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Conductance through a quantum dot in an Aharonov-Bohm ring
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Using scattering theory and the multichannel Landauétiar formula, we calculate the conductance of an
Aharonov-Bohm(AB) ring with a quantum dot embedded in one of its arms. The electron-electron interaction
within the dot is treated in a self-consistent mean-field approximation. An analytical expression is derived for
the AB oscillations of the entire device. This expression displays explicitly the dependence on temperature and
on the voltage applied to the dot. It is shown that the amplitude of the AB oscillations with pgeanishes
close to a conductance resonance of the quantum dot. This leads to a sudden phase chamgehiege
oscillations, in agreement with a recent experiniéfsicobyet al, Phys. Rev. Lett74, 4047(1995]. We also
find that the total width and the partial width amplitudes of each conductance resonance are oscillatory
functions of flux. This leads to oscillations in the excitation spectrum of the dot which may be observable in
further experimentq.S0163-18206)00224-X]

[. INTRODUCTION transmission phase through the dot. The paper of Yacoby
etal. has initiated a number of theoretitdl and

As a function of the electron density or the applied volt- experimentdf studies.
age, the conductance across a small and nearly isolated re- In the experiment,the conductance of the AB ring with
gion of an electron ga& quantum dotdisplays sharp reso- the quantum dotABQD) was measured as a function of an
nances. Within the Coulomb blockade model, this propertyelectrostatic potentidl, applied to the dot. A series of con-
has been explained as a manifestation of the Coulomb repufluctance resonances was observed and for each of them the
sion of electrons and the quantization of the electricalAB oscillations were investigated. From the oscillations with
charge! Indeed, the addition of a single electron to a dotPeriod h/e a phase was extracted which displayed the fol-
increases the electrostatic energy by an amount which at lolpwing features.(i) At each conductance resonance, the
temperature and for a sufficiently small dot is large enougtPhase suddenly jumped by on a scale much smaller than
to suppress the conductance through the system. This Cothe scale extracted from the conductance line shapeAll
lomb blockade can be compensated by changing the voltag€sonances investigated were in phase. Neither behavior had
applied to the dot, leading to the above-mentioned sharpeen expected from naive application of single-particle reso-
resonances. nance theory?

The Coulomb blockade mechanism has been investigated The fundamental reason for the sharp jump of the mea-
intensively in the past yeafs* The spacing of the conduc- sured phase was quickly understood. It was pointed-Gut
tance resonances was found to be essentially regulated by tHeat any continuous shift of the AB pattern was forbidden by
Coulomb repulsion of electroné two-body interaction ~ standard reciprocity symmetries known from the work of
However, other features such as the shape and the amplitu@ittiker* These symmetries state that the linear conduc-
of the resonances could be understood in the framework dance of any two-probe measurement is even as a function of
single-particle models. Within this framework, the strongthe magnetic fluxd. Hence the Fourier expansion of the
fluctuations of the amplitudes of adjacent resonances hawonductance G=ZX_,A,cos(2m®d/dg), with ®y=h/e,
been explained in terms of the chaotic dynamics inside theontains only terms even in flux, and any modification of the
dot. Such dynamics may be caused, for instance, by the iring only affects the amplitude&, rather than shifting con-
regular shape of the boundaty. tinuously the phases of the oscillatory terms. These latter

While all previous experiments measured the conductancphases stay constant unless the corresponding amphyide
of a quantum dot directly connected to leads, a recenhappens to switch sign. Such a switch may be interpreted as
experimert introduced a novel feature: By embedding thea sudden phase change hyprecisely as observed in the
guantum dot into one arm of an Aharanov-BokAB) two-  experiment. This reasoning, while basically explaining ob-
arm interferometer, and coupling the latter to two externakervation(i), also shows that the original idea of measuring
leads (see Fig. 1 for a schematic representatioviacoby the transmission phase through the dot by observing the shift
et al. claimed to have measured batmplitudeandphaseof  of the AB pattern does not apply.
the transmission through the quantum 8@ty shift in the In the present paper we show that, nevertheless, important
transmission phase, they argued, would be reflected in @formation about the transport through the quantum dot can
similar phase shift of the AB oscillations. Hence a standarde extracted from the AB interference experiment. This in-
measurement of the latter would reveal the behavior of théormation, however, resides in the amplitudgsof the AB

0163-1829/96/5@4)/1637911)/$10.00 53 16 379 © 1996 The American Physical Society



16 380 G. HACKENBROICH AND H. A. WEIDENMULLER 53

are derived in Appendix A. Appendix B gives a relation
between the total resonance width and the partial width am-
plitudes. A particular symmetry of the partial width ampli-
tudes is derived in Appendix C. Finally, the flux dependence
of the various terms contributing to the conductance is given
in Appendix D.

II. THE SCATTERING PROBLEM

A. The model

We write the HamiltoniarH for the ABQD system as the
sum of two terms,

H=Hg+Hr. 1)

Here, Hy describes the following four disconnected sub-
systems: The two leadsvithout coupling to the AB ring
the part of the AB ring not containing the dot, and the quan-
tum dot. The “tunneling Hamiltonian"H; (Ref. 12 de-
scribes the couplings between these four subsystems.

FIG. 1. Schematic representation of the system studied in this Explicitly, H, is given by
paper. A mesoscopic ring threaded by the magnetic dluis con-

nected to two external leads. A quantum dot controlled by the _ tor + +
plunger voltageJ , is coupled to the ring via tunnel barriers. Ho= az; J dE EdﬂECaE+Z €id; di+§j: Ejajq; +U.

