuss-
ing both the scattering states and the occupation factors for
electrons and holes in the contact. The off-diagonal potential
D~r ! is zero, and so Eq.~6! simplifies to

1~H2mS!un5Eun , ~14!

2~H2mS!vn5Evn , ~15!

whereH is given by Eq.~11!. Equation~14! represents an
electron band which is shifted by a constant energy2mS .
Similarly Eq.~15! represents a hole band which is shifted by
a constant energy1mS .

Inside normal contacti , the solutions to Eqs.~14! and
~15! at energyE5Ex1Exy can be written as a product of a

FIG. 3. A plot of the noise to current ratio (S/I ) of a NS junc-
tion as a function of the applied voltage. This ratio has a peak at a
voltage larger thanD/e. Note that a ballistic NS junction has a
nonzero noise foreV.D. ~b! Same as~a! but for larger barrier
strengths. For large barriers, theS/I ratio approaches a value of 4e
at small applied biases, as predicted in Ref. 12. TheS/I ratio, how-
ever, decreases to a value 2e at voltages larger thanD/e.
Z5kFU/2eF is a dimensionless barrier strength~Ref. 26!, and
Ud(x) represents the potential of the barrier placed at the NS in-
terface. Plots are for zero temperature.
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state with energyEx along thex direction and a state with
energyEyz along the (y,z) direction. Incident electrons and
holes from normal contacti have the following form:

e6 ikie~Ex!xS un~ i ,y,z!

0 D ~16!

and

e6 ikih~Ex!xS 0
vn~ i ,y,z! D . ~17!

kie(Ex) andkih(Ex) are thex components of the wave vec-
tors in contacti corresponding to electrons and holes with an
x component of energy equal toEx . These wave vectors are
equal to

kie~Ex!5S 2m~ms1Ex2Vi !

\2 D 1/2
and

kih~Ex!5S 2m~ms2Ex2Vi !

\2 D 1/2. ~18!

Note that energiesEx , Ey,z , andE are all measured with
respect tomS , which is equal to the chemical potential of the
superconducting region. The plus and minus signs in Eqs.
~16! and ~17! correspond to incoming and outgoing waves.
un( i ,y,z) andvn( i ,y,z) are the solutions to the (y,z) com-
ponents of Eqs.~14! and ~15!.

The occupancy factors for the electron and hole states
incident from contactj are9,17

f ie~E!5F11expSE2~m i2mS!

kT D G21

and

f ih~E!5F11expSE1~m i2mS!

kT D G21

. ~19!

An important feature of these occupation factors is that the
chemical potentials for the electron and hole bands are dif-
ferent.

Superconducting contacts

In the superconducting contacts, we only discuss the case
where the single-particle potentialVs~r ! is a constant in the
bulk of the contact, and abruptly goes to infinity at the ex-
tremities of the contacts the (y,z) direction. ThenD~r ! can
be approximated by a constantDj in the bulk of the super-

FIG. 4. Andreev interferometer:~a! The superconducting region
floats to a value~mS! determined by current conservation for this
two-terminal device.~b! The superconducting region is held exter-
nally at a chemical potentialmS identical to that in~a!.

FIG. 5. ~a! A plot of the shot noise per unit applied voltage
(N11, N12, N22) for the device in Fig. 4~b! as a function of the
phase difference between the superconducting boundaries. Note that
N11ÞN22ÞN12, and thatN12 can be either positive or negative
unlike normal mesoscopic systems.~b! When the superconducting
region is floating,N115N2252N12 ~solid line!, as expected for a
two-terminal device. The dashed line is the average conductance as
a function of the phase difference between the superconducting
boundaries for the devices in both Figs. 4~a! and 4~b!. Both plots
are for zero temperature.
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conducting contact labeledj . An incident particle at energy
E from the superconducting contactj has the following
form:

S e6 ik jxxun~ j ,y,z!

e6 ik jxxvn~ j ,y,z! D , ~20!

wherekjx is thex component of the wave vector in contactj ,

kj5A@2m(ms2Vj2E6AuE22D j
2u)#/\2 . Vj is the constant

single-particle potentialVs~r ! which represents the bottom of
the band in superconducting contactj . The plus and minus
signs in Eq. ~20! correspond to incoming and outgoing
waves.

The occupancy factor for an incident state from supercon-
ducting contactj is9,17

f j~E!5F11expS EkTD G
21

. ~21!

We stress again that all energiesE are measured with respect
to mS , which is the chemical potential of the superconduct-
ing regions.

We use a picture consisting of both positive and negative
energy states.20,17 Reference 17 contains a detailed descrip-
tion of this picture. All results in this paper can, however, be
obtained from the conventional picture which considers only
the positive energy states.

