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Current fluctuations in mesoscopic systems with Andreev scattering
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Using a scattering theory approach we study the zero-frequency current fluctuations of the normal terminals
of a phase-coherent mesoscopic structure with a superconducting region. We find that for devices where the
potential of the superconducting region is externally fixei). 1), the expression for current fluctuations is a
simple generalization of the corresponding expression obtained in Bitikgs Rev. B46, 12 485(1992] for
purely normal mesoscopic systems. In contrast to purely normal mesoscopic systems, we find that the current
fluctuations between two different contacts can be positive in these devices. We apply this formula to derive a
simple expression for the shot noise in a normal supercondu@iSgjunction and study the noise to current
ratio both as a function of the applied bias and a potential barrier at the NS interface. For devices with a
floating superconductdFig. 2), a self-consistent calculation of the current fluctuations is necessary, and here
we derive an approximate formula valid in the small bias limit. We show that two similar devices with identical
average currents can exhibit very different fluctuations depending on whether the superconductor is held at a
fixed potential or is left floating.S0163-182@06)00123-3

l. INTRODUCTION ducting contact at aexternally fixedpotentiat?*® (Fig. 1).
In the second configuration, referred to as flaating

Recently, there have been many experiméntahnd superconductocase, the superconducting region is floating
theoreticdl 14 studies of mesoscopic devices with supercon<Figs. 2.>® This means that the chemical potential of the
ducting regions. These experiments typically measure theondensatdug) floats to a value which is determined self-
conductance as a function of the phase variation of the swonsistently by the condition that the sum of the steady-state
perconducting region. Some of the interesting effects obeurrents flowing through the various contacts is ZekHere
served are periodic oscillations of the conductance as a fun¢he chemical potential of the superconductor can fluctuate
tion of the phase difference between the superconductingith time about its steady-state value.
regions in an Andreev interferometégnd enhanced con- We first consider the configurations in Fig. 1, where there
ductance oscillations in an Aharanov-Bohm ring with superds a superconducting contact kept at an externally fixed po-
conducting region8.Some recent predictions in these struc-tential. Using scattering theory formalism, we derive an ex-
tures include Anderson localization in a normal- pression for the current fluctuations. We find that the final
superconducting-norm@NSN) junction due to a variation in  expression for current fluctuations could have been obtained
the phase of the order parametamnd the doubling of shot from the corresponding expression for current fluctuations in
noise in a weakly transmitting NS junctidf. the purely normal case hy) associating an additional index

The scattering theory of transpddften referred to as the representing electrore] and hole f) channels with every
Landauer-Buttiker formalisinhas been very successful in contact () index, i.e.,j—(je) and (jh); and(ii) correctly
explaining normal mesoscopic phenomén# It should be  accounting for the sign of the electron and hole currents. To
noted that, unlike the tunneling Hamiltonian formalism, thethe best of our knowledge, the general expres§im (38)]
Landauer-Buttiker formalism does not assume weak coufor current fluctuations presented here has not appeared in
pling and can be applied even to ballistic conductors. It hashe literature before.
recently been applied to mesoscopic superconductors by sev- Next we consider the case of a floating superconductor
eral author§-812131"Reference 1 shows that the scattering(Fig. 2). Here the chemical potential of the condensate)
theory of transport can be used to calculate not only averagis determined self-consistently from the condition that the
current but also the current fluctuations. The purpose of thisum of all currents flowing in the contacts is ze¥q|;=0.°
paper is to show with examples, how the results of Ref. 1 cai\s a result of this requirement, fluctuations in current cause
be extended in a straightforward manner to apply to superthe chemical potential of the condensate to fluctuate. This in
conducting structures. Although Refs. 12 and 13 have apturn affects the current fluctuations. We derive an expression
plied the scattering theory of transport to calculate the noiséor the current fluctuations in the floating superconductor
in NS junctions, we are not aware of a general formulation ofcase by properly accounting for the fluctuations in the chemi-
the type presented here. The expressions we derive can bal potential of the condensate. Our discussion in this case is
used to calculate the current fluctuations in arbitrary multi-valid only at small biases because it is based on the method
terminal structures and configurations, as long as the supeof Langevin forces.
conducting regions are all maintained at the same electro- Finally, we consider two applications of the expressions
chemical potential. for current fluctuations. In the first example, we derive an

There are two distinct experimental configurations inexpression for shot noise in a NS junction valid at arbitrary
these structures. In the first configuration there is a supercompplied voltages. Using this expression, we verify that a bal-
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reflection coefficients due to &function potential barrier at
the NS interface. We find that a NS junction with a small

1 normal reflection coefficient exhibits a peak in the noise/

current ratio at a voltage larger than[Fig. 3(@]. For junc-

tions with a large reflection coefficient, the noise/current ra-
tio has a value four times the electronic charge at small
applied voltages as predicted in Ref. 12, and the noise/
current ratio decreases to the value of two times the elec-
tronic charge at voltages much larger than that of the super-
conducting gap[Fig. 3(b)]. This behavior is intuitively
expected because at energies smaller than the superconduct-
ing gap an electron incident from the normal region is re-
flected as a hole at the NS interface, resulting in the flow a
Cooper pair with charge&in the superconductor. At ener-
ﬁ gies much larger than the superconducting gap, an electron
incident from the normal region is transmitted as an electron-
like quasiparticle in the superconductor. Reference 13 re-
cently calculated the distribution function for the shot noise
in a NS junction using the scattering theory approach. We do
not address this issue in this paper.

The second example we consider is illustrated in Fig. 4.
The purpose of this example is to illustrate the differences in
the current fluctuations between the case of a superconductor
kept at a fixed external potential and the case of a floating
superconductor. The devices in Fig. 4 consist of a normal
ballistic region connected to two normal contadt&l and
N2), and has two superconducting boundaries maintained at
phasesg, and ¢,. The device in Fig. &) (device A) is
connected to a single superconductor whose potential floats
to a value which is determined by the currents flowing in the
normal terminals. The device in Fig() (deviceB) is simi-
lar to deviceA, except that the superconductor is maintained
at an externally fixed potential. This potential is chosen to be
equal to the potential the superconductor floats to in device
A. Both the average current and current fluctuations are cal-
culated at the normal terminals as a function of the phase
difference(¢,— ¢,). We find that, while the average current

I is the same in the two devices, the current fluctuations are
| very different(Fig. 5).