2
harmonics rather than in the phases. Applying single-particlgjere, r = 1,2 labels the two leads the channels in either
scattering theory for the ABQD device and using the staniead (defined by the transverse modes below the Fermi sur-
dard Landauer-Bttiker formalism, we derive analytical ex- face), andi (j) the single-particle states in the AB rirfthe
pressions for these amplitudes as functions of temperaturguantum dot, respectivelyWe note that the spectrum of
and of the plunger voltage on the dot. We allow for thesingle-particle states in the leads is continuous while it is
existence of several channels both in the leads and in théiscrete in both the ring and the dot. The corresponding

arms of the AB ring. The electrons may be subject to wealksingle-particle energies are denoted By(the longitudinal
disorder within the ring. The electron-electron interaction inenergy in a channgle;, andE;, respectively, and the anni-

the quantum dot is included in a self-consistent mean-fielgjlation (creation operators bycle, d, and q; (by C;TE’

approximation. We find that for almost all voltages the AB df, andqu, respectively. The quantityU is the electrostatic

03ci|]atio_ns of the current are dominated by the Iowe;t _hari:harging energyof the dot. The form ofJ will be specified
monic with period®,. The amplitude of this harmonic is he|ow, For brevity, we writd, also in the obvious form
shown to vanish generically close to a conductance reso-

nance of the dot. This produces an apparent shiftrtof the Ho=H eadgt HiingT HaotT U. 3
®,-periodic AB oscillations. We predict that the amplitude To mimic the effect of an external potentiéhe plunger

changes sign over an energy mte_rval of qrﬁgw. More- voltageU,) on the electrons on the dot, we use the approxi-
over, our formulas for the scattering matrix of the system

how that the widths of th nductance resonan W(:W/ation usually made in studies of the Coulomb blockade:
Zsothe oicupeation psro?aabilleiti%(; 01EJ gtgt:se oﬁst%eadgte ?):csillat% e assume thatl, affects only the single-particle energies
periodically as functions of the magnetic flux. This leads todér?g;rl;i tdhcg.f(li/:(r)nre specifically, we assume a linear depen-
oscillations of the energy of the excited levels of the dot. Our

predictions can be tested by further experiments. Ej= E]Q+ alU,, (4

The paper is organized as follows. In Sec. |l the scatterin . . . .
pap 9 %vherea is some function of the capacitance matrix elements

problem for the ABQD device coupled to two leads is  th We al hat th .
solved. The Hamiltonian of the system is introduced in Sec®f the system. We also assume that the energjeare not

ITA. In Sec. Il B theS matrix is derived under th@hysically degeneratehThis_isgbviouslyjustirigdgot)r stﬁtes of fixe_d ?p:g
unrealistig assumption that the interaction of electrons in theMoreover, the spin degeneracy is lifted by the magnetic field.

dot can be neglected. This shortcoming is removed in sedVe address t_h's pomt_ agan at the end of Sec. Il C.
Il C where we account for the electron-electron interaction in The tunneling Hamiltoniartir has the form

the mean-field approximation. The main result of Sec. Il is

the scattering matrix of the ABQD ring given in Eg4.8) Hr=
and (28). In Sec. Il we use this result and the standard
Landauer-Bttiker formalism to derive the conductance of

the ABQD device. Our results are compared with the experi- +
mental observation§) and (ii). The results are summarized

in Sec. IV. Various details are given in four appendices.The matrix element¥V describe the coupling between ring
Fundamental symmetry properties of the scattering matriband leads, the matrix elements the (much smaller cou-

> | dE WL(E)chidi+H.c.

a,i,r

> VPgldi+H.c.|. (5)
L],p
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pling between ring and dot, am=L,R labels either side of trix elementsW andV do not vanish, transmission through
the dot. In the experiment of Ref. &, can be controlled by both arms of the AB ring is possible. The single-particle
two negatively charged tunable gates. In analogy to(Bg. states in the quantum dot also turn into resonances. These
and in keeping the order of terms in E(p), Hy can be resonances appear in the scattering matrix of the system as
written as distinct structures superposed on a smooth background, the
latter being due to the states in the ring. It remains to display
Hr=(Hw+H{) + (Hy+HY). (6)  these features by explicit construction of the scattering ma-

As in previous work, we neglect the dependence of the cout-r'x'

pling matrix elementdV on the energyE. This is justified _ _ _

because we focus attention on an energy interval of the order B. S matrix for noninteracting electrons

of the Coulomb energy. Estimates show that the matrix ele- |n the present section we construct tBanatrix and use
ments ofW vary significantly only over a much larger inter- the result to display some of the physical features of our

val. Because of the high level density in the ring compared tanodel. We neglect the interactidd (its effect is investi-
that in the dot, the same statement hotulstatis mutandigor gated in Sec. IIE

the dependence of the matrix elements/obn the index . To derive the scattering matri®,,= 8,,— 27i T, at en-
It follows from time-reversal invariance that for vanishing ergy E and (dimensionlessflux ¢, we solve the Lippmann-

magnetic flux through the ring, all matrix elemei¥s V can  Schwinger equation

be taken real. To account for nonzero fklx(the total mag-

netic flux through the ABQD devigewe attach to each ma- T=Hi+HHE—Hy+in) T 9

trix element Vﬁ a factor expi¢), where ¢p=27d/P.

) for the transition operatof. Here, % is positive infinitesi-
Hence we write

mal. This equation can be solved algebraicédlge Ref. 13
VE =Ykt =L @) Alternatively, the solution can be obtained by summing up
vt e the Born expansion

Vi exp(—ig)=Vi*expid)=v], (8)
L

whereuvj; andviFf are real. This parametrization of the flux
dependence in terms of a phase factor is adequate whenever

1
T:HT+ HTTHT

otin

the single-particle states both in the AB ring and in the dot +H H 1 He+---. (10

do not change appreciably with flux, i.e., whenever the flux E-Hot+tin "E—Hotiy

through each arm of the ring and through the dot is smalleﬁ_ . . .