Given the states in the various contacts, the next question
is what is the scattering state in normal contacti as a result
of a particle incident in any of the contacts. A particle inci-
dent from contactj can either be transmitted as an electron
or a hole to contacti . The resultant scattering state in contact
i is of the form

S eikiexd i j1 Av ie
Av je

si j
ee~E!e2 ikiex

Av ih
Av jh

si j
he~E!eikihx

D
and

S Av ie
Av jh

si j
eh~E!e2 ikiex

eikihxd i j1
Av ih
Av jh

si j
hh~E!eikihx

D . ~22!

Herekjb andv jb5\kjb/m are the wave vector and velocity,
respectively, ofbPe,h at energyE in contact j . s is the
scattering matrix of the device including the superconducting
region.s i j

ab represents the scattering coefficient for a particle
of type b incident from contactj which is transmitted to
contacti as a particle of typea ~a, bPe,h!. Note that Eq.
~22! has been written down only for a single mode; the gen-
eralization to many modes is straightforward.

The scattering matrix can be obtained by solving Eq.~6!
in the various regions of the device and then matching the
wave functionsun and vn at suitable spatial locations~like
interfaces between two different regions!, in a manner simi-

lar to that in normal mesoscopic systems. An iterative pro-
cedure would be required for a self-consistent solution of
Eqs.~6!.

When a bias is applied to a contact, it changes both the
chemical potential and the energy of the band bottomVi . If
a bias voltageVa is applied to contacti , the changes inmi
andVi are

m i→m i1eVa and Vi→Vi1Va .

A change inVi would cause a change in the exact form of
the scattering states throughout the device, and would also
cause a change in the occupancy of the scattering states at a
given energy in contacti .

The field operatorĈ( i ,x) in contacti is a linear combi-
nation of the states in Eq.~22!,

Ĉ~ i ,x!5S Ĉe~ i ,x!

Ĉh~ i ,x!
D 5 (

jPN,S;bPe,h

1

A2p
E dE

A\v jb

3S eikiexd i jdeb1
Av ie
Av jb

si j
eb~E!e2 ikiex

e2 ikihxd i jdhb1
Av ih
Av jb

si j
hb~E!eikihx

D
3e2 iEtâ jb~E!. ~23!

Throughout the manuscript latin alphabets correspond to the
terminals and greek alphabets correspond to the electron (e)
and hole (h) channels.N andS refer to the set of all normal
and superconducting contacts respectively.ajb(E) is the an-
nihilation operator in contactj for a particle of typebPe,h
at energyE. kjb8 and u jb8 are the wave vector and velocity,
respectively, of particle of typebPe,h at energyE8 in con-
tact j .

The field operatorsĈ( i ,x) and â jb(E) obey the commu-
tator rules for fermions,

@Ĉ~ i ,x!,Ĉ~ j ,x8!#150, @ âia~E!,â jb~E8!#150,
~24!

@Ĉ†~ i ,x!,Ĉ~ j ,x8!#15d i jd~x2x8!

and

@ âia
† ~E!,â jb~E8!#15d i jdabd~E2E8!. ~25!

The expectation value ofâia
† (E)â jb(E8) is nonzero only

when i5 j and it is the distribution function in contacti ,

^âia
† ~E!â jb~E8!&5d i jdabd~E2E8! f ia~E!. ~26!
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C. Evaluation of the current fluctuations

In the evaluation of the current fluctuations presented
here, we consider only a single-moded device. The generali-
zation to many modes is straightforward and we only present
the final result in Appendix A.

The current operator for electrons and holes in leadi are

Î ia~x,t !5sgn~a!
e\

2mi
TrS Ĉa

†~ i ,x!
dĈa~ i ,x!

dx

2
dĈa

†~ i ,x!

dx
Ĉa~ i ,x! D

whereaPe,h, and sgn~a!511 for a5e and21 for a5h.
Then the total-current operator in leadi which is the sum of

the electron, and the hole components can be compactly
written as

Î i~x,t !5
e\

2mi
TrS Ĉ†~ i ,x!sz

dĈ~ i ,x!

dx

2
dĈ†~ i ,x!

dx
szĈ~ i ,x! D , ~27!

where Tr denotes trace and the Pauli spin matrixsz correctly
accounts for the sign of the electron and hole components.
Substituting Eq.~23! into Eq. ~27!, we find

Î i~x,t !5
e\

2m (
j ,kPN,S;ab,gPe,h

sgn~a!
1

2p E dE

A\v jb
E dE8

A\v jb8
e2 i ~E2E8!tâ jb

† ~E!âkg~E8!

3H ~kia8 1kia!F d i jdabd ikdage
2 i sgn~a!~kia2kia8 !x2

A\v jb
A\v ia

A\vkg8

A\v ia8
si j

ab†~E!sik
ag~E8!ei sgn~a!~kia2kia8 !xG

1~kia8 2kia!F d i jdabe
2 i sgn~a!~kia8 1kia!x

A\vkg8

A\v ia8
sik

ag~E8!2d ikdage
i sgn~a!~kia8 1kia!x

A\v jb
A\v ia

si j
ab†~E!G J , ~28!

where sgn~a!511 for a5e and sgn~a!521 for a5h. Also,
kia (v ia) andkia8 (v ia8 ) correspond to the wave vector~ve-
locity! of a particle of typea in contacti at energiesE and
E8. Equation~28! does not account for displacement currents
due to charging, and is hence valid only for the low-
frequency components of the current, for which the the ca-
pacitive component can be neglected.