Approximations

, The basic approximation we make is to neglect the cur-
| rent fluctuations in the pair potential(r). In the
Bogoliubov—de Gennes equatidit&g. (6)], the order param-
eterA(r_) is cglculated self-consistently. As a result there are
fluctuations inA(r) due both to the stochastic nature of the
) ) ) ) . occupancy factors for electrons and hoJéee factorsf,, in
F_IG. 1. A multiterminal mesoscopic device with one supercon-Eq_ (8)], and to the stochastic nature of the transmission co-
ducting contact. Two of the normal contacts and the superconducgfﬁcients. These fluctuations iA(r) are neglected in this
ing contact are at an externally fixed potential. The third normal aper. It is not clear to us if these fluctuations can be in-
contact is not kept at an externally fixed potential, i.e., it is floating.p per. . .
o . cluded in the context of a scattering theory approach. Ne-
The exact position of the NS interface can be a&nwhere only lecting fluctuations in\(r) is similar to neglecting the effect
the contact is superconducting, @), where the superconducting gfeftl: tg tl.JC ual Oths p ts_s 6,: ?. Ieg ec bg N el e?
region extends continuously from the contact into the device. of fluctuauons in the € ec_lve potenual seen by an e ec ron
due to all other electrons in purely normal mesoscopic sys-
listic NS junction has a nonzero shot noise at voltages largeiems. Most of the calculations of current fluctuations in
than the superconducting gap. This result was predicted ipurely normal mesoscopic systems in the literature are in this
Ref. 18 using a more complicated Keldysh Green’s-functionimit.
theory. Another related study predicts the doubling of noise At low temperatures we expect the fluctuationsifn) to
to current ratio in the small voltage limit in weakly conduct- be insignificant for the structures in Figgaland Zb). This
ing NS junctionst? Using the expression for shot noise de- is because the current density flowing in the contact is so
rived here, we extend this study to finite biases and arbitrargmall that it plays an insignificant role in determining the

I
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(a) ‘
S
FIG. 2. A multiterminal meso-
scopic device where the supercon-
ﬁ ducting region is not externally

kept at a constant potential; i.e.,
the superconductor is floating. All
normal contacts are at an exter-
nally fixed potential. The struc-
tures can be as ifa), where the

superconducting region is a con-

(b) (© tact, (b), where the superconduct-
v 5 ing region is part of the device, or
(c), which is a combination ofa)
and (b).
S

ground Tround

self-consistent value ak(r). Thus fluctuations in the current scribes the motion of quasiparticles under nonequilibrium
will not contribute significantly to fluctuations iA(r). On  conditions when all interactions involving spins are negli-
the other hand, the superconducting regions inside the dejible ist®

vices in Figs. 1b), 2(b), and Zc) are smaller and can have an

appreciable current density flowing in them. Thus self- [HO)+UX)—us]  A(X) (Un(X)
consistency im(r) is very important because fluctuations in AX)*  —[HX)*+UX)—us]/ | va(X)
the current could lead to significant fluctuationsAr). 3 (U (%)
n
5t o0 ) @
Outline
The remainder of the paper is arranged as follows. Wé/vhere

begin Sec. Il with a brief description of the Bogoliubov—de 1 A(x)\2
Gennes equations, and the picture adopted in this Seer H(x)= m ( —iiV—e e +V4(X), 2
Il A). In Sec. Il C, we derive an expressifaq. (38)] for the
current fluctuations in the case of a superconductor at an
externally fixed potential. In Sec. Il D, we discuss the sign of A(X)= +V(X)E vE(X)UL(X)(1—21,), 3
the current fluctuations. We discuss the floating supercon- n
ductor case in Sec. lll. In Sec. IV, we discuss two examples:
((;c)):cz\lléijounnsc?ﬁréggcﬂ{ll). the device in Fig. 4. We present our U(x)= —V(X)En: [Un ()2t |0 n(¥)[2(1—F).  (4)

Here x=(r,t), V4(x) is the scalar potentigthe potential at
Il. CURRENT FLUCTUATIONS: SUPERCONDUCTOR equilibrium plus the potential resulting from the applied
AT A FIXED EXTERNAL POTENTIAL biag, V(x) is the local attractive electron-electron interac-
tion, A(x) is the vector potential, angg is the chemical
potential of the superconducting regidh.is the occupation
Consider a mesoscopic device connected to one supercofactor for staten. We consider only devices where all super-
ducting contact and an arbitrary number of normal contactsonducting regions have the same chemical potential
as shown in Fig. 1. Here an up-spin electron incident inThe self-consistent potentials(x) andU(x) are then time
contactj can either be transmitted as an up-spin electron or éindependent. We also assume tWafx) andA(x) are time
down-spin hole to other contacts. The equation which deindependent. Equatiofi) can then be written as

A. Bogoliubov-de Gennes equations
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1.0 T T T T

_ (@ —7Z=% U(N) ==V 2 Jun(D)2Fat[oa(MF(A-Fo). (9

o 0.8 L~ ——=-Z=0125

5 \ — §:g:;;5 HereV(r) is the scalar potentidthe potential at equilibrium

@2 06 A 1 plus the potential resulting from the applied biaand A(r)

5 is the vector potential. Note that while solving K@), us is

£ a position-independent constant throughout the device. Equa-

= tion (6) explicitly involve diagonal sub-Hamiltonians for an

« up-spin electron band and a down-spin hole band. The off-
diagonal termA(r) known as the order parameter, represents

a coupling between the up-spin electron band and the down-
spin hole bandA(r)=0 in the normal regions.

