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Using scattering theory and the multichannel Landauer-Bu¨ttiker formula, we calculate the conductance of an
Aharonov-Bohm~AB! ring with a quantum dot embedded in one of its arms. The electron-electron interaction
within the dot is treated in a self-consistent mean-field approximation. An analytical expression is derived for
the AB oscillations of the entire device. This expression displays explicitly the dependence on temperature and
on the voltage applied to the dot. It is shown that the amplitude of the AB oscillations with periodh/e vanishes
close to a conductance resonance of the quantum dot. This leads to a sudden phase change byp in these
oscillations, in agreement with a recent experiment@Yacobyet al., Phys. Rev. Lett.74, 4047~1995!#. We also
find that the total width and the partial width amplitudes of each conductance resonance are oscillatory
functions of flux. This leads to oscillations in the excitation spectrum of the dot which may be observable in
further experiments.@S0163-1829~96!00224-X#

I. INTRODUCTION

As a function of the electron density or the applied volt-
age, the conductance across a small and nearly isolated re-
gion of an electron gas~a quantum dot! displays sharp reso-
nances. Within the Coulomb blockade model, this property
has been explained as a manifestation of the Coulomb repul-
sion of electrons and the quantization of the electrical
charge.1 Indeed, the addition of a single electron to a dot
increases the electrostatic energy by an amount which at low
temperature and for a sufficiently small dot is large enough
to suppress the conductance through the system. This Cou-
lomb blockade can be compensated by changing the voltage
applied to the dot, leading to the above-mentioned sharp
resonances.

The Coulomb blockade mechanism has been investigated
intensively in the past years.1–4 The spacing of the conduc-
tance resonances was found to be essentially regulated by the
Coulomb repulsion of electrons~a two-body interaction!.
However, other features such as the shape and the amplitude
of the resonances could be understood in the framework of
single-particle models. Within this framework, the strong
fluctuations of the amplitudes of adjacent resonances have
been explained in terms of the chaotic dynamics inside the
dot. Such dynamics may be caused, for instance, by the ir-
regular shape of the boundary.5

While all previous experiments measured the conductance
of a quantum dot directly connected to leads, a recent
experiment6 introduced a novel feature: By embedding the
quantum dot into one arm of an Aharanov-Bohm~AB! two-
arm interferometer, and coupling the latter to two external
leads ~see Fig. 1 for a schematic representation!, Yacoby
et al.claimed to have measured bothamplitudeandphaseof
the transmission through the quantum dot.6 Any shift in the
transmission phase, they argued, would be reflected in a
similar phase shift of the AB oscillations. Hence a standard
measurement of the latter would reveal the behavior of the

transmission phase through the dot. The paper of Yacoby
et al. has initiated a number of theoretical7–9 and
experimental10 studies.

In the experiment,6 the conductance of the AB ring with
the quantum dot~ABQD! was measured as a function of an
electrostatic potentialUp applied to the dot. A series of con-
ductance resonances was observed and for each of them the
AB oscillations were investigated. From the oscillations with
period h/e a phase was extracted which displayed the fol-
lowing features.~i! At each conductance resonance, the
phase suddenly jumped byp on a scale much smaller than
the scale extracted from the conductance line shape.~ii ! All
resonances investigated were in phase. Neither behavior had
been expected from naive application of single-particle reso-
nance theory.10

The fundamental reason for the sharp jump of the mea-
sured phase was quickly understood. It was pointed out7–10

that any continuous shift of the AB pattern was forbidden by
standard reciprocity symmetries known from the work of
Büttiker.11 These symmetries state that the linear conduc-
tance of any two-probe measurement is even as a function of
the magnetic fluxF. Hence the Fourier expansion of the
conductance G5(n50

` Ancos(2pnF/F0), with F05h/e,
contains only terms even in flux, and any modification of the
ring only affects the amplitudesAn rather than shifting con-
tinuously the phases of the oscillatory terms. These latter
phases stay constant unless the corresponding amplitudeAn
happens to switch sign. Such a switch may be interpreted as
a sudden phase change byp precisely as observed in the
experiment. This reasoning, while basically explaining ob-
servation~i!, also shows that the original idea of measuring
the transmission phase through the dot by observing the shift
of the AB pattern does not apply.

In the present paper we show that, nevertheless, important
information about the transport through the quantum dot can
be extracted from the AB interference experiment. This in-
formation, however, resides in the amplitudesAn of the AB
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harmonics rather than in the phases. Applying single-particle
scattering theory for the ABQD device and using the stan-
dard Landauer-Bu¨ttiker formalism, we derive analytical ex-
pressions for these amplitudes as functions of temperature
and of the plunger voltage on the dot. We allow for the
existence of several channels both in the leads and in the
arms of the AB ring. The electrons may be subject to weak
disorder within the ring. The electron-electron interaction in
the quantum dot is included in a self-consistent mean-field
approximation. We find that for almost all voltages the AB
oscillations of the current are dominated by the lowest har-
monic with periodF0 . The amplitude of this harmonic is
shown to vanish generically close to a conductance reso-
nance of the dot. This produces an apparent shift byp of the
F0-periodic AB oscillations. We predict that the amplitude
changes sign over an energy interval of orderkBT. More-
over, our formulas for the scattering matrix of the system
show that the widths of the conductance resonances as well
as the occupation probabilities of states on the dot oscillate
periodically as functions of the magnetic flux. This leads to
oscillations of the energy of the excited levels of the dot. Our
predictions can be tested by further experiments.

The paper is organized as follows. In Sec. II the scattering
problem for the ABQD device coupled to two leads is
solved. The Hamiltonian of the system is introduced in Sec.
II A. In Sec. II B theSmatrix is derived under the~physically
unrealistic! assumption that the interaction of electrons in the
dot can be neglected. This shortcoming is removed in Sec.
IIC where we account for the electron-electron interaction in
the mean-field approximation. The main result of Sec. II is
the scattering matrix of the ABQD ring given in Eqs.~18!
and ~28!. In Sec. III we use this result and the standard
Landauer-Bu¨ttiker formalism to derive the conductance of
the ABQD device. Our results are compared with the experi-
mental observations~i! and ~ii !. The results are summarized
in Sec. IV. Various details are given in four appendices.
Fundamental symmetry properties of the scattering matrix

are derived in Appendix A. Appendix B gives a relation
between the total resonance width and the partial width am-
plitudes. A particular symmetry of the partial width ampli-
tudes is derived in Appendix C. Finally, the flux dependence
of the various terms contributing to the conductance is given
in Appendix D.