The average current is obtained by taking the expectation
value of Eq. ~28!. Noting that ^â jb

† (E)âkg(E8)&
5 f jb(E)d jkdbgd(E2E8), it is straightforward to verify that
the average current in leadi is

I i5
e

h (
a, jPNS,b

sgn~a!@d i jdab2Ti j
ab~E!# f jb~E!, ~29!

where the transmission coefficients are related to the scatter-
ing matrix byT i j

ab(E)5us i j
ab(E)u2. Linearizing Eq.~29! and

using Eq.~A2! from the Appendix, we obtain

I i5 (
jPN

gi j ~m j2mS!, ~30!

where

gi j5
2e2

h E dE@d i j2Ti j
ee~E!1Ti j

he~E!#S 2
] f j~E!

]E D
eq

.

~31!

Equation~30! was originally derived in Ref. 9.T i j
ab is the

transmission coefficient of a particle of typeb incident in
contactj to be transmitted to contacti as a particle of typea.
As beforea,bPe,h.

The general expression for current fluctuation between
contactsi and j is

Si j ~t!5^D Î i~ t !D Î j~ t1t!1D Î j~ t1t!D Î i~ t !&, ~32!

where

D Î i~ t !5 Î i~ t !2^ Î i~ t !&. ~33!

The spectral function of the current fluctuations which is the
Fourier transform of Eq.~32! is

Si j ~v!d~v1v1!5
1

2p
^D Î i~v1!D Î j~v!1D Î j~v!D Î i~v1!&,

~34!

where

D Î i~v!5 Î i~v!2^ Î i~v!&. ~35!

In this paper we will calculate the fluctuations only in the
zero-frequency limit because of the limitation of Eq.~28!
mentioned above. Now, using the relationship
*dtei (E2E8)t/\52p\d(E2E8), in the zero-frequency limit
Eq. ~28! simplifies to
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Î i~v50!5e (
k,lPN,S,a,g,dPe,h

sgn~a!E dE Akg; ld~ ia,E!

3âkg
† ~E!âld~E!, ~36!

where

Akg; ld~ ia,E!5d ikd i ldagdad2sik
ag†~E!sil

ad~E!. ~37!

The difference between Eq.~36! and the corresponding ex-
pression for the current operator in normal mesoscopic
systems1 is that now every contact indexk is generalized to
kg. g is an index representing the electron and hole channels.
The signum function accounts for the sign of the electron
and hole currents.

Given the above information, the algebra involved in the
evaluation of the spectral functionSi j ~v! is along the lines of
Ref. 1. So we relegate it to Appendix B. The final result for
the current fluctuation spectral functionSi j ~v! is

Si j5
2e2

h (
k,lPN,S,a,b,g,dPe,h

sgn~a!sgn~b!

3E dE Akg; ld~ ia,E!Ald;kg~ jb,E! f kg~E!@12 f ld~E!#.

~38!

Equation~38! is a multiterminal formula for current fluctua-
tions between normal contactsi and j , and is valid in the
presence of an applied bias. It is valid when the supercon-
ducting region is a contact kept at an externally fixed chemi-
cal potential. To the best of our knowledge, Eq.~38! has not
appeared in the literature before. Note that Appendix A con-
tains the expression forSi j in the multi moded case.

We comment that Eq.~38! can be viewed as a simple
generalization of the corresponding expression for current
fluctuations in normal mesoscopic systems. The expression
for current fluctuations in normal mesoscopic systems is1

Si j ~v50!5
e2

h (
k,l

E dE Tr@Akl~ i ,E!Alk~ j ,E!#

3 f k~E!@12 f l~E!#, ~39!

where

Alk~ j ,E!5d j ldkl2sjl
† sjk .

Now, ~i! by associating an additional index representing
electron and hole channels with every contact index@i.e.,
j→( je) and (jh)# in Eq. ~39!, and~ii ! correctly accounting
for the sign of the electron and hole currents in Eq.~39!, it is
easy to see that we obtain Eq.~38!.

D. Sign of current noise in the presence of transport

In a normal mesoscopic device, an electron incident in
contact j is always transmitted as an electron to any other
contacti . As a result of this, the zero-frequency current fluc-
tuations between two different contacts in a purely normal
device is always negative, as proven in Ref. 1. However, in
the presence of a superconducting region, an electron inci-
dent in contacti can result in either an electron or a hole
leaving contactj . So we ask whether the current fluctuations
between two different contacts be positive as a result of the
Andreev processes. To check the sign of the current fluctua-

tions, we can write the total current fluctuations between
terminalsi and j as

Si j5Si j
AA1Si j

AB , ~40!

where

Si j
AA5^D Î ieD Î je&1^D Î ihD Î jh&

and

Si j
AB5^D Î ieD Î jh&1^D Î ihD Î je&.