B. Scattering states and occupation factors in the contacts

In the following discussion of scattering states, we as-
' ' i sume the Hamiltonian in the contacts to be separable in the
O e and (y,z) directions(the Hamiltonian will not be separable
——-2z=15 [ inside the device, which may have an arbitrary shajée
further assume for simplification that the vector potential
A(r)=0 and that the single-particle potentiL(r) has the

following form in the contacts:

by
o

«
(=)

S/I (in units of ‘e’)
= N
o o

V4(r)=Vi(y,z) in contacti. (10

. . : : Then the HamiltoniarH appearing in Eq(6) is separable
0.0 2.0 4.0 6.0 80 100 into x and (y,z) components in contacdtas follows:
Voltage ( units of Ale )

H(r)=H(x)+H(y,2), 1y
FIG. 3. A plot of the noise to current rati®S(l) of a NS junc-  where
tion as a function of the applied voltage. This ratio has a peak at a
voltage larger thamd/e. Note that a ballistic NS junction has a 12 92
nonzero noise foeV>A. (b) Same as(a) but for larger barrier H(x)=— om ax2 (12
strengths. For large barriers, tB4 ratio approaches a value oé4
at small applied biases, as predicted in Ref. 12. $Heratio, how-  and
ever, decreases to a valuee 2at voltages larger tham/e.
Z=KkgU/2¢r is a dimensionless barrier streng(Ref. 26, and he | ? PP
U 8(x) represents the potential of the barrier placed at the NS in- H(y.2)=- m (9_y2+ 972 +Viy.2). (13

terface. Plots are for zero temperature. ) o ]
Applying a bias in contadt would change the value &f;, by

U (X) an amount equal to the applied bias. The assumption made
n regarding the form olV(r) is made only to simplify the
vn(X) calculation. As in the purely normal case, the final answer for
®  the average current and current fluctuations does not depend

in the superconducting regions. In the normal regions, th&n the detailed shape of the contakts.

same equation holds with the self-consistent potentidly

andA(r) set equal to zerfsinceV(x) =0]. Equation(5) can

now be written in a time-independent form by assuming a We will now discuss Eq(6) in a normal contact, discuss-

solution of the form up(x)—e Elu,(r) and v,(x) ing both the scattering states and the occupation factors for

B L) electrons and holes in the contact. The off-diagonal potential
A(r) is zero, and so Eq6) simplifies to

[H(+U(r)—us] A(r)
A(r)*  —[H(r)*+U(r)— us]

Un(X)

Un(X))_. J
at

Normal contacts

—e

[H()+U(r)—usl  A(r) )(un(r)> :E<un(r))

A(n)*  =[HI)* +U(r) = ps] [\ va(r) un(r)
" RG +(H~ pg)u,=Euy, (14
where —(H=ug)v,=Evy, (15
1 A(r)\2 whereH is given by Eq.(11). Equation(14) represents an
HIN=54 ( —1hV—e ——] +V(r), (7)  electron band which is shifted by a constant energys.

Similarly Eq. (15) represents a hole band which is shifted by

a constant energy- us.

A= +V(r *(p N(1-2f.), 8 Inside normal contact, the solutions to Eqs(14) and
S ( ); o (F)Un(r)( ) ® (15) at energyE=E,+E,, can be written as a product of a
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(a) Device A The occupancy factors for the electron and hole states
incident from contacj are’!’

E—(ui—us)| |~

| | fie(E)= 1+exp(T
: Ntirrlnal I\I\iire : and

1 2 -1

E+(ui—us)
fi(E)= 1+exp(%) (19

(b) Device B ll I
An important feature of these occupation factors is that the

chemical potentials for the electron and hole bands are dif-
| SUPERCONDUCTOR | fe rent

Superconducting contacts
1

al e : In the superconduqting contacts, we only discus; the case
! = where the single-particle potentigl(r) is a constant in the
. | : bulk of the contact, and abruptly goes to infinity at the ex-
1 2 tremities of the contacts they(z) direction. ThenA(r) can

_ _ ) be approximated by a constafyf in the bulk of the super-
FIG. 4. Andreev interferometeta) The superconducting region

floats to a valugug) determined by current conservation for this
two-terminal device(b) The superconducting region is held exter-

- 10
nally at a chemical potentiaks identical to that in(a). Z
& 08
state with energye, along thex direction and a state with g
energyE,, along the ¢,2) direction. Incident electrons and s 05
holes from normal contadthave the following form: £ 02
[} .
o
3
" uy(i,y,z 5
elkie(Ex)X( n Oy )) (16) % 0.0
2 -02 : : :
and -1.0 -0.5 0.0 0.5 1.0
¢, — 0, (units of 2 )
. 0
ei|kih(EX)x . ) . 1
vn(i,y,2) A9

ki(E,) andk;,(E,) are thex components of the wave vec-
tors in contact corresponding to electrons and holes with an
x component of energy equal B, . These wave vectors are
equal to

---- Current
00 —— Noise - Floating Superconductqr]

kie(E )—(Zm(MS+EX_Vi))l/2 029 05 0.0 0.5 1.0
ielEx)=|————F7—— -1. -0. . . .
f ¢, — 0, (units of 27 )

Noise/Voltage (in units of 267/hV )

and
2M( e Ey— Vi) 12 FIG. 5. (a) A plot of the shot noise per unit applied voltage
kih(Ex):(% (18) (N1, Nip Ny for the device in Fig. ) as a function of the
h phase difference between the superconducting boundaries. Note that

N11# Noos# Ny, and thatN,, can be either positive or negative

Note that ener%‘?f%’ Ey,ZrI andhE ar:e a_” rlneasuredl V\gﬂ;‘ unlike normal mesoscopic systents) When the superconducting
respect tqus, which Is equal to the chemical potential of the region is floating,N;;=Ny=—Nj, (solid line), as expected for a

superconducting region. The plus and minus signs in QS terminal device. The dashed line is the average conductance as
(16) and (17) correspond to incoming and outgoing Waves. 5 fynction of the phase difference between the superconducting

un(i,y,2) ando,(i,y,z) are the solutions to they(z) com-  poundaries for the devices in both Figga@and 4b). Both plots
ponents of Eqs(14) and (15). are for zero temperature.
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conducting contact labeled An incident particle at energy lar to that in normal mesoscopic systems. An iterative pro-
E from the superconducting contag¢t has the following cedure would be required for a self-consistent solution of
form: Eqgs.(6).