II. THE SCATTERING PROBLEM

A. The model

We write the HamiltonianH for the ABQD system as the
sum of two terms,

H5H01HT . ~1!

Here, H0 describes the following four disconnected sub-
systems: The two leads~without coupling to the AB ring!,
the part of the AB ring not containing the dot, and the quan-
tum dot. The ‘‘tunneling Hamiltonian’’HT ~Ref. 12! de-
scribes the couplings between these four subsystems.

Explicitly, H0 is given by

H05(
a,r

E dE EcaE
r† caE

r 1(
i

e idi
†di1(

j
Ejqj

†qj1U.

~2!

Here, r51,2 labels the two leads,a the channels in either
lead ~defined by the transverse modes below the Fermi sur-
face!, and i ( j ) the single-particle states in the AB ring~the
quantum dot, respectively!. We note that the spectrum of
single-particle states in the leads is continuous while it is
discrete in both the ring and the dot. The corresponding
single-particle energies are denoted byE ~the longitudinal
energy in a channel!, e i , andEj , respectively, and the anni-
hilation ~creation! operators bycaE

r , di , and qj ~by caE
r† ,

di
†, andqj

† , respectively!. The quantityU is the electrostatic
charging energy1 of the dot. The form ofU will be specified
below. For brevity, we writeH0 also in the obvious form

H05H lead1H ring1Hdot1U. ~3!

To mimic the effect of an external potential~the plunger
voltageUp) on the electrons on the dot, we use the approxi-
mation usually made in studies of the Coulomb blockade:3

We assume thatUp affects only the single-particle energies
Ej of the dot. More specifically, we assume a linear depen-
dence of the form

Ej5Ej
01aUp , ~4!

wherea is some function of the capacitance matrix elements
of the system. We also assume that the energiesEj are not
degenerate. This is obviously justified for states of fixed spin.
Moreover, the spin degeneracy is lifted by the magnetic field.
We address this point again at the end of Sec. IIC.

The tunneling HamiltonianHT has the form

HT5S (
a,i ,r

E dE Wai
r ~E!caE

r† di1H.c.D
1S (

i , j ,p
Vji
p qj

†di1H.c.D . ~5!

The matrix elementsW describe the coupling between ring
and leads, the matrix elementsV the ~much smaller! cou-

FIG. 1. Schematic representation of the system studied in this
paper. A mesoscopic ring threaded by the magnetic fluxF is con-
nected to two external leads. A quantum dot controlled by the
plunger voltageUp is coupled to the ring via tunnel barriers.
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pling between ring and dot, andp5L,R labels either side of
the dot. In the experiment of Ref. 6,V can be controlled by
two negatively charged tunable gates. In analogy to Eq.~3!
and in keeping the order of terms in Eq.~5!, HT can be
written as

HT5~HW1HW
† !1~HV1HV

† !. ~6!

As in previous work, we neglect the dependence of the cou-
pling matrix elementsW on the energyE. This is justified
because we focus attention on an energy interval of the order
of the Coulomb energy. Estimates show that the matrix ele-
ments ofW vary significantly only over a much larger inter-
val. Because of the high level density in the ring compared to
that in the dot, the same statement holdsmutatis mutandisfor
the dependence of the matrix elements ofV on the indexi .

It follows from time-reversal invariance that for vanishing
magnetic flux through the ring, all matrix elementsW, V can
be taken real. To account for nonzero fluxF ~the total mag-
netic flux through the ABQD device!, we attach to each ma-
trix element Vi j

R a factor exp(if), where f[2pF/F0 .
Hence we write

Vi j
L5Vi j

L*5v i j
L , ~7!

Vi j
R exp~2 if!5Vi j

R* exp~ if!5v i j
R , ~8!

wherev i j
L and v i j

R are real. This parametrization of the flux
dependence in terms of a phase factor is adequate whenever
the single-particle states both in the AB ring and in the dot
do not change appreciably with flux, i.e., whenever the flux
through each arm of the ring and through the dot is smaller
thanF0 .

We have chosen to put the flux dependence on the matrix
elementsVR. We could equally have chosen the matrix ele-
mentsVL, or made any other choice which guarantees that
upon moving an electron once around the AB ring, it picks
up the correct phase factor. The resulting observables must
not depend on this choice.

The model defined by Eqs.~1!–~8! has the following
physical content. ForU50 and for vanishing coupling ma-
trix elementsW and V, the eigenstates ofH are bound
single-particle states~localized in either the dot or the AB
ring! and single-particle scattering states~the channel states
in the leads!. Because of the relative smallness of the quan-
tum dot, the mean spacing of the single-particle levels in the
AB ring is much smaller than that in the dot. ForW50 and
nonzeroV, the single-particle states in dot and ring are
mixed but remain bound states. ForV50 and nonzeroW,
the bound single-particle states in the AB ring turn into scat-
tering ~and conductance! resonances with a finite lifetime
~due to the couplingW to the leads! while the single-particle
states in the quantum dot remain bound. Passage from one
lead to the other is now possible through that arm of the AB
ring which does not contain the quantum dot. We will as-
sume throughout the rest of the paper that the resonances
generated forV50 and nonzeroW are so narrowly spaced,
and have such large widths, that the resulting scattering ma-
trix is in fact a smooth function of energy.~Actually, we
employ the construction using bound single-particle states in
the AB ring only in order to obtain an explicit analytical
expression for the scattering matrix.! When both sets of ma-

trix elementsW andV do not vanish, transmission through
both arms of the AB ring is possible. The single-particle
states in the quantum dot also turn into resonances. These
resonances appear in the scattering matrix of the system as
distinct structures superposed on a smooth background, the
latter being due to the states in the ring. It remains to display
these features by explicit construction of the scattering ma-
trix.