Using Eq.~38! and the orthogonality relations in Appendix
A, we can show that

Sii
AA5~1 !

2e2

h (
a

H @12Tii
aa~E!#2f ia~E!@12 f ia~E!#

1 (
~kg ld!Þ~ ia ia!

Tik
ag~E!Til

ad~E! f kg@12 f ld~E!#J ,
~41!

Sii
AB5~1 !

2e2

h (
a

H 2Tiiaā~E! f i ā~E!@12 f i ā~E!#

1(
kg

sik
āg~E!sik

ag†~E! f kg~E!(
ld

sil
ad~E!sil

ād†~E!

3 f ld~E!J . ~42!

Here, ifa5e, thena5h, and ifa5h, thenā5e. T ik
ab is the

transmission coefficient of a particle of typeb from contactj
to contacti as a particle of typea. The last term of Eq.~42!
is positive because it is of the formAA. The other terms of
bothSii

AA andSii
AB are clearly positive. Thus both at equilib-

rium and away from equilibrium, the current fluctuations in a
single contact is always positive just as in a purely normal
device.20

Using Eq.~38! and the orthogonality relations in Appen-
dix A, we can also show that the current fluctuations between
two different contactsi and j is

Si j
AAu iÞ j5~2 !

2e2

h (
a

HTi jaa~E! f ja~E!@12 f ja~E!#

1Tji
aa~E! f ia~E!@12 f ia~E!#

1(
kg

sjk
ag~E!sik

ag†~E! f kg~E!(
ld

sil
ad~E!sjl

ad†~E!

3 f ld~E!J , ~43!

Si j
ABu iÞ j5~1 !

2e2

h (
a

HTi jaā~E! f j ā~E!@12 f j ā~E!#

1Tji
āa~E! f ia~E!@12 f ia~E!#

1(
kg

sjk
āg~E!sik

ag†~E! f kg~E!(
ld

sil
ad~E!sjl

ād†~E!

3 f ld~E!J . ~44!
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The last terms of both Eqs.~43! and~44! are of the formAA.
Then clearlySi j

AA is a negative definite quantity andSi j
AB is a

positive definite quantity. The total current fluctuationsSi j
can either be a positive or a negative quantity depending on
the relative strengths of the above two terms. Only the terms
in Si j

AA are present in the expression for current fluctuations
of a purely normal device and, as a result,Si j is always
negative in a purely normal device.1 We discuss an example
in Sec. IV, whereSi j can be either positive or negative de-
pending on the phase difference between the superconduct-
ing boundaries.

We now discuss the current fluctuations at equilibrium. At
equilibrium, it is easy to verify that the expression forSji
reduces to

~Si j !eq5^DI iDI j&eq52kT@gi j1gji #, ~45!

wheregi j are the conductance matrix elements appearing in
Eq. ~30!. Equation~45! is simply a verification of the gener-
alized fluctuation-dissipation theorem.21 At equilibrium, the
current fluctuations between contactsi and j are related only
to the conductance matrix elements between these two con-
tacts.

III. CURRENT NOISE: FLOATING SUPERCONDUCTOR

In Sec. II, we assumed that the superconductor is kept at
an externally fixed chemical potential. In this section, we
address current fluctuations in devices where the supercon-
ductor is a floating region in the device~Fig. 2!. In the float-
ing superconductor case, the expression for current in a nor-
mal contact is still given by Eqs.~29! and ~30!.9 However,
the expression for current fluctuations is very different from
Eq. ~38!. To illustrate that the floating superconductor case is
different, consider atwo-terminalNSN device where the two
normal regions widen into contacts and the superconducting
region is floating. The two normal contacts are maintained at
the same external potential. We consider the low-
temperature limit where direct transmission of quasiparticles
between the two normal regions is negligible. Then, at equi-
librium, a straightforward application of Eq.~38! gives the
following expressions for current fluctuations:

^DI 1DI 1&eq54kTg11, ^DI 2DI 2&eq54kTg22,

^DI 1DI 2&eq50 ~46!

Equation~46! is clearly wrong because at equilibrium any
two-terminal device should obey the Johnson-Nyquist rela-
tionship

^DI 1DI 1&eq5^DI 2DI 2&eq52^DI 1DI 2&eq54kTG,
~47!

whereG is the linear-response conductance of the device.
For a NSN device, the linear response conductance can be
calculated using Eq.~30!, and is given by

G5
g11g22
g111g22

~48!