When a bias is applied to a contact, it changes both the
chemical potential and the energy of the band botwgmif
a bias voltageV, is applied to contact, the changes in;

eiiijxun(j 1ylz))
! (20) andV,; are
I

eiiijxvn(j \Y,2)

wherek;, is thex component of the wave vector in contact

k= \/[Zm(,us—Vj —E=J|[EZ-A?[)]/A2 . V; is the constant

single-particle potentiaV(r) which represents the bottom of Hi—piteVy and Vi—Vi+V,.

the band in superconducting contgctThe plus and minus

signs in Eq.(20) correspond to incoming and outgoing A change inV; would cause a change in the exact form of

waves. o the scattering states throughout the device, and would also
The occupancy factor for an incident state from superconcause a change in the occupancy of the scattering states at a
ducting contacj is™ given energy in contadt

The field operato’ (i,x) in contacti is a linear combi-
nation of the states in E¢22),

E -1
fi(E)= 1+ex;<ﬁ” . (21

We stress again that all energiesare measured with respect ~ \ife(i X) 2 1 dE
to ug, which is the chemical potential of the superconduct- \I’(i,x)=( S5 )z_ —_— | =
ing regions. V()] jenSheen y2m ) VAo

We use a picture consisting of both positive and negative Jor
energy state$?!’ Reference 17 contains a detailed descrip- eKieX 5. 5, at VUie SB(E) e ikiex
tion of this picture. All results in this paper can, however, be 17eh VU, N
obtained from the conventional picture which considers only X ‘ o A
the positive energy states. e ki, 5y g+ ——— SiA(E)elkinx

Given the states in the various contacts, the next question VUijg
is what is the scattering state in normal contaes a result Xe‘iEtéjﬁ(E). 23)

of a particle incident in any of the contacts. A particle inci-
dent from contacf can either be transmitted as an electron
or a hole to contadt The resultant scattering state in contact Throughout the manuscript latin alphabets correspond to the
i is of the form terminals and greek alphabets correspond to the elec&on (
and hole f) channelsN andS refer to the set of all normal
_ \/v_le B and superconducting contacts respectivajy(E) is the an-
e'kieX 5, + SEUE)e kiex nihilation operator in contadt for a particle of typeBee,h
\/U_Je at energyE. kj’B and 0,—’3 are the wave vector and velocity,

VUin She(E)eikihX respectively, of particle of typ@ee,h at energyE’ in con-
i tactj. R
vin The field operatord (i,x) anda;z(E) obey the commu-
and tator rules for fermions,
\/U_ie e —ikjeX
sijh(E)e ie . . A A
VUjn _ (22) [W(i,%),%(j,x)]+=0, [&4(E).a5(E")].=0,
elkinXs.. + NUih S_h_h(E)eikihX (24)
I 1
i /_Ujh j
It/ T v/ _ '
Herek; ; andv; ;=1ik; z/m are the wave vector and velocity, [W(0,%), W () ,x") ] = 6 S(x—x")
respectively, ofBee,h at energyE in contactj. s is the and
scattering matrix of the device including the superconducting
region.sﬁ-‘ﬁ represents the scattering coefficient for a particle
of type B incident from contactj which is transmitted to at - N ,
contacti as a particle of typer (a, Bee,h). Note that Eq. [8/a(E).8j5(E")]+ = 8ij 00pS(E—E). (25)

(22) has been written down only for a single mode; the gen-

eralization to many modes is straightforward. The expectation value oéiTa(E)éjB(E’) is nonzero only
The scattering matrix can be obtained by solving &Y. wheni=j and it is the distribution function in contagt

in the various regions of the device and then matching the

wave functionsu,, andv,, at suitable spatial locationdike at .

interfaces between two different region@ a manner simi-  (Qio(E)aj(E")) = 8i; 64 (E—E")fio(E). (26)
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C. Evaluation of the current fluctuations the electron, and the hole components can be compactly

In the evaluation of the current fluctuations presentedVMtten as
here, we consider only a single-moded device. The generali-
zation to many modes is straightforward and we only present
the final result in Appendix A.

The current operator for electrons and holes in leagde eh + d‘i’(i X)
(x t)= —Tr ¥ (i,X)o,
dx
eh ot d (i, x) dbix) .
ia(x,1)= sgnia) 5 — r| Wi %) dx i ((BOI (27)
dvlix) .
O dx Fal1,X) where Tr denotes trace and the Pauli spin mattixorrectly

where ace.h, and sgfa)=+1 for a—e and —1 for a=h accounts for the sign of the electron and hole components.
aee,n, = a= - a=n. - : :
Then the total-current operator in leaavhich is the sum of Substituting Eq(23) into Eq. (27), we find

eh dE’

_— S
2m j,keN,S;Ea,B,}/EEh gr(a) J \/ﬁUJB \/ﬁvj,B

—k )X \ﬁvJB \/ﬁvk’y a,BT
Vhvi, NEv!, il

N

li(x,t)= e E-ENEL (E)ay,(E')

1§ OapOikOaye " S9NV Kia (E)Si(E")e Sgrw(km—ki’w]

{(k’ tkio)| 6

5i'5a —| sgr{a)(k ot Kig)X

+ (ki/a_ kia) ,7 Siiy(E/)_ 5ik 5aye| sgr(e) (K +kj)X ﬁ— a'BT(E)

ia Uig

] , (28

where sgfw)=+1 for a=e and sgfia)=—1 for a=h. Also, Equation(30) was originally derived in Ref. 9Ti‘j“ﬁ is the

ki, (v;,) andk, (v{,) correspond to the wave vectére- transmission coefficient of a particle of tyggincident in
locity) of a particle of typex in contacti at energie€ and  contactj to be transmitted to contacts a particle of typev.

E’. Equation(28) does not account for displacement currentsAs beforea,Bee,h.

due to charging, and is hence valid only for the low- The general expression for current fluctuation between
frequency components of the current, for which the the cacontacts andj is

pacitive component can be neglected. R R R .