than®,. 0 th|s end, we introduce the_ Green functions of the leads,
We have chosen to put the flux dependence on the matrigpe fing, and the dot, respectively,

elementsvR. We could equally have chosen the matrix ele- 1

mentsV", or made any other choice which guarantees that Gram=——————— (12)

i i it pi E—Hieagt 17

upon moving an electron once around the AB ring, it picks

up the correct phase factor. The resulting observables must

not depend on this choice. G. = 1 (12
The model defined by Eqg1)—(8) has the following "M E—Hngtin’

physical content. FotJ =0 and for vanishing coupling ma-

trix elementsW and V, the eigenstates ofl are bound 1

single-particle statedocalized in either the dot or the AB Guor= E—Hyortin (13

ring) and single-particle scattering statiése channel states

in the leads Because of the relative smallness of the quanWe are interested in transitions between states in either lead
tum dot, the mean spacing of the single-particle levels in th@nd consider the projectiom,q of T onto the lead states.
AB ring is much smaller than that in the dot. Péé=0 and  Using Eq. (6), we obtain for the Born series foFjeqq the
nonzeroV, the single-particle states in dot and ring are€xpression

mixed but remain bound states. Fé=0 and nonzerdV, ‘ " ‘

the bound single-particle states in the AB ring turn into scat-  Tiead™ HwGringHwt HwGringHwGlead 1 wGringHw

tering (and conductangeresonances with a finite lifetime + +

(due to the couplingV to the leadswhile the single-particle + HwGringHvG o vGringHw + - - (14
states in the quantum dot remain bound. Passage from onge collect first all terms not containinGq, and then all
lead to the other is now possible through that arm of the ABremaining terms. The result has the form

ring which does not contain the quantum dot. We will as-

sume throughout the rest of the paper that the resonances T~ HWD,TnlgH$V+ HwD Er%gHJ/DJOJEHVDrTn:;H\W;V’ (15)
generated fo/=0 and nonzerdV are so narrowly spaced,

and have such large widths, that the resulting scattering mavhere

trix is in fact a smooth function of energyActually, we ) +

employ the construction using bound single-particle states in D ring,ik = (E — €) i+ 1 m[ W W]y, (16)
the AB ring only in order to obtain an explicit analytical 1

expression for the scattering matjix¥hen both sets of ma- Dotji=(E—E}) 8 = [VDyingV'js (17)
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are the propagators for the ring and the dot, respectively. lexp(¢). Equation(18) shows that this naive expectation is
Eqg. (17) we used the notatio=V"+ VR, Moreover, in Eq. wrong: the dependence Qj;] is more Comp|ex_

(16) we dropped a principal-value integral which is known  we show in Appendix A that th& matrix (18) has the
not to be important if the energy dependence of the matrixyell-known'> symmetry properties

elementsW is smooth. This is the assumption made in Sec.
INA.

The resulting form forTg,q allows for a straightforward
physical interpretation, in keeping with the remarks at the
end of Sec. IlA. We note firdisee Eqs(16) and (17)] that S(P)S* (—p)=S*(¢p)S(— ¢)=1, (22
due to the coupling to the leads, both the states in the ring
and those in the dot have acquired a finite width. Moreoverrequired by the fundamental symmetries of the Hamiltonian.
Eqg. (15 shows that the passage of electrons through th&he unitarity relation21) for S is a consequence of current
ABQD device may take place in either one of the following conservation. Equatio(22) is required by full time-reversal
two ways.(i) The electrons may not enter the quantum dot ainvariance(including a reversal of the magnetic figldAs
all [first term on the right-hand side of E(L5)]. This con-  shown by Bitiker,}* both symmetries together imply that the
tribution should and does not depend on the properties of thénear-response form of the conductance of the non-
dot. In particular, it is independent both of the plunger volt-interacting electron system is an even function of magnetic
ageU, and of the magnetic flu®. (ii) The electrons enter flux.
the dot at least oncsecond term on the right-hand side of  Both nontrivial contributions t& have the form of a sum
Eg. (15)]. This term also accounts for multiple scattering of over resonances. As explained earlier, the resonances due to
electrons around the ringiTo see this, expand the inverse the single-particle states in the ring are narrowly spaced and
propagatoD 4 in powers of the tunneling amplitud&and  overlap strongly. We accordingly consider the second term
obtain a power series containing only even powersvof on the right-hand side of E¢418) and the partial width am-
Each term proportional toV?" corresponds to an plitudes as smooth functions of energy. In contradistinction,
(n+1)-fold passage of the electron through the dot and conthe resonances in the dot are expected to be isolaled
tributes up to therf+ 1)st harmonic of the AB oscillations.  spacing is much larger than their total widkthzecause the

Using the relationS,,= 8,,—27iT,,, we find for the dot is both smaller and better isolated from the outside than

S-matrix elementSLS, (connecting channdb in leads with the ring. In such a case, a single-level approximation for the

S(¢)S'(¢)=S"(¢)S(¢)=1, (21

channela in |eadr) the final expression third term on the I’ight-hand side of EQ].S) is justlfled We
accordingly assume that the matiiXy, is diagonal, with

SHIROE 5fsaab—2wi[WDJntWT]§b—i[yDao%T];S?iS) diagonal elements given by
where (Ddot)“E(E_EJ_AE]+|F]/2)5]| . (23)

In scattering theory? AE; is known as the energy shifof

the resonance position with respect to the bound state energy
— f N ttos of the isolated systepandI'; as the total width of the
Yor=\2a[W(D /.9 VT, (200 resonance with index. Combining Egs(17) and (23), we

find thatAE; andT’; are given by

Yai= V27 W(D ing) VT, (19

andr,s=1,2. The term in Eq(18) involving the Kronecker
deltas accounts for reflection from chanfeback into the

— -1
same channeéhnd not for transmission of electrons from one AE;=RgVD;,V']j; , (24)
lead into the other In the light of the remarks on th&
matrix made above, the physical interpretation of the remain- j=-2ImV DrTnlgVT]jj' (25)

ing two terms on the right-hand side of E38) is obvious.
[For the sake of completeness, we mention that in(E§),
we have suppressed an overall phase factor. This factor a
counts for elastic scattering in the channels in the absence o

the coupling matrix element¢ andW and isg}ftally imma-

terial for all that follows] In scattering theory, the quanti- . t2_ —r2

ties y3; and y3; are known as partial width amplitudes. We L ; el ; il (29

note that in our case, the entire dependence on the¢flok

the S matrix resides in these partial width amplitudes, and inwe emphasize that because of the oscillatory behavior of the
the inverse propagatd® .. Both quantities contain factors partial width amplitudes, bott E; andI'; are also oscillat-

VR and are therefore oscillatory functions of flux. ing with flux.