B. S matrix for noninteracting electrons

In the present section we construct theS matrix and use
the result to display some of the physical features of our
model. We neglect the interactionU ~its effect is investi-
gated in Sec. IIC!.

To derive the scattering matrixSab5dab22p iTab at en-
ergyE and~dimensionless! flux f, we solve the Lippmann-
Schwinger equation

T5HT1HT~E2H01 ih!21T ~9!

for the transition operatorT. Here,h is positive infinitesi-
mal. This equation can be solved algebraically~see Ref. 13!.
Alternatively, the solution can be obtained by summing up
the Born expansion

T5HT1HT

1

E2H01 ih
HT

1HT

1

E2H01 ih
HT

1

E2H01 ih
HT1•••. ~10!

To this end, we introduce the Green functions of the leads,
the ring, and the dot, respectively,

Glead5
1

E2H lead1 ih
, ~11!

Gring5
1

E2H ring1 ih
, ~12!

Gdot5
1

E2Hdot1 ih
. ~13!

We are interested in transitions between states in either lead
and consider the projectionTlead of T onto the lead states.
Using Eq. ~6!, we obtain for the Born series forTlead the
expression

Tlead5HWGringHW
† 1HWGringHW

† GleadHWGringHW
†

1HWGringHV
†GdotHVGringHW

† 1•••. ~14!

We collect first all terms not containingGdot and then all
remaining terms. The result has the form

Tlead5HWD ring
21HW

† 1HWD ring
21 HV

†Ddot
21HVD ring

21HW
† , ~15!

where

D ring,ik5~E2e i !d ik1 ip@W†W# ik , ~16!

Ddot,j l5~E2Ej !d j l2@VDring
21V†# j l ~17!
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are the propagators for the ring and the dot, respectively. In
Eq. ~17! we used the notationV[VL1VR. Moreover, in Eq.
~16! we dropped a principal-value integral which is known
not to be important if the energy dependence of the matrix
elementsW is smooth. This is the assumption made in Sec.
II A.

The resulting form forTlead allows for a straightforward
physical interpretation, in keeping with the remarks at the
end of Sec. II A. We note first@see Eqs.~16! and ~17!# that
due to the coupling to the leads, both the states in the ring
and those in the dot have acquired a finite width. Moreover,
Eq. ~15! shows that the passage of electrons through the
ABQD device may take place in either one of the following
two ways.~i! The electrons may not enter the quantum dot at
all @first term on the right-hand side of Eq.~15!#. This con-
tribution should and does not depend on the properties of the
dot. In particular, it is independent both of the plunger volt-
ageUp and of the magnetic fluxF. ~ii ! The electrons enter
the dot at least once@second term on the right-hand side of
Eq. ~15!#. This term also accounts for multiple scattering of
electrons around the ring.@To see this, expand the inverse
propagatorDdot

21 in powers of the tunneling amplitudesV and
obtain a power series containing only even powers ofV.
Each term proportional toV2n corresponds to an
(n11)-fold passage of the electron through the dot and con-
tributes up to the (n11)st harmonic of the AB oscillations.#

Using the relationSab5dab22p iTab , we find for the
S-matrix elementSab

rs ~connecting channelb in lead s with
channela in lead r ) the final expression

Sab
rs ~E,f!5d rsdab22p i @WDring

21W†#ab
rs 2 i @gDdot

21ḡ†#ab
rs ,
~18!

where

ga j
r 5A2p@W~D ring!

21V†#a j
r , ~19!

ḡbl
s 5A2p@W~D ring

† !21V†#bl
s , ~20!

and r ,s51,2. The term in Eq.~18! involving the Kronecker
deltas accounts for reflection from channelb back into the
same channel~and not for transmission of electrons from one
lead into the other!. In the light of the remarks on theT
matrix made above, the physical interpretation of the remain-
ing two terms on the right-hand side of Eq.~18! is obvious.
@For the sake of completeness, we mention that in Eq.~18!,
we have suppressed an overall phase factor. This factor ac-
counts for elastic scattering in the channels in the absence of
the coupling matrix elementsV andW and is totally imma-
terial for all that follows.# In scattering theory,14 the quanti-
ties ga j

s and ḡa j
s are known as partial width amplitudes. We

note that in our case, the entire dependence on the fluxf of
theSmatrix resides in these partial width amplitudes, and in
the inverse propagatorDdot

21 . Both quantities contain factors
VR and are therefore oscillatory functions of flux.

Equation ~18! demonstrates the nontrivial quantum-
coherence properties of the ABQD system. The total trans-
mission amplitude through the ABQD system is the sum of
two terms. Naively, one might have expected that these two
terms correspond, respectively, to transmission through ei-
ther arm of the AB ring, and to differ in phase by a factor

exp(if). Equation~18! shows that this naive expectation is
wrong: the dependence onf is more complex.

We show in Appendix A that theS matrix ~18! has the
well-known15 symmetry properties

S~f!S†~f!5S†~f!S~f!51, ~21!

S~f!S* ~2f!5S* ~f!S~2f!51, ~22!

required by the fundamental symmetries of the Hamiltonian.
The unitarity relation~21! for S is a consequence of current
conservation. Equation~22! is required by full time-reversal
invariance~including a reversal of the magnetic field!. As
shown by Bu¨ttiker,11 both symmetries together imply that the
linear-response form of the conductance of the non-
interacting electron system is an even function of magnetic
flux.

Both nontrivial contributions toS have the form of a sum
over resonances. As explained earlier, the resonances due to
the single-particle states in the ring are narrowly spaced and
overlap strongly. We accordingly consider the second term
on the right-hand side of Eq.~18! and the partial width am-
plitudes as smooth functions of energy. In contradistinction,
the resonances in the dot are expected to be isolated~their
spacing is much larger than their total widths! because the
dot is both smaller and better isolated from the outside than
the ring. In such a case, a single-level approximation for the
third term on the right-hand side of Eq.~18! is justified. We
accordingly assume that the matrixDdot is diagonal, with
diagonal elements given by

~Ddot! j l[~E2Ej2DEj1 iG j /2!d j l . ~23!