The average current is obtained by taking the expectation Sij(m)=(Ali(DAl(t+7)+ Al (t+7)Al(t)), (32
value of Eg. (28). Noting that (éjTB(E)éky(E’»
=f;5(E) jk65,6(E— !E’), i.t is straightforward to verify that
the average current in leads

where

Ali(H)= —{(i(D). (33

e . B - .
= s _TaB A The spectral function of the current fluctuations which is the
=k a,jgls,ﬁ Sga)[8ij0us= TH(E)IFj6(E), (29 Fourier transform of Eq(32) is

where the transmission coefficients are related to the scatter- 1 - - - .
ing matrix by T #(E) =|s3#(E)|2. Linearizing Eq.(29) and ~ Sij(@)d(@+w1)=o— (Alj(w1)Alj(w) +Alj(w)Ali(01)),

using Eq.(A2) from the Appendix, we obtain (34)
where
li= 2, Gij(m= 1), (30) o )
’ Ali(@)=Ti(@)~(1i(w)). (35
where In this paper we will calculate the fluctuations only in the
zero-frequency limit because of the limitation of E@8)

e af;(E) mentioned above. Now, using the relationshi
9= jdE[&ij—Tﬁe(E)-i-Tir}e(E)](— ‘ ) . HE—ENU g nShip
JE eq Jdté =27h6(E—E’), in the zero-frequency limit
(31)  Eg.(28) simplifies to
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tions, we can write the total current fluctuations between

li(0=0)=e > sgr(a)f dE A, s(ia,E) terminalsi andj as
k,leN,S,a,y,6ee,h

_ AA AB
X&) (E)a,(E), (36) STEE TR (40)
where where
Avyi i @,E) = 8k 81 80y 85— S (E)STAE).  (37) SA=(AlieAlje) +(AlinAljn)

The difference between E¢36) and the corresponding ex- and
pression for the current operator in normal mesoscopic AB_ /AT A7 Y
system$ is that now every contact indékis generalized to Si =(AliAljp) +(AlipAlje).
ky. yis an index representing the electron and hole channelgJsing Eq.(38) and the orthogonality relations in Appendix
The signum function accounts for the sign of the electrona we can show that
and hole currents.

Given the above information, the algebra involved in the _ap e a 5
evaluation of the spectral functid; (w) is along the lines of Sit=(+) h Zﬂ [1-Ti"(B) ) fia(E)[1-Tia(E)]
Ref. 1. So we relegate it to Appendix B. The final result for
the current fluctuation spectral functi@} () is

2

+ 2 TRE)THAE)f[1-fi(E)},

282 (kyl o) #(iaia)
S]:T k,1eN,S,a,B,v,6eeh Sgr(a)Sgr(ﬁ) (41)
2e2 _
XJ’ dE Acs(i . E)A 51, B.E) iy (E)[1—F15(E) . SHB=(+) T% [ZTﬁ (B)fiB)[1-fiatE)]
(38 @) ac

+>, sTE)SY(E)f (E) Y, st(E)stoT(E
Equation(38) is a multiterminal formula for current fluctua- kEy i (B)Si (B) i )% i(B)si™(E)

tions between normal contacisand j, and is valid in the

presence of an applied bias. It is valid when the supercon- X f, 5(E) (42)
. . . ' . 16 .

ducting region is a contact kept at an externally fixed chemi-

cal potential. To the best of our knowledge, E88) has not Here, if a=e, thena=h, and ifa=h, thena=e. T % is the

appeared in the literature before. Note that Appendix A CON:  nsmission coefficient of a particle of tvsdrom contaci
tains the expression fds; in the multi moded case. ISSI Icl part ypd v

We comment that Eq(38) can be viewed as a simple FO con_tr_;lcu' as a particlg of typex. The last term of Eq(42)
generalization of the corresponding expression for currenf positive because it is of the formA. The other terms of

AA AB e R
fluctuations in normal mesoscopic systems. The expressiolﬁloth Sij” andS;;~ are clearly positive. Thus both at equilib-

for current fluctuations in normal mesoscopic systems is fium and away _from equnlbrlu_r_n, the current fluctuations in a
single contact is always positive just as in a purely normal

e’ _ _ device?®
Sj(@=0)=1 > f dE TrlAq (i, E)Ak(j,E)] Using Eq.(38) and the orthogonality relations in Appen-
n . ;
dix A, we can also show that the current fluctuations between
X f (E)[1—f,(E)], (39  two different contacts andj is

where 2¢?

_ , SiMiz=(-) - 2 [Tﬁ“<E>f1a<E>[1—f,-a<E>]

Ai(J,E)= 60— sjiSjk - “

Now, (i) by associating an additional index representing +THE)fia(B)[1—fi(E)]
electron and hole channels with every contact infies.,
i—(je) and (jh)] in Eq. (39), and(ii) correctly accounting +> sE)sYN(E)f,.(E sY(E)st®T(E)
for the sign of the electron and hole currents in BB9), it is kzy i (B)si (B)Tiol )% (BT

easy to see that we obtain E&8).

, o <fis(E)p, (43
D. Sign of current noise in the presence of transport

In a normal mesoscopic device, an electron incident in 262
[Tﬁ (E)fjtB)[1-fHE)]

contactj is always transmitted as an electron to any others{?*3|i¢j:(+) il E
contacti. As a result of this, the zero-frequency current fluc- h “
tuations between two different contacts in a purely normal
device is always negative, as proven in Ref. 1. However, in
the presence of a superconducting region, an electron inci- _ —
dent in contact can result in either an electron or a hole + Sﬁ](E)SﬁZT(E)fky(E)E Sﬁ“s(E)Sﬁ‘ST(E)
leaving contacf. So we ask whether the current fluctuations ky to

between two different contacts be positive as a result of the

Andreev processes. To check the sign of the current fluctua- X f|5(E)]- (44)

+TEE) i E)[ 1 fio(E)]
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The last terms of both Eq#§43) and(44) are of the formAA. condensatéus) should be determined self-consistently from
Then clearlyS/}* is a negative definite quantity a®f,®isa  the conditiofl that the sum of the currents flowing in the
positive definite quantity. The total current fluctuatiofs  various contacts is zerd;;l;=0. As a result of this require-
can either be a positive or a negative quantity depending oment, fluctuations in the current causes the chemical poten-
the relative strengths of the above two terms. Only the termsial of the condensatéus) to fluctuate, in turn affecting the
in SﬁA are present in the expression for current fluctuationsurrent flowing in the contacts. These processes were not
of a purely normal device and, as a resi8}; is always accounted for in the derivation of E38) because we as-
negative in a purely normal devi¢aVe discuss an example sumed the superconductor to be held at a fixed potential in
in Sec. IV, whereS;; can be either positive or negative de- Sec Il. In the above example of the NSN device, the average
pending on the phase difference between the superconduatalue of the chemical potential of the superconducting region
ing boundaries. (ug) is the same as that of the two normal contagtscan,
We now discuss the current fluctuations at equilibrium. Athowever, fluctuate with time, and this fluctuation was not
equilibrium, it is easy to verify that the expression 8 taken into account in Sec. Il.
reduces to We will now derive an expression for the current fluctua-
tions in the floating superconductor case by accounting for
(Sij)eq=(AliAl ) eq= 2K T gij + 9ji], (49 fluctuations in the chemical potential of the condensate.
rlfluctuations in the chemical potential of the condensate can
be included using the method of Langevin foréééThis
method is valid only at small biases, and consists of writing
the current operator in contaicas the sum of the expression
I;?_btained for average current and a generalized Langevin
force which causes the fluctuations in the chemical potential