Equation (18) demonstrates the nontrivial quantum-  According to Eqs(24) and(25) both the energy shift and
coherence properties of the ABQD system. The total transthe typical resonance width have the same order of magni-
mission amplitude through the ABQD system is the sum oftude. When the single-level approximation applies, the en-
two terms. Naively, one might have expected that these twergy shift therefore is much smaller than the resonance spac-
terms correspond, respectively, to transmission through eing and the resonance positiéj+ AE; is found to be only
ther arm of the AB ring, and to differ in phase by a factor weakly flux dependent.

Using unitarity, we can shovisee Appendix Bthat for iso-
jted resonances
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C. Self-consistent approximation termUq2;-;(n;)n;,. The angle brackets indicate an expec-
to the Coulomb interaction between electrons tation value which is taken with respect to the Hartree-Fock
on the quantum dot wave function. This correlation term leads to a shift of the

The model used in Sec. IIB is unrealistic because it neSingle-particle energied; —E;+UqZj . (n;;). A corre-
glects the electrostatic charging energy, i.e., the Coulom§Ponding shift is found for the positions of the resonances of
interaction between electrons on the quantum dot, the fund4P® S matrix, which otherwise has the same form as in Eg.
mental cause for the Coulomb blockade. In the present seéld). . . ]
tion we remedy this shortcoming. We do so in the framework _ 10 discuss the physical content of the resulting expres-
of the mean-field approximation. At the end of the sectionSioN: We again use the approximation that the resonances on
we discuss possible modifications of our results due to genfh® guantum dot are isolate(@iagonal approximation for
ine many-body effects beyond the mean-field approximatiopdor)- We also assume that m_mqlly there are no electrons on
(quantum fluctuations the quantum dot. Mor(_eover, it is assumed that _the plunger

As far as we know, the Coulomb blockade problem has/oltage Uy, is chosen in such a way that the first empty
been addressed in the literature in two wajsThe interact- s_mgle-partlcle level Ia_lbeled 1 on the quantum dot is located
ing electrons on the quantum dot are brought into contacight above the Fermi enerdye . Increasing—U,, we fol-
with a heat bath. A recent example is provided by the workoW this and the next higher single-particle level labeled 2,
of Kamenev and Gefelf. The solution obtained by these Neglecting all levels withj>2. We expect that as the first
authors applies to the entire regime between weak and strodgvel moves into the Fermi sea, it turns into a resonance of
coupling. It does not, however, address explicitly the coutne scattering matrix and therefore of the conductance
pling of the system to external leads) The coupling of the  through the dot. At the same time, this level should become
quantum dot to the leads is explicitly taken into account; afilled with an electron(more precisely, the occupation prob-
zero temperature, the electrons in the leads fill all states up t@bility of the resonant state should increase gradually from
the Fermi energy. This is the approach taken by Beendkkeg€ro to ong As this happens, the second level should get
and by Ng and Leé&’ Here, we follow this second approach shifted upwards by the Coulomb repulsion.
because it permits us to calculate the conductance directly !N the limit of nonoverlapping resonancébe resonance
via the Landauer formula. For simplicity, it is assumedSpacing is large compared to the resonance jdtie scat-
throughout this section that both temperature and the width&ring matrix has the form
of the resonances are smaller than the single-particle mean

resonance spacing. o Er ) = 0" 8ap— 27 [WD;,0W' 15,
We use a formulation first introduced by Ander§bin
the context of localized magnetic states in metals, and also _izj: ng(Ep—EjﬂLiFj/Z)’leS, (28)

used by Ng and Léé for quantum dots coupled to two leads.

We go beyond these works in two respects. As explainegnere vais voi, andT; are defined in Eqs(19), (20), and
above, we(i) couple the quantum dot to an AB ring threaded s, res;J)ecti\]/er. We have replaced the encBpby the

by a magnetic fluxXthis gives rise to the oscillatory behavior Fermi energyE; as required by the Kubo formula for zero
of the partial and total resonance widths with flux diSPIayedtemperature. The energi&s depend on the plunger voltage
above, and we(ii) allow for an arbitrary number of open U,. Our result(28) closely resembles Ed18) which was
channels in either lead coupled to the ring. obtained in the absence of interactions. The only effect of the

We complete the definition of the Hamiltonian given in jnieraction is to shift the resonance positions: the resonance
Sec. Il A by defining the electrostatic charging eneldpas energiesE; are given by

U:UOZ njnj’a (27) E12E1+AE1+U0<n2>, (29)
< !

. - E,=E,+ AE,+Ug(ny), 30)

wheren;=q;q; . The energy needed to add an electron to the _ .

quantum dot occupied bl electrons is obviously given by where, at zero temperature, the average occupation probabili-

UoK. We neglect the Coulomb interaction between electrondies (n;) are defined self-consistently by the conditions

in the AB ring, and in the leads. This is legitimate because

ring and leads are very much larger than the dot, and the ring (n)= i EFdE I

is strongly coupled to the leads. As a consequence, the elec- V) T|E-Ej+il;/2?

tronic states on ring and leads are more spread out, and the

electrons are better screened, than those on the dot. 1 .