In scattering theory,14 DEj is known as the energy shift~of
the resonance position with respect to the bound state energy
of the isolated system!, and G j as the total width of the
resonance with indexj . Combining Eqs.~17! and ~23!, we
find thatDEj andG j are given by

DEj5Re@VDring
21V†# j j , ~24!

G j522 Im@VDring
21V†# j j . ~25!

Using unitarity, we can show~see Appendix B! that for iso-
lated resonances

G j5(
c,t

ugc j
t u25(

c,t
uḡc j

t u2. ~26!

We emphasize that because of the oscillatory behavior of the
partial width amplitudes, bothDEj andG j are also oscillat-
ing with flux.

According to Eqs.~24! and~25! both the energy shift and
the typical resonance width have the same order of magni-
tude. When the single-level approximation applies, the en-
ergy shift therefore is much smaller than the resonance spac-
ing and the resonance positionEj1DEj is found to be only
weakly flux dependent.
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C. Self-consistent approximation
to the Coulomb interaction between electrons

on the quantum dot

The model used in Sec. II B is unrealistic because it ne-
glects the electrostatic charging energy, i.e., the Coulomb
interaction between electrons on the quantum dot, the funda-
mental cause for the Coulomb blockade. In the present sec-
tion we remedy this shortcoming. We do so in the framework
of the mean-field approximation. At the end of the section
we discuss possible modifications of our results due to genu-
ine many-body effects beyond the mean-field approximation
~quantum fluctuations!.

As far as we know, the Coulomb blockade problem has
been addressed in the literature in two ways.~i! The interact-
ing electrons on the quantum dot are brought into contact
with a heat bath. A recent example is provided by the work
of Kamenev and Gefen.16 The solution obtained by these
authors applies to the entire regime between weak and strong
coupling. It does not, however, address explicitly the cou-
pling of the system to external leads.~ii ! The coupling of the
quantum dot to the leads is explicitly taken into account; at
zero temperature, the electrons in the leads fill all states up to
the Fermi energy. This is the approach taken by Beenakker3

and by Ng and Lee.17 Here, we follow this second approach
because it permits us to calculate the conductance directly
via the Landauer formula. For simplicity, it is assumed
throughout this section that both temperature and the widths
of the resonances are smaller than the single-particle mean
resonance spacing.

We use a formulation first introduced by Anderson18 in
the context of localized magnetic states in metals, and also
used by Ng and Lee17 for quantum dots coupled to two leads.
We go beyond these works in two respects. As explained
above, we~i! couple the quantum dot to an AB ring threaded
by a magnetic flux~this gives rise to the oscillatory behavior
of the partial and total resonance widths with flux displayed
above!, and we~ii ! allow for an arbitrary number of open
channels in either lead coupled to the ring.

We complete the definition of the Hamiltonian given in
Sec. II A by defining the electrostatic charging energyU as

U5U0(
j, j 8

njnj 8, ~27!

wherenj5qj
†qj . The energy needed to add an electron to the

quantum dot occupied byK electrons is obviously given by
U0K. We neglect the Coulomb interaction between electrons
in the AB ring, and in the leads. This is legitimate because
ring and leads are very much larger than the dot, and the ring
is strongly coupled to the leads. As a consequence, the elec-
tronic states on ring and leads are more spread out, and the
electrons are better screened, than those on the dot.

We calculate the scattering matrixSab(E,f) at the Fermi
energyEF in the Hartree-Fock approximation. A similar cal-
culation for the one-channel case is described in Ref. 18; for
the many-channel case, the methods described in Ref. 13 can
be used. Therefore we do not give any details and focus
attention on the results which are anyway very similar in
form to the ones obtained in Sec. II B. The Hartree-Fock
approximation essentially amounts to solving the scattering
problem for an effective Hamiltonian with the correlation

termU0( j, j 8^nj&nj 8. The angle brackets indicate an expec-
tation value which is taken with respect to the Hartree-Fock
wave function. This correlation term leads to a shift of the
single-particle energiesEj→Ej1U0( j 8Þ j^nj 8&. A corre-
sponding shift is found for the positions of the resonances of
the S matrix, which otherwise has the same form as in Eq.
~18!.

To discuss the physical content of the resulting expres-
sion, we again use the approximation that the resonances on
the quantum dot are isolated~diagonal approximation for
Ddot). We also assume that initially there are no electrons on
the quantum dot. Moreover, it is assumed that the plunger
voltage Up is chosen in such a way that the first empty
single-particle level labeled 1 on the quantum dot is located
right above the Fermi energyEF . Increasing2Up , we fol-
low this and the next higher single-particle level labeled 2,
neglecting all levels withj.2. We expect that as the first
level moves into the Fermi sea, it turns into a resonance of
the scattering matrix and therefore of the conductance
through the dot. At the same time, this level should become
filled with an electron~more precisely, the occupation prob-
ability of the resonant state should increase gradually from
zero to one!. As this happens, the second level should get
shifted upwards by the Coulomb repulsion.

In the limit of nonoverlapping resonances~the resonance
spacing is large compared to the resonance width!, the scat-
tering matrix has the form

Sab
rs ~EF ,f!5d rsdab22p i @WDring

21W†#ab
rs

2 i(
j

ga j
r ~EF2Ej1 iG j /2!21ḡ jb

†s , ~28!

wherega j , ḡb j , andG j are defined in Eqs.~19!, ~20!, and
~25!, respectively. We have replaced the energyE by the
Fermi energyEF as required by the Kubo formula for zero
temperature. The energiesEj depend on the plunger voltage
Up . Our result~28! closely resembles Eq.~18! which was
obtained in the absence of interactions. The only effect of the
interaction is to shift the resonance positions: the resonance
energiesEj are given by

E15E11DE11U0^n2&, ~29!

E25E21DE21U0^n1&, ~30!

where, at zero temperature, the average occupation probabili-
ties ^nj& are defined self-consistently by the conditions

^nj&5
1

pE2`

EF
dE

G j

uE2Ej1 iG j /2u2
~31!