whereg;; are the conductance matrix elements appearing i
Eq. (30). Equation(45) is simply a verification of the gener-
alized fluctuation-dissipation theoréthAt equilibrium, the
current fluctuations between contacisndj are related only
to the conductance matrix elements between these two co

tacts.
Ms
Ill. CURRENT NOISE: FLOATING SUPERCONDUCTOR
In Sec. Il, we assumed that the superconductor is kept at |i=§j: 9 (11— peg) + 1, (49)

an externally fixed chemical potential. In this section, we
address current fluctuations in devices where the supercon-
ductor is a floating region in the devi¢Eig. 2). In the float- ] ] .
ing superconductor case, the expression for current in a nof-Ne average value afl; is zero, and fluctuations inl; are
mal contact is still given by Eqg29) and (30).° However, ~ 9iven by Eq.(38) with us set equal to the steady-state value
the expression for current fluctuations is very different fromis- Now, making use of the point that at zero frequency,
Eq. (38). To illustrate that the floating superconductor case is
different, consider &wo-terminaINSN device where the two
normal regions widen into contacts and the superconducting E :

o . S 1;=0, (50
region is floating. The two normal contacts are maintained at i
the same external potential. We consider the low-
temperature limit where direct transmission of quasiparticles _ _ )
between the two normal regions is neg||g|b|e Then, at equiIhe chemical p-Otentlal of the SUperCOﬂdUCtor can be written
librium, a straightforward application of E¢38) gives the @S the sum of its steady-state value and a fluctuation term
following expressions for current fluctuations:

Al;Al =4kTgy1, (AlLAl =4KkTgy,,
(Al l>eq O, (Al 2>eq 02 IE 9 ZI s,
(AL1AL)q=0 (46) ps= et Apg=— + , (51)
Equation (46) is clearly wrong because at equilibrium any > X > Xk
two-terminal device should obey the Johnson-Nyquist rela- . s
tionship

wherex;=Z;g;; . Noting that the average value of the fluc-

47) tuation in the chemical potential of the superconductor
(Awg) is equal to 0O, the fluctuation in the total curréit; is

where G is the linear-response conductance of the device.

For a NSN device, the linear response conductance can be

<A|1A|1>eq:<A|2A|2>eq: _<A|1A|2>eq: 4kTG,

calculated using Eq.30), and is given by Sij=(AljAly)
ol 49 =88 Hxx 2 (Ausdue)—x;(0liAug) ~xi(Apsdl )
01117022 kil

The reason for this apparent violation of the Johnson-
Nyquist relationship in Eq(46) is now described. In the Substituting the value ok g from Eq.(51) into the previous
floating superconductor case, the chemical potential of thequation,
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1 trivially from Eq. (54) that the shot noise igerofor V<A.

Sij NSRAL X XX 1181 ;) = XXl 81781 ) At energies larger than, the physics is very different in the
K2k mn two limits A<E<fewA and E>A. For energies
—XXi{ 81 81 ;) + X X;{ 81 1 )}, (52) A<E<fewA, when an electron is incident from the normal

) ) region to the superconductor, there are two competing pro-
where(4l;51) are the current fluctuations given by B88)  cesses which contribute to current transpéijtthe electron
with the chemical potential of the superconductor set equalan pe reflected as a hole in the normal region, resulting in
to its steady-state valueug). Equation(52) is the expres-  the flow of a Cooper pair with chargeet the Fermi energy
sion for current fluctuations in the floating superconductonin the superconductor; an@) the electron is transmitted to
case. It expresses the total current fluctuation in the floatinghe superconducting region as an electronlike quasiparticle.
superconductor case in terms of the current fluctuations ofor energiesA<E<few A, TH#{0,1} and T$$=0. It then
the same system, withg held at its steady-state value. From follows from Eq.(54) that the competition between the two
the above discussion we see that there are similarities bejifferent transmission processes causes a quick increase in
tween the floating superconductor case and a purely normg@he shot noise at voltages larger thanFor energiesE>A,
device with a floating voltage probe, which has been disevery incident electron from the normal region is transmitted
cussed in Ref. 23. In fact, the expression for the linearas an electronlike quasiparticle to the superconducting region
response currefi£q. (30) of this papet derived in Ref. 9is  (i.e., TI%~0, T$~0, andT$5~1). Then it follows from Eq.
similar to the expression for the linear-response current in @4) that transport of electrons at these energies does not
normal device with a floating voltage probe. The floatingcontribute to shot noise. As a result of this, the shot noise
superconductor, however, may only be a part of the devicgends to saturate at large applied voltages.
and not a contact as in the case of a floating voltage probe. The noise-to-current ratidy!) is a quantity of interest in

We now verify that if Eq.(52) is used to calculate the noise studied??*?°Using Eq.(54), we discuss th&/| ratio
current fluctuations, the Johnson-Nyquist relationship is inin a NS junction with as-function potential barrier at the NS
deed valid for the two-terminal NSN device discussed at thenterface, both as a function of the applied bias and the bar-
beginning of this section. For a two-terminal device, B®)  rier strength. The potential barrier is & function with

has the form strengthU 5(x) .8 In the previous paragraph we saw that the
1 current fluctuation saturates with the applied voltage in the

Sy=———— [X§<5|15| 1>+x§(5I25I 5) case of a .baII|st|c N_S junction. The average current, _hov_v—
(X1 +X2) ever, continues to increase as the applied voltage is in-

_ creased. As a result of this ti$l ratio is peaked at a voltage
2x1X5( 81181 2)]. (53 large thanA/e. Now as the barrier strength is increased we

Also, S,,= —S;,= —S,;=S,;. Now, substituting the equilib- find that for small values of the barrier strength, the peak in

rium values of( 81;61;) from Eq.(45) in Eq. (53), we verify the S/I ratio survives. This peak is, however, washed out for

the Johnson-Nyquist relationship large barrier strengths. For large values of the normal reflec-
tion coefficient, theS/I ratio approaches the value4n the
(A11A1 ) eg= (AlAl ) eq= —(Al1A1L) o= 4KTG, small bias limit[Fig. 3@)] because transport is only due to

reflection of holes in the normal regigand hence a flow of

a Cooper pair with chargee?in the superconductar This
was predicted in Ref. 12. We find that as the voltage is in-
creased, to values larger thare, the S/1 ratio approaches
A. NS junction with an applied bias the value 2 [Fig. 3(b)], as now most of the transport is due
to quasiparticles with the charge of a single electron.

whereG is the two-terminal conductance given by E48).