The reason for this apparent violation of the Johnson-
Nyquist relationship in Eq.~46! is now described. In the
floating superconductor case, the chemical potential of the

condensate~mS! should be determined self-consistently from
the condition9 that the sum of the currents flowing in the
various contacts is zero,( i I i50. As a result of this require-
ment, fluctuations in the current causes the chemical poten-
tial of the condensate~mS! to fluctuate, in turn affecting the
current flowing in the contacts. These processes were not
accounted for in the derivation of Eq.~38! because we as-
sumed the superconductor to be held at a fixed potential in
Sec II. In the above example of the NSN device, the average
value of the chemical potential of the superconducting region
~mS! is the same as that of the two normal contacts.mS can,
however, fluctuate with time, and this fluctuation was not
taken into account in Sec. II.

We will now derive an expression for the current fluctua-
tions in the floating superconductor case by accounting for
fluctuations in the chemical potential of the condensate.
Fluctuations in the chemical potential of the condensate can
be included using the method of Langevin forces.1,22 This
method is valid only at small biases, and consists of writing
the current operator in contacti as the sum of the expression
obtained for average current and a generalized Langevin
force which causes the fluctuations in the chemical potential
mS

I i5(
j
gi j ~m j2mS!1dI i ~49!

The average value ofdI i is zero, and fluctuations indI i are
given by Eq.~38! with mS set equal to the steady-state value
m S̄. Now, making use of the point that at zero frequency,

(
i
I i50, ~50!

the chemical potential of the superconductor can be written
as the sum of its steady-state value and a fluctuation term

mS5m S̄1DmS5

(
i , j

gi , jm j

(
k
xk

1

(
i

dI i

(
k
xk

, ~51!

wherexi5( jgi j . Noting that the average value of the fluc-
tuation in the chemical potential of the superconductor
(DmS) is equal to 0, the fluctuation in the total currentDI i is

Si j5^DI iDI j&

5^dI idI j&1xixj(
k,l

^DmSDmS&2xj^dI iDmS&2xi^DmSdI j&

Substituting the value ofDmS from Eq.~51! into the previous
equation,
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Si j5
1

@(kxk#
2 (
m,n

$xmxn^dI idI j&2xjxm^dI idI n&

2xmxi^dI ndI j&1xixj^dI mdI n&%, ~52!

where^dI idI j& are the current fluctuations given by Eq.~38!
with the chemical potential of the superconductor set equal
to its steady-state value (DmS). Equation~52! is the expres-
sion for current fluctuations in the floating superconductor
case. It expresses the total current fluctuation in the floating
superconductor case in terms of the current fluctuations of
the same system, withmS held at its steady-state value. From
the above discussion we see that there are similarities be-
tween the floating superconductor case and a purely normal
device with a floating voltage probe, which has been dis-
cussed in Ref. 23. In fact, the expression for the linear-
response current@Eq. ~30! of this paper# derived in Ref. 9 is
similar to the expression for the linear-response current in a
normal device with a floating voltage probe. The floating
superconductor, however, may only be a part of the device
and not a contact as in the case of a floating voltage probe.

We now verify that if Eq.~52! is used to calculate the
current fluctuations, the Johnson-Nyquist relationship is in-
deed valid for the two-terminal NSN device discussed at the
beginning of this section. For a two-terminal device, Eq.~52!
has the form

S115
1

~x11x2!
2 @x2

2^dI 1dI 1&1x1
2^dI 2dI 2&

22x1x2^dI 1dI 2&#. ~53!

Also,S2252S1252S215S11. Now, substituting the equilib-
rium values of̂ dI idI j& from Eq. ~45! in Eq. ~53!, we verify
the Johnson-Nyquist relationship

^DI 1DI 1&eq5^DI 2DI 2&eq52^DI 1DI 2&eq54kTG,

whereG is the two-terminal conductance given by Eq.~48!.

IV. EXAMPLES

A. NS junction with an applied bias

Using Eq.~38!, we find the shot noise of a NS junction at
zero temperature to be

^dI 1dI 1&5
4e2

h E
mS

mN
dE$T11

ee~E!@12T11
ee~E!#

1T11
he~E!@12T11

he~E!#12T11
ee~E!T11

he~E!%,

~54!

where 1 refers to the normal terminal. This expression is
valid in the presence of a bias larger than the superconduct-
ing gap also. In the small bias limit, whereT11

ee1T11
he51, Eq.