5
1

p
tan21@2~EF2Ej !/G j #, j51,2.

~32!

The solutions of these equations are easily found and have
the following qualitative feature.~For simplicity, we denote
the sumsEj1DEj by Ej8.) For EF2Ej8 negative and large
compared toG j , we havê nj&'0. The occupation probabil-
ity ^nj& grows monotonically with increasingEF2Ej8 and
reaches asymptotically the value unity. The increase essen-
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tially starts atEF2Ej8'2G j and essentially occurs within
an energy interval of widthU0 . At finite temperatureT, the
integrand in Eq.~31! has to be multiplied by the Fermi func-
tion, and the domain of integration extends over the entire
real axis. Then, the increase of^nj& essentially starts at
EF2Ej8'2kBT and is otherwise similar to the caseT50.

The resulting influence of the Coulomb energy on the
scattering matrix depends crucially on whetherkBT is small
compared to or of the same size as the level separation
uE12E2u. In the first case, we chooseUp initially in such a
way that bothE18 andE28 lie aboveEF . Then Eqs.~29!, ~30!,
and ~32! show that botĥ nj&'0, so thatE22E1'E282E18 .
As we increase2Up , the energyE18 dives into the Fermi
sea, and̂ n1& starts to increase according to Eq.~32!, while
^n2& remains essentially zero. As a consequence, the spacing
E22E1'E282E181U0^n1& grows, too, until it reaches the
asymptotic valueE282E181U0 . As a result, the higher level
is pushed up by the Coulomb energy as the lower one dives
into the Fermi sea. In the second case~wherekBT is at least
comparable to the spacinguE12E2u), a rather more compli-
cated pattern may result. The first case is the one applicable
to the experiment where a series of resonances roughly sepa-
rated by the Coulomb energy is observed. In this case, the
Coulomb interaction leads only to a shift of the levels, and
for any one resonance observed experimentally the consider-
ations of subsections II A and IIB apply without modifica-
tion.

This result can easily be extended to a situation where
there areK electrons on the dot, and where more single-
particle levels are taken into account. We conclude that the
charging energy, at least on the level of the mean-field ap-
proximation, merely leads to a renormalization of the reso-
nance positions. This allows us to simplify notation and to
denote the resonance positions again byEj8 rather than by
Ej , keeping in mind that the former are derived from a set of
self-consistent equations taking account of the charging en-
ergy.

It may be argued that since we consider a case where the
Coulomb energy has the only effect of increasing the spacing
of the resonances, the present subsection is altogether redun-
dant, because for a single resonance, the situation is exactly
the same as without any Coulomb interaction. However, our
result has a peculiar feature which is specific for the AB
geometry and hence absent in previous calculations for dots
directly coupled to leads: the occupation probabilities as well
as the resonance energies are oscillatory functions of flux,
and the oscillatory behavior of the resonance spacings is am-
plified by the Coulomb interaction. These statements follow
from the oscillatory flux dependence of the resonance widths
G j . To explore the consequence of this feature, we denote
the minimum ~maximum! values of theG j by Gmin,j and
Gmax,j , respectively. Let us imagine thatE18 is slightly above
EF with Gmin,1,E182EF,Gmax,1. Equations~29!, ~30!, and
~32! show that the resonance spacingE22E1 oscillates with
flux between a value close toE282E181U0/2 ~for
G1'Gmax,1) and E282E181U0 ~for G1'Gmin,1). A similar
reasoning shows thatE22E1 oscillates betweenE282E18 and
E282E181U0/2 whenE18 is slightly belowEF . Such oscilla-
tions of the excited levels of the dot should be observable in
experiment. This is true even taking into account that our

treatment is unrealistic in the sense that it neglects all inelas-
tic scattering. In the experiment the scattering through the
quantum dot is predominantly inelastic. Nonetheless, even a
small coherent component will lead to strong oscillations of
the excited levels since the charging energy is typically much
larger than the level spacing.

The self-consistent picture used above is known to break
down for pairs of degenerate levels at very low temperature.
In this case, quantum fluctuations dominate the problem,
which acquires much similarity with the Kondo problem.
Arguments put forward in Ref. 17 strongly suggest that for
the situation considered in the present paper~nondegenerate
levels at finite temperature!, such quantum fluctuations play
a negligible role, and that the treatment given in the present
section adequately describes the physical situation. As a re-
sult, we essentially recover the picture of isolated resonances
developed in Sec. II B, modified by the ‘‘stretching’’ of the
single-particle spectrum due to the Coulomb interaction.
This justifies our use of the results of Sec. II B in analyzing
the experiment of Yacobyet al.6 in the next section.

III. CONDUCTANCE OF THE ABQD DEVICE

The dimensionless conductanceg5(h/e2)G of the
ABQD device is obtained from the multichannel Landauer
formula19

g52E dES 2
] f

]ED (
a,b51

N

utab~E!u2. ~33!

Here tab(E)5Sab
12(E) is the transmission amplitude through

the ring for an electron entering the ring via channelb in
lead 2, and leaving it via channela in lead 1. The derivative
of the Fermi function f is given by 2(] f /]E)
5(4kBT)

21cosh22@(E2EF)/2kBT#, andEF is the Fermi en-
ergy in the leads. A factor 2 accounts for the spin degeneracy
of the electron.

In the following it is assumed that both the charging en-
ergyU0 andkBT are much larger than the resonance widths
G j . Both these restrictions together imply that the conduc-
tance through the quantum dot is much smaller thane2/h.3

This is a necessary condition for the Coulomb blockade re-
gime. We note that both conditions are met in the experiment
of Yacoby et al. whereU0'500 meV, kBT'9 meV, and
G j'0.2meV.6

The assumptionU0@G j implies that we work in the re-
gime of isolated resonances. Hence an appreciable current
can pass the dot only if a resonance in the dot is close to the
Fermi energy,Ej'EF . The contribution of other resonances
j 8Þ j to the transmission amplitude is smaller by a factor of
order G j /U0!1 and is therefore negligible.~We indicate
qualitatively below how other resonances contribute to the
current.! The index j is suppressed in the following to sim-
plify notation. According to Eq.~18!, the transmission am-
plitude has the form

tab5t ring,ab2 i
ga
1ḡb

2*

E2E81 iG/2
, ~34!

wheret ring,ab522ip( ikWai
1 (D0) ik

21Wbk
2* is the transmission

through the part of the ring not containing the dot. This con-
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tribution is independent off andUp and only weakly de-
pendent on energy~this energy dependence will be ne-
glected!.