IV. EXAMPLES

Using Eq.(38), we find the shot noise of a NS junction at

zero temperature to be B. Current fluctuations in a floating superconductor

2 . . . . . .
I ce _ ree The devices considered in this example are shown in Fig.
(611011)= h LS dE{Ti(E)[1-Ti{(E)] 4. The purpose of this example is to illustrate the difference
in shot noise between the case of a superconductor kept at a
+TTE(E)[l—T'l‘i(E)]+2T§§(E)T*1‘§(E)}, fixed external potential and the case of a floating supercon-

(54) ductor. The devices in Fig. 4 consist of a normal region
connected to two normal termindlsl andN2. Further they
where 1 refers to the normal terminal. This expression ishave two superconducting boundaries whose phagemnd
valid in the presence of a bias larger than the superconduct, can be changed. Experimental and theoretical studies in-
ing gap also. In the small bias limit, whef§s+T!=1, Eq.  volving the conductance of devices where the phase differ-
(54) agrees with the result in Ref. 12. ence between two superconducting boundaries can be
Using Eq.(54), we now discuss the prediction in Ref. 18 changed in a controlled fashion is being actively pursued
that a ballistic NS junctiofT$$=T{"=0) has a nonzero shot now?2-51417.27
noise wherV>A. In a ballistic NS junction, foE<A, every The device in Fig. @) (deviceA) is connected to a single
incident electron in the normal region results in the reflectiorsuperconductor whose potential floats to a value which is
of a hole in the normal region, and hence the flow of adetermined by the current flowing in the normal terminals.
Cooper pair in the superconductor with unity probability The device in Fig. &) (deviceB) is similar to deviceA,
(T1=1 and T$$=0). Then, at zero temperature, it follows except that the superconductor is maintained at an externally
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fixed potential. The potential of the superconductor in devicevhereu, and u, are given by Eqs(56) and(57). For device
B is chosen to be equal to the potential of the superconductd, the potential of the superconducting region is externally
in deviceA. chosen to have the same Fermi functions as those given
The average currents in devicAsdeviceB are identical. above.
This is because the average current depends only on the We first consider devic®, where the superconductor is
steady-state value of the potential of the superconductor, arftked at an external potential. The current fluctuations are
is not sensitive to whether the superconductor is floating ocomputed by substituting the Fermi functions and the scat-
not. The current fluctuation is, however, sensitive to this detering matrix for the device in Eq38). The current fluctua-
tail. We illustrate this point by computing the current fluc- tion is plotted as a function of the phase differelige— ¢,)
tuations in the normal terminals of devicdsandB as a in Fig. 5@a). Note that while current fluctuations at a single
function of the phase differendgp,— ¢,) between the two terminal are always positive, the current fluctuations between
superconducting boundaries. two different terminals can either be positive or negative, as
We model the devices by a single moded ballistic chandiscussed in Sec. Il D.
nel, and assume that the two NS junctions are perfectly bal- For deviceA, the superconductor is floating. Here we use
listic. We further assume zero temperature and the small bia&q. (53) to calculate the current fluctuations. As devides
limit. The scattering matrix of the two couplefthe couplers and B have the same steady-state value for the chemical
are the twoT-shaped regions connecting leads 1 and 2 to thotential of the superconductor, t@él;5l;) appearing in

normal wire are taken to be Eq. (563) are just those obtained for devi& The current
fluctuation in this case is plotted in Fig(l3. Note that, as
i-2q e Ve Toetuations — obey (A1 Ay (AT AN ) AT A
1 [ 1 [ 1 1/~ 2 2/ 1 2
Si= Ve 2(1=v1-2¢) 2(1+V1-2¢) |, =—(Al,Al,), with the current fluctuations in a single ter-
Vei 3(1+V1-2¢) 3(1—1-2¢) minal always being positive and the current fluctuations be-

(550  tween the two different terminals always being negative. As
discussed above, the average conductance of both devices is

whereie1,2 are the two couplers, arg] is the scattering the same, and this is plotted in Figbh
matrix of coupleri. The scattering matrix elemessf(2,1)
= \/?I represents the strength of the scattering amplitude of
an electron incident in lead 1 to scatter to the left side of V. CONCLUSIONS
coup_leri. 5i(3,D) rep_resents a si_milar amplitude to scatter to |, conclusion, we have presented a general expression
the right of coupleri. The matrix elements;(1,1), (2,2, [Eq.(38)] for current fluctuations in the normal terminals of
ands;(3,3 are the amplitudes for reflection of a wave inci- 3 phase-coherent mesoscopic device with a superconducting
dent in contact 1, incident from the left of couplerand  region at an externally fixed potentidtig. 1). Equation(38)
incident from the right of coupler, respectively. The other can pe viewed as a simple generalization of the correspond-
matrix elements are defined similarly. As the NS junctionsing expression derived by ButtiKefor a purely normal me-
are assumed to be perfectly ballistic, an electffunle) inci-  go5copic devicdi) where every contadt is generalized to
dent from the normal region is always reflected as a holg ., \vhere y represents the electron and hole channels, and
(electr9|ji.¢ The refle_ctlci)g coefficients are given by i) correctly accounting for the sign of the electron and hole
ren=—i€'® andrp=—ie ', where ¢ is the phase of the c\rents. We find that the current correlation between two
superconducting region. We obtain the scattering matrix ofjitferent contacts of a device can bither positive or nega-
the device numerically by cascading the scattering matrix ofye as a result of Andreev scattering. In contrast, in a purely
the individual elements. The values for the various paramyqormal mesoscopic device the current correlation between
eters used in the calculation presentedere0.40,6,=0.30, o different contacts is always negativélsing Eq.(39),
L;=1.6 um, L1,=1.8 um, andL,=1.6 um. we derive an expression for the shot noise in a NS junction