~54! agrees with the result in Ref. 12.
Using Eq.~54!, we now discuss the prediction in Ref. 18

that a ballistic NS junction~T11
ee5T11

hh50! has a nonzero shot
noise whenV.D. In a ballistic NS junction, forE,D, every
incident electron in the normal region results in the reflection
of a hole in the normal region, and hence the flow of a
Cooper pair in the superconductor with unity probability
~T11

he51 andT11
ee50!. Then, at zero temperature, it follows

trivially from Eq. ~54! that the shot noise iszero for V,D.
At energies larger thanD, the physics is very different in the
two limits D,E,fewD and E.D. For energies
D,E,fewD, when an electron is incident from the normal
region to the superconductor, there are two competing pro-
cesses which contribute to current transport;~i! the electron
can be reflected as a hole in the normal region, resulting in
the flow of a Cooper pair with charge 2e at the Fermi energy
in the superconductor; and~ii ! the electron is transmitted to
the superconducting region as an electronlike quasiparticle.
For energiesD,E,few D, T11

heÞ$0,1% and T11
ee50. It then

follows from Eq.~54! that the competition between the two
different transmission processes causes a quick increase in
the shot noise at voltages larger thanD. For energies,E@D,
every incident electron from the normal region is transmitted
as an electronlike quasiparticle to the superconducting region
~i.e., T11

he;0, T11
ee;0, andT11

ee;1!. Then it follows from Eq.
~54! that transport of electrons at these energies does not
contribute to shot noise. As a result of this, the shot noise
tends to saturate at large applied voltages.

The noise-to-current ratio (S/I ) is a quantity of interest in
noise studies.12,24,25Using Eq.~54!, we discuss theS/I ratio
in a NS junction with ad-function potential barrier at the NS
interface, both as a function of the applied bias and the bar-
rier strength. The potential barrier is ad function with
strengthUd(x).26 In the previous paragraph we saw that the
current fluctuation saturates with the applied voltage in the
case of a ballistic NS junction. The average current, how-
ever, continues to increase as the applied voltage is in-
creased. As a result of this theS/I ratio is peaked at a voltage
large thanD/e. Now as the barrier strength is increased we
find that for small values of the barrier strength, the peak in
theS/I ratio survives. This peak is, however, washed out for
large barrier strengths. For large values of the normal reflec-
tion coefficient, theS/I ratio approaches the value 4e in the
small bias limit@Fig. 3~a!# because transport is only due to
reflection of holes in the normal region~and hence a flow of
a Cooper pair with charge 2e in the superconductor!. This
was predicted in Ref. 12. We find that as the voltage is in-
creased, to values larger thanD/e, theS/I ratio approaches
the value 2e @Fig. 3~b!#, as now most of the transport is due
to quasiparticles with the charge of a single electron.

B. Current fluctuations in a floating superconductor

The devices considered in this example are shown in Fig.
4. The purpose of this example is to illustrate the difference
in shot noise between the case of a superconductor kept at a
fixed external potential and the case of a floating supercon-
ductor. The devices in Fig. 4 consist of a normal region
connected to two normal terminalsN1 andN2. Further they
have two superconducting boundaries whose phasesf1 and
f2 can be changed. Experimental and theoretical studies in-
volving the conductance of devices where the phase differ-
ence between two superconducting boundaries can be
changed in a controlled fashion is being actively pursued
now.2–5,14,17,27

The device in Fig. 4~a! ~deviceA! is connected to a single
superconductor whose potential floats to a value which is
determined by the current flowing in the normal terminals.
The device in Fig. 4~b! ~deviceB! is similar to deviceA,
except that the superconductor is maintained at an externally
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fixed potential. The potential of the superconductor in device
B is chosen to be equal to the potential of the superconductor
in deviceA.

The average currents in devicesA deviceB are identical.
This is because the average current depends only on the
steady-state value of the potential of the superconductor, and
is not sensitive to whether the superconductor is floating or
not. The current fluctuation is, however, sensitive to this de-
tail. We illustrate this point by computing the current fluc-
tuations in the normal terminals of devicesA and B as a
function of the phase difference~f12f2! between the two
superconducting boundaries.

We model the devices by a single moded ballistic chan-
nel, and assume that the two NS junctions are perfectly bal-
listic. We further assume zero temperature and the small bias
limit. The scattering matrix of the two couplers~the couplers
are the twoT-shaped regions connecting leads 1 and 2 to the
normal wire! are taken to be

si5S A122e i
Ae i
Ae i

Ae i
1
2 ~12A122e i !
1
2 ~11A122e i !

Ae i
1
2 ~11A122e i !
1
2 ~12A122e i !

D ,
~55!

where iP1,2 are the two couplers, andsi is the scattering
matrix of coupleri . The scattering matrix elementsi(2,1)
5Ae i represents the strength of the scattering amplitude of
an electron incident in lead 1 to scatter to the left side of
coupleri . si~3,1! represents a similar amplitude to scatter to
the right of coupleri . The matrix elementssi~1,1!, si~2,2!,
andsi~3,3! are the amplitudes for reflection of a wave inci-
dent in contact 1, incident from the left of coupleri and
incident from the right of coupleri , respectively. The other
matrix elements are defined similarly. As the NS junctions
are assumed to be perfectly ballistic, an electron~hole! inci-
dent from the normal region is always reflected as a hole
~electron!. The reflection coefficients are given by
r eh52ieif and r he52ie2 if, wheref is the phase of the
superconducting region. We obtain the scattering matrix of
the device numerically by cascading the scattering matrix of
the individual elements. The values for the various param-
eters used in the calculation presented aree150.40,e250.30,
L151.6mm, L1251.8mm, andL251.6mm.