We calculate the scattering mati$,(E, ¢) at the Fermi =—tan {2(Ee—E)/Ty],  j=1.2.
energyEg in the Hartree-Fock approximation. A similar cal- (32)
culation for the one-channel case is described in Ref. 18; for
the many-channel case, the methods described in Ref. 13 cdfe solutions of these equations are easily found and have
be used. Therefore we do not give any details and focufhe following qualitative feature(For simplicity, we denote
attention on the results which are anyway very similar inthe sumsE;+AE; by E{.) For Ez—E| negative and large
form to the ones obtained in Sec. IIB. The Hartree-Fockcompared td”;, we have(n;)~0. The occupation probabil-
approximation essentially amounts to solving the scatteringly (n;) grows monotonically with increasinge—E; and
problem for an effective Hamiltonian with the correlation reaches asymptotically the value unity. The increase essen-

(31)
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tially starts atEg—E{~—1T; and essentially occurs within treatment is unrealistic in the sense that it neglects all inelas-
an energy interval of widtlJ,. At finite temperaturd, the  tic scattering. In the experiment the scattering through the
integrand in Eq(31) has to be multiplied by the Fermi func- quantum dot is predominantly inelastic. Nonetheless, even a
tion, and the domain of integration extends over the entirémall coherent component will lead to strong oscillations of

real axis. Then, the increase ¢h;) essentially starts at the excited levels since the charging energy is typically much
Er—E/~—kgT and is otherwise similar to the ca3e=0. larger than the level spacing. _

The resulting influence of the Coulomb energy on the The self-consistent picture used above is known to break
scattering matrix depends crucially on whetkgf is small ~down for pairs of degenerate levels at very low temperature.
compared to or of the same size as the level separatiol this case, quantum fluctuations dominate the problem,
|E.—E,|. In the first case, we choogg, initially in such a which acquires much s_|m|lar|ty with the Kondo problem.
way that bothE} andE} lie aboveEr . Then Egs(29), (30), Argur_nen?s put fomard in Ref. 17 strongly suggest that for
and (32) show that both(n;)~0, so thatE,—E;~E;—E;. ;[he T|tuet1t;pr.1tcc:n5|dere(tj |)n thehpresertn pa(ﬁmmtdetg_;eneralte

: rog ; . levels at finite temperaturesuch quantum fluctuations play
As we increase- U, Fhe energyE, dlyes into the Fe_rml a negligible role, and that the treatment given in the present
sea, andn,) starts to increase according to Eg§2), while . q telv describes the bhvsical situation. As a re-
(n,) remains essentially zero. As a consequence, the spacinSeCtlon adequately describes the physical situation.

2 R o s%lt, we essentially recover the picture of isolated resonances
E2_E1~E2_E1+,U°<n,1> grows, too, until it reaches the developed in Sec. 1B, modified by the “stretching” of the
asymptotic valuee, —E; +Uy. As aresult, the higher level gjngje_particle spectrum due to the Coulomb interaction.

is pushed up by the Coulomb energy as the lower one divespjs jystifies our use of the results of Sec. IIB in analyzing
into the Fermi sea. In the second c#sderekgT is at least ¢ experiment of Yacobgt al® in the next section.

comparable to the spacin§,—E,|), a rather more compli-
cated pattern may result. The first case is the one applicable
to the experiment where a series of resonances roughly sepa-
rated by the Coulomb energy is observed. In this case, the The dimensionless conductancg=(h/e?)G of the
Coulomb interaction leads only to a shift of the levels, andABQD device is obtained from the multichannel Landauer
for any one resonance observed experimentally the consideformulat®

ations of subsections IlA and IIB apply without modifica-

IIl. CONDUCTANCE OF THE ABQD DEVICE

N
> |tan(E)|2 (33
a,b=1

tion. of
This result can easily be extended to a situation where gzzf dE| — —
) JE

there areK electrons on the dot, and where more single-

particle levels are taken into account. We conclude that th?‘leretab(E)zslf)(E) is the transmission amplitude through
; : N

char.gmg'energy, at least on the level Of. thF?' mean-field apg,q ring for an electron entering the ring via chanbein

proximation, merely leads to a renormalization of the r€S016ad 2, and leaving it via channalin lead 1. The derivative

nance positions. This allows us to simplify notation and too¢ thé Fermi function f is given by —(df/JE)

denote the resonance positions againBjyrather than by = (4kgT) ~LcosH q(E—Er)/2ksT], andE is the Fermi en-

E;, keeping in mind that the former are derived from a set ofg gy in the leads. A factor 2 accounts for the spin degeneracy
self-consistent equations taking account of the charging ens¢ the electron.
ergy. _ _ In the following it is assumed that both the charging en-
It may be argued that since we consider a case where e,y “andksT are much larger than the resonance widths
Coulomb energy has the only effect of increasing the spacing ““ g, these restrictions together imply that the conduc-
of the resonances, the present subsection is altogether redtﬂg;
t

d b ; al he situation | nce through the quantum dot is much smaller tb&in.3
ant, because for a single resonance, the situation Is exactpfyis is 5 necessary condition for the Coulomb blockade re-

the same as without any Coulomb interaction. However, OUgime \we note that both conditions are met in the experiment

result has a peculiar feature_ Which_ is specific _for the AB ¢ Yacoby et al. where Uy~500 eV, ksT~9 weV, and
geometry and hence absent in previous calculations for do ~0.2 uevs

directly coupled to leads: the occupation probabilities as well ! The assumptiotJ,>T'; implies that we work in the re-

as the resonance energies are oscillatory functions of flu ime of isolated resoona]nces. Hence an appreciable current
and the oscillatory behavior of the resonance spacings is any%hn pass the dot only if a resonance in the dot is close to the
plified by the Coulomb interaction. These statements fOIIOWFermi energyE;~Eg . The contribution of other resonances
from the oscillatory flux dependence of the resonance widths, 4] to the trahsmiFssion amplitude is smaller by a factor of
L. Tq gxplore the_ consequence of this feature, we denot rder I';/Uy<1 and is therefore negligiblgWe indicate

the m|n|mum(maX|mun) vglues. of theF'j bY I'rminj and qualitatively below how other resonances contribute to the
Fmaxi_’ respectively. Let us imagine thEﬁ is slightly above current) The indexj is suppressed in the following to sim-
Er with T'in1<E; ~ Ep<I'may1. Equations(29), (30), and ity notation. According to Eq(18), the transmission am-
(32) show that the resonance spaclag-E, oscillates with  pjitude has the form

flux between a value close toE,—E;+Uy/2 (for

I'1~T'nax) and E;—E;+Uq (for I'1=T'n ). A similar oyl
reasoning shows th&,— E, oscillates betweek,— E; and tap=tiingab™ | EZET i1/ (34)