Inserting Eq.~34! into the Landauer formula~33! and
summing over the channels yields several terms whose flux
dependence is given in Appendix D. As a result, one finds

g5E dES 2
] f

]ED H gring1 4y0
11x0cosf

sind sin~j02d!

1
4y1

11x0cosf
cosf sind sin~j12d!

1
z01z1cosf1z2cos

2f

~E2E8!21G2/4 J . ~35!

We have used the following parametrizations:

G5~11x0cosf!Ḡ, ~36!

2(
a,b

t ring,abga
1* ḡb

25@y0exp~ i j0!1y1exp~ i j1!cosf#Ḡ,

~37!

2(
a,b

uga
1u2uḡb

2u25@z01z1cosf1z2cos
2f#Ḡ2. ~38!

We have introduced positive amplitudesḠ,y0 ,y1 ,z0 , the real
amplitudesx0 ,z1 ,z2 , and two real phase shiftsjx , jy all of
which do not depend onf. The resonance denominator has
been parametrized in terms of the angled defined as

exp~ id![2
E2E82 iG/2

uE2E82 iG/2u
. ~39!

This angle takes the valuep/2 at E5E8 and approaches 0
for E→2` andp for E→`.

To averageg over disorder, the phase shiftsj0 andj1 are
averaged over some suitable interval. This procedure only
rescales the amplitudesy0 , y1 and the phase shiftsj0 , j1 ,
but leaves theform of Eq. ~35! unchanged.

We integrate over energy and find for the terms linear in
the resonance denominator the result

E dES 2
] f

]ED sind sin~j2d![
G

kBT
B sin~j2b!, ~40!

where the amplitudeB and the phaseb are defined by

B5@A1
21A2

2#1/2, ~41!

tanb5A2 /A1 , ~42!

with

A15E dES 2
] f

]ED kBT~E82E!/2

~E2E8!21G2/4
, ~43!

A25E dES 2
] f

]ED kBT~G/4!

~E2E8!21G2/4
. ~44!

In the regimekBT@Ḡ, one finds that bothA1 andA2 become
independent ofG,

A1→2
1

8
PE

2`

`

dES 1

E82ED cosh22SEF2E

kBT
D , ~45!

A2→
p

8
cosh22SEF2E8

kBT
D , ~46!

where~45! is a principal-value integral. As a result, bothB
andb shown in Fig. 2 are independent ofG and are func-
tions only of the ratio (EF2E8)/kBT. We note thatB de-
creases algebraically with increasinguEF2E8u. The integral
over the fourth term in Eq.~35! which is quadratic in the
resonance denominator can easily be done using Eq.~46!.
Collecting results, we finally obtain

FIG. 2. The amplitudeB ~solid line! and the phase
b ~dashed line!, both as a function of (EF2E8)/kBT.
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g5gring14y0
Ḡ

kBT
B sin~j02b!

14y1
Ḡ

kBT
B sin~j12b!cosf

1
pḠ

2kBT

z01z1cosf1z2cos
2f

11x0cosf
cosh22SEF2E8

kBT
D .

~47!

Equation~47! allows us to discuss in detail the dependence
of the current through the ABQD device on energy and mag-
netic flux. To fix notation, we refer to the first term on the
right-hand side of Eq.~47! as background term, to the second
and third terms as interference terms, and to the fourth term
as resonance term. The background termgring comprises the
bulk part of the current. This term is independent of both
energy and flux. It is due to transmission of electrons through
that arm of the AB ring which does not contain the quantum
dot. In order to focus on the resonance peaks, this term is
subtracted in the experimental analysis from the total current
through the device. All remaining terms are smaller than the
background term by a factorḠ/kBT!1. The interference
terms are due to the interference of the background ampli-
tude with the transmission amplitude involving passage
through the quantum dot. These terms display resonant be-
havior ~through the amplitudeB) and involve the phase
shifts j0 andj1 . The latter quantities depend on the geom-
etry of the ring and the distribution of disorder. One of the
interference terms is flux independent, while the other dis-
plays F0-periodic AB oscillations. This particular depen-
dence on flux is the result of the temperature average. At
zero temperature, both interference terms give rise to higher
AB harmonics; see the integrand of Eq.~35!. The amplitude
of the resonance term has the usual temperature dependence
known for thermally broadened resonances3 of quantum dots
directly coupled to leads. However, in the AB geometry this
term is flux modulated and contributesF0-periodic and
F0/2-periodic AB oscillations as well as all higher harmon-
ics.

We now analyze the AB oscillation described by Eq.~47!.
In a multichannel ring the dominant oscillatory contribution
is due to theF0-periodic interference term. This term is both
larger than the resonance term by a factorAgring and falls off
more gently than the latter with increasinguEF2E8u. But at
each resonance,b changes byp with increasingEF2E8,
with j1 essentially staying constant. Therefore the oscillating
interference term always changes sign in the interval
2`,EF2E8,` ~compare Fig. 3!. As a result, the ampli-
tude of theF0-periodic oscillations generically vanishes for
any value of the phase shiftj1 somewhere in the vicinity of
each resonance. The precise location of the zero of the am-
plitude depends onj1 as well as on the relative magnitude of
the third and fourth terms on the right-hand side of Eq.~47!.
The change of sign of the amplitude of theF0-periodic os-
cillations occurs over an interval of orderkBT. Indeed, this
interval is determined by the behavior ofb, and Fig. 2 shows
that b increases from zero top over an interval of order
kBT. At the zero of theF0-periodic oscillations one finds
AB oscillations of shorter period in the flux caused by the
higher harmonics contained in the resonance term. Their am-
plitudes reach maximum value atEF5E8 ~independent of
j1). In conclusion, Eq.~47! predicts a zero of the lowest
harmonic close to~but not necessarily at! the maximum of
the higher harmonics. This is in agreement with the results of
a numerical study of the ABQD device.10 Experimentally,
the higher harmonics have not yet been investigated.