Using Eq.(30) we find that, for device\, valid at voltages larger than/e, whereA is the supercon-

ducting gap energy. Using the Keldysh Green’s-function

B (9121 920) theory, Ref. 18 predicted that a ballistic NS junction should
M1 Ms™ 011+ 912 Up1F+ Oop (p1=42) (56) exhibit a nonzero shot noise at applied voltages larger than

Ale. This result is simple to understand from the scattering
and theory approach presented in this paper, and is discussed in
Sec. IV. We have also studied the noise-to-current ratio as a

(g11+ Uo1) function of both the bias and the strength ofédunction
Ho— phg= — 1= M) (57) barrier at the NS interface. We find that for junctions with a
0111912709211 022 small reflection coefficient, the noise-to-current ratio is

peaked at voltages larger thare [Fig. 3(@]. As the strength

of the barrier is increased, this peak disappears. Further, for

the strong barrier limit, the noise to current ratio approaches

the value of £ in the small bias limit as predicted in Ref. 12.

f1e=0(p1—ps),  fin=0(us—p), We find that as the voltage is increased to values larger than
Ale, this ratio approaches the value o PFig. 3(b)] in the

foe=0O(o—psg), Fon=0(us—u,), (58  strong barrier limit. For devices with a floating supercon-

The Fermi functions for electrons and holes in the norma
contacts are
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ducting region(Fig. 2), we derive an expression for the cur-

rent fluctuations in the small bias lin{iEq. (52)]. That the LHS= > sgi(a)sgr B)[ 8k SuyBas— S s’
floating superconductor case is distinctly different is illus- Koyl s

trated using a simple exampl&ig. 4). While the average X[ 8k 551 05,055~ sﬁ‘”sﬁg]fk’y(E),

current is the same for the two devices in Fig. 4, the current

fluctuations are very differer(Fig. 5). A floating supercon-

ductor acts in much the same way as a floating voltage Ba
probé in normal mesoscopic devices even though the super- LHS= E {91 0apfia( B) = SOM@)SQMA)L T Fic
conductor may only be a part of the device. We would like to

comment that throughout this paper, we have assumed the +Tiq'8fjﬁ(E)]

order parameter of the superconductor to be fixed. However, serts step

the order parameter fluctuates, and this can be seen from the +sgria)sgn B)siy” B f" AB)}. (A8)
self-consistency requirement in E(B). We leave this for

future work. Using the orthogonality of the scattering matiixss;;“s '8‘”
=1, in the third term of Eq(A8), we obtain
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Equation (38) becomes the following equation when the

APPENDIX A various modes are included;
Some useful relations used in this paper are the following.

2

, e
3 siPsf'=3 si'si’=5,6,5 orthogonality, Si=1 > sgr(a)sgn(B)
l1eN,S;5eeh a,B,v,6ee,h andk,l eN, S contacts
(A1)
Xf dE Tr{ Ak, 151, E)As5:k,(1 B,.E) ]
2 TiE)=1 sum rule, (A2)
leN.S;oceh Xf(B)[1-F15(E)], (A10)
st?(E,B,A)=s“(E,~B,A*) where a,Bee,h, where
(A3)
e? af (E)
- . __T® he _ J : ;
h jdE[élj Tije(E)+Tij(E)]( JE ) , T Ak 501, E)A 1511 B,E) ]
eq
A4) . .
( S Admindli 0B A (IBE)  (ALD)
_2e 2 of(E)
hh e J
- | dE[&;—TIE)+T] WE)]( o )eq and
(A5)
=0ji - (AB6)
Akmy;ln&(iavE)ZE [5ik5iI5pm5pn5a Oas™ S|p km ip; In]
Proof of p
(A12)
‘ %a p sgra)sgn( B) Axy:1 5(i a, E)A 5,1 B, E) Fip (E) Herep, m, andn correspond to the modes in contati,
et and|, respectively.
:Sg““)sg“ﬂ)k,y,.%a,g A1, E)A 5.,(1 BE) 1o E) APPENDIX B
(A7)

Derivation of Eq.(38): Using Eq.(36), it is straightfor-
is as follows: ward to verify that{l (wk=0)I(w’=0))
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2

l(0=0)1;(0'=0) . . e
(i . ) (AljAL) ==~ 5(0) > sgr(a)sgn(B)
e a,B,ky,l,6m¢,n,n
=72 2 sgr(a)sgr(,@)dede’de”
@By X J dE Acy16(1, E)A 5] E)
><J dE"S(E—E')8(E"—E") Ay s(ia,E) X f15(E)[1—fi(E)]. (B4)
XA sy BEV AL (E) &y f( E) AT (E)n (E”). Equations(B3) and (B4) give
(B1) ,
Using Wick'’s theorem, the expectation value of the four op- Si < > sgn(a)sgr(B)
erators in Eq(B1) is 2N a,pkyTomen,y
A A A " A ” XJdE ; (l,E)A ; (:E) f (E) 1-f (E)
(aly(E)am(E)aL{(E Yan,(E") Ayl s 16:ky(J L E)X{Fiy(E)L 1s(E)]
= 818,50mndy(E—E') S(E" —E") fy,(E) i E”) +Hs(E)[1—f,(E)]} (BS)
+ 88y OmiSs6(E—E") S(E' —E") The two terms in Eq(B6) are identical to each other. While
for i=j, it is straightforward to see this, it is not so obvious
X T (E)[1— e (EM)], (B2)  for i#j. Wheni#j, it is straightforward to see that the

. . . _ . contribution from the terms bilinear in the Fermi factors are
Usmg Eg. (B2) and .the identity hw)=(1/h)dw), it is identical to each other. It is shown in Appendix A that terms
straightforward to verify that ) . . . ;

linear in the Fermi factors are also identical to each other.

The zero-frequency current fluctuations is then
2

PN e
(AlAT=—8(0) > sgria)sgnp)

a,B.ky,l,om¢,n, n 2

S; LA sgr( @)sgr( B)

. X h a,B,ky,l,6m¢,n,n
Xf dE Aky;lﬁ(lrE)Alﬁ;ky(JlE)

Xt (BE)[1-f15(E)]. (B3) Xj dE A5 E)Aisiky (1L, E) fiy(E)[ 1= 5(E) .
Similarly, it can be verified that (B6)
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