Using Eq.~30! we find that, for deviceA,

m12mS51
~g121g22!

g111g121g211g22
~m12m2! ~56!

and

m22mS52
~g111g21!

g111g121g211g22
~m12m2!. ~57!

The Fermi functions for electrons and holes in the normal
contacts are

f 1e5Q~m12mS!, f 1h5Q~mS2m1!,

f 2e5Q~m22mS!, f 2h5Q~mS2m2!, ~58!

wherem1 andm2 are given by Eqs.~56! and~57!. For device
B, the potential of the superconducting region is externally
chosen to have the same Fermi functions as those given
above.

We first consider deviceB, where the superconductor is
fixed at an external potential. The current fluctuations are
computed by substituting the Fermi functions and the scat-
tering matrix for the device in Eq.~38!. The current fluctua-
tion is plotted as a function of the phase difference~f12f2!
in Fig. 5~a!. Note that while current fluctuations at a single
terminal are always positive, the current fluctuations between
two different terminals can either be positive or negative, as
discussed in Sec. II D.

For deviceA, the superconductor is floating. Here we use
Eq. ~53! to calculate the current fluctuations. As devicesA
and B have the same steady-state value for the chemical
potential of the superconductor, the^dI idI j& appearing in
Eq. ~53! are just those obtained for deviceB. The current
fluctuation in this case is plotted in Fig. 5~b!. Note that, as
device A is a two-terminal device, the various current
fluctuations obey ^DI 1DI 1&5^DI 2DI 2&52^DI 1DI 2&
52^DI 2DI 1&, with the current fluctuations in a single ter-
minal always being positive and the current fluctuations be-
tween the two different terminals always being negative. As
discussed above, the average conductance of both devices is
the same, and this is plotted in Fig. 5~b!.

V. CONCLUSIONS

In conclusion, we have presented a general expression
@Eq. ~38!# for current fluctuations in the normal terminals of
a phase-coherent mesoscopic device with a superconducting
region at an externally fixed potential~Fig. 1!. Equation~38!
can be viewed as a simple generalization of the correspond-
ing expression derived by Buttiker1 for a purely normal me-
soscopic device~i! where every contactk is generalized to
kg, whereg represents the electron and hole channels, and
~ii ! correctly accounting for the sign of the electron and hole
currents. We find that the current correlation between two
different contacts of a device can beeitherpositive or nega-
tive as a result of Andreev scattering. In contrast, in a purely
normal mesoscopic device the current correlation between
two different contacts is always negative.1 Using Eq. ~38!,
we derive an expression for the shot noise in a NS junction
valid at voltages larger thanD/e, whereD is the supercon-
ducting gap energy. Using the Keldysh Green’s-function
theory, Ref. 18 predicted that a ballistic NS junction should
exhibit a nonzero shot noise at applied voltages larger than
D/e. This result is simple to understand from the scattering
theory approach presented in this paper, and is discussed in
Sec. IV. We have also studied the noise-to-current ratio as a
function of both the bias and the strength of ad-function
barrier at the NS interface. We find that for junctions with a
small reflection coefficient, the noise-to-current ratio is
peaked at voltages larger thanD/e @Fig. 3~a!#. As the strength
of the barrier is increased, this peak disappears. Further, for
the strong barrier limit, the noise to current ratio approaches
the value of 4e in the small bias limit as predicted in Ref. 12.
We find that as the voltage is increased to values larger than
D/e, this ratio approaches the value of 2e @Fig. 3~b!# in the
strong barrier limit. For devices with a floating supercon-
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ducting region~Fig. 2!, we derive an expression for the cur-
rent fluctuations in the small bias limit@Eq. ~52!#. That the
floating superconductor case is distinctly different is illus-
trated using a simple example~Fig. 4!. While the average
current is the same for the two devices in Fig. 4, the current
fluctuations are very different~Fig. 5!. A floating supercon-
ductor acts in much the same way as a floating voltage
probe1 in normal mesoscopic devices even though the super-
conductor may only be a part of the device. We would like to
comment that throughout this paper, we have assumed the
order parameter of the superconductor to be fixed. However,
the order parameter fluctuates, and this can be seen from the
self-consistency requirement in Eq.~8!. We leave this for
future work.
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APPENDIX A

Some useful relations used in this paper are the following.

(
lPN,S;dPe,h

sil
ad†sjl

bd5(
ld

sli
da†sl j

db5d i jdab orthogonality,

~A1!

(
lPN,S;dPe,h

Til
ad~E!51 sum rule, ~A2!

si j
ab~E,B,D!5sji

ba~E,2B,D* ! where a,bPe,h,
~A3!

gi j5
2e2

h E dE@d i j2Ti j
ee~E!1Ti j

he~E!#S 2
] f j~E!