In deriving Eq. ~47! we have neglected far away reso-
nances of the dot. Their contribution to the current can easily
be found by including in Eq.~34! the sum over resonances
j 8Þ j . Performing the same manipulations as before one
finds that the far away resonances lead to AB oscillations
with a plunger voltage independentamplitude of order
AgringḠ/U0!1, whereḠ is a typical total resonance width of
the dot.

Inelastic scattering in the quantum dot destroys the uni-
tarity of theSmatrix. Phenomenologically, this increases the
widths of the transmission resonancesG by the addition of
an inelastic width20,11 and thereby reduces the amplitudes of
both the interference terms and the resonance term. The fun-

FIG. 3. Amplitude of the third term of Eq.~47! as a
function of (EF2E8)/kBT for j15p/2. The dashed line
shows the phase extracted from the sign ofB sin(j12b).
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damental property of the current to be an even function of
the applied flux remains unchanged~at least within the
present phenomenological models for inelastic
scattering11,7!. We conclude that with properly rescaled am-
plitudes, Eq.~47! accounts for the current through the ABQD
device even in the presence of inelastic scattering. The basic
conclusions concerning the temperature and flux dependence
of the various terms remain valid.

As the last point, we investigate the relative phase of the
F0-periodic AB oscillations at different conductance reso-
nances. The amplitude multiplying cosf in the interference
term in Eq.~47! is clearly real. Therefore two different reso-
nances are either in phase, or completely out of phase~phase
difference 0 orp). Which of these two values is realized
depends on the signs of the matrix elements~‘‘tunneling am-
plitudes’’! Vkj

L andVkj
R connecting states in the dot and in the

AB ring. These amplitudes are given12 by the overlap inte-
grals

Vkj
s 5S \2

2mD E
A~s!

~ck“f j*2f j*“ck!dS. ~48!

The integral extends over a surface in the barrier region sepa-
rating the dot from the ring~the indexs5L,R selects one of
the two barriers!. The functionsck are scattering solutions of
the full HamiltonianH in the region outside the quantum dot
and drop smoothly to zero within the dot.12 Similarly, the
statesf j are solutions of the Schro¨dinger equation involving
H within the dot, and are exponentially small outside the dot.
As one changes the plunger voltageUp , one sweeps through
a series of resonances each associated with a particularf j
while the statesck are unchanged. Therefore the relative
phase of theF0-periodic AB oscillation at a conductance
resonance labeledj is determined by the corresponding state
f j on the quantum dot.

It turns out that the sign of the amplitudesV depends on
the nature of classical dynamics within the dot. If the equa-
tions of motion for the closed dot are integrable, the relative
phases are expected to change in a regular way which is
specific for the particular system at hand. Consider, for in-
stance, a planar dot of circular shape. Using polar coordi-
nates (r ,u), we can write the eigenfunctionsf j in the form
fnm(r ,u)5Rn(r )exp(imu).21 From Eqs.~7!, ~8!, and~D7! it
follows that the amplitudes of the flux-dependent interfer-
ence terms carry a relative sign (21)m82m for resonances
with angular momentumm andm8, respectively. Therefore
resonances with (m2m8) even are expected to be in phase
while resonances with (m2m8) odd should have a phase
shift equal top. For quantum dots with chaotic classical
dynamics, on the other hand, it has been shown that the
partial width amplitudes and therefore the amplitudesV be-
have statistically in a manner described by random-matrix
theory.5 We thus expect a statistical behavior for the relative
phases of different resonances~with values 0 orp). As a
consequence, the amplitude of theF0-periodic oscillations is
not expected to have the same sign for all resonances. This
statement holds both for integrable and for chaotic dynamics
within the quantum dot. Experimentally it was found6 that all
of the observed resonances~the number of which is of order
10! are in phase. Within the framework of our model, this
result is surprising. Levy Yeyati, and Bu¨ttiker7 hold the ac-

cumulation of additional charge in the AB ring outside the
quantum dot responsible for this finding. Their explanation is
based on the capacitive coupling between the gate regulating
the number of electrons on the dot and the two gates forming
the barriers between the dot and the AB ring. Such a cou-
pling is not included in our Hamiltonian and its investigation
is beyond the scope of this paper.

IV. SUMMARY

In this paper we have derived an explicit expression for
theSmatrix of an AB ring with a quantum dot embedded in
one of its arms. The transmission amplitude through the
ABQD device was shown to exhibit a resonance whenever
there is a transmission resonance through the quantum dot.
We have also found that the entire dependence ofS on the
magnetic flux resides in the total widths and the partial width
amplitudes of the transmission resonances. These quantities
are oscillatory functions of the flux. As a consequence, the
excitation spectrum of the dot oscillates with magnetic flux.
Such oscillations may be observable in further experiments.

Using the Landauer-Bu¨ttiker formalism which expresses
the dimensionless conductanceg5(h/e2)G through the
ABQD device in terms of theSmatrix, we have obtained an
analytical expression forg. The AB oscillations with period
h/e were shown to vanish close to the peak of each conduc-
tance resonance. We find that the higher AB harmonics have
maximal amplitude in the vicinity of this node. Our results
account for recent experimental6 as well as numerical10 find-
ings. However, in the present framework we cannot explain
the observation that the AB oscillations with periodh/e are
in phase for all resonances.
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APPENDIX A

In this Appendix we prove the symmetry properties~21!
and ~22! of theSmatrix. It is useful to writeS in the form

Sab
rs ~E,f!5d rsdab22p i @WD21W†#ab

rs , ~A1!

where

Dik5~E2e i !d ik2(
j

Vji*Vjk

E2Ej
1 ip@W†W# ik ~A2!

is the propagator of the full ring. It exhibits resonances of
both the dot and the outer part of the ring. The equivalence
of Eq. ~A1! with Eq. ~18! can be shown, e.g., by expanding
D21 in powers ofV and resumming all terms in the series
for S containingV. This yields the third term of Eq.~18!
while theV-independent term equals the second term of Eq.
~18!.
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Inserting Eq.~A1! into Eqs. ~21! one observes that the
latter immediately follow from the equation

D2D†52ipW†W, ~A3!

which in turn follows from Eq.~A2!. Time-reversal invari-
ance implies that the coupling matrix elements obey
W(f)5W* (2f) and V(f)5V* (2f). This implies
D(f)5DT(2f). With this relation, Eqs.~22! also reduce to
Eq. ~A3!.