E;—E;+Uy/2 whenE; is slightly belowE. Such oscilla-
tions of the excited levels of the dot should be observable itwheret i,y ap=— 2i 7= W2,(D°); "W is the transmission
experiment. This is true even taking into account that outhrough the part of the ring not containing the dot. This con-
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tribution is independent o and U, and only weakly de- We integrate over energy and find for the terms linear in

pendent on energythis energy dependence will be ne- the resonance denominator the result
glected.

Inserting Eq.(34) into the Landauer formul433) and
summing over the channels yields several terms whose flux f dE
dependence is given in Appendix D. As a result, one finds

af) e _r_
2 sindsin(é— 5)=kB—TBSIn(§—,8), (40)

of 4y, o where the amplitud® and the phas@ are defined by
g= f dE( ToE [g,inng msmﬁsm(fo— 5)
4 B=[A{+AZ]"?, (41)
Y1 e
+——————cospsindsin(&,— 5)
+
1#%ocosp tanB=A,/A,, (42)
Zo+ 2,C0Sp+ 2,C0S
VAR (35 ith
(E—E)2+T1%4 wit
We have used the following parametrizations: . _f dE( af) KsT(E' —E)/2 .
I'=(1+x,c08p)T, (36) ! JE) (E—E")2+T7%4’
. . = f kg T(I'/4)
2, 2= ysexpi&) +y.expli ;) cosp]T, - _ory_ keTUMM
az,b ringabYa Vb [Yoexp(i&o) +yiexpi §;)cosp] A, f dE( o (E—E’)2+F2/4' (44)
(37)

In the regimekBT>F_, one finds that botlA; andA, become
112[2212 T2 independent of’,
22 [val*[7i[* =20+ z1c0sp + z,c08 ST, (39)

We have introduced positive amplitudés/q,y1,2g, the real Ay — EPJ“ dE( 1 )coshz( Er E) 45
amplitudesxq,z;,z,, and two real phase shifts, &, all of 8 E'-E kT )’

which do not depend ogh. The resonance denominator has
been parametrized in terms of the anglelefined as

EF—E’)

Ay —cosh?
— —C0S
5o EEI-iTR2 2 278
SXHI0)= " E—E Ty 39 o ,
where(45) is a principal-value integral. As a result, bd&h

This angle takes the valug/2 atE=E’ and approaches 0 and g shown in Fig. 2 are independent bfand are func-
for E— — and for E— . tions only of the ratio Eg—E')/kgT. We note thatB de-

To averagey over disorder, the phase shiffg and¢, are  creases algebraically with increasifige—E’|. The integral
averaged over some suitable interval. This procedure onlgver the fourth term in Eq(35) which is quadratic in the
rescales the amplitudeg,, y; and the phase shiftg,, &, resonance denominator can easily be done using(4&).

but leaves thdorm of Eq. (35) unchanged. Collecting results, we finally obtain
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r We now analyze the AB oscillation described by E4y).
9=0ringt 4yoﬁB sin(éo— B) In a multichannel ring the dominant oscillatory contribution
B is due to theb y-periodic interference term. This term is both

r ) larger than the resonance term by a faotgrmg and falls off
+4ylkB_-|-BS'”(§l_ﬂ)C°5¢ more gently than the latter with increasitg-—E’|. But at
_ each resonance? changes byr with increasinger—E’,
ml' zy+2z)cosp+ 220032¢n o EF— E’ with &; essentially staying constant. Therefore the oscillating
2kgT 1+ Xxocosp v kgT interference term always changes sign in the interval

—ow<Eg—E’'<® (compare Fig. B As a result, the ampli-
tude of thed ,-periodic oscillations generically vanishes for
any value of the phase shift, somewhere in the vicinity of

Equation(47) allows us to discuss in detail the dependence

of the current through the ABQD device on energy and mag_each resonance. The precise location of the zero of the am-

netic flux. To fix notation, we refer to the first term on the Plitude depends o8, as well as on the relative magnitude of
right-hand side of Eq47) as background term, to the second the third and fourth terms on the right-hand side of &).

and third terms as interference terms, and to the fourth ternihe change of sign of the amplitude of tHg-periodic os-

as resonance term. The background teg, comprises the cillations occurs over an interval of ordkgT. Indeed, this
bulk part of the current. This term is independent of bothinterval is determined by the behavior 8f and Fig. 2 shows
energy and flux. It is due to transmission of electrons througfthat 8 increases from zero tar over an interval of order
that arm of the AB ring which does not contain the quantumkgT. At the zero of the®-periodic oscillations one finds
dot. In order to focus on the resonance peaks, this term i8B oscillations of shorter period in the flux caused by the
subtracted in the experimental analysis from the total currentigher harmonics contained in the resonance term. Their am-
through the device. All remaining terms are smaller than theplitudes reach maximum value &-=E’ (independent of
background term by a factoF/kgT<1. The interference ¢£;). In conclusion, Eq.(47) predicts a zero of the lowest
terms are due to the interference of the background amplinarmonic close tdbut not necessarily athe maximum of
tude with the transmission amplitude involving passagghe higher harmonics. This is in agreement with the results of
through the quantum dot. These terms display resonant bé numerical study of the ABQD devic@.Experimentally,
havior (through the amplitudeB) and involve the phase the higher harmonics have not yet been investigated.

shifts &, and &,. The latter quantities depend on the geom- In deriving Eq.(47) we have neglected far away reso-
etry of the ring and the distribution of disorder. One of thenances of the dot. Their contribution to the current can easily
interference terms is flux independent, while the other disbe found by including in Eq(34) the sum over resonances
plays ®,-periodic AB oscillations. This particular depen- j'#j. Performing the same manipulations as before one
dence on flux is the result of the temperature average. Afinds that the far away resonances lead to AB oscillations
zero temperature, both interference terms give rise to highewith a plunger voltage independeramplitude of order
AB harmonics; see the integrand of E§5). The amplitude \/ml"/uo< 1, wherel is a typical total resonance width of
of the resonance term has the usual temperature dependertbe dot.

known for thermally broadened resonarfcesquantum dots Inelastic scattering in the quantum dot destroys the uni-
directly coupled to leads. However, in the AB geometry thistarity of theS matrix. Phenomenologically, this increases the
term is flux modulated and contributeb,-periodic and widths of the transmission resonandedy the addition of
®,/2-periodic AB oscillations as well as all higher harmon- an inelastic widtR’*and thereby reduces the amplitudes of
ics. both the interference terms and the resonance term. The fun-

(47)
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damental property of the current to be an even function otumulation of additional charge in the AB ring outside the
the applied flux remains unchangddt least within the quantum dot responsible for this finding. Their explanation is
present  phenomenological models for inelastichased on the capacitive coupling between the gate regulating
scattering®’). We conclude that with properly rescaled am-the number of electrons on the dot and the two gates forming
plitudes, Eq(47) accounts for the current through the ABQD the barriers between the dot and the AB ring. Such a cou-
device even in the presence of inelastic scattering. The basping is not included in our Hamiltonian and its investigation
conclusions concerning the temperature and flux dependenég beyond the scope of this paper.

of the various terms remain valid.

As the last point, we investigate the relative phase of the V. SUMMARY
®,-periodic AB oscillations at different conductance reso-
nances. The amplitude multiplying apsn the interference In this paper we have derived an explicit expression for

term in Eq.(47) is clearly real. Therefore two different reso- the S matrix of an AB ring with a quantum dot embedded in
nances are either in phase, or completely out of pliaisase one of its arms. The transmission amplitude through the
difference 0 orm). Which of these two values is realized ABQD device was shown to exhibit a resonance whenever
depends on the signs of the matrix elemdtitsnneling am-  there is a transmission resonance through the quantum dot.
plitudes”) Vi; andVi; connecting states in the dot and in the We have also found that the entire dependencg of the
AB ring. These amplitudes are givErby the overlap inte- magnetic flux resides in the total widths and the partial width
grals amplitudes of the transmission resonances. These quantities
are oscillatory functions of the flux. As a consequence, the
s v e excitation spectrum of the dot oscillates with magnetic flux.
Vi om JA(S)(‘//kV ¢ — ¢ Vih)dS. (489 such oscillations may be observable in further experiments.
Using the Landauer-Btiker formalism which expresses
The integral extends over a surface in the barrier region sepahe dimensionless conductange=(h/e?)G through the
rating the dot from the ringthe indexs=L,R selects one of ABQD device in terms of th& matrix, we have obtained an
the two barriers The functionsy, are scattering solutions of analytical expression fay. The AB oscillations with period
the full HamiltonianH in the region outside the quantum dot h/e were shown to vanish close to the peak of each conduc-
and drop smoothly to zero within the dtSimilarly, the  tance resonance. We find that the higher AB harmonics have
statese; are solutions of the Schadinger equation involving  maximal amplitude in the vicinity of this node. Our results
H within the dot, and are exponentially small outside the dotaccount for recent experimerftas well as numericHl find-
As one changes the plunger voltadg, one sweeps through ings. However, in the present framework we cannot explain
a series of resonances each associated with a partigylar the observation that the AB oscillations with peribte are
while the statesy, are unchanged. Therefore the relativein phase for all resonances.
phase of thedy-periodic AB oscillation at a conductance

ﬁ2

resonance labeledis determined by the corresponding state ACKNOWLEDGMENTS
¢; on the quantum dot.
It turns out that the sign of the amplitud¥sdepends on We thank the authors of Ref. 6 for a copy of their work.

the nature of classical dynamics within the dot. If the equaOne of us(H.A.W.) is grateful to Y. Gefen, who introduced
tions of motion for the closed dot are integrable, the relativéhim to the problem, and to J. Imry and A. Yacoby for dis-
phases are expected to change in a regular way which gussions. G.H. gratefully acknowledges support by a Feodor-
specific for the particular system at hand. Consider, for inlynen Research Fellowship of the Alexander von Humboldt
stance, a planar dot of circular shape. Using polar coordiFoundation and by NST Grant No. DMR-9215065.

nates (,6), we can write the eigenfunctiong; in the form

BT, 6) =Ry (r)exp(mé).>* From Egs.(7), (8), and(D7) it APPENDIX A

follows that the amplitudes of the flux-dependent interfer-
ence terms carry a relative sign- Q.)m'*m for resonances
with angular momentunm andm’, respectively. Therefore
resonances withni—m’) even are expected to be in phase s s ) s
while resonances withnf—m’) odd should have a phase ab(E, )= 6655 — 27 [WD™ "W ], (A1)
shift equal tosr. For quantum dots with chaotic classical h

dynamics, on the other hand, it has been shown that thgnere

partial width amplitudes and therefore the amplitutfebe- .
have statistically in a manner described by random-matrix Diy=(E—€)8— > ViiVik
theory® We thus expect a statistical behavior for the relative Ik ok 4 E-F;
phases of different resonancesith values 0 orw). As a

consequence, the amplitude of ¥hg-periodic oscillations is  is the propagator of the full ring. It exhibits resonances of
not expected to have the same sign for all resonances. Thi®th the dot and the outer part of the ring. The equivalence
statement holds both for integrable and for chaotic dynamicef Eq. (A1) with Eq. (18) can be shown, e.g., by expanding
within the quantum dot. Experimentally it was folrttiatall D ~?! in powers ofV and resumming all terms in the series
of the observed resonancgbe number of which is of order for S containingV. This yields the third term of Eq18)

10) are in phase. Within the framework of our model, this while theV-independent term equals the second term of Eq.
result is surprising. Levy Yeyati, and Biker’ hold the ac-  (18).

In this Appendix we prove the symmetry properti@4)
and(22) of the S matrix. It is useful to writeS in the form

+im[WW]  (A2)
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Inserting Eqg.(Al) into Egs.(21) one observes that the Finally, using Eqs(B6) and (B7) to replacea anda by y
latter immediately follow from the equation andry, using the unitarity ofJ, and including the indek for

completeness we find
-D'=2ix )
D-D'=2i7#W'W (A3)

which in turn follows from Eq.(A2). Time-reversal invari- Ti=2 [7%12=2 752 (B12)
ance implies that the coupling matrix elements obey ot ot

W(d’):WT*(_ ¢) and V(#)=V*(—¢). This implies As a corollary, we present a relation between the partial
D(#)=D'(— ¢). With this relation, Eqs(22) also reduce 0 igths v andy. This relation could be useful for showing
Eq. (A3). explicitly the symmetry of the conductance with respect to
flux. We recall that the entire flux dependence resides in the
APPENDIX B matrix elementsd/, and we work within the single-level ap-

In the following, we derive the relationship proximation. We use Eqs(B6) and (B7) for the partial

: o . _— . ! )
FjZEC,t|7£:j|2:Ec,t|;gj|2 between the total resonance width widths «, «* and the relationx(¢) = a(¢) derived in Ap

. C ; . . pendix C. We have y(¢)=U exp(d)a(ep)
and the partial width amplitudes. This relation follows from —
the unita?ity of the scattepring matrix. =U eipsq(‘g))i(d’)zu exp(28)UTH(¢)=S"1(4). Hence
In keeping with the main text, we assume the resonance¥(%) =S ¥(¢).
of the quantum dot to be isolated. In the vicinity of a par-

ticular resonancé¢ we write theS matrix (18) in the form APPENDIX C

YXFF Here, we prove the relation= « which was used in Ap-
—go_;j_ "7 endix B. We assume
S=STl e T ®8y P B

a=Ca (Cy
where we have suppressed the indedabeling the reso- ) o
nance energy, the resonance width, and the partial width an@nd show that=1. To that end, Eq(C1) is multiplied by
plitudes. The matrixS© is unitary and symmetric by con- U €xp(d). Using the definitions of botk, « andy, vy, one

struction and can be diagonalized by an orthogonal matribtains

Y. WD,V =cUexp(2i )UTW(D], ) V7 (C2
O=1-27iWD,, W' B2
S W Diing (B2 = C[1— 21 TW(D o) ~“WHW(D ) V1,
—Uexp(2i 5)UT, (B3) (C3)
o _ where we have inserte§(®) from Eq. (B2). Exploiting the
where § is diagonal and real. Now, consider symmetry ofD i, and inserting the relation
S=exp(—i8)UTSUexp(—i0) (B4) Dying— D g = 2i mWW, (C4)
- aXa* @5 we find for the right-hand side of E4C3)
= — | —’ - y .
E-E'+il'/2 C[W(D g ™ VT = 27W(D ing) ~*W'W(D ) ~VT]
where (CH
_ toy—1yt -1yt
QZGXF(—i(S)UT’y, (B6) C[W(Dnng) \Y +W(Dr|ng) \Y
_ ~W(D/,) V'] (CH)
a* =exp(—i S UTH*. (B7) g
amr man _ -1yt
We haveSS'=S'S=1 which yields CW(Dring) "V, €7
o which provesc=1 and hence EqCI).
aXa*=aXa*, (B8)
APPENDIX D
( lal|? | ax a*=(2 lal|? |ax a*, (B9) In this appendix we derive the flux dependence of the
ct et various terms contributing to the conductari8g). First, the

flux dependence of the total width; is calculated starting

1 .
EF(aXa*-I—aXa*):( |EE|2 aXa*. (BlO) from Eqs.(25),

c,t

o Ij=—21ImVD;V'];; (D1)
In Appendix C we show tha= «. This implies Eqs(B8)

and(B9), and Eq.(B10) reduces to .
a =—2Im3 {[(vf;+oRexp~i¢)]

r=2 lagf*=2 |ag® (B1D) XD vk +olexpid)l), (D2

c,
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where we have inserted the parametrizatiohsand(8). The Y (P)=u+vexp+igp), (D6)

term proportional to si¢# vanishes sinc®,q is symmetric.

Hence one obtains where u and v are complex and independent ¢t Using

— this, one finds that the term sing in the expression

I'j=T;(1+x,c0sp), (D3)

where bothl’; andx, are flux independent. Yar Vi = (mamb+ vavp) + (uave+ vaup) cosp

To derive Eqs(37) and(38) we recall that the couplings 1o 1 o
V and W obey the symmetriesV(¢)=V*(—¢) and +i(pmavh— vamp)sing (D7)

W=W*. Therefore the propagat®,q defined in Eq(16) _ o .
is symmetric and the partial width amplitudes y given in  is antisymmetric with respect to the interchanga«t2.b.

Eqgs.(19) and(20) are related by The transmission amplitudgg ., by contrast, is symmet-
. ric under the same interchange. As a result, the sum
V) =v"(=¢). (D4) 25, pting.abYar 75; has the form given in E37) with posi-
Hence they can be written in the form tive amplitudey/,, y, and real phase shifty, £;. The form
of Eq. (38) follows from the parametrization®5) and(D6)
Y(P)=u+vexp—igp), (D5) since the conductance is a symmetric functionpof
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