]E D
eq

,

~A4!

5
2e2

h E dE@d i j2Ti j
hh~E!1Ti j

eh~E!#S 2
] f j~E!

]E D
eq
~A5!

5gji . ~A6!

Proof of

(
k,g,l ,d,a,b

sgn~a!sgn~b!Akg; ld~ ia,E!Ald;kg~ jb,E! f kg~E!

5sgn~a!sgn~b! (
k,g,l ,d,a,b

Akg; ld~ ia,E!Ald,kg~ jb,E! f ld~E!

~A7!

is as follows:

LHS5 (
k,g,l ,d,a,b

sgn~a!sgn~b!@d ikd i ldagdad2sik
ag†sil

ad#

3@d jkd j ldbgdbd2sjl
bd†sjk

bg# f k,g~E!,

LHS5(
a,b

$d i jdab f ia~E!2sgn~a!sgn~b!@Tji
ba f ia

1Ti j
ab f jb~E!#

1sgn~a!sgn~b!sik
ag†sil

adsjl
bd†sjk

bg f k,g~E!%. ~A8!

Using the orthogonality of the scattering matrix( ldsil
adsjl

bd†

5I l in the third term of Eq.~A8!, we obtain

LHS5(
a,b

H d i jdab f ia~E!2sgn~a!sgn~b!@Tji
ba f ia

1Ti j
ab f jb~E!#1(

kg
d i jdabTik

ag~E! f k,g~E!J 5RHS .

~A9!

Equation ~38! becomes the following equation when the
various modes are included;

Si j5
e2

h (
a,b,g,dPe,h andk,lPN, S contacts

sgn~a!sgn~b!

3E dE Tr@Akg; ld~ ia,E!Ald;kg~ jb,E!#

3 f kg~E!@12 f ld~E!#, ~A10!

where

Tr@Akg; ld~ ia,E!Ald,kg~ jb,E!#

5(
mn

Akmg; lnd~ ia,E!Alnd;kmg~ jb,E! ~A11!

and

Akmg; lnd~ ia,E!5(
p

@d ikd i ldpmdpndagdad2sip;km
ag† sip; ln

ad #.

~A12!

Herep, m, andn correspond to the modes in contactsi , k,
and l , respectively.

APPENDIX B

Derivation of Eq.~38!: Using Eq.~36!, it is straightfor-
ward to verify that,̂ Î (vk50)I (v850)&
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^ Î i~v50! Î j~v850!&

5
e

\2 (
a,b,kg,l,d

sgn~a!sgn~b!E dEE dE8E dE9

3E dE-d~E2E8!d~E92E-!Akg; ld~ ia,E!

3Ald;kg~ jb,E9!^âkg
† ~E!âld~E!âmz

† ~E9!ânh~E9!.

~B1!

Using Wick’s theorem, the expectation value of the four op-
erators in Eq.~B1! is

^âkg
† ~E!âld~E!âmz

† ~E9!ânh~E9!&

5dkldgddmndzhd~E2E8!d~E92E-! f kg~E! f mz~E9!

1dkndghdmldzdd~E2E-!d~E82E9!

3 f kg~E!@12 f mz~E9!#, ~B2!

Using Eq. ~B2! and the identityd~\v!5~1/\!d~v!, it is
straightforward to verify that

^D Î iD Î j&5
e2

\
d~0! (

a,b,kg,l ,dmz,n,h
sgn~a!sgn~b!

3E dE Akg; ld~ i ,E!Ald;kg~ j ,E!

3 f kg~E!@12 f ld~E!#. ~B3!

Similarly, it can be verified that

^D Î jD Î i&5
e2

\
d~0! (

a,b,kg,l ,dmz,n,h
sgn~a!sgn~b!

3E dE Akg,ld~ i ,E!Ald;kg~ j ,E!

3 f ld~E!@12 f kg~E!#. ~B4!

Equations~B3! and ~B4! give

Si j5
e2

2h (
a,b,kg,l ,dmz,n,h

sgn~a!sgn~b!

3E dE Akg; ld~ i ,E!Ald;kg~ j ,E!$ f kg~E!@12 f ld~E!#

1 f ld~E!@12 f kg~E!#%. ~B5!

The two terms in Eq.~B6! are identical to each other. While
for i5 j , it is straightforward to see this, it is not so obvious
for iÞ j . When iÞ j , it is straightforward to see that the
contribution from the terms bilinear in the Fermi factors are
identical to each other. It is shown in Appendix A that terms
linear in the Fermi factors are also identical to each other.
The zero-frequency current fluctuations is then

Si j5
e2

h (
a,b,kg,l ,dmz,n,h

sgn~a!sgn~b!

3E dE Akg; ld~ i ,E!Ald;kg~ j ,E! f kg~E!@12 f ld~E!#.

~B6!
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