APPENDIX B

In the following, we derive the relationship
G j5(c,tugc j

t u25(c,tuḡc j
t u2 between the total resonance width

and the partial width amplitudes. This relation follows from
the unitarity of the scattering matrix.

In keeping with the main text, we assume the resonances
of the quantum dot to be isolated. In the vicinity of a par-
ticular resonancej we write theSmatrix ~18! in the form

S5S~0!2 i
g3ḡ*

E2E81 iG
, ~B1!

where we have suppressed the indexj ~labeling the reso-
nance energy, the resonance width, and the partial width am-
plitudes!. The matrixS(0) is unitary and symmetric by con-
struction and can be diagonalized by an orthogonal matrix
U,

S~0!5122p iWDring
21W† ~B2!

5Uexp~2id!U†, ~B3!

whered is diagonal and real. Now, consider

Ŝ5exp~2 id!U†SUexp~2 id! ~B4!

512 i
a3ā*

E2E81 iG/2
, ~B5!

where

a5exp~2 id!U†g, ~B6!

ā*5exp~2 id!UTḡ* . ~B7!

We haveŜŜ†5Ŝ†Ŝ51 which yields

a3ā*5ā3a* , ~B8!

S (
c,t

uāc
t u2Da3a*5S (

c,t
uac

t u2D ā3ā* , ~B9!

1

2
G~a3ā*1ā3a* !5S (

c,t
uāc

t u2Da3a* . ~B10!

In Appendix C we show thata5ā. This implies Eqs.~B8!
and ~B9!, and Eq.~B10! reduces to

G5(
c,t

uac
t u25(

c,t
uāc

t u2. ~B11!

Finally, using Eqs.~B6! and ~B7! to replacea and ā by g
andḡ, using the unitarity ofU, and including the indexj for
completeness we find

G j5(
c,t

ugc j
t u25(

c,t
uḡc j

t u2. ~B12!

As a corollary, we present a relation between the partial
widths g and ḡ. This relation could be useful for showing
explicitly the symmetry of the conductance with respect to
flux. We recall that the entire flux dependence resides in the
matrix elementsV, and we work within the single-level ap-
proximation. We use Eqs.~B6! and ~B7! for the partial
widthsa, ā* and the relationa(f)5ā(f) derived in Ap-
pendix C. We have g(f)5U exp(id)a(f)
5U exp(id)ā(f)5U exp(2id)UTḡ(f)5S(0)ḡ(f). Hence
g(f)5S(0)ḡ(f).

APPENDIX C

Here, we prove the relationa5ā which was used in Ap-
pendix B. We assume

a5cā ~C1!

and show thatc51. To that end, Eq.~C1! is multiplied by
U exp(id). Using the definitions of botha, ā andg, ḡ, one
obtains

WDring
21V†5cUexp~2id!U†W~D ring

† !21V† ~C2!

5c@122ipW~D ring!
21W†#W~D ring

† !21V†,
~C3!

where we have insertedS(0) from Eq. ~B2!. Exploiting the
symmetry ofD ring and inserting the relation

D ring2D ring
† 52ipW†W, ~C4!

we find for the right-hand side of Eq.~C3!

c@W~D ring
† !21V†22p iW~D ring!

21W†W~D ring
† !21V†#

~C5!

5c@W~D ring
† !21V†1W~D ring!

21V†

2W~D ring
† !21V†# ~C6!

5cW~D ring!
21V†, ~C7!

which provesc51 and hence Eq.~C1!.

APPENDIX D

In this appendix we derive the flux dependence of the
various terms contributing to the conductance~35!. First, the
flux dependence of the total widthG j is calculated starting
from Eqs.~25!,

G j522 Im@VDring
21V†# j j ~D1!

522 Im(
k,l

$@~vk j
L 1vk j

Rexp~2 if!#

3D ring
21 @v l j

L1v l j
Rexp~ if!#%, ~D2!
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where we have inserted the parametrizations~7! and~8!. The
term proportional to sinf vanishes sinceD ring is symmetric.
Hence one obtains

G j5Ḡj~11x0cosf!, ~D3!

where bothḠj andx0 are flux independent.
To derive Eqs.~37! and ~38! we recall that the couplings

V and W obey the symmetriesV(f)5V* (2f) and
W5W* . Therefore the propagatorD ring defined in Eq.~16!
is symmetric and the partial width amplitudesg, ḡ given in
Eqs.~19! and ~20! are related by

g~f!5ḡ* ~2f!. ~D4!

Hence they can be written in the form

g~f!5m1n exp~2 if!, ~D5!

ḡ* ~f!5m1n exp~1 if!, ~D6!

wherem and n are complex and independent off. Using
this, one finds that the term;sinf in the expression

ga j
1* ḡb j

2 5~ma
1mb

21na
1nb

2!1~ma
1nb

21na
1mb

2!cosf

1 i ~ma
1nb

22na
1mb

2!sinf ~D7!

is antisymmetric with respect to the interchange 1,a↔2,b.
The transmission amplitudet ring,ab , by contrast, is symmet-
ric under the same interchange. As a result, the sum
2(a,bt ring,abga j

1* ḡb j
2 has the form given in Eq.~37! with posi-

tive amplitudesy0 , y1 and real phase shiftsj0 , j1 . The form
of Eq. ~38! follows from the parametrizations~D5! and~D6!
since the conductance is a symmetric function off